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Three-forms can give rise to viable cosmological scenarios of inflation and dark energy with potentially

observable signatures distinct from standard single scalar field models. In this study, the background

dynamics and linear perturbations of self-interacting three-form cosmology are investigated. The phase

space of cosmological solutions possesses (super)-inflating attractors and saddle points, which can

describe three-form driven inflation or dark energy. The quantum generation and the classical evolution

of perturbations is considered. The scalar and tensor spectra from a three-form inflation and the impact

from the presence of a three-form on matter perturbations are computed. Stability properties and

equivalence of the model with alternative formulations are discussed.
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I. INTRODUCTION

Inflation is a successful explanation of many cosmologi-
cal puzzles, and the current acceleration of the Universe is
a cosmological puzzle which yet lacks an explanation.
Since Nordström [1], scalar fields have been present in
extra dimensional and fundamental theories, and it is natu-
ral to employ them to describe the energy sources needed
to generate inflation and dark energy [2–7], for recent
reviews, see [8,9]. However, it is crucial to understand
how strict are the theoretical and phenomenological limits
on the role of higher spin fields in cosmology.

Vector inflation [10] has been considered recently, using
either timelike [11] or spacelike [12] components.
However, to naturally inflate, the vector needs a nonmini-
mal coupling and seems to feature instabilities [13], see
however [14,15]. Effects on cosmic microwave back-
ground (CMB), alternative scenarios [16] and the pertur-
bation generation [17–19] have been studied in these
models. Vector field dark energy [20–24] might alleviate
the coincidence problem [25–27] and introduce new effects
on perturbations [28,29]. It can be shown that two-form
inflation resembles much the vector inflation, having the
same possibilities and problems [30–32]. Spinor [33,34]
and Yang-Mills [35,36] fields have been also explored.
Kalb-Ramond forms with dilaton couplings have been
considered in the frameworks of string cosmology dynam-
ics [37,38], pre-big bang cosmology [39], unified models
of dark matter and dark energy [40,41], and bouncing
cosmology [42]. Two-forms appear also in the asymmetric
gravity [43,44] as the antisymmetric contribution to the
metric, and have been considered in cosmology [45,46].
Recently, a Chern-Simons type gravity was developed
promoting the Levi-Civita symbol into a dynamical field
[47]. In the two-measures field theory, the new measure of
integration can be built from either four scalar fields or an
independent dynamical three-form [48]. This theory has

several cosmological implications [49]. In a scale-invariant
realization of the theory, a scalar potential acquires two flat
regions in such a way that both inflation and dark energy
may emerge [50,51]. Forms, being intrinsically aniso-
tropic, could also be relevant for a dynamical origin of
the four large dimensions [52–54], modeling violation of
the Lorenz invariance [55–60], the observed CMB anoma-
lies [61–65] or testable late-time anisotropic phenomenol-
ogy [66–70].
In the present paper, our aim is to study the possible

cosmological significance of three-forms. It was noticed in
[71] that the four-form constructed from a three-form
gauge potential generates a cosmological constant. Since
then, this fact has been employed in discussions attempting
to explain the tiny (or vanishing) value of the cosmological
constant [72,73]. Recently, we have proposed to consider
the case of self-interacting gauge potential [32,74]. This
breaks the gauge-invariance but the field becomes then
dynamical. Then a single field inflation with an exit to
radiation dominated era can be naturally generated, or
alternatively, the three-form can act as possibly transient
dark energy at a late stage of the history of the Universe
(three-from induced potentials were discussed in [75,76]).
Form fields appearing in string theory generically couple to
branes and this way a potential term might be obtained. In
the present study we confine our investigations to the
simple model with only a canonical field minimally
coupled to Einstein gravity. A three-form generalization
of vector (and scalar) inflation was introduced recently
[30], based on an action involving nonminimal couplings
in such a way that the equation of motion of the comoving
field has exactly the Klein-Gordon form in Friedmann-
Lemaitre-Robertson-Walker (FLRW) spacetime. The
study of gravitational waves in such model reveals an
instability occurring at large values of the field [31], while
the spectrum of scalar perturbations in small field inflation
could be slightly red tilted and thus compatible with ob-
servations [77]. In the minimally coupled model that we
consider here the equation of motion can be also written in
the Klein-Gordon form, but given an effective potential.
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The dual of the three-form is a scalar field. In the case of
a nonquadratic potential, the kinetic term of the scalar field
is noncanonical. Such a model then becomes equivalent to
k-inflation, and has been analyzed before [78,79]. A non-
quadratic dependence on the three-form Faraday term
results in a self-coupling of the scalar field. For any non-
minimal coupling, in particular, nonminimal gravity cou-
plings of the three-form, the duality with a scalar field
breaks down. In fact, as we will show explicitly, even for
some fairly simple self-interactions of the three-form, no
dual description can be established in terms of a scalar
field. In any case, typically the scalar field description, if it
exists, is opaque and intractable even if the model in three-
form language is simple and intuitive. In fact, most of the
models admit a reformulation as vector models, and in
some cases a presentation as dynamical four-form models
is also possible. Thus, the simple starting point we have
opens new perspectives on several classes of form
cosmologies.

We will write down the basic equations in Sec. II and
review some results of Ref. [74] to give an intuitive picture
of the possible background dynamics. A convenient vari-
able to describe is the comoving field X. An analogy
between a scalar field and the comoving field X can be
utilized to illustrate the behavior of the field, however,
since the kinetic term of the actual field X=a3 governs
some aspects of the dynamics, an alternative viewpoint is
also necessary to fully understand the dynamics. In Sec. III,
we give a detailed account of the background expansion
dynamics. The phase space analysis of the system reveals
three classes of fixed points, one corresponding to matter
domination and two corresponding to the domination of
the form field. The nature and stability of the latter two
points, which are relevant for dark energy and inflation
solutions, depends on the form of the potential. We con-
sider exponentials, power-law and Ginzburg-Landau type
potentials.

In Sec. IV, we consider perturbations of three-form
cosmology. Guided by the duality with a vector field, we
parameterize the 4 degrees of freedom in the fluctuations of
the three-form, two of them transforming as vectors under
spatial rotations and two as scalars. It turns out that the
vector-type fluctuations can be neglected about a FLRW
background, whereas the scalar perturbations introduce
several possible new effects in cosmology. We analyze
the quantum generation of three-form perturbations during
inflation using the standard techniques, and give the de-
tailed general form of predictions for the amplitude of
scalar and tensor fluctuation spectrum and their spectral
indices. The possible influence on matter inhomogeneities
due to the presence of classical perturbations in a three-
form in a matter-dominated universe is also considered. It
is found that depending on the sound speed of the
X-component (which in turn depends on the chosen form
of the potential), there can be a range of scales where the

linear growth of matter density perturbation is affected by
the three-form fluctuation. This effect can be encoded into
an effective strength of gravitational coupling of matter
particles, which in general depends on time and length
scale.
Finally, we discuss some formal aspects of the model in

two appendices. Some manipulations of the action are
performed in order to clarify the properties of the model.
The degrees of freedom and their nature will be seen to
depend strongly on the form of the self-interactions. For
some specific cases, dualities and equivalences can be
established with other form field models as stated above.
We conclude in Sec. V stating a few central formulas we
have obtained. The model is also discussed briefly in the
wider context of general (quadratic) three-form actions.

II. EXPANSION DYNAMICS

We shall focus on a canonical theory minimally coupled
to Einstein gravity. The action for a three-form A can then
be written

SA ¼ �
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

2�2
R� 1

48
F2 � VðA2Þ

�
; (1)

where �2 ¼ 8�G. In this section, to avoid unnecessary and
excessive use of indices [80], we introduce the following
notations: squaring means contracting the indices in order,
as A2 ¼ A���A

���, dotting means contracting the first

index, as ðr � AÞ�� ¼ r�A���, and circling means con-

tracting all but the first index in order, ðA � BÞ�� ¼
A���B�

�� and finally antisymmetrization is performed

by square brackets, for example ½A��� ¼ 1
2 ðA�� � A��Þ.

Now the possible drawback seems to be that the valence of
the objects we are dealing with is not explicitly seen;
however, in this index-free notation most results automati-
cally generalize for tensors of arbitrary valence. In this
notation the FðAÞ is F ¼ ðnþ 1Þ½rA�, where A is an
n-form, and thus FðAÞ generalizes the Faraday form ap-
pearing in Maxwell theory. The energy momentum tensor
is

T ¼ 1
6F � Fþ 6VðA2ÞA � A� gð 148F2 þ VðA2ÞÞ: (2)

The action leads to the equations of motion

r � F ¼ 12V 0ðA2ÞA; (3)

which implies, due to antisymmetry, the additional set of
constraints

r � V0ðA2ÞA ¼ 0: (4)

We consider a flat FLRW cosmology described by the
line element

ds2 ¼ �dt2 þ a2ðtÞdx2: (5)

The nonzero components of most general three-form com-
patible with this geometry are then given by
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Aijk ¼ a3ðtÞ�ijkXðtÞ; (6)

where we have considered, instead of the field A, the more
convenient comoving field X, and i, j, k denote the spatial
indices. The relation between the squared invariant A2 and
the comoving field X is then A2 ¼ 6X2. We can thus
consider the potential as a function of X2, as we will do
in the following.

The equation of motion of the field X is then

€X ¼ �3H _X� V;X � 3 _HX: (7)

An overdot means derivative with respect to the cosmic
time t. The background perfect fluid evolves with

_	 B ¼ �3�H	B; (8)

where � ¼ 1þ pB=	B, and these equations are subject to
the Friedmann constraint

H2 �
�
_a

a

�
2 ¼ �2

3

�
1

2
ð _X þ 3HXÞ2 þ VðXÞ þ 	B

�
: (9)

The other field equation follows also from this and the
continuity equations as

_H ¼ ��2

2
ðV;XX þ �	BÞ: (10)

We can thus define energy density and pressure of the field
as

	X ¼ 1
2ð _X þ 3HXÞ2 þ VðXÞ; (11)

pX ¼ �1
2ð _X þ 3HXÞ2 � VðXÞ þ V;XX: (12)

The equation of state parameter of the three-form, wX ¼
pX=	X, can be written as

wX ¼ �1þ V;XX

	X

: (13)

We thus see directly that whenever the potential or just its
slope vanishes, the field is like a cosmological constant.
Furthermore, whenever the slope of VðXÞ is negative (posi-
tive) if X is positive (negative), the comoving field behaves
as a phantom field. So the origin has some absolute mean-
ing for this field, unlike in the case of a scalar. We also note
that the equation of state is unbounded from both up and
below.

Previously it was shown that one may predict the evo-
lution of the system by considering the effective potential,
defined by [74]

Veff;X ¼ V;X þ 3 _HX: (14)

We illustrate the form of this potential in Figs. 1 and 2 for
two new cases when 	B ¼ 0b. For these potentials, the
positions of the minima depend on the precise value of C.

When C<
ffiffiffiffiffiffiffiffi
2=3

p
, the local minima are at X ¼ �C and

when C>
ffiffiffiffiffiffiffiffi
2=3

p
the minima are at C ¼ � ffiffiffiffiffiffiffiffi

2=3
p

. This

suggests that the field has different dynamics given a
choice of C. In particular it seems that the late-time value

of X is �C if C<
ffiffiffiffiffiffiffiffi
2=3

p
and X approaches

ffiffiffiffiffiffiffiffi
2=3

p
if C>ffiffiffiffiffiffiffiffi

2=3
p

. Wewill see in Sec. III that these first impressions are
indeed correct. One notes that there are places where the
slope of the effective potential is downwards while the bare
potential is increasing. In such situations the field, as it
rolls down the effective potential, climbs up its bare po-
tential. The analogy with the scalar field holds here in the
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FIG. 1 (color online). The potential (red, solid line) and the
effective potential (blue, dashed line) for the potential V ¼
ðX2 � C2Þ2, when C ¼ 1

2 <
ffiffi
2
3

q
and 	B ¼ 0. Units of � ¼ 1.
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FIG. 2 (color online). The potential (red, solid line) and the
effective potential (blue, dashed line) for the potential V ¼
ðX2 � C2Þ2, when C ¼ 3

2 >
ffiffi
2
3

q
and 	B ¼ 0. Units of � ¼ 1.

INFLATION AND DARK ENERGY FROM THREE-FORMS PHYSICAL REVIEW D 80, 103509 (2009)

103509-3



sense that such cases indeed correspond to a phantomlike
expansion, where the (effective) equation of state of the
field is more negative than minus unity.

We illustrate these behaviors also with numerical solu-
tions. In Figs. (3 and 4), we show the evolution of the field,
energy density and equation of state for the Landau-
Ginzburg potential with C ¼ 0:5 and C ¼ 1:5, respec-
tively. We use this potential because it illustrates most
features of the dynamics. We will see that depending on
the magnitude of C, two qualitatively different cases
emerge. Though the early evolutions are similar while
the background is dominant and the potential is roughly
V � X4, the late-time evolutions diverge. This is to be
expected because, as we have seen in Figs. (1 and 2), the
effective potentials are different. In particular, we see that

the field settles in X ¼ C in the first case as C<
ffiffiffiffiffiffiffiffi
2=3

p
and

the late-time oscillations result in the equation of state
parameter to cross wX ¼ �1 at each oscillation. This can
be understood by noticing that the field is transiting be-
tween positive and negative values of the slope of the

potential at the minimum. For the second case C>ffiffiffiffiffiffiffiffi
2=3

p
, the field cannot reach its minimum as it is con-

strained to X <
ffiffiffiffiffiffiffiffi
2=3

p
for positive velocity. In particular,

we see that X cannot be displaced further than X ¼ � ffiffiffiffiffiffiffiffi
2=3

p
for _X ¼ 0, as this saturates the Friedmann Eq. (9) and

larger field values could be reachable only in the presence
of negative energy sources. Consequently, the equation of
state approaches asymptotically w ¼ �1 from below in
the second case where C is larger than the critical value.
In Figs. 3 and 4 we see that at early times the evolutions

are identical and initially are described by a tracking
behavior followed by a constant energy density of the field
X and only at late times the evolutions diverge from one
another. The earlier history of these evolutions corresponds
to power-law potential regime of the potential, which was
discussed in detail in Ref. [74], but we make here brief
comments from the dual point of view.
It was shown that when the background fluid is domi-

nant, and the one independent component of the three-form
Aijk is constant, the field will be tracking with n ¼ �,

where n is given by the shape of the potential, VðXÞ ¼
V0X

n. This period is ended when 3H2y2 � VðXÞ. It was
found that the number of e-folds elapsed is then rather
accurately given by

Ns ¼ 1

3n
ln

�
Vi

3H2
i y

2
i

�
; (15)

where now yi is the initial value of y � �ðX0 þ 3XÞ= ffiffiffi
6

p
and Vi=H

2
i is the initial ratio of the potential and the

Hubble rate and prime means differentiation with respect
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FIG. 3 (color online). Cosmological evolution as a function of the e-folding time N ¼ lna for the Landau-Ginzburg potential when

C ¼ 0:5 (units of � ¼ 1). In the upper left panel we see the field going through the unstable fixed point at X ¼ ffiffiffiffiffiffiffiffi
2=3

p
to oscillate

around the stable minimum at X ¼ C. The upper right panel shows the corresponding values of the potential. The lower left panel
depicts the energy densities in a logarithmic scale; the dashed (red) line is matter and the solid (blue) line is the three-form. A brief
tracking period is included in the figure, followed by two stages: the unstable fixed point and the oscillations around the stable
minimum. The lower right panel shows the equation of state of X, exhibiting strong oscillations during the settling to the minimum.
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to

N � lna: (16)

The numerical solutions shown here also follow this be-
havior now corresponding to the case n ¼ 4.

One may consider the tracking property in light of the
dual description as a scalar field which we discuss in more
generality in Appendix B. Now such a dual description as a
scalar field exists, since during the tracking phase the
kinetic term is negligible and the potential can be approxi-
mated by a power law. Then this dominating potential term
represents the kinetic term of the scalar field. It can be
easily shown that a k-essence Lagrangian L� ð@
Þ2p
behaves as a perfect fluid with the equation of state given
by w
 ¼ 1=ð2p� 1Þ. During the tracking phase described
above, the three-form indeed is (at least approximately)
equivalent to such a k-essence field. One may deduce from
the action (B12) that a power-law potential V � An turns
into the kinetic Lagrangian with 2p ¼ n=ðn� 1Þ, thus
assuming the scaling of energy density we have obtained.

Canonical quintessence is also known to possess the
tracking property in some cases. One might thus be curious
if this fact could be used to construct tracking three-form
models. It turns out to be the case, and to produce non-
canonical three-forms models. Among the simplest ex-
amples of a quintessence with a tracking attractor is an

inverse power-law potential Vð
Þ ¼ V0

p. It is known to

approximately track the background density rather inde-
pendently of the initial conditions. The power-law form of
the potential translates into a power-law kinetic term of a
three-form �,

L ¼
�

xp

V0p
p

�
1=ðp�1Þðp� 1Þ � 1

18
�2; (17)

where the kinetic term is given by

x � �1
4�����F

����ð�Þ: (18)

The exponential potential is known to be the special case
possessing the scaling, or ’’exact tracking’’ property. In
Appendix B we will describe how the three-form can
sometimes be written as quintessence; by going the other
way around one may find that a quintessence model speci-
fied by minimal coupling and Vð
Þ ¼ V0e

��
 can be
recast into the three-form model

L ¼ � x

�

�
1þ ln

x

�V0

�
� 1

18
�2: (19)

In the present study we however confine to the canonic
kinetic term. As shown above, the three-form energy den-
sity can then scale as a power of the scale factor, given the
initial condition that the (only independent) component of
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FIG. 4 (color online). Cosmological evolution as a function of the e-folding time N ¼ lna for the Landau-Ginzburg potential when
C ¼ 1:5 (units of � ¼ 1). In the upper left panel we see the field going through the unstable fixed point at X ¼ 0 to settle to the stable

minimum at X ¼ ffiffiffiffiffiffiffiffi
2=3

p
. The upper right panel shows the corresponding values of the potential. The lower left panel depicts the energy

densities in a logarithmic scale; the dashed (red) line is matter and the solid (blue) line is the three-form. A brief tracking period is

included in the figure, followed by two stages: the unstable fixed point and the approach to the late-time attractor X ¼ ffiffiffiffiffiffiffiffi
2=3

p
. The lower

right panel shows the equation of state of X, exhibiting a phantom behavior during the approach to the stable minimum.
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the field, Aijk is a constant, meaning that the comoving field

scales as X � a�3.
Before settling into the minimum, the field turns around

the potential and start climbing it. The value of Nt when
this happens is given by

Nt ¼ 1

3ð1þ �=2Þ ln
�
2

�

B

A

�
; (20)

where A ¼ ffiffiffiffiffiffiffiffi
2=3

p
yi=ð1þ �=2Þ, and B ¼ Xi � A, where Xi

is the initial value of the field. To have scaling behavior for
many e-folds, one may consider tiny A at huge Xi.

Let us then consider the transient acceleration scenario.
There the field slows down never reaching the critical value

X ¼ ffiffiffiffiffiffiffiffi
2=3

p
, the amount of inflation Ne is eventually given

by the initial value of the field Xi at the beginning of
inflation near the critical point and again depends on the
slope shape,

�Xi ¼ �
�
2

3
� 4

9n

1

1þ 2Ne

�
1=2

; (21)

and clearly, the slow-roll condition on the velocity of the
field (94) must be satisfied. We observe that for larger

values of Ne then j�Xij must be closer to j�Xij �
ffiffiffiffiffiffiffiffi
2=3

p
.

We also showed in Ref. [74] that the oscillations of the
field, when it settles to the minimum, follow an averaged
behavior, which depends on the shape of the potential. For
a power-law potential the result is, surprisingly, the same as
for a canonical scalar field [82],

hwXi ¼ n� 2

nþ 2
: (22)

Thus, for n ¼ 2 the fields behaves as dust, hwXi ¼ 0 and
for n ¼ 4 it mimics radiation, hwXi ¼ 1=3 [83]. We men-
tion in passing that this result applies also for oscillating
k-essence with mass term and a power-law kinetic term due
to the duality mentioned above, so the model L�
ð@
Þ2p þm2
2 oscillates like hw
i ¼ ðp� 1Þ=ð3p� 1Þ.

This concludes our qualitative review of the possible
sequences of cosmological epochs, and next we turn into
more rigorous phase space analysis and observable
predictions.

III. PHASE SPACE ANALYSIS

In this section we will put on a more solid and formal
ground the considerations of the previous section on the
late-time dynamics of the system and its stability. We start
by rewriting the equations of motion in the form of a
system of first order differential equations

x0 ¼ 3

� ffiffiffi
2

3

s
y� x

�
; (23)

y0 ¼ � 3

2
�ðxÞð1� y2 � w2Þ

�
xy�

ffiffiffi
2

3

s �
þ 3

2
�w2y; (24)

w0 ¼ � 3

2
wð�þ �ðxÞð1� y2 � w2Þx� �w2Þ; (25)

where we have defined

x � �X; y � �ffiffiffi
6

p ðX0 þ 3XÞ; z2 ¼ �2V

3H2
; (26)

w2 � �2	B

3H2
; �ðxÞ � � 1

�

V;X

V
: (27)

�ðxÞ is, therefore, a function of X. The quantity z was
eliminated from the equations of motion by applying the
Friedmann constraint

y2 þ z2 þ w2 ¼ 1: (28)

The system (23)–(25) has three critical points, which are
described in Table I.
A: x ¼ 0, y ¼ 0, w ¼ �1, for any �. It corresponds to

the background dominated solution. At late time the ratio
_H=H2 approaches �3�=2. If � is a constant, the eigenval-
ues are ð�3; 3�=2; 3�Þ, hence, it is an unstable critical
point.

B: x ¼ � ffiffiffiffiffiffiffiffi
2=3

p
, y ¼ �1, w ¼ 0, for any �. This is a

critical point that does not exists for the standard scalar
field and that results from the extra X dependent terms in
the equation of motion and in the definition of the energy
density and pressure. When approaching this fixed point, _H
approaches a constant at late times, however, H2 keeps
increasing, therefore, the effective equation of state pa-
rameter of the field X approaches �1 from below. The
eigenvalues are ð�3; 0;�3�=2Þ and because one of the
eigenvalues is zero, we cannot infer anything about the
nature of the critical point from the linear analysis. We
need to consider specific potentials and go to nonlinear
order. The eigenvector corresponding to the vanishing

eigenvalue reads ð ffiffiffiffiffiffiffiffi
2=3

p
; 1; 0Þ, therefore, when going to

higher order we study the stability of perturbations along

the zero eigenvalue direction �r ¼ ffiffiffiffiffiffiffiffi
2=3

p
�xþ �y, for

which we get

�r0 ¼ �ðnÞ�rn; (29)

for n > 1 and�ðnÞ is the coefficient resulting from expand-
ing equations Eqs. (23) and (24) to nth order and using

TABLE I. The critical points in the system.

x y w _H=H2 � Description

A 0 0 �1 �3�=2 any matter domination

B� � ffiffiffiffiffiffiffiffi
2=3

p �1 0 0 any maximal point

C xext
ffiffiffiffiffiffiffiffi
3=2

p
xext 0 0 0 potential extremum
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�x ¼ ffiffiffi
6

p
�r=5 and �y ¼ 3�r=5, such that �ð1Þ ¼ 1. The

general solution to this equation is

�r ¼ �r0ð1� �rn�1
0 ðn� 1Þ�ðnÞNÞ1=ð1�nÞ: (30)

In order for a negative initial perturbation (�r0 < 0) to

decay one must have �ðnÞ > 0 if n is even and �ðnÞ < 0
if n is odd. For a positive perturbation it suffices to have

�ðnÞ < 0, regardless of the value of n.
Since jyj must be less than unity, there can only be

negative perturbations along the r direction about the fixed

point ðx; y; wÞ ¼ ð ffiffiffiffiffiffiffiffi
2=3

p
; 1; 0Þ and positive perturbations

about the fixed point ðx; y; wÞ ¼ ð� ffiffiffiffiffiffiffiffi
2=3

p
;�1; 0Þ, thus,

for the perturbations to decay it is required that �ðnÞ must

be positive for fixed point ðx; y; wÞ ¼ ð ffiffiffiffiffiffiffiffi
2=3

p
; 1; 0Þ if n is

even and �ðnÞ negative if n is odd and �ðnÞ negative for

fixed point ðx; y; wÞ ¼ ð� ffiffiffiffiffiffiffiffi
2=3

p
;�1; 0Þ.

C: x ¼ xext, y ¼ ffiffiffiffiffiffiffiffi
3=2

p
xext, w ¼ 0 where xext corre-

sponds to the value of x at the extrema of the potential,
i.e. where � ¼ 0. In this case, H2 becomes constant and _H
vanishes at late times. The stability of these fixed points, is
therefore, strongly dependent on the specific form of the
potential.

We shall now look at particular examples to illustrate the
significance and stability of the fixed points just described.

(1) V ¼ expð��XÞ
Because the potential, being a function of the in-
variant A2, must depend explicitly on X2 instead of
X itself, we are dealing with symmetric potentials.
This potential is not X2 dependent and therefore
should only be seen as an example to be compared
with the standard scalar field dynamics. We can
compute � for both fixed points B to find that

�ð2Þ
B� ¼ 18

25

ffiffiffi
6

p
�; (31)

hence, ð ffiffiffiffiffiffiffiffi
2=3

p
; 1; 0Þ is stable for �> 0 and

ð� ffiffiffiffiffiffiffiffi
2=3

p
;�1; 0Þ is stable for �< 0.

The fixed point C which corresponds to vanishing
derivative of the potential. Since we have assumed
that � ¼ � is a constant, in this case the potential is
flat (� ¼ 0) in some finite region of X, instead of a
point we actually have a curve C. Then its points
live in an effectively two dimensional manifold, and
one of the Lyaponov exponents is expected to van-
ish. Therefore, we can now infer the nature of the
critical point from the linear analysis. Since the two
nonzero eigenvalues are negative, we have what is
called a local sink. Note that in fact � ¼ 0 corre-
sponds to the massless field, and the reduction of the
dimension of the phase space reflects the disappear-
ance of a degree of freedom in the massless case due
to the restored gauge invariance.

(2) V ¼ expð��X2Þ
This potential has a X2 dependence and hence is of

the type we are looking for. If � is positive, it
presents a maximum at X ¼ 0 and conversely, if �
is negative, it has a global minimum at the same
value.
Now the value of � for fixed points B are

�ð2Þ
B� ¼ �72

25�; (32)

hence they are both stable if �> 0.
The fixed point C is in this case ðx; y; wÞ ¼ ð0; 0; 0Þ
and its corresponding eigenvalues are m1;2 ¼
�ð3=2Þð1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 8�=3
p Þ and m3 ¼ �3�=2. This

point is stable provided �< 0, which clearly makes
sense as it is the case that leads to a minimum in the
potential.

(3) V ¼ X2 þ k
Here, k is a positive constant introduced for the
purpose of regularization purposes about x ¼ 0.
The quadratic potential is in a sense similar to the
previous one with �< 0. Indeed, we find that for
fixed points B,

�ð2Þ
B� ¼ 	 72

24

1

2=3þ k
; (33)

which mean that they are unstable. In this case, the
fixed point C, also corresponds to ðx; y; wÞ ¼
ð0; 0; 0Þ with eigenvalues

m1;2 ¼ � 3

2

�
1	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 8

3k

s �
; (34)

m3 ¼ � 3�

2
; (35)

thus this is a stable fixed point.
(4) V ¼ X4 þ k

Though the quartic potential seems very similar to
the quadratic potential there are in fact some differ-
ences. Again k is a positive constant. For fixed point
B we compute

�ð2Þ
B� ¼ 	 96

25

1

4=9þ k
; (36)

and again they are unstable. Fixed point C, which is
again at ðx; y; wÞ ¼ ð0; 0; 0Þ and also has eigenvalues
ð�3; 0;�3�=2Þ like fixed point B where the direc-

tion of vanishing eigenvalue is still given by �r ¼ffiffiffiffiffiffiffiffi
2=3

p
�xþ �y. Going to second order in perturba-

tions along this direction, like we did for point B, we

find that �ð2Þ
C ¼ 0. We thus have to go to the third

order,

�ð3Þ
C ¼ � 72

125k
; (37)

and there we find that the sign of the eigenvalue is
negative, thus, the point is a stable attractor.
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(5) V ¼ ðX2 � C2Þ2 þ k
This potential has two minima at X ¼ �C and a
maximum at X ¼ 0 (we are taking C> 0). For fixed
point B we can readily calculate

�ð2Þ
B� ¼ 	 144

25

ð2=3� C2Þ
ð2=3� C2Þ2 þ k

; (38)

hence, both fixed points are stable provided C>ffiffiffiffiffiffiffiffi
2=3

p
. We have now, however, three type C fixed

points:

C 1:

�
�C;�

ffiffiffi
3

2

s
C; 0

�
; (39)

C 2: ð0; 0; 0Þ: (40)

For C1 we find eigenvalues

m1;2 ¼ � 3

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 24C2

k

�
C2 � 2

3

�
2

s �
; (41)

m3 ¼ � 3�

2
: (42)

Thus, this fixed point is stable for k > 24C2ðC2 �
2=3Þ2. We must also point out that this fixed point

only exists for C<
ffiffiffiffiffiffiffiffi
2=3

p
as we must require jyj<

1. For C1 we can compute the following eigenval-
ues:

m1;2 ¼ � 3

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 16C2

3ðC4 þ kÞ

s �
; (43)

m3 ¼ � 3�

2
; (44)

consequently we can conclude that this fixed point is
unstable which is not surprising given that it corre-
sponds to the local maximum of the potential.
The properties of the fixed points for all these forms
of the potential are summarized in Table II.
We are going to focus on two forms of the potential
that will suffice to describe the general properties of
this system that we have formally described above.

In Fig. 5 we show the phase space portrait for a
potential of the form VðXÞ ¼ X2. It shows that the
trajectories approach the minimum of the potential
at X ¼ 0 and oscillate around this value. In Figs. 6
and 7 we show the phase space trajectories for the
potential VðXÞ ¼ ðX2 � C2Þ2, whereC is a constant.
In the example of Fig. 6,C ¼ 0:5 and we see that the
late-time behavior consists of the trajectories oscil-
lating around the fixed point X ¼ C and y ¼ 0.

TABLE II. Stability of the fixed point in four classes of mod-
els. U—unstable; S—stable.

VðXÞ A B C

expð��XÞ U Bþ stable for �> 0 S

B� stable for �< 0
expð��X2Þ U stable for �> 0 stable for �< 0
X2 U U S

X4 U U S

ðX2 � C2Þ2 U stable for C>
ffiffiffiffiffiffiffiffi
2=3

p
C1 stable, C2 unstable

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

FIG. 5 (color online). The phase space trajectories for qua-
dratic potential. The minimum of the potential at X ¼ 0 has been
marked with a dot.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

FIG. 6 (color online). The phase space trajectories V ¼ ðX2 �
C2Þ2, when C ¼ 1

2 <
ffiffiffiffiffiffiffiffi
2=3

p
. The stable fixed points at the minima

of the potential (both the true and the effective potential) have
been marked with a dots.
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Finally, for the example of Fig. 7, we see that the

trajectories approach the critical points x ¼ � ffiffiffiffiffiffiffiffi
2=3

p
,

y ¼ �1.

IV. COSMOLOGICAL PERTURBATIONS

The general perturbations about the FLRW background
can be parameterized by writing the line element as

ds2 ¼ �ð1þ 2c Þdt2 þ 2bidx
idtþ a2ðtÞð1� 2
Þdxidxi

þ a2ðtÞhijxixj; (45)

where the two scalar perturbations c and 
 are the usual
Bardeen potentials in the longitudinal gauge, bi is a trans-
verse vector and hij is transverse and traceless as it de-

scribes the tensorial perturbations.
The field equations for the scalar perturbations are then

�r2

a2

þ 3Hð _
þHc Þ ¼ �4�G�	; (46)

�r2

a2
ð _
þHc Þ ¼ 4�Gð	þ pÞ

a
; (47)

€
þHð3 _
þ _c Þ þ ð2 _Hþ 3H2Þc � r2

3a2
ð
� c Þ

¼ 4�G�p; (48)

�r2ð
� c Þ ¼ 12�Gð	þ pÞ$: (49)

The first equation is the energy constraint (G0
0 compo-

nent), the second is the momentum constraint (G0
i compo-

nent) involving the velocity perturbation , the third is the

trace of the spatial part (Gi
i component), and the last one

gives the shear propagation equations part (Gi
j compo-

nent) for the shear $.

A. The three-form

To parameterize the fluctuations of the three-form, we
employ a similar decomposition as for the metric. The 4
degrees of freedom in a three-form then turn out to be two
scalar and two vector degrees of freedom. The components
of the three-form are fully specified by

A0ij ¼ a2ðtÞ�ijkð�;k þ �kÞ; (50)

Aijk ¼ a3ðtÞ�ijkðXðtÞ þ �0Þ: (51)

Here, �k is a transverse vector and thus has two indepen-
dent degrees of freedom. One easily sees that as usually,
the vector and scalar perturbations decouple at linear order.
The square of the field is then

A2 ¼ 6½X2 þ 2Xð�0 þ 3X
Þ�: (52)

Under general gauge transformation x� ! x� þ ��,
specified by the vector �� ¼ ð�0; �;i þ �iÞ, where �i

;i ¼
0, the field fluctuations transform as

�0 ! �0 � _K�0 þ Xr2�; (53)

� ! �� aX _�; (54)

�i ! �i � aX�i: (55)

Here, we use the variable _K ¼ _X þ 3HX. In this trans-
formation the metric potentials transform as

c ! c � _�0; (56)


 ! 
þH�0 þ 1
3r2�: (57)

The equations of motion for the scalar perturbations then
are

_� 0 þ 3H�0 þ V;X

X
��r2

a2
�þ _Kð3
� c Þ ¼ 0; (58)

€�0 þ 3H _�0 þ ð3 _H þ V;XXÞ�0 �r2

a2
ð _�� 2H�Þ

þ _Kð3 _
� _c Þ þ 3ðV;XXX� V;XÞ
þ 2V;Xc ¼ 0; (59)

which represent the two independent components (0ij and
ijk) of Eq. (3). The background equations of motion was
used to simplify the second one. As discussed in the
previous section, the kinetic terms are given by this com-
ponent, corresponding to the field itself, while the potential
depends on the comoving field X. This variable _K is just
the dimensional version of the ywe used in the phase space
analysis. We notice also that the constraint Eq. (4), which
may be written as

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

FIG. 7 (color online). The phase space trajectories V ¼ ðX2 �
C2Þ2, when C ¼ 3

2 >
ffiffiffiffiffiffiffiffi
2=3

p
. The stable fixed points at the minima

of the effective potential have been marked with a dot.
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@

@t

�
V;X�

X

�
¼ V;Xð�0 þ 3X�Þ � V;X; (60)

is not independent but follows consistently from Eqs. (58)
and (59). The density, pressure and velocity perturbations
come out as follows:

�	X ¼ _K

�
_�0 þ 3H�0 �r2

a2
�þ _Kð3
� c Þ

�
þ V;Xð�0 þ 3X
Þ; (61)

�pX ¼ ��	X þ ðV;XXX þ V;XÞð�0 þ 3X
Þ; (62)

ð	X þ pXÞX ¼ �r2

a2
V;X�; (63)

$X ¼ 0: (64)

The first equation is the energy piece of the energy mo-
mentum tensor Eq. (60) (T0

0 component), the second is the

trace of the spatial part (Ti
i component), the third is

obtained from the momentum containing part (T0
i compo-

nent), and the last one gives the symmetric traceless part of
the spatial Ti

j components. Thus, we get that the aniso-

tropic stress due to the three-form vanishes.
In the absence of other vector sources, the rotational

perturbations evolve like

_b i þHbi ¼ 0; (65)

r2

a2
bi ¼ V;XðXbi � �iÞ: (66)

Thus, the vector perturbations decay and can be ignored.
Since the three-form does not generate tensor perturba-
tions, their evolution equation is

€hþ 3H _h�r2

a2
h ¼ $ðtÞ; (67)

where$ðtÞ is tensorial anisotropic stress to which the three-
form does not contribute.

B. Three-form domination

Assume that the three-form dominates. Since it does not
generate anisotropic stress, Eq. (49) tells us that c ¼ 
.
We can now derive an evolution equation for the Bardeen
potential 
 in a closed form. Equation (50) can be used to
eliminate _�0 from the system. Eqs. (46) and (61) may then
be used to eliminate �0. Note that only � appears always
without derivatives in these equations. We may eliminate�
using Eqs. (47) and (63). Finally, plugging the solutions
into Eq. (48) with the right-hand side (RHS) given by (62)
we get

€
þ
�
H � €H

_H

�
_
þ

�
2 _H � €HH

_H

�



¼
�
1� €H

_H

X
_X

�
1

a2
r2
: (68)

We can verify this result by differentiating Eqs. (47) and
(58) solving for _� and €�0, and verifying that the latter
agrees with Eq. (59). The RHS of Eq. (68) is simply �pX=2
in the comoving gauge, and the density perturbation in the
comoving gauge is given directly by the Poisson equation.
Thus, we read off the rest frame sound speed of the three-
form:

c2S ¼ €H
_H

X
_X
� 1 ¼ V;XXX

V;X

; (69)

where we have used the background relations in the three-
form dominated universe. For a power-law potential
VðXÞ ¼ Xn, it results that the speed of sound is a constant
given by c2S ¼ n� 1. The expression (69) can also be

found by noting that in the rest frame � ¼ 0 the expres-
sions (61) and (62) assume the form

�	Xj�¼0 ¼ 1

12X
V;X�A

2; (70)

�pXj�¼0 ¼ 1
12V;XX�A

2: (71)

Thus, the relation of the dynamical sound speed, c2S ¼
�pX=�	X, to the derivatives of the potential is general
and not restricted to three-form dominated background.
To analyze the behavior of the sound speed in more

detail we have considered specific forms of the potential.
(1) Power-law potentials, V ¼ Xn

If the potential is V ¼ Xn, the sound speed squared
is a constant c2S ¼ n� 1. The quadratic potential

resembles a canonical scalar field as its speed of
sound is always the speed of light. With higher order
self-interaction terms the fluctuations in the three-
form field propagate faster than light, which might
be seen as a problem. Less controversial is the fact
that potentials with n < 1 are unstable and thus are
not viable models of inflation.

(2) Exponential potentials, V ¼ expð��X2Þ
Since the potential V ¼ expð��X2Þ can be approxi-
mated with a quadratic correction to a constant term,
the behavior of the sound speed is similar to the
power-law case, c2S ¼ 1� 2�X2. For negative �,
superluminal propagation is a possibility. For posi-
tive �, however, the value of X is constrained to be
X2 < 1=2� to avoid an imaginary speed of sound
and consequently an unstable scenario.

(3) Ginzburg-Landau potentials, V ¼ ðX2 � C2Þ2
Now the expression for the sound speed reads

c2S ¼ 1þ 2X2

X2 � C2
: (72)
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In this case we find that the speed of sound is
positive provided that either X2 >C2 or X2 <
C2=3. Recall from the Section III that in the case

C<
ffiffiffiffiffiffiffiffi
2=3

p
, the minimum of the potential at X ¼

�C is the late-time attractor and that at this point
the field changes its nature from phantom to non-
phantom, or vice versa. At the level of the back-
ground kinematics, this is perfectly legitimate and
can be easily verified by explicit solutions.
However, scrutiny of the perturbation dynamics re-
veals that at the phantom divide the sound speed
squared diverges and jumps from negative to posi-
tive infinity or the other way around. Clearly the
phantom divide crossing is inhibited in reality for
this particular potential.
The form of the potential is such that it suggest that
the origin corresponds to an unstable cosmological
constant. This motivates us to consider a case where
the three-form drives an inflationary period at the
local maximum of the potential at X � 0 which can
be seen as a natural initial value. As the field even-
tually drops to the true minimum, several possibil-

ities may take place. If C>
ffiffiffiffiffiffiffiffi
2=3

p
then X is

constrained to be jXj< ffiffiffiffiffiffiffiffi
2=3

p
hence for c2S > 0 we

must require C>
ffiffiffi
2

p
, and the field will asymptoti-

cally approach X ¼ � ffiffiffiffiffiffiffiffi
2=3

p
. In the C<

ffiffiffiffiffiffiffiffi
2=3

p
case,

reaching the minimum will lead to instabilities
which might be beneficial by generating efficient
reheating. This possibility might be worth being
analyzed in the future.

C. Scalar and tensor power spectra from inflation

As we have seen, it turns out we can describe the scalar
fluctuations of the field with only 1� of freedom by
exploiting the constraints of the system, in particular,
Eq. (60). This is due to the symmetries of the FLRW
metric. One cannot see directly from the action that one
of the 4 degrees of freedom present can be eliminated, as
one should see when it is a general property of the theory.
In Bianchi backgrounds, we have many examples of form
solutions that are constrained. Of course, cosmological
perturbations in principle allow all the degrees of freedom
present to propagate, but it happens now that the kinetic
term has the gauge symmetry, which reduces the number of
physical degrees of freedom in the absence of the potential.
Even when the potential is turned on, the symmetry is
partially efficient. This is because the potential depends
only on A2 and the spatial components of A are forced to
vanish in the FLRW background so their fluctuations �
cannot contribute at the linear order to the quadratic in-
variant A2 [see Eq. (52)]. Therefore we believe that the
absence of the scalar second mode is due to linearization
about the isotropic and homogeneous solution. Higher
order perturbations would thus be interesting to consider,
but their study is beyond the present scope.

To consider quantum fluctuations during inflation, we
must find the canonical variable to describe the degree of
freedom we have. It is conventional to refer to the curva-
ture perturbation � given by

� ¼ �H
_
þH


_H
þ
; (73)

that evolves as

_� ¼ �H
_H
c2S

1

a2
r2
; (74)

as can be verified using (68). Thus, the curvature perturba-
tion is conserved at large scales. By comparing with well-
known cases in the literature [84], we can deduce that the
canonical degree of freedom is now related to the curvature
perturbation as

v � z�; z ¼ �a
ffiffiffiffiffiffiffiffiffiffiffi
�2 _H

p

�cSH
: (75)

At this point it is convenient to switch to conformal time,
and in the remainder of this section a prime will denote
derivative wrt to conformal time � ¼ R

adt. It is straight-
forward to show that the canonical variable now obeys the
equation of motion

v00 �
�
c2Sr2 þ z00

z

�
v ¼ 0: (76)

The action for this variable v could be computed by
expanding the action to second order, but this is not neces-
sary. In the present case the equation of motion fixes the
action, though only up to a constant. However, we know
the normalization from analogy to previous literature [84].
Thus, we may write

�2S ¼ 1

2

Z �
v02 � c2S�

ijv;iv;j þ z00

z
v2

� ffiffiffiffi
�

p
d4x; (77)

where �ij is the metric of spatial sections, which we here

assume to be flat for simplicity.
We proceed quantizing v by promoting the perturbation

to an operator and expanding in plane waves,

v̂ð�; kÞ ¼
Z d3k

ð2�Þ3=2 ð!kð�Þâkeik�x þ!

kð�Þâyk e�ik�xÞ:

(78)

We must now solve the following equation of motion for
the wave modes:

!00
k þ

�
c2Sk

2 � z00

z

�
!k ¼ 0: (79)

We make the assumptions that the evolution of the
Universe is power-law like with scale factor a ¼ ð��Þp
with p ¼ �1=ð1� �Þ, which corresponds to

� � � _H=H2; (80)
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being approximately constant and that the evolution of the
sound speed can be approximated with the power-law
form,

cS ¼ c0ð��Þ�: (81)

We will see shortly that this is in fact the case for the three-
form during slow-roll (super)inflation of this work. In the
case when we have z00=z / ��2, the general solution for!k

can be written as a sum of the Hankel functions, and the
appropriately normalized solution with positive frequency
in the asymptotic past is

!kð�Þ ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�

1þ �

r ffiffiffiffiffiffiffi��
p

Hð1Þ
� ðxÞ; (82)

where Hð1Þ
� is the Hankel function of the first kind of order

�, with

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ð�z00=zÞ�2p

2ð1þ �Þ ; (83)

x � c0k

1þ �
ð��Þ1þ�: (84)

Therefore, the solution depend on the parameter �, and
presumably, trough z00=z, on � and other slow-roll
parameters.

In the long wavelength limit, x � 1, the behavior of the

Hankel function is Hð1Þ
� ðxÞ ! ði=�Þ�ð�Þð2=xÞ�. From this

asymptotic behavior we can calculate the power spectrum
of the curvature perturbation on the large scales

P � � k3

2�2
j�kj2 � A2

�

�
k

aH

�
nS�1

; (85)

¼
�
k

aH

�
3�2�

�
cS

1þ �

�
1�2� cS�

2

32�2

� 22��1ð1� �Þ2��1 �ð�Þ2
�ð3=2Þ2

H2

j�j : (86)

We can then read the scalar spectral index, which is

nS � 1 ¼ 3� 2�: (87)

Because the three-form does not introduce tensor
sources, and the evolution of gravity waves is given by
the usual Eq. (67), we obtain in the standard way the
spectrum of tensorial perturbations for power-law evolu-
tion of the Universe,

P T � A2
T

�
k

aH

�
nT

¼
�
k

aH

�
3�2� �2

2�2
� 22��1ð1� �Þ2��1 �ð�Þ2

�ð3=2Þ2 H
2;

(88)

where

� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4ð�a00=aÞ�2

q
: (89)

The tensor spectral index is

nT ¼ 3� 2�: (90)

We will now compute these quantities in terms of the slow-
roll parameter which can be calculated for a given scalar
potential.
Slow-roll (super)inflation
In order to proceed with the computation of � in Eq. (83)

we note that,

z2 ¼ 2

�2

a2�

c2S
; (91)

where the slow-roll parameter � in our system is written as

� � � _H

H2
¼ 3

2

V;X

V
X

�
1� �2

6
ðX;N þ 3XÞ2

�
: (92)

In what follows we mean inflation when � is positive and
superinflation when it takes negatives values. In order to
obtain inflation we do not need slow-roll in the sense of
negligible velocity of X [in fact a flat potential leads to
de Sitter inflation even if the field is moving, see Eq. (14)].
Here, however, we are now interested in investigating
precisely the slow-roll case. Then the velocity of X can
be neglected, and thus we find that � can be well approxi-
mated by

� � 3

2

V;X

V
X

�
1� 3

2
ð�XÞ2

�
; (93)

which allows us to immediately determine whether the
universe is inflating for a given choice of the scalar poten-
tial at a given value of X. Using the original equation of
motion for X Eq. (7) and neglecting the €X contribution, it
can be found that

�X;N ¼ �V;X

V

�
1� 3

2
ð�XÞ2

�
2
: (94)

This can also be written, using (93) in the useful form

V;X

V
X;N ¼ � 4

9

�2

ð�XÞ2 : (95)

Differentiating � in Eq. (92) with respect to conformal time
and using the equation of motion for X it is obtained

�0 ¼ 2�2�aH; (96)

where we have used Eq. (95) and defined

� � 1� 2

9

�

ð�XÞ2
�
V;XXV

V2
;X

þ V

V;XX

�
: (97)

We therefore see that the second term in � is suppressed by
� and typically � is of order unity. However, Eq. (96) tells
us that d ln�=dN ¼ 2�� and suggests that � can be con-
sidered constant when small or equivalently, that the evo-
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lution of the universe is power-law like with scale factor
a ¼ ð��Þp and p ¼ �1=ð1� �Þ.

Similarly, by differentiating the speed of sound, it is
obtained that

c0S ¼ �2�cSaH; (98)

where we have defined

� � 2

9

1

ð�XÞ2
V;XXV

V2
;X

�
1� V;XXXV;X

V2
;XX

� V;X

V;XXX

�
: (99)

For a power-law potential we find that � vanishes and
therefore cS is a constant in agreement with what we found
earlier. Therefore, when � is small, both � and� are nearly
constant, which enables us to indeed write (81) with

� ¼ �2�

1� �
: (100)

Now Eq. (87) gives that

nS � 1 � �2�

�
1þ 2

3
�

�
: (101)

We immediately see that near and approaching the fixed
point B where � is negative, the three-form predicts a
slightly blue spectral index for curvature perturbations
which is disfavored by current observations. This is the
case illustrated in Fig. 4. When � is positive, however, a red
tilted spectrum is obtained. Such an example is shown in
Fig. 3.

From Eq. (90) the tensor spectral index is equivalent to
standard scalar field inflation

nT ¼ �2�: (102)

Like the curvature spectral index, this is predicted to be
slightly blue when the evolution is near and approaching
the fixed point B, and red tilted otherwise. The tensor to
scalar ratio is, however, modified. For small � we have

r � A2
T

A2
�

¼ 16cSj�j: (103)

Thus, it is in principle possible to distinguish the three-
form inflation from scalar field already from the spectra of
linear perturbations.

D. Matter perturbations

The impact of the presence of three-from to the evolu-
tion of matter inhomogeneities is considered here. The
observationally relevant case is dustlike matter (cold dark
matter and baryons) in the late-time universe, where an-
isotropic stresses can be neglected. The conservation equa-
tions for matter then are, in the Fourier space,

_�m ¼ �m
a

þ 3 _
; (104)

1

a
_m ¼ � 1

a
Hm þ k2

a2

: (105)

Combining these gives

€�m þ 2H _�m þ k2

a2

 ¼ 3 €
þ 6H _
: (106)

The effect of the three-form comes thus through the back-
ground expansion (H and a) and through the coupling of
the matter to the gravitational potentials. We then special-
ize to the subhorizon scales. Then the RHS of the previous
equation can be neglected. We need yet to evaluate the
gradient of the gravitational potential. At this small-
scale limit the perturbed energy constraint is, using (46)
and (61),

k2

a2

 ¼ � 1

2
	m�m þ V;X

� _K

X
�þ �0 þ 3X


�
: (107)

By using the momentum constraint (47) with (63) and
(105), we get

V;X� ¼ 2ð _
þH
Þ þ 1
2	mð _�m � 3 €
Þ: (108)

This shows that the contribution from� to the gravitational
potential in (107) is suppressed by the a2=k2, which allows
us to neglect it at the small-scale limit, at least excluding
the special case of diverging _K=X. Assuming ðk=aÞ2 
V;X=X, we can furthermore show that the equations of

motion (58) and (59) imply, instead of (60), the algebraic
relation

V;XX�0 ¼ �ð3V;XXXþ V;XÞ
 (109)

between the scalar perturbation and the gravitational po-
tential. Using this in (107) and plugging back to (106), we
get

€�m þ 2H _�m ¼ 4�Gðk; tÞ	m�m; (110)

where the scale and time dependent effective gravitational
constant is given by

8�Gðk; tÞ ¼ �2 þ 1

2

V;XXa
2

c2Sk
2

: (111)

It is to be expected that the apparent modification is
proportional to the slope of the potential, since in this
case this slope vanishes the field reduces to a smooth
cosmological constant. We also immediately note that if
the sound speed squared is large, the small-scale limit
corresponds to the presence of a smooth component.
Possible new effects (other than due to modified back-
ground expansion) require sound speed less than unity,
and the relevant range of scales is the intermediate regime
between the cosmological horizon and the sound horizon:

H2 � k2

a2
� H2

c2S
: (112)
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The possible scale-dependent signature extends also to
larger scales, but from superhorizon scales one typically
expects possible observable effects only to the largest
cosmic variance limited CMB multipoles. For small sound
speeds the modifications can extend to nonlinear scales,
where we cannot trust the expression (111) anymore. In the
regimewe can trust it, it is in principle possible to constrain
some classes of three-form cosmologies by using the
probes of large scale structure, weak lensing, the integrated
Sachs-Wolfe effect and their correlations.

V. CONCLUSIONS

We considered the evolution of the universe in the
presence of three-forms. We assumed a canonical and
minimally coupled action taking into account the possibil-
ity of self-interactions of the form field. Then a form with
three differing spatial indices is compatible with an iso-
tropic and homogeneous cosmological background. It
turns out that such form, despite its canonical form, quite
generically violates the usual energy conditions. The
strong energy condition is violated when

V;XX < 4
3 ð12ð _X þ 3HXÞ2 þ VÞ ) wX <�1

3: (113)

This happens quite easily. Slow-roll is not required for
accelerating behavior, only that V;XX is not large compared

to the energy density. The null energy condition is broken
and the field behaves as phantom when

V;XX < 0 ) wX <�1: (114)

Generally stability problems appear in crossing the phan-
tom divide, but they might be overcome by nonminimal
couplings. In the absence of a potential, the effect of the
field reduces simply to generating a cosmological constant.
Thus, the three-form seems a very suitable culprit for the
accelerating expansion, which is believed to take place
both at an early stage and at a late stage of the history of
the Universe. One notes that phantom divide crossing is
possible for simple forms of the potential, such as the
Landau-Ginzburg form that we took as our main example.

We performed a phase space analysis of the model and
found three distinct fixed points: matter domination, a
potential extremum and a peculiar fixed point correspond-
ing to a kinetic domination of the three-form (and a poten-
tial domination of the dual scalar field Eq. (B12) in the
special cases that such a scalar field exists). The latter two
fixed points describe de Sitter spaces, and their nature and
stability depends on the potential. The mathematical prop-
erties of the system proved nontrivial, and forced us to go
up to third order in the perturbations for some forms of the
potential. This tempts one to investigate the model in the
bifurcation theory framework. On the physical side, one of
the de Sitter fixed points is always an attractor. Thus, the
fixed points are interesting for inflationary and dark energy
applications. For the latter, one wishes to find initial con-
ditions independent dynamics before the acceleration in

order to reduce the fine-tuning. Previously it was shown
that scaling and tracking solutions exits and the require-
ments for these to last for a large number of e-folds can be
quantified [74]. It is then clear that one may realize a rich
variety of background dynamics using a single three-form
as the energy source.
The three-form fluctuations were then investigated.

They were parameterized in terms of two scalar and two
vector modes (whose form was motivated by the dual
vector). The latter are (as usual) phenomenologically less
interesting. However, it is worthwhile to note that in gen-
eral these degrees of freedom also exist. It turned out that
one may describe the scalar perturbations with one effec-
tive degree of freedom, since the constraints allowed to
eliminate one of the two fields parameterizing the scalar
fluctuations. The presence of the three-form can modify the
evolution of scalar fluctuations in matter distribution. If the
three-form sound speed is sufficiently less than unity, one
expects possibly observable effects for the large scale
structure, weak lensing, the integrated Sachs-Wolfe effect
and their correlations. The impact of three-form fluctua-
tions can be quantified by introducing an effective gravi-
tational constant defined by

8�Gðk; tÞ ¼ �2 þ 1

2

V2
;Xa

2

V;XXk
2
: (115)

During a three-form driven inflation the nontrivial dynam-
ics can also lead to sound speed dependent possibly de-
tectable signatures. We identified the canonical degrees of
freedom and quantized them. A slow-roll parameterization
was reconsidered for this new case and a very convenient
way of studying the quantum generation of perturbations
near a de Sitter fixed point was developed. The spectral
indices of scalar and tensor perturbations have a easily
computable dependence on the form of the potential
through the sound speed,

c2S ¼ V;XXX

V;X

: (116)

The tensor to scalar ratio is modified directly by this
quantity.
Let us briefly mention possible generalizations. A gen-

eral quadratic second order Lagrangian for a three-form
would read,

�L ¼ �1F
2ðAÞ þ �2ðr � AÞ2 þ ð�3Rþ 1

2m
2ÞA2

þ �4A � Ric � Aþ �5A � �ðR � �AÞ; (117)

where R is the Riemann and Ric the Ricci tensor. There
are thus six coefficients to specify such a theory. If the
principle of minimal coupling is kept as a guide as in the
present study, only three are left. In particular the implica-
tions of the gauge-fixing term given by a nonzero�2. Many
of the parameter possible combinations in the general
action (117) are probably excluded due to appearance of
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ghosts and instabilities. In addition, Solar system experi-
ments can be used to constrain the nonminimal couplings
to gravity, �3, �4 and �5. To our knowledge these issues
have not been addressed in the case of three-form, whereas
vector models have been extensively studied (see Ref. [85]
and references mentioned in the introduction, Sec. I).
Finally, since the Maxwell field allows a dual description
as a three-form, one may contemplate whether it is possible
that nonminimal couplings can lead to variations of fun-
damental parameters such as the fine structure constant.

In the canonical case studied here, the four for-
mulas (113)–(116) summarize how the shape of the poten-
tial determines the nature of the field and thus the back-
ground dynamics and properties of fluctuations for a given
model. To conclude, we have shown that these objects, also
present in string theory, can give rise to viable cosmologi-
cal scenarios with potentially observable signatures dis-
tinct from standard single scalar field models.
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Jiménez, D. Mota, D. Mulryne, S. Nurmi, and C. Pitrou.
The authors are supported by Deutsche Forschungs-
gemeinschaft, project TRR33. This work was initiated at
the workshop ’’New Horizons for Modern Cosmology’’ at
the Galileo Galilei Institute in Florence; we would like to
thank the institute for hospitality.

APPENDIX A: GAUGE INVARIANCE AND
STABILITY

The antisymmetrized gradient of the three-form gauge
potential term in Eq. (1) is gauge-invariant under trans-
formation A ! Aþ ½r��, where � is an arbitrary two-
form. However, the potential in the action (1) breaks this
symmetry. This can be seen to result in extra degrees of
freedom in the model, analogous to the appearance of
longitudinal polarization of the massive photon in the
Proca theory. To make this explicit, one may introduce a

Stückelberg form � in such a way that for a redefined A ¼
~Aþ 4½r��, the Lagrangian

L ¼ � 1
48F

2ð ~AÞ � Vðð ~Aþ Fð�ÞÞ2Þ (A1)

is then manifestly invariant under the gauge transforma-
tions

~A ! ~Aþ ½r��; � ! �� �=4: (A2)

In the � ¼ 0 gauge we recover our original Lagrangian. If

there is a gauge where the gradient of � is orthogonal to ~A,
and if we assume we can expand around a background
solution given by constant A, we can write

L ¼ L� V0ð ~A2ÞF2ð�Þ; (A3)

making transparent the appearance of the extra two-form
degree of freedom. This also seems to imply that the extra

degree of freedom becomes a ghost when V0ðA2Þ< 0. We
remind that this is also exactly the condition for the three-
form to violate the null energy condition in FLRW back-
ground, i.e. to become phantomlike with equation of state
less than �1. However, investigating the stability of the
field in more detail by considering inhomogeneous and
anisotropic fluctuations of the field and taking into account
their backreaction due to coupling to the metric, we find
that the conditions for the stability of the canonical degrees
of freedom can be more subtle than the naive implication of
(A3). In fact, the behavior of the field depends on the
second derivative of the potential since the propagation
speed of the physical fluctuations turned out to be given by
[equivalently to the expression (69) in terms of the comov-
ing field]

c2S ¼ 1þ 2
V00ðA2ÞA2

V0ðA2Þ : (A4)

The field, even if phantom, can be stable at least classically.
However, divergences tend to occur at the ’’phantom di-
vide’’ when V0ðA2Þ crosses zero. Similar phenomena, link-
ing classical singularities and quantum no-ghost conditions
have been observed in other models [27,86,87]. The con-
ditions for the possibility of a viable phantom crossing is
now the following: twice differentiable VðxÞ exists for
positive x in such a way that V 0ðxÞ changes sign at x ¼
x0, and x0ðlnðV0ðx0ÞÞÞ0 is finite.
This can easily change if nonminimal couplings are

introduced, but in the present paper we consider only
minimal couplings.

APPENDIX B: DUALITYAND EQUIVALENCE OF
THEORIES

In this subsection we will discuss some equivalences
between n-form models. First we introduce a parent
Lagrangian (B1)

L p ¼ 1
48F

2 � 1
6Ar � F� VðA2Þ; (B1)

which can be rewritten in terms of a Faraday form

L f ¼ fðF2ðxÞÞ � Vðx2Þ; (B2)

where f and V are arbitrary functions and x is a n-form,
which describes our starting point (1) for x ¼ A. We will
also show that also a four-form can emerge from it, i.e., we
can rewrite the parent Lagrangian in terms of gauge-fixing
terms only

L g ¼ gððr � xÞ2Þ �Uðx2Þ; (B3)

where g andU are functions. Next we show how the Hodge
dual of the parent Lagrangian (B8) can give rise to a vector
or a scalar field description. Finally, the chain of equiv-
alences is summarized in Fig. 8. Dualities in the case of
nonminimal gravity couplings have been discussed in [30].
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Starting with the parent Lagrangian (B1), where F is an
independent four-form and solving its equation of motion,
one gets F ¼ �4½rA�. By plugging this back into (B1) one
obtains the original action (1).

One may also integrate out the three-form and obtain a
theory for the four-form F as follows. Varying with respect
to A gives us the equation of motion

� 1
6r � Fþ 2V0ðA2ÞA ¼ 0; (B4)

implying

Y � ðr � FÞ2 ¼ 144ðV0ðA2ÞÞ2A2: (B5)

If we now plug A from (B4) and the solution A2ðYÞ (B5)
into (B1), we get a dynamical four-form theory:

L ¼ 1

48
F2 � 1

72

Y

V 0ðA2ðYÞÞ � VðA2ðYÞÞ: (B6)

The Lagrangian is now written in a gauge-fixing form (B3)
with x ¼ F. The Faraday form constructed from a four-
form is of course trivial, FðFÞ ¼ 0, and static four-forms
contribute only a constant. As mentioned in the introduc-
tion, this has been employed in attempts to solve the
cosmological constant problem [72,73]. Four-form formu-
lation of fðRÞ gravity [32] and dark energy from promoting
the Levi-Civita symbol into dynamical form have been
considered recently [47].

The Hodge dual of the three-form is a vector ð
AÞ.
Writing the parent Lagrangian (B1) in terms of the dual
forms

F ¼ �ð
FÞ � ��; A ¼ �ð
AÞ � �B; (B7)

where � is a scalar field and B is a vector, we obtain

L ¼ �1
2�

2 � Br�� Vð�B2=6Þ: (B8)

Now the equation of motion for � is simply that � ¼
r � B, and replacing this back gives us the self-coupled
vector theory

L ¼ 1
2ðr � BÞ2 � Vð�B2=6Þ; (B9)

in a gauge-fixing form as in (B3) with x ¼ B. Recently the
cosmological significance of the Maxwell theory supple-
mented with the gauge-fixing term like in (B9) has been
considered, and very interestingly it has been found that
the gauge-fixing term results in an effective cosmological
constant in the curved background (or almost constant,
since it fluctuates) while the theory in the Minkowski limit
reduces to standard electromagnetism [88,89]. Such a
Maxwell theory is dual to three-form having both the
F2ðAÞ and ðr � AÞ2, but presently we confine to include
only the canonical term yielding only the gauge-fixing
term for the corresponding vector.
Finally, we may integrate out the vector from (B8) to

obtain a scalar field theory. The Euler-Lagrange equation B
is

r� ¼ 1
3V

0ð�B2=6ÞB; (B10)

implying

9ðr�Þ2 ¼ ½V 0ð�B2=6Þ�2B2: (B11)

Similarly, as with the four-form, we assume these equa-
tions are invertible, and then write the Lagrangian (B8) in
terms of them as

L ¼ � 1

2
�2 � YS

3V 0ð�B2ðYSÞ=6Þ
� Vð�B2ðYSÞ=6Þ;

(B12)

where now YS � ðr�Þ2. The dual Lagrangian is now
written in a Faraday type (B2) with x ¼ �. This completes
our task of deriving the equivalent reformulations we
mentioned in the introduction.
It is useful to note that only two possibilities of canoni-

cal forms exist in four dimensions. Any such form is either
a vector or a dual vector. The former is dual to a three-
form, and can be rewritten as two-form which is self-dual.
The latter can be seen as scalar field, thus dual to a four-
form and consequently rewritable as a three-form.
Schematically, the chains of equivalences can be written as

f1 $ g3 ¼ f2 $ g2 ¼ f1; (B13)

g1 ¼ f0 $ g4 ¼ f3 $ g1: (B14)

Here, fn denotes an n-form described by a Faraday type

4

0

3

1

2

2

1

3

0

4

f

g

*

f

g

*

f

g

*

g

f

*

g

f

*

C = C(∇•A)

A = A(∇C)

B = B(∇•C)

C = C(∇B)

Φ = Φ(∇•B)

B = B(∇Φ)

A = A(∇•F)

F = F(∇A)

FIG. 8 (color online). A summary of the chains of equivalen-
ces between forms. In the case of canonic form, f refers to a
model with the Faraday kinetic term with an action of the form
(B2) and x to a model with the dual (gauge-fixing) kinetic term
with an action of the form (B3). The Hodge duality operation is
vertical movement denoted with a star, and a horizontal move-
ment is a change variables for which schematic formulas are
given. The first group in the figure, consisting of the form-form
and dual, is trivial. The second group, which depicts the chain
(B13), would correspond to a starting point of having the gauge-
fixing kinetic term for the three-form. The third group depicts the
chain (B14), corresponding to the case whose generalization we
consider in this paper.
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Lagrangian (B2), and gn an n-form described by gauge-
fixing terms type Lagrangian (B3). Duality in the Hodge
sense is indicated with $ , and ¼ means equivalence
between Lagrangians by change of variables. This is also
shown in Fig. 8.

The case we consider in the present paper belongs to the
chain (B14) or the third group in diagram 8. Thus, it seems
we are, at the same time, discussing four types of theories:

(i) a model of vector with self-interactions and a gauge-
fixing type term, Eq. (B12),

(ii) a K-essence type scalar field model Eq. (B12),
(iii) a four-form with dynamics due to a nonstandard

kinetic term, Eq. (B6),
(iv) a canonical three-form, Eq. (1).

These equivalences are valid due to the possibility of
rewriting the 4 degrees of freedom in the three-form as a
vector. Furthermore, if the vector is exact, i.e., expressible

as a gradient of a scalar, the model can be reduced to a
scalar field, equivalently a four-form.
However, we should immediately mention that these

equivalences break down in many cases. In the above
derivations, this breakdown occurs when there are no real
solutions to Eqs. (B5) or (B11). The example potential of
most interest in the present study of the action (1) is of the
form of a displaced power-law VðA2Þ ¼ ðA2=6� C2Þ2,
since that is the case that includes most of the features of
the possible dynamics. In particular, having a nonmono-
tonic first derivative allows the field to dynamically change
its nature. A scalar field formulation, however, seems not to
be available. Another simple class of potentials we con-
sidered is the exponential potential. This class does not
seem to admit a scalar field formulation either. Even in
some cases where the equivalence formally holds, the
formulation in the three-form language is much more
transparent.
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