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We consider a gravitational theory of a scalar field� with nonminimal derivative coupling to curvature.

The coupling terms have the form �1R�;��
;� and �2R���

;��;�, where �1 and �2 are coupling

parameters with dimensions of length squared. In general, field equations of the theory contain third

derivatives of g�� and �. However, in the case �2�1 ¼ �2 � �, the derivative coupling term reads

�G���
;��;� and the order of corresponding field equations is reduced up to second one. Assuming

�2�1 ¼ �2, we study the spatially-flat Friedman-Robertson-Walker model with a scale factor aðtÞ and
find new exact cosmological solutions. It is shown that properties of the model at early stages crucially

depend on the sign of �. For negative �, the model has an initial cosmological singularity, i.e., aðtÞ �
ðt� tiÞ2=3 in the limit t ! ti; and for positive �, the Universe at early stages has the quasi-de Sitter

behavior, i.e., aðtÞ � eHt in the limit t ! �1, where H ¼ ð3 ffiffiffiffi
�

p Þ�1. The corresponding scalar field � is

exponentially growing at t ! �1, i.e., �ðtÞ � e�t=
ffiffiffi
�

p
. At late stages, the Universe evolution does not

depend on � at all; namely, for any � one has aðtÞ � t1=3 at t ! 1. Summarizing, we conclude that a

cosmological model with nonminimal derivative coupling of the form �G���
;��;� is able to explain in a

unique manner both a quasi-de Sitter phase and an exit from it without any fine-tuned potential.
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I. INTRODUCTION

For many years, scalar fields have been an object of great
interest for physicists. The reasons for this are manifold.
One of them is quite pragmatic: models with scalar fields
are relatively simple, and therefore it appeared possible to
study them in detail and then extrapolate the results to
more realistic and complicated models. More physical
motivations include such important topics as the idea about
variable ‘‘fundamental’’ constants, the Jordan-Brans-
Dicke theory initially elaborated to solve the Mach prob-
lem, the Kaluza-Klein compactification scheme, the low-
energy limit of the superstring theory, and others. Scalar
fields play an especially important role in cosmology. As a
bright example, one may mention numerous inflationary
models in which inflation in the early universe is typically
driven by a fundamental scalar field called an inflaton.
Furthermore, a recent discovery of cosmic acceleration
has only refreshed the interest to scalar fields which began
to be considered as candidates to explain dark energy
phenomena.

The rather general form of action for a scalar-tensor
theory of gravity with a single scalar field � can be given
as1

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
1

8�
Fð�;RÞ � hð�Þg���

;��;�

�
; (1)

where g�� is a metric, g ¼ detðg��Þ, and R is the scalar

curvature. Functions Fð�;RÞ and hð�Þ are varying from
theory to theory. The function hð�Þ is responsible for the
sign of kinetic energy of the scalar field. For example, the
choice hð�Þ � �1 leads to a wide class of theories with
the negative kinetic term. The function Fð�;RÞ, being in
general nonlinear, provides a nonminimal coupling be-
tween a scalar field and curvature. Though a freedom in
choosing of Fð�;RÞ leads to an unlimited variety of scalar-
tensor theories, it is known (see, for example, [1–3]) that
there exist conformal transformations transforming this
kind of theories to Einstein’s theory with a new minimally
coupled scalar field � and an effective potential Vð�Þ
describing its self interaction. The potential Vð�Þ is a
very important ingredient of various cosmological models:
a slowly varying potential behaves like an effective cos-
mological constat providing one or more than one infla-
tionary phases. An appropriate choice of Vð�Þ is known as
a problem of fine tuning of the cosmological constant.
A further extension of scalar-tensor theories can be

represented by models with nonminimal couplings be-
tween derivatives of a scalar field and curvature. This
kind of couplings may appear in some Kaluza-Klein theo-
ries [4,5] (see, also, [6], Sec. 9.5). In 1993, Amendola [7]
has been considered the most general gravity Lagrangian
linear in the curvature scalar R, quadratic in �, and con-
taining terms with four derivatives including all of the
following terms (see, also, [8] for details):

L1 ¼ �1R�;��
;�; L2 ¼ �2R���

;��;�;

L3 ¼ �3R�h�; L4 ¼ �4R����;��;

L5 ¼ �5R;���;�; L6 ¼ �6hR�2;
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1Throughout this paper we use units such that G ¼ c ¼ 1. The

metric signature is ð� þþþÞ and the conventions for curvature
tensors are R�

��	 ¼ ��
�	;� � . . . and R�� ¼ R�

���.
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where coefficients �1; . . . ; �6 are coupling parameters with
dimensions of length squared. Using the divergencies

ðR�;��Þ;�; ðR����;�Þ;�; ðR;��2Þ;�;
one may conclude that, without loss of generality, L4, L5,
and L6 are not necessary to be considered. Also one may
rule out L3 because it contains � itself, while coupling
term of main interest are those, where only the gradient of
� is included. Thus, a general scalar-tensor theory with
nonminimal derivative couplings may include only two
terms L1 and L2.

As was shown by Amendola [7], a theory with derivative
couplings cannot be recasting into Einsteinian form by a
conformal rescaling ~g�� ¼ e2!g��. He also supposed that

an effective cosmological constant, and then the inflation-
ary phase can be recovered without considering any effec-
tive potential if a nonminimal derivative coupling is
introduced. Amendola himself [7] has considered a cos-
mological model in the theory with the only derivative
coupling term L1 ¼ �1R�;��

;� and, by using a general-

ized slow-rolling approximation (i.e., neglecting all terms
of order higher than the second one), he has obtained some
analytical inflationary solutions. A general model contain-
ing both L1 and L2 has been discussed in [8] (see, also,
[9]); it was shown that the de Sitter spacetime is an
attractor solution of the model if 4�1 þ �2 > 0. Recently
Daniel and Caldwell [10] have considered a theory with the
derivative coupling term L2 ¼ �2R���

;��;�; in particular,

they studied constraints which precision tests of general
relativity impose on the coupling parameter �2. It is also
worth mentioning a series of papers devoted to a non-
minimal modification of the Einstein-Yang-Mills-Higgs
theory [11] (see, also, a review [12] and references
therein).

In this paper, we continue studying a scalar-tensor the-
ory with nonminimal derivative couplings and construct
new exact cosmological solutions of the theory.

II. FIELD EQUATIONS

Let us consider a gravitational theory of a scalar field �
with nonminimal derivative couplings to curvature de-
scribed by the action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

8�
� ½g�� þ �1g��R

þ �2R����;��;�

�
: (2)

Here, coefficients �1 and �2 are derivative coupling pa-
rameters with dimensions of length squared. Note that the
action (2) does not include any potential. Varying the
action (2) with respect to the metric g��, gives the gravi-

tational field equations

G�� ¼ 8�½T�� þ �1�
ð1Þ
�� þ �2�

ð2Þ
���; (3)

with

T�� ¼ r��r��� 1

2
g��ðr�Þ2 � g��Vð�Þ;

�ð1Þ
�� ¼ r��r��Rþ ðr�Þ2G�� �r�r�ðr�Þ2

þ g��hðr�Þ2;
�ð2Þ

�� ¼ � 1

2
g��r��r��R�� þ 2r��rð��R�

�Þ

þ 1

2
hðr��r��Þ � r�rð�ðr�Þ�r��Þ

þ 1

2
g��r�r�ðr��r��Þ;

where G�� ¼ R�� � 1
2 g��R is the Einstein tensor. Then,

varying the action (2) with respect to � gives the scalar
field equation of motion:

g��r�r��þr�½r��ð�1g
��Rþ �2R

��Þ� ¼ 0: (4)

Note, also, that because of the Bianchi identity r�G
�� ¼

0, the scalar field and order-� terms form a conserved
system, hence the scalar field Eq. (4) can be obtained as
a consequence of the generalized conservation law

r�½T�� þ �1�
ð1Þ�� þ �2�

ð2Þ��� ¼ 0.

Generally, the gravitational field Eq. (3) contain third
derivatives of �, while the scalar field Eq. (4) contains
third derivatives of the metric. However, an important
feature of the theory (2) is the fact that the order of field
equations can be reduced for a specific choice of �1 and �2.
To show this, we rewrite, after some algebra, the expres-

sions for �ð1Þ
�� and �ð2Þ

�� as follows:

�ð1Þ
�� ¼ r��r��Rþ ðr�Þ2G�� � 2r��r��R����

� 2r�r��r�r��� 2r��r�r�r��

þ 2g��½r�r��r�r��þr��r��R��

þr��r�h��; (5)

�ð2Þ
�� ¼ 2r��rð��R�

�Þ � r�r��h�

�r��r�r�r��þ 1

2
g��½r�r��r�r��

þ ðh�Þ2 þ 2r��r�h��: (6)

It is seen that both expressions contain similar third-order
terms, r��r�r�r�� and g��r��r�h�, which are

canceled in the combination �1�
ð1Þ
�� þ �2�

ð2Þ
�� provided

the coupling parameters are chosen as follows:

� 2�1 ¼ �2: (7)

Hereafter, we will assume that the relation (7) holds.
Denoting � ¼ �2�1 ¼ �2, we can rewrite the action (2) as
follows:
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S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
R

8�
� ½g�� þ �G����;��;�

�
: (8)

The gravitational field Eqs. (3) now read

G�� ¼ 8�½T�� þ �����; (9)

with

��� ¼ � 1

2
�ð1Þ

�� þ�ð2Þ
��

¼ � 1

2
r��r��Rþ 2r��rð��R�

�Þ

� 1

2
ðr�Þ2G�� þr��r��R����

þr�r��r�r���r�r��h�

þ g��

�
� 1

2
r�r��r�r��

þ 1

2
ðh�Þ2 �r��r��R��

�
;

and the scalar field equation of motion (4) yields

½g�� þ �G���r�r�� ¼ 0: (10)

Let us emphasize once more that the field Eqs. (9) and
(10) contain now only second derivatives of g�� and �.

Thus, from the physical point of view, the theory (8) can be
interpreted as a ‘‘good’’ dynamical theory.

III. COSMOLOGICAL MODELS

Consider a spatially-flat cosmological model with a
metric

ds2 ¼ �dt2 þ e2�ðtÞdx2; (11)

where aðtÞ ¼ e�ðtÞ is the scale factor, and dx2 is the
Euclidian metric, and we assume that � ¼ �ðtÞ. In this
case, the field Eqs. (9) and (10) are reduced to the follow-
ing system:

3 _�2 ¼ 4� _�2ð1� 9� _�2Þ; (12)

� 2 €�� 3 _�2 ¼ 4� _�2½1þ �ð2 €�þ 3 _�2 þ 4 _� €� _��1Þ�;
(13)

€�þ 3 _� _��3�½ _�2 €�þ 2 _� €� _�þ3 _�3 _�� ¼ 0; (14)

where a dot means a derivative with respect to time. Note
that Eqs. (13) and (14) are of second order, while Eq. (12)
is a first-order differential constraint for �ðtÞ and �ðtÞ.

First, let us discuss the simple case � ¼ 0, which just
means the absence of derivative coupling. In this case,
Eqs. (12)–(14) are easily solved resulting in

�ðtÞ ¼ �0 þ 1

3
lnðt� t0Þ; (15)

�ðtÞ ¼ �0 þ 1

2
ffiffiffiffiffiffiffi
3�

p lnðt� t0Þ; (16)

where t0, �0, and �0 are constants of integration. Without
loss of generality, one may put�0 ¼ 0 and�0 ¼ 0 then the
corresponding metric reads

ds2 ¼ �dt2 þ ðt� t0Þ2=3dx2: (17)

The spacetime with the metric (17) has an initial singular-
ity at t ¼ t0.
Consider now a general case � � 0. In this case, the

constraint (12) can be rewritten as follows:

_� 2 ¼ 3 _�2

4�ð1� 9� _�2Þ ; (18)

or, equivalently,

_� 2 ¼ 4� _�2

3ð1þ 12�� _�2Þ : (19)

From here it follows that _� and _� should obey the follow-
ing conditions:

1� 9� _�2 > 0; (20)

1þ 12�� _�2 > 0: (21)

Let us now separate equations for � and �. For this aim,

we resolve Eqs. (13) and (14) with respect to €� and €� and,

using the relations (18) and (19), eliminate _� and _� from
respective equations. As the result, we find

€� ¼ � 3 _�2ð1� 3� _�2Þð1� 9� _�2Þ
1� 9� _�2 þ 54�2 _�4

; (22)

€� ¼ � 2
ffiffiffiffiffiffiffi
3�

p
_�2ð1þ 8�� _�2Þð1þ 12�� _�2Þ1=2
1þ 12�� _�2 þ 96�2�2 _�4

: (23)

Since _� and _� obey the conditions (20) and (21), it is seen

that €� and €� are negative for all times. In turn, this means

that _� and _� are monotonically decreasing with time.
Let us analyze an asymptotical behavior of � and � for

large times. Suppose that _� tends to some nonzero constant
at t ! 1, respectively, this means that €� should go to zero.
However, as it follows from Eq. (22), €� is not zero in this
limit. Thus, we face with a contradiction and therefore
should conclude that _� ! 0 if t ! 1. By using this
asymptotical property, we obtain the following asymptotic
form of Eq. (22):

€� � �3 _�2: (24)

The corresponding asymptotical solution is

�t!1 ¼ �1 þ 1

3
lnðt� t1Þ; (25)

where t1 and �1 are constants of integration. An asymp-
totic for � can be found straightforwardly from the con-
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straint (18)

�t!1 ¼ �1 þ 1

2
ffiffiffiffiffiffiffi
3�

p lnðt� t1Þ; (26)

where �1 is a constant of integration. It is worth noting
that the asymptotics (25) and (26) do not depend on � and
coincide with exact solutions (15) and (16) obtained for
� ¼ 0.

To characterize an asymptotical behavior of � and� for
small times, we consider separately two cases.

First, let � be negative � < 0. In this case, the condition

(21) gives the following bound for _�:

_� 2 <
1

12�j�j ; (27)

while the condition (20) is fulfilled for all values of _�.
Since _� is monotonically decreasing with time, its value
should be growing with decreasing time. Let ti be some
initial moment of time (possibly ti ¼ �1). Suppose that _�
tends to some constant value in the limit t ! ti, respec-
tively, this means that €� should go to zero. However, as
follows from Eq. (22), €� is not zero in this limit. This is a
contradiction, and hence we should conclude that _� is
boundlessly increasing in the limit t ! ti. Assuming _� !
1 at t ! ti gives the following asymptotical form of
Eq. (22):

€� � � 3

2
_�2; (28)

with the asymptotic solution

�t!ti ¼ �i þ 2

3
lnðt� tiÞ: (29)

The asymptotic for � is found from Eq. (18) as

�t!ti ¼ �i þ t

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
3�j�jp ; (30)

where ti, �i, and �i are constants of integration. The
corresponding asymptotical form of the metric (11) is

ds2t!ti ¼ �dt2 þ e2�iðt� tiÞ4=3dx2: (31)

A spacetime with this metric is singular at t ¼ ti. This
singularity is analogous to initial cosmological singular-
ities in models with usual scalar fields. However, a new
interesting feature of the examined model is that the scalar
field with negative derivative coupling � < 0 has the regu-
lar behavior (30) near the singularity.

Results of numerical study of Eq. (22) in case � < 0 are
shown in Fig. 1. Obtained solutions reproduce all asymp-
totical properties found above analytically.

Then, let � be positive � > 0. In this case, the condition
(20) gives the following bound for _�:

_� 2 <
1

9�
; (32)

while Eq. (21) is fulfilled for any _�. Repeating the above

arguments, we may conclude that _� ! 1 at t ! �1. This
gives the following asymptotic form of Eq. (23):

€� � �
_�ffiffiffiffi
�

p ; (33)

with the asymptotic solution

�t!�1 ¼ �2 þ Ce�t=
ffiffiffi
�

p
; (34)

where �2 and C are constants of integration. To obtain an
asymptotic for �, one may substitute Eq. (34) into (19) and
find, after some algebra,

� � t� t0
3

ffiffiffiffi
�

p � e2t=
ffiffiffi
�

p

144��C2
; (35)

where t0 is a constant of integration which without loss of
generality can be set zero. We see that in the limit t ! �1
the scalar � is exponentially growing, and � is exponen-
tially approximating to its asymptotic

�t!�1 ¼ t

3
ffiffiffiffi
�

p : (36)

Hence in the limit t ! �1, the spacetime metric (11)
takes asymptotically the de Sitter-like form:

ds2t!�1 ¼ �dt2 þ e2Htdx2; (37)

withH ¼ ð3 ffiffiffiffi
�

p Þ�1. Thus, in the case � > 0, an universe at
early stages has the quasi-de Sitter behavior corresponding
to the cosmological constant � ¼ 3H2 ¼ ð3�Þ�1.
Results of numerical study in the case � > 0 are shown

in Fig. 2. Note that all � > 0 solutions represent an inter-
esting feature. Namely, they describe two phases in evolu-
tion of the Universe. First, for an infinitely long time, the
Universe is living in the quasi-de Sitter or inflationary
phase. Then, during a relatively short time, the Universe
exits from the inflationary stage and goes to a power-law

FIG. 1. Plots of �ðtÞ for negative � ¼ �1; �10; �100 (from
right to left). The thick curve corresponds to � ¼ 0 (no deriva-
tive coupling).

SERGEY V. SUSHKOV PHYSICAL REVIEW D 80, 103505 (2009)

103505-4



expansion with aðtÞ � t1=3 (it is worth noting that this law
corresponds to the equation of state p ¼ 
).

IV. CONCLUSIONS

We have considered the gravitational theory of a scalar
field with nonminimal derivative coupling to curvature and
studied cosmological models in this theory. The main
results obtained are as follows:

(1) The Lagrangian of the theory includes two deriva-
tive coupling terms �1R�;��

;� and �2R���
;��;�,

where �1 and �2 are coupling parameters with di-
mensions of length squared. In general, field equa-
tions of the theory are of third order, i.e., contain
third derivatives of g�� and �, but in the particular

case, the order of equations is reduced up to the
second one. This case corresponds to the choice
�2�1 ¼ �2 � �, then a combination of derivative
coupling terms turn into �G���

;��;�. It is worth

noting that Capozziello et al. [8], at pages 43 and 47,
have mentioned the case �2�1 ¼ �2 to play a spe-
cial role because it represents a singular point of the
differential equation. In this paper, we have sup-
posed that the theory with �2�1 ¼ �2 is more
preferable with the physical point of view since
the corresponding field equations do not contain
derivatives of dynamical variables of order higher
than the second.

(2) Assuming �2�1 ¼ �2 � �, we have studied a cos-
mological model with the spatially-flat Friedman-

Robertson-Walker metric. It was shown that a be-
havior of the scale factor aðtÞ and the scalar field �
at large times is the same for all values of � includ-
ing zero, that is the late evolution of universe does

not depend on �. Namely, one has aðtÞ � t1=3 and
�ðtÞ � lnt at t ! 1. Note this asymptotical behav-
ior coincides with that of the exact solution (15) and
(16) obtained for � ¼ 0 (no coupling).

(3) General properties of the model crucially depend on
a sign of �. For � < 0, an asymptotical form of the
cosmological metric for small times is given by

Eq. (31). A corresponding scale factor is aðtÞ � ðt�
tiÞ2=3; it describes the Universe with an initial sin-
gularity at t ¼ ti. A new interesting feature of the
model with derivative coupling is that a behavior of
the scalar field near the cosmological singularity is
regular�ðtÞ � t [see Eq. (30)]. For � > 0, the law of
universe evolution is qualitatively distinct from that
for � < 0. Now at early stages, the Universe has the
quasi-de Sitter behavior (37) corresponding to the
cosmological constant � ¼ ð3�Þ�1. In the limit t !
�1, the scale factor has the following asymptotical

form: aðtÞ � expð t
3�1=2 � e2t=

ffiffi
�

p

144��C2Þ [see Eq. (35)],

hence aðtÞ exponentially fast goes to the de Sitter
form aðtÞ ¼ eHt with H ¼ ð3 ffiffiffiffi

�
p Þ�1. At the same

time, the scalar field � is exponentially growing at

t ! �1, namely �ðtÞ � e�t=
ffiffiffi
�

p
.

In conclusion, let us summarize the most essential fea-
tures of cosmology with nonminimal derivative coupling.
First, we should emphasize that cosmological solutions
with the quasi-de Sitter phase are typical solutions of the
gravitational theory of a scalar field with derivative cou-
pling of the form �G���

;��;� with positive �. So, in order

to obtain an inflationary phase, one need no fine-tuned
potential, and so one does not face with the problem of
fine-tuning. Another important feature of the model con-
sists in the fact that an exact cosmological solution with
� > 0 describes, in a unique manner, both a quasi-de Sitter
phase and an exit from it. Thus, the problem of graceful
exit from inflation in cosmology with the derivative cou-
pling term �G���

;��;� has a natural solution without any

fine-tuned potential.
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