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We consider a model of the Universe in which the matter content is in the form of discrete islands,

rather than a continuous fluid. In the appropriate limits the resulting large-scale dynamics approach those

of a Friedmann-Robertson-Walker (FRW) universe. The optical properties of such a space-time, however,

do not. This illustrates the fact that the optical and ‘‘average’’ dynamical properties of a relativistic

universe are not equivalent, and do not specify each other uniquely. We find the angular diameter distance,

luminosity distance, and redshifts that would be measured by observers in these space-times, using both

analytic approximations and numerical simulations. While different from their counterparts in FRW, the

effects found do not look like promising candidates to explain the observations usually attributed to the

existence of dark energy. This incongruity with standard FRW cosmology is not due to the existence of

any unexpectedly large structures or voids in the Universe, but only to the fact that the matter content of

the Universe is not a continuous fluid.
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I. INTRODUCTION

One of the most basic assumptions made in modern
cosmology is the idea that the geometry of space is homo-
geneous and isotropic, resulting in the line-element

ds2 ¼ �dt2 þ a2ðtÞ
�

dr

1� kr2
þ r2ðd�2 þ sin2�d�2Þ

�
;

(1)

where k is the conformal curvature of space, and aðtÞ is the
time-dependent scale factor of the Universe. The simplifi-
cation that results from this assumption is remarkable:
Einstein’s equations, a set of 10 coupled, nonlinear partial
differential equations in four variables, reduce to a single
ordinary differential equation in one variable:

_a2

a2
¼ 8��

3
� k

a2
: (2)

The over-dot here is a derivative with respect to time, and �
is the (spatially constant) energy density of the continuous
fluid that is assumed to permeate the whole of space. Such
models are known as Friedmann-Robertson-Walker (FRW)
cosmologies, and are ubiquitous.

The unreasonable simplicity offered by the assumptions
outlined above has allowed enormous progress to be made
in understanding the cosmological models that result from
them, and the ways in which they can be compared to
astronomical observations. So great is this success that
there now exists a growing sense that such models must
be the only ones that are suitable to describe our Universe.
These sentiments are bolstered by observations of the

cosmic microwave background (CMB), which is isotropic
to within one part in a hundred thousand.
However, albeit effective, the homogeneity and isotropy

of space is still only an assumption, and the isotropy of the
CMB, while consistent with a homogeneous and isotropic
space-time, does not necessitate it [1]. Furthermore, it now
seems to be the case that these assumptions lead inevitably,
and unenviably, to the conclusion that the Universe should
be filled with an exotic fluid that behaves repulsively under
gravity. This fluid, dubbed dark energy, has to make up
�2=3 of the total energy budget of the Universe and should
be responsible for driving a late period of apparently
accelerating expansion [2–5]. Unfortunately, the existence
of such a fluid provides colossal theoretical challenges, and
despite ongoing efforts to find it, it has yet to be detected
directly. It therefore seems natural to retrace our steps, and
to scrutinize more critically the assumptions that led us to
deduce its existence in the first place.
Inhomogeneous cosmology has been an active field of

research for many decades now [6]. One of the simplest
examples, which places us directly at the center of the
Universe, is the Lemaitre-Tolman-Bondi (LTB) model: A
spherically symmetric, and dust dominated model. Once
again it is implicitly assumed that there exists a continuous
fluid that permeates all of space-time. It is also usual to
assume that the spherical inhomogeneity in this model
takes the form of a giant under-density at the center of
the Universe—i.e. that we live in a void. LTB models have
been extensively studied over the past few years, and their
behavior and optical properties are now becoming well
understood [7–26]. They can mimic a FRW universe with
dark energy, but are required to have a fairly intricate
structure in order to be able to simultaneously match
supernova observations and measurements of primary an-
isotropies in the CMB.
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A natural next step is to consider multiple LTB or
Schwarzschild space-time patches, embedded in a FRW
background. The inhomogeneities that result are then part
of a continuous, and otherwise constant fluid that consti-
tutes an exact solution of Einstein’s equations. Such a
universe could conceivably be treated as being homoge-
neous and isotropic on the largest scales, but is endowed
with substantial inhomogeneity on smaller scales. Dubbed
as swiss cheese, these models have been explored in great
detail; from the ground breaking work of Kantowski [27],
up to the present day [28–32]. Again, substantial effort has
gone into understanding the optical properties of swiss
cheese universes, and they have been shown to be broadly
similar, but not identical, to those of FRW.

Beyond the realm that can be easily investigated with
exact solutions, one will also be interested in approxima-
tions that may allow further insight to be had. One scheme
for including inhomogeneity without the aid of exact so-
lutions was provided by Dyer and Roeder [33,34]. They
ignored the influence of shear on the evolution of bundles
of null geodesics, and taking FRW values for the Hubble
rate and redshift found a neat method of approximating
observables in an inhomogeneous universe. This method
was generalized further by Mattson [35], who included the
effect of an inhomogeneous Hubble rate. It was claimed in
[35] that with an appropriately changing HðzÞ the effect of
inhomogeneities could entirely account for the deviations
from Einstein–de Sitter (EdS) cosmology that are usually
attributed to dark energy. However, a lack of any model on
which to base these results, and the ad hoc way in which
inhomogeneous expansion is dealt with, makes these
claims appear somewhat speculative.

A further avenue of research that has attracted consid-
erable interest is the idea that the structures that form in the
Universe could have a backreaction effect on the cosmo-
logical expansion [36–52]. The idea here is based on the
fact that the operation of averaging the geometry of space
does not, in general, commute with the operation of evolv-
ing a spacelike surface forward in time. Such complica-
tions mean that when evolving forward an ‘‘averaged’’
homogeneous and isotropic space one should include cor-
rections to Einstein’s equations (which are valid for the
true geometry, and not the averaged one). Some have
argued that the results of these corrections may be large
enough to entirely account for dark energy, while others
maintain the opposite position. These studies are consid-
erably complicated by the implicit difficulties involved
with averaging the geometry of space in general relativity.

In this paper we choose to take a different path, and
completely break with FRW space-time. We want to work
with a model of the Universe in which all of the matter
content is in the form of discrete islands of mass, scattered
in otherwise empty space. To a first approximation, this
appears to bewhat we see on the night sky: Scattered points
of light, organized into a variety of structures and meta-

structures. Our Universe, at its most basic, is made up of
galaxies with a typical mass roughly that of the MilkyWay,
dominated by dark matter and with a number density of�1
galaxy per cubic megaparsec.
Such a universe should have distinctive properties. Light

will propagate in the empty spaces between the islands,
and will no longer pass through a continuous fluid. The
geometry of these two situations is very different, and
should be expected to result in different optical properties,
even if the large-scale dynamics are equivalent [53]. To see
why this is so, consider the form of the Sachs optical
equations [54] (which we will discuss in detail later on):

d~�

d�
þ ~�2 þ �2 � R;

d�

d�
þ 2�~�� C:

Here ~� and � are the expansion and shear scalars, respec-
tively, C represents the Weyl tensor, and R the Ricci tensor.
The angular diameter and luminosity distances are then

given by integrals of ~�. In a universe where light travels
primarily through empty space, the driving terms in the
equations abovewill beR ¼ 0 andC � 0. The correspond-
ing terms in a spatially flat FRW universe will be C ¼ 0,
due to its conformal equivalence to Minkowski space, and
R � 0, due to its continuous mass distribution. These two
fundamentally different types of curvature can be seen to
have correspondingly different effects on bundles of null
geodesics, and hence these effects should be taken into
account in observational cosmology.
It is, of course, a very difficult proposition to calculate

the geometry of space-time associated with arbitrarily
scattered islands of matter. Fortunately, if we return the
underlying principle behind FRW (that we do not live in a
special place in the Universe), and apply it to a discretized
matter distribution, then there is a way forward. In a
seminal paper, Lindquist and Wheeler [55] showed that it
is possible to construct an approximation to a cosmological
space-time by considering a regular lattice of
Schwarzschild space-times with metrics given by the
line-element

ds2 ¼ �
�
1� 2m

r

�
dt2 þ dr2

ð1� 2m
r Þ

þ r2ðd�2 þ sin2�d�2Þ:
(3)

They did so for a closed universe and found that, in the
limit of a large number of masses, such a space-time
evolves almost identically to a closed FRW universe: The
separation between islands of mass increases, reaches a
maximum, and then contracts with exactly the same time
dependence as one would find for a perfectly smooth, dust
filled universe. Configurations of gravitating discrete
masses have also been considered in [56].
In this paper, we wish to explore the Lindquist-Wheeler

model further, and to investigate the optical properties of
such a universe. It is not the goal of this paper to propose a
complete alternative to the currently favored FRWuniverse
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dominated by a cosmological constant. Hence, we will
restrict ourselves to considering only regular distributions
of masses, and often only to the equivalent of an EdS
universe.1 We expect that such an analysis should allow
us to uncover some of the essential features of these space-
times, even if it is not the most general case possible. We
will return to the issue of extending our study to other
spatial curvatures, matter contents, and distributions of
mass in future publications.

The paper will proceed as follows:
In Sec. II we recap the lattice model proposed by

Lindquist and Wheeler in 1957 [55]. We reproduce their
main result that the dynamics of a lattice in a closed 3-
space obeys an evolution equation with the same functional
form as the Friedmann equation, and with a scale that
approaches the FRW one as the number of points in the
lattice is increased. We then extend Lindquist and
Wheeler’s study to include more general space-times,
with arbitrary spatial curvature, and with a cosmological
constant. We extend the ‘‘cosmological time’’ coordinate
they developed away from just the boundaries of the cells,
giving us a global coordinate system with which to study
the propagation of photons in, and between, cells. The
problem of overlapping Schwarzschild space at a boundary
is discussed. The dynamics of the lattice is then shown to
behave analogously to flat, closed, and open FRW uni-
verses, with or without a cosmological constant, when
the curvature of the 3-space in which the lattice is con-
structed is chosen appropriately.

With our approximate space-time in hand, we then
proceed in Sec. III to investigate null trajectories within
it. The relevant null geodesic equations are presented in the
coordinate system found in Sec. II. We explain how to
propagate light rays between lattice cells using two differ-
ent methods; one simple and approximate, the other more
elaborate, and accurate. It is found that the results we
present in later sections are reasonably insensitive to which
particular method is chosen.

We are then in a position to study redshift, as measured
by observers looking along the null trajectories discussed
above. In Sec. IV we present the formalism needed to
determine these shifts, and make both analytic and numeri-
cal approximations to their solutions. The measured red-
shift to a radiating source is found, in general, to approach
a value that is smaller than the corresponding shift in FRW,
with relatively little scatter around the mean. The relation

satisfied is 1þ z ’ ð1þ zFRWÞ7=10. It is also found that
deviations from this rule occur for trajectories that follow
a special direction (such as being confined to a plane that
picks out a symmetry of the lattice).

In Sec. V we solve the Sachs optical equations along our
null geodesics. These equations determine the expansion
and shear of a bundle of null rays that are focused at either
the source or observer. We provide a method of propagat-
ing these quantities between cells, and make analytic and
numerical approximations of the distance measures that
result. We also note the importance of the caustics that can
develop due to the influence of shear.
Section VI contains a discussion of the observational

consequences of the preceding sections. In terms of red-
shift, we find that the luminosity distance for a spatially flat

dust dominated universe with � ¼ 0 takes the form rL /
ð1þ zÞ2 � ð1þ zÞ�ð8=7Þ, which corresponds to a decelera-
tion parameter of q0 ¼ 8=7 (i.e. objects at the same z
appear brighter than in EdS). In terms of cosmological
time, however, objects at the same t can appear dimmer.
We present the Hubble diagram for this space-time, in the
form of a plot of distance modulus, and continue to specu-
late on other cosmological observables such as CMB an-
isotropies, baryon acoustic oscillations, and galaxy number
counts.
In Sec. VII we conclude. A series of appendices then

follows.
Throughout the paper we attempt to present as many of

our results as possible using analytic methods. We back
this up with Monte Carlo simulations from a ray tracing
code that allows us to confirm their accuracy.

II. AN APPROXIMATE SPACE-TIME

Inspired by the success of the Wigner-Seitz construction
in electromagnetism [57,58], Lindquist and Wheeler (LW)
constructed in [55] a lattice model of the Universe. The
ideas they put forward are of central importance to our
study, and so we reiterate them here.

A. The Lindquist-Wheeler model

Starting with a positively curved hypersphere, LW dis-
tributed a number of ‘‘mass concentrations’’ into a regular
lattice that they formed from tiling the 3-space with regular
polyhedra.2 Each cell of the lattice was given a central
mass, and then approximated by a sphere, with the true
geometry of the space-time (that which would result from
solving Einstein’s equations) being replaced by the
Schwarzschild geometry of the closest mass. As LW noted:
‘‘This approximation demands that the distribution of
gravitational influences just external to each sphere should
depart relatively little from spherical symmetry’’.
The accuracy of this approach can be evaluated in the

Wigner-Seitz construction by comparing to known exact
solutions [59,60], with favorable results. Such solutions
involve ‘‘empty lattices’’, where the potential is taken to be

1Even though this assumes a matter content that is almost 3
times that which has apparently been observed through dynami-
cal estimates with clusters and peculiar velocities, using FRW
relations between redshift and distance.

2Tilings of 3-spaces of constant curvature are discussed in
Appendix A.

ARCHIPELAGIAN COSMOLOGY: DYNAMICS AND . . . PHYSICAL REVIEW D 80, 103503 (2009)

103503-3



a constant throughout. In general relativity a similar test
can be performed, but this time with a cosmological con-
stant dominating the gravitational interaction [61]. The
lattice results can again be seen to approach the exact
solution (de Sitter space) in the appropriate limits, lending
credence to the lattice model.

The essential difference between the gravitational and
electromagnetic cases, apart from the nonlinearity of the
field equations in general relativity, is that in the lattice
model constructed by LW, the lattice itself is dynamical.
This is because the nonzero normal derivative of the gravi-
tational potential at the cell boundary results in a relative
motion between the boundary and central mass. It is this
motion that LW concerned themselves with, and with
which they constructed an approximate global, dynamical
space-time out of the Schwarzschild solution alone.

For a cosmological interpretation, the scale factor of
FRW cosmology now has to be replaced by some measure
of the ‘‘size’’ of the lattice, and the Hubble rate has to be
replaced by the rate of increase in this size. To go further
we must therefore explain what measure of size is in-
tended, and with which time coordinate the expansion
rate is defined with respect to. A key concept in the LW
model, in this respect, is the idea of tangency between the
constant curvature background hypersphere (on which the
lattice is defined), and the 3-spaces that are locally or-
thogonal to the trajectory of the boundary sphere of each
cell. This tangency gives a natural time coordinate, �LW,
with which to describe the expansion (at least in the
vicinity of the bounding spheres). What is more, it is a
time coordinate that has some global meaning, as it can be
used to define a congruence of timelike trajectories that are
orthogonal to a common 3-space. As LW build their latti-
ces in hyperspherical 3-spaces, they also have a natural
measure for their size: The radius of the hypersphere in an
embedding Euclidean 4-space, aLW

It was found by LW that, in terms of the coordinates
discussed above, the dynamics of their lattice is specified
by an evolution equation of the form

_a2LW
a2LW

¼ 2m

a3LWsin
3c

� 1

a2LW
; (4)

where the over-dot represents a derivative with respect to
�LW,m is the Schwarzschild mass at the center of each cell,
and c is the (constant) angle subtended at the center of the
hypersphere between vectors in the Euclidean embedding
4-space that connect the center of the hypersphere with the
center and spherical boundary of one cell. Clearly, this
equation has the same functional form as the Friedmann
equation (2), with a dustlike energy content, and positive
spatial curvature.

The LW lattice therefore evolves in a similar way to a
dust dominated, closed FRW universe. The only difference
is the value of the maximum radius of the universe, when
expansion ends and the onset of collapse is about to begin.
In the LW case the maximum radius is given by

aðmaxÞ
LW ¼ 2m

Nsin3c
; (5)

where M ¼ Nm is the total mass of all cells in the lattice.
In the FRW case we have

aðmaxÞ
FRW ¼ 4M

3�
; (6)

where the total mass M is now written in terms of the
energy density from the Friedmann equation as3 M ¼
2�2a3FRW�. The ratio of these two maximum radii is
clearly independent of the total mass, M, in the space-
time, and depends only on the number of cells in the lattice,
N, and the angle they subtend at the center of the hyper-
sphere, c . It provides a measure of the departure from
FRWevolution, with the dynamics of the lattice approach-

ing FRW in the limit aðmaxÞ
LW =aðmaxÞ

FRW ! 1.
We know all possible values of N from Appendix A, and

can straightforwardly work out the value of c for each
lattice once it has been specified how the lattice cell poly-
hedra are to be replaced by spheres. The most successful
case that LW consider is the direct generalization to curved
space of the Wigner-Seitz approximation: That the bound-
ary sphere of each cell should occupy the same fraction of
the hypersphere as the original polyhedron.4 The results of
this method are shown graphically in Fig. 1. It can be seen
that as N ! 1, and the continuum limit is approached, the
lattice approaches the dynamical evolution of a spatially
closed, and dust dominated universe. At N ¼ 600 the
difference is already less than 1.5%. This is the main result
of LW.

B. Geometric setup

The LW construction was engineered to allow the ge-
ometry inside individual cells to be approximated by the

0.5 1 1.5 2 2.5 3
Log10N

0.9

1

1.1

1.2

1.3

1.4

aLW
max aFRW

max

FIG. 1. The maximum radius of expansion, as a fraction of the
FRW value, for lattices with N ¼ 5, 8, 16, 24, 120, and 600 cells.
The dashed line corresponds to the maximum of expansion in a
spatially closed, dust dominated FRW universe.

3The surface area of a hypersphere of radius r is 2�2r3.
4LW also consider a ‘‘less reasonable criterion’’, in which the

bounding sphere is taken to be just large enough to touch its
nearest neighbors. This method was found to be considerably
less successful than that mentioned above, and will not be
considered further here.

TIMOTHY CLIFTON AND PEDRO G. FERREIRA PHYSICAL REVIEW D 80, 103503 (2009)

103503-4



Schwarzschild solution (3). Gluing these cells together in a
suitable way then gives a global, dynamical lattice space-
time. They found the dynamics of a lattice universe in a
closed space, and showed them to be similar to the corre-
sponding perfect fluid model. We now wish to generalize
their model to include other spatial curvatures and, cru-
cially, to allow us to calculate the optical properties of the
space-time.

The Schwarzschild coordinates are, of course, perfectly
acceptable when considering the geometry inside a single
cell. They are not, however, well suited to describing the
global geometry of a universe with many discrete sources.
The problem is that these coordinates will not mesh at cell
boundaries—that is, the 3-space of constant t from one cell
will not be tangent to the corresponding 3-space from any
other. This makes gluing cells together problematic, as the
space that we would construct by putting cells at constant t
next to each other would not be at all smooth: The coor-
dinate patches for the spaces would intersect, rather than
overlap, making any global interpretation of ‘‘time’’ very
difficult indeed. This problem is illustrated in Fig. 2, with
three intersecting one-dimensional spaces placed next to
each other.

The problem was solved in LW by introducing a new
time coordinate in the vicinity of the spherical cell bounda-
ries that ensured the 3-spaces of constant time were or-
thogonal to the trajectory of the boundary. This allowed the
two spacelike surfaces of two adjoining cells to be tangent
at any point where the boundaries met, hence allowing a
common definition of time. This situation is illustrated in
Fig. 3. We now want to generalize their coordinates to

spaces with different spatial curvatures, and away from
the boundaries so that we can propagate null trajectories all
the way through each cell in a consistent way.
To do this, first consider a single Schwarzschild cell with

a spherical boundary in free fall. Now perform the follow-
ing transformation from Schwarzschild time, t, to a new
time coordinate, �:

d� ¼ ffiffiffiffi
E

p
dt�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E� ð1� 2m

r Þ
q

ð1� 2m
r Þ

dr; (7)

where E is a positive constant. The Schwarzschild line-
element (3), describing the geometry inside the cell then
becomes

ds2 ¼ � 1

E

�
1� 2m

r

�
d�2 � 2

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r

�s
d�dr

þ dr2

E
þ r2d�2: (8)

In the limit E ! 1 this reduces to the well known
Gullstrand-Painlevé coordinates [62,63]. The trajectory
of a radially out-falling timelike geodesic is then given by�

dr

d�

�
2 ¼ ðE� 1Þ þ 2m

r
; (9)

where � is also the proper time measured along the trajec-
tory.5 Each free-falling element of the boundary now has
the 4-velocity

ua ¼
�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� 1Þ þ 2m

r

s
; 0; 0

�
; (10)

and, for an arbitrary vector in the surface � ¼ constant,
given by na ¼ ð0;nr; n�; n�Þ, it can be seen that

uana ¼ 0: (11)

The surfaces of constant � are therefore orthogonal to all
in-falling boundaries that satisfy (9). We will use � as our
‘‘cosmological time.’’6

We can now consider how to construct a lattice from
individual cells with the geometry specified by (8), and
spherical boundaries at r ¼ að�Þ that satisfy (9). To do this
we must first choose one of the regular lattices specified in
Table I of Appendix A, at some initial time ti. A mass, m,
must then be placed at the center of each cell. This pre-
scription leads to the highly symmetric lattice structures
that we wish to study here.7

We now want to make a Wigner-Seitz-like approxima-
tion, following LW, and replace the polyhedron lattice cells

FIG. 2. A schematic of three one-dimensional spacelike re-
gions with intersecting, but not overlapping, surfaces of constant
time, placed next to each other. At the boundary between cells
different normal timelike vectors from different cells point in
different directions. This is the way surfaces of constant t behave
in our model. Hence, t does not represent a good choice for a
global, cosmological time coordinate.

space

time

FIG. 3. An example of three spacelike regions with overlap-
ping, rather than intersecting, surfaces of constant time. The
normal timelike vectors from different cells can now be identi-
fied at the boundary. This is the way surfaces of constant �
behave, and hence � can be interpreted globally. The smooth cell
bottoms here represent the nondivergent behavior of the � ¼
constant surfaces at r ¼ 2m.

5For in-falling trajectories one should take the opposite sign
for the square roots in (7) and (8).

6We use the letter �, as this is proper time of observers
following trajectories given by (10). It is not to be confused
with the ‘‘conformal time’’ coordinate often used in cosmology.

7One could be less prescriptive about the symmetries involved
in tessellating the 3-space, leading to more general situations.
We will discuss this briefly later on, but will postpone a detailed
investigation for future studies.
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with spheres. Generalizing condition I of [55], we choose
to specify these spheres as occupying the same amount of
spatial volume as the original polyhedra in the constant
curvature space in which the lattice is defined.8 This will
require the spheres from neighboring cells to overlap at the
center of the faces of the original lattice cells, while leav-
ing a ‘‘no man’s land’’ at their corners (a region external to
all spheres). This type of situation is illustrated using the
square tiling of a flat 2-space in Fig. 4.

If we now replace the geometry inside each cell by (8)
then the spheres will have a motion specified by (9), and
the orthogonality requirements we considered above will
lead to tangency of spacelike surfaces of constant � at the
points where the spheres intersect. Away from these points,
in the ‘‘overlap’’ and no man’s land regions, this tangency
will no longer exist. It will, however, be broken in an
opposite sense in each of the two types of regions, and so
will, in some sense, be satisfied ‘‘on average.’’

The dynamical properties of these space-times can now
be determined.

The case of a space-time containing a cosmological
constant is investigated in Appendix B.

C. Cosmological evolution

From Eq. (9) it can be seen that for E< 1 the boundary
spheres will reach a maximum of expansion, at amax ¼
2m=ð1� EÞ, and then begin to recollapse. For E> 1,

however, the spheres will expand eternally, and reach in-
finity with a velocity da=d� > 0. The dividing case, E ¼
1, corresponds to shells that just reach infinity, and hence to
the escape velocity. Clearly this behavior is analogous to
the behavior of FRW cosmology, with closed, open, and
flat spatial curvatures, respectively. This analogy is made
explicit if one relabels variables such that m ! M=2 and
E ! 1� k. In this case (9) becomes

_a2

a2
¼ M

a3
� k

a2
; (12)

which is obviously just the Friedmann equation (2), with
� ¼ 3M=8�a3. Henceforth, we will use a to label the
position of the boundary sphere, and r as our radial coor-
dinate inside each cell. The volume of the lattice cells at
future times is then given by the corresponding volume of
the bounding spheres.
We can make contact with the LW treatment by noting

that in the case of a closed space-time the LW variable c
can be related to E via E ¼ cos2c . Clearly, cos2c < 1,
and so they found their space to reach a maximum of
expansion, at the value found above, before recollapsing.
The generalization of this to hyperbolic space is then
E ¼ cosh2c , which is always >1, leading to the hyper-
bolic expansion found above.
As in the study of LW, we find that all of the models we

consider are governed by evolution equations with identi-
cal functional form to FRW space-times. It was then shown
in [55] that for the case of spatially closed universes, while
the evolution equation had the same form, the scale of the
problem did not: The maximum of expansion was different
in the two cases. Here we will focus on the case of a
spatially flat universe, with E ¼ 1. The expansion is then
scale-invariant, and so we do not anticipate any such dis-
crepancies between the discrete and continuous cases to
occur.
Now, while the LW construction only considered sur-

faces orthogonal to the trajectory of the boundary, in the
neighborhood of the bounding sphere, the spacelike sur-
faces � ¼ constant, in the coordinate system (8), are or-
thogonal to all shells in radial free fall that obey (9). This
allows us to extend the meshing coordinates away from just
the boundary region, and gives us a time coordinate that we
can consider to be the analogue of cosmological time in
perfect fluid cosmology. The idea of the single bounding
sphere in LW is here replaced by a continuous family of
shells9 following a congruence of timelike geodesics speci-
fied by (10), and which are identical to each other, up to a
translation in �. Such a coordinate system will be very
useful in determining how timelike geodesics should pass
between cells. This is particularly true in the spatially flat
universe, in which case the surfaces of constant �, in (8),

FIG. 4. An example of the process of replacing regular poly-
topes with n-spheres of the same volume in a flat 2-space with
square tiling. At the corners of the squares there is a no man’s
land that is not covered by the spheres, while at the center of the
edges of the squares there is an overlap between the spheres of
neighboring masses.

8This is equivalent to the condition I of [55] on lattices
constructed in positively curved 3-spaces: They will occupy
1=N of the total solid angle on the hypersphere.

9We still keep the concept of a single ‘‘special’’ shell at r ¼ a
that we will use to determine the volume of the cell.
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are simply the Euclidean 3-spaces in which the lattice cells
are defined.10 We will concentrate on this case in the
analysis we perform in later sections.

D. Validity of the model

The model we are considering, as outlined above, has
features that appear at first glance to be simultaneously
more realistic and less realistic than standard FRW cos-
mology. The raison d’être for this model is that it does not
a priori assume that discrete objects can be simply ap-
proximated by a continuous energy density; it explicitly
maintains the discrete nature of the objects, and contains
the continuous approximation as a limit. In this regard we
consider it to be a considerable improvement on the more
usual perfect fluid description.

Having said this, there are also obvious drawbacks. The
model itself relies on certain approximations, such as the
space-time being only an approximate solution of
Einstein’s equations. In the electromagnetic analogy these
approximations have been shown to be well justified
[59,60]. Similar tests suggest this is also true in the general
relativistic case [61], though further study is needed to
determine this conclusively.

Beyond this, one may also question the validity of
approximating the matter content of the Universe as iden-
tical spherically symmetric mass distributions that are
equally spaced on a regular lattice. At first glance this is
clearly not true of our Universe. Whatever unit of structure
we conceive of, it certainly is not arranged on a regular
lattice. Detailed surveys of the distribution of galaxies have
revealed an intricate tapestry of nodes, clusters, filaments,
and walls that seem to have resulted from a stochastic
process of structure formation. In fact, it has been shown
that the morphology of these structures is fractal over a
wide range of scales [65–68]. This suggests that a less
symmetric structure than a regular lattice would be more
realistic. However, we wish to retain as much as possible of
the cosmological principle11 in our study, and it makes
sense to consider the simplest, most symmetric case first.

Now let us return to the question of the masses. Again,
most objects in the Universe do not appear to be identical
and perfectly spherical. Nevertheless, it is certainly not
unusual to approximate the gravitational fields of non-
spherical objects (such as disk galaxies) as being spherical,
and taking equal mass objects seems like a justifiable
approximation in order to make progress in understanding

the problem at hand. Taking into account the detailed shape
and structure of every object in the Universe would obvi-
ously be prohibitively difficult. One would hope that future
studies would make progress from the simplest case
studied here, to more realistic situations.
An obvious choice for the central masses in this model is

to consider them to be galaxies with the same mass as the
Milky Way. In this case we find the spacing between
masses should be of the order of a few megaparsecs.
Clusters of galaxies would be another sensible choice,
and would correspond to a fractionally larger spacing of
masses. Alternatively, one might also consider dark matter
particles (with masses of a few 100 GeV). Such a choice
may be more suitable for applying the model considered
here to the early Universe. The lattice spacing would then
reduce to a few meters.
Throughout this paper we will use Milky-Way-type

masses, although we have also considered other objects
and found our results to be largely insensitive to this choice
(unless we consider very large masses).

III. PHOTON TRAJECTORIES IN A LATTICE

We will now consider the trajectories of null particles in
this space-time. These will be of basic importance for
understanding the optical properties of the lattice universe.
All analytic results presented here will be backed up by
numerical analysis.

A. Null geodesic equations

The Euler-Lagrange equations derived from the line-
element (8) are

d

d�

��
1� 2m

r

�
_�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r

�s
_r

�
¼ 0 (13)

d _r

d�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r

�s
d _�

d�
¼ �m

r2
_�2 þ Er _�2 þ Ersin2� _�2

(14)

d

d�
ðr2 _�Þ ¼ r2 sin� cos� _�2 (15)

d

d�
ðr2sin2� _�Þ ¼ 0; (16)

together with the null constraint

�
�
1� 2m

r

�
_�2 þ _r2 þ Er2 _�2 þ Er2sin2� _�2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r

�s
_r _� ¼ 0; (17)

where dots indicate derivatives with respect to �, an affine
parameter along the geodesic. Integrating these equations

10For the closed universe models, with E < 1, the coordinate
system given in (8) has the problem that it does not cover all of
the ‘‘no man’s lands’’ in the vicinity of the maximum of
expansion. In this case a more complicated coordinate system
can be found, as shown in [55].
11A statistical cosmological principle (in which one assumes
statistical homogeneity and isotropy) would be more desirable,
but is currently impossible to implement. The next best thing
appears to be a regular lattice.
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gives

�
1� 2m

r

�
_�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r

�s
_r ¼ B (18)

_� ¼ J�

r2sin2�
(19)

_� 2 ¼ J2

r4
� J2�

r4sin2�
(20)

_r 2 ¼ B2

E
� J2

r2

�
1� 2m

r

�
; (21)

where B, J, and J� are constants. Clearly, one could rotate

coordinates so that � ¼ �=2 in each cell, although this will
not be as useful here as it usually is, as we will want to
match different coordinate systems between cells. Rotating
them differently in each cell would confuse things.

The geodesic equations can also be found in Cartesian
coordinates (when E ¼ 1), which are useful for numerical
implementation, and in the presence of a cosmological
constant. The equations for these cases are given in
Appendixes C and D, respectively.

B. Matching trajectories at boundaries

Now consider the following situation: A photon is emit-
ted in one lattice cell and passes through a cell boundary
(or, more likely, several cell boundaries), before it is ob-
served. In order to make predictions about observations of
events that occur in cells that are at some distance from the
cell inhabited by the observer, we must be able to propa-
gate photon trajectories between cells.

One may initially suspect that at the boundary between
cells it may be suitable to simply perform a transformation
of spatial coordinates from one cell to another, via a
suitable translation of the origin of the coordinate system.
However, it is soon seen that this is not a viable way of
propagating null trajectories between cells. To see why
consider the null constraint equation (17), and a photon
that is following a radial trajectory in both the first and
second cells. If we denote the spatial coordinates of the first
cell by unhatted coordinates, then (17) gives

�
�
1� 2m

r

�
_�2 þ _r2 � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r

�s
_r _� ¼ 0;

where _r > 0, as the photon is leaving the cell. If one were
to perform the simple translation discussed above, keeping
_� the same, then the equation above would transform to

�
�
1� 2m

r̂

�
_�2 þ _̂r2 þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r̂

�s
_̂r _� ¼ 0;

as _r ¼ � _̂r and r ¼ r̂ at the boundary. Hats denote the
spatial coordinates of the second cell. It can immediately

be seen that this new equation is not compatible with the
null constraint (17) in the second cell, as it has the wrong
sign before the third term on the left-hand side. We must
therefore be more careful.
Our basic criterion for matching trajectories across

boundaries is that observable quantities, such as photon
frequencies and directions, should be independent of which
coordinate system an observer moving with the boundary
chooses to use.
Now, at the boundary, it will only be a set of measure

zero trajectories that actually pass through the single shell
that is described by our ‘‘special’’ bounding sphere, which
prescribes the volume of the cell. All other trajectories will
either pass though in the overlap region, which is the
intersection of the interiors of the two bounding spheres,
or in the no man’s land, that is outside of all bounding
spheres. This means that observers comoving with the
family of shells that obey (10) will, in general, be in
relative motion with respect to the cell boundary when
the photon in question passes them. Such motion should
be expected to result in a redshift between comoving
observers from neighboring cells who are both at the
same point on the cell boundary at the same time. We
will now consider two different methods of accounting
for this effect.
In method I we will appeal to the ‘‘average’’ tangency

between the spacelike volumes of constant �. A simple,
approximate matching criterion is then given by the con-
dition that _� is the same on leaving one cell, as it is on
entering the next. This will be shown in the subsequent
section to correspond to the condition that, at the boundary,
the frequency of a photon measured by a comoving ob-
server from the first cell should be identified with the
frequency measured by comoving observers from the sec-
ond. Clearly, this criterion will not be exactly satisfied by
all trajectories,12 but it will be satisfied in an average way
over many trajectories: Those that pass through the bound-
ary in the overlap region will pick up a change in _�with the
opposite sign to those that pass through in the no man’s
land.
In method II we will attempt to account for the relative

motion between comoving observers from different cells in
a more detailed way. Instead of assuming that the effects
described above cancel on average, we will work out the
redshift between a comoving observer who is momentarily
at the cell boundary, and an observer who is moving non-
geodesically with the boundary. Rather than identifying the
frequency measured by comoving observers from each
cell, we will then identify the redshift measured by the
observers who are moving with the boundary. This method
will be more complicated, but we expect it to account for
the imperfect tangency in a more complete way.

12In fact, any that do not pass through the special bounding
sphere at the boundary.
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The results of using method II will turn out to be very
similar to the results of using method I. This provides us
with motivation for considering the concept of average
tangency between the spacelike surfaces of neighboring
cells to be a valid one.

1. Method I: A simple, approximate matching

Using the matching condition that _� on leaving the first
cell is the same as _� on entering the second cell, we are left

with the task of finding _r, _�, and _� in the new cell. To do
this consider the following decomposition of the 4-vector
tangent to the null geodesic:

ka ¼ dxa

d�
¼ ð _�; _r; _�; _�Þ ¼ ð�ubkbÞðua þ naÞ; (22)

where ua is the trajectory of an observer on one of the free-
falling shells specified by (10). The 4-vector na is the same
unit spacelike vector that was considered below Eq. (10).

Now consider describing the null geodesic in a neigh-
borhood of the observer using the coordinate system of the
first cell. This results in

ka ¼ _�

�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� 1Þ þ 2m

r

s
þ nr; n�; n�

�
; (23)

where we have made use of the fact that uaka ¼ � _�, and
ðnr; n�; n�Þ obey the normalization condition

ðnrÞ2
E

þ r2ðn�Þ2 þ r2sin2�ðn�Þ2 ¼ 1: (24)

Now consider the same geodesic, in the same neighbor-
hood of the same observer, but this time using the spatial
coordinate system of the second cell. In this case the same
reasoning gives the same tangent vector as

kâ ¼ _̂�

�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� 1Þ þ 2m

r̂

s
þ nr̂; n�̂; n�̂

�
; (25)

where hats denote indices in the second coordinate system
(that of the new cell into which the photon is propagating).
As discussed above, the cell boundary is equidistant to the
central mass of each cell, so that r ¼ r̂, and the vector nâ

obeys a similar normalization condition to that of na.
Method I now tells us that _� in the neighborhood of the

observer with 4-velocity (10) at the boundary is, on aver-
age, common to both coordinate systems, so that

_�jout ’ _̂�jin: (26)

We can then relate ð _r; _�; _�Þ to ð _̂r; _̂�; _̂�Þ using the condition
that the projection of the tangent vector of the null geodesic
into the rest space of an observer at the boundary should be
independent of which spatial coordinate system is being
used.

To see how this works consider first a radial geodesic.

The condition _� ¼ _� ¼ 0 then gives n� ¼ n� ¼ 0, and

similarly in the hatted coordinates. We also have that nr ¼
1 in the coordinates of the first cell (this says that the
geodesic is outgoing). In the coordinates of the second
cell, however, we have nr̂ ¼ �1, as the geodesic is ingoing
in the new coordinate system (i.e. moving to smaller r). We
can then write the relation between _rjin and _rjout as

_rjout ¼ � _rjin þ 2 _�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðE� 1Þ þ 2m

r

s
: (27)

This satisfies the constraint equation exactly, and we avoid
the problem noted above.
Now consider a general (not necessarily radial) geode-

sic. In this case we have that the expression for ka above
gives, for E ¼ 1,

_� ¼ _�n� (28)

_� ¼ _�n� (29)

_r ¼ _�nr þ _�

ffiffiffiffiffiffiffi
2m

r

s
: (30)

Similar relations are obeyed by the hatted coordinates. The
expression kaka ¼ 0 now gives

kaka ¼ kakbgab ¼ ðnanbgab � 1Þ _�2 ¼ ðn�n	
�	 � 1Þ _�2;
(31)

where Greek indices run over spatial coordinates, and 
�	

represents the spatial metric of the Euclidean 3-space. This
clearly satisfies the null condition, as nana ¼ 1. The con-
straint equation can then be seen to be valid in any two
coordinate systems related by a transformation of spatial
coordinates of the form x�̂ ¼ ��̂

�x
�, where ��

�̂�
�̂
� ¼


�
�.
The procedure for propagating a general geodesic

through the boundary using method I is then the following:

(1) Take _�, _r, _�, and _� from the first cell and use them to
find nr, n�, and n�, using the relations (28)–(30).

(2) Transform the ðr; �;�Þ coordinate system into a
system with the same symmetries as the cell (this
is Cartesian coordinates for E ¼ 1). Translate the
origin of the coordinates from the central mass of
one cell to the central mass of another. Transform to

a new set of spherical coordinates, ðr̂; �̂; �̂Þ.
Calculate nr̂, n�̂, and n�̂ in these new coordinates.
The vector nâ is then given in terms of na by the
transformation

nâ ¼ @xâ

@xa
na; (32)

where the two coordinate systems are related, for
E ¼ 1, by

r̂ 2 ¼ r2 þ x20 � 2rx0 cos� sin� (33)
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cos 2�̂ ¼ ðr cos� sin�� x0Þ2
ðx20 þ r2sin2�� 2rx0 sin� cos�Þ (34)

cos 2�̂ ¼ r2cos2�

ðr2 þ x20 � 2rx0 sin� cos�Þ ; (35)

and x0 is given by the translation between Cartesian
coordinate systems, x̂ ¼ x� x0. This will be equal
to the width of a cell, at the time the photon hits the
boundary.

(3) Use these values to calculate _̂r, _̂�, and
_̂
� using (28)–

(30), given that _̂� ¼ _�. These are then the initial
conditions for propagating the null geodesic through
the new cell.

(4) Repeat at the next cell boundary.

2. Method II: A more elaborate and accurate matching

The above method did not take into account the fact that
along individual trajectories the observers with 4-velocity
ua on either side of a cell boundary can have a relative
velocity between them. This is due to the imperfect tan-
gency between surfaces of constant � on either side of a
cell boundary. To calculate the effect of this we will con-
sider an observer moving (nongeodesically) with the
boundary. The 4-velocity of such an observer, wa, can be
given by

wa ¼ ðw�;wr; 0; 0Þ; (36)

and satisfies wawa ¼ �1, if the observer is timelike, and
radially moving away from the mass at the center of each
cell. The normalization condition gives us that

w� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r þ ðwrÞ2
q

�
ffiffiffiffiffi
2m
r

q
wr

ð1� 2m
r Þ

: (37)

The 3-velocity, wr, can then be worked out straightfor-
wardly. For E ¼ 1 we can use Euclidean geometry to give
wr in terms of the expansion of the shell that defines the
volume of the lattice cell, _a, as

wr ¼
�
�

6

�
1=3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð
xÞ2
q

_a; (38)

where 
x is the distance from the center of the face of the
particular lattice cell that is being crossed, as a fraction of
the distance from the cell center to the center of the cell
face.
The frequency of a photon with tangent 4-velocity ka

measured by this observer is then given by

�waka ¼ _�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
þ ðwrÞ2

s

�
ðwr �

ffiffiffiffiffi
2m
r

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r þ ðwrÞ2
q

Þ
ð1� 2m

r Þ
_r: (39)

The values of _� and _r are given by the solutions to the null
geodesic equations stated above. Similarly, in the second
cell we have

�wâkâ ¼ _̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r
þ ðwrÞ2

s

� ðwr �
ffiffiffiffiffi
2m
r

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r þ ðwrÞ2
q

Þ
ð1� 2m

r Þ
_̂r; (40)

where, by symmetry, the 4-velocity of the observer in the
cell boundary is the same for both cells. We now wish to
identify the frequency of the photons measured by the
observers moving with the boundary, giving the condition
�waka ¼ �wâkâ.
If, as before, we now use the projection of the 4-vector

ka into the Euclidean 3-space, then we have that _�, _�, and _r
in the first cell are again given by Eqs. (28)–(30). Similar

expressions are satisfied by
_̂�,

_̂
�, and _̂r, but with hatted

coordinates.
We can now use (39) and (40) to calculate _̂� in terms of

known quantities, as

_̂� ¼
_�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r þ ðwrÞ2
q

� ðwr�
ffiffiffiffi
2m
r

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2m

r þðwrÞ2
p

Þ
ð1�2m

r Þ
_rffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2m
r þ ðwrÞ2

q
� ðn̂rþ

ffiffiffiffi
2m
r

p
Þ

ð1�2m
r Þ

ðwr �
ffiffiffiffiffi
2m
r

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2m

r þ ðwrÞ2
q

Þ
: (41)

For wr ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2m=r

p
we recover _̂� ¼ _�, as used in method I.

More generally, the value of _̂� given by (41) can be used,
together with n�̂, n�̂, and nr̂, to find _̂�, _̂�, and _̂r. The steps
to be followed at the boundary using method II are there-
fore:

(1) Find wr at the boundary, using (38).

(2) Take _�, _r, _�, and _� from the first cell and use them to
find nr, n�, and n�, using the relations (28)–(30).

(3) Find nâ in terms of na via the transformation

nâ ¼ @xâ

@xa
na; (42)

where the two coordinate systems are related by the
same coordinate transformation as in method I.

(4) Find _̂� using (41).
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(5) Use the values found in (3) and (4) to calculate _̂r, _̂�,

and
_̂� using (28)–(30) (with hats added). These are

then the initial conditions for propagating the null
geodesic through the new cell.

(6) Repeat at the next cell boundary.

C. Numerical implementation

We have implemented the methods described above
numerically, so that we can propagate geodesics with any
initial positions and directions out to arbitrarily large dis-
tances. This is effectively the equivalent of the ray tracing
methods applied in simulations of lensing through cosmo-
logical configurations. Note that in all plots, we integrate
back in time from the observer’s current position, and fix
the affine parameter, �, to be initially zero.

A few brief comments on this seem in order at this point.
We find that while integrating the geodesic equations
through a Schwarzschild cell it is preferable to use
Cartesian coordinates (as given in Appendix C), rather
than the natural, spherical coordinates of the
Schwarzschild geometry. In this way we can avoid coor-
dinate singularities (where, for example, sin� ¼ 0).
Although these singularities are rare for any single geode-
sic, they can still occur occasionally if one integrates over
many different geodesics in order to obtain statistically
significant results from a Monte Carlo simulation.

A further point to comment on is that with our choice
of Milky-Way-sized masses, the ratio between the
Schwarzschild radius and the cell size is minute (of order
10�8). This means that large deflection events (as trajecto-
ries pass nearby the central mass) are almost nonexistent,
and that all but a few geodesics suffer only negligible
deflections as they traverse a single Schwarzschild cell.
With this fact in hand, we find it sufficient to consider
rectilinear trajectories (akin to the Born approximation),
and to calculate our optical quantities along them.

IV. COSMOLOGICAL REDSHIFT FROM
SCHWARZSCHILD PATCHES

Now that we have the equations for null geodesics, we
can calculate the redshifts between source and observer
that are so important in cosmology. The redshift will, of
course, depend on the motion of the source and observer.
These can, in principle, be completely arbitrary. However,
the closest analogy to a comoving source and observer in
FRW cosmology will be a source and observer that are
comoving with one of the family of free-falling shells with
4-velocity specified by (10). As always, the redshift, 1þ z,
is given as the ratio of the frequency, �uaka, measured at
the source and observer.13 Here this is

� uaka ¼ _� (43)

so the redshift is

1þ z ¼ _�je
_�jo ; (44)

where subscript e and o denote when the photon was
emitted and observed, respectively. In general this quantity
will need to be calculated numerically. We find, however,
that we are able to deduce reasonably good analytic ap-
proximations to the numerical results. We will present our
analytic approximations first, and then proceed to compare
them to numerical solutions.

A. Analytic approximation

To find analytic approximations for the redshift consider
first a single null trajectory. For an expanding space-time
we then have from the geodesic equations that

_� ¼ B
ð1� �

ffiffiffiffiffi
2m
r

q
Þ

ð1� 2m
r Þ

: (45)

The factor of � is included to account for the magnitude
of _r as a fraction of the total ‘‘velocity,’’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_r2 þ r2 _�2 þ r2sin2� _�2

q
’ B, and is given by � � _r=B

for any particular cell.14

For 2m � r we then have

_� ’ Bð1� vð�� vÞÞ; (46)

where v � ffiffiffiffiffiffiffiffiffiffiffiffi
2m=r

p
is the velocity of the observer. The

redshift induced by a photon traveling through a single
cell, ð1þ 
ziÞ, is then

ð1þ 
ziÞ ¼ _�jin
_�jout ’

ð1� vinð�in � vinÞÞ
ð1� voutð�out � voutÞ

’ 1þ vð�out � �inÞ; (47)

as B is constant inside each cell. In the last equality we
have used vin ’ vout for a photon passing through a single
cell. For small z the total redshift induced by traveling
through n cells is now

1þ z ¼ Yn
i¼1

ð1þ 
ziÞ ’ 1þ 2
X
i

�i

ffiffiffiffiffiffiffi
2m

ai

s

’ 1þ 2

ffiffiffiffiffiffiffi
2m

a0

s
�1=30

Z di

�1=3
�i; (48)

where ai denotes a at the moment the photon enters the ith
cell.

13This is the case for both methods I and II. The 4-velocity of
the nongeodesic observers in method II, wa, is only used for
propagating photons across boundaries.

14For a geodesic with J ¼ J� ¼ 0 we have � ¼ 1, as the
photon is moving entirely in the radial direction. More generally
� 2 ½0; 1�.
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We now need i ¼ ið�Þ in order to proceed (this is the cell
number that the photon is in, as a function of �). Assumed
the expansion of the cell is slow compared to the scale of
the photon crossing time,15 to lowest order in m=r we then
have that the crossing time of a region, �i, is given by

��i
�i

’ �2ai; (49)

with the continuum limit

d�

di
’ �2a0

�
�

�0

�
2=3

: (50)

More generally, for nonradial geodesics, we can write

d�

di
’ �2	ia0

�
�

�0

�
2=3

; (51)

where 	i is the distance across the cell as a fraction of the
length of the radial trajectory. Substituting this into (48)
and integrating gives the redshift as

1þ z ’ 1�
ffiffiffiffiffiffiffi
2m

p

a3=20

�0

�
�

	

�
ln
�e
�0

(52)

’ 1� h�i ln
�
�e
�0

�
2=3

(53)

’ 1þ h�i ln
�
a0
ae

�
(54)

¼ 1þ h�i lnð1þ zFRWÞ (55)

’ ð1þ zFRWÞh�i; (56)

where h�i � h�=	i. Strictly speaking, the last step here is
only valid up to linear order in lnð1þ zFRWÞ. This is
perfectly acceptable, however, as the calculation before-
hand has only been performed up to this order of accuracy.
Now, if we use the fact that redshifts should combine as
factors,16 then we have good reason to suspect that (56)
will be a better approximation to 1þ z than (55). The
reason for this is that Eq. (56) can be seen to combine
factors of redshift in exactly the way required, and to have
the correct linear term in an expansion of lnð1þ zFRWÞ
around 0. For these reasons we expect it to be a reasonable
nonlinear extension of the relation between z and zFRW.
This is confirmed numerically.

The angle brackets here refer to an ensemble average,
over all the cells along a trajectory. For radial geodesics
h�i ! 1, and so z ! zFRW. For general geodesics it is
shown in Appendix E that h�i ’ 2=3. The redshift in a
lattice universe is then found to go like

1þ z ’ ð1þ zFRWÞ2=3; (57)

for a trajectory that is not aligned with any principle axis.
This result marks a significant deviation from the corre-
sponding observable in FRW. It is shown graphically in
Fig. 5.

B. Numerical results

If, instead of making approximations, we integrate the
geodesic equations numerically, then we can get more
accurate results, and determine the validity of the simple
expression (57). Doing this, we find that the analytical
results are good (though not perfect) approximations.
As one would expect, we do find an initial scatter in the
z� zFRW relation as the geodesics traverse the first few
Schwarzschild cells.
In Fig. 6 we plot the relationship between z and zFRW for

five trajectories with different initial directions. The steep-
est curve in the left of these plots is along a principal axis,
and is clearly different from the others, with z ’ zFRW. The
directions of the other trajectories have a range of random
angles and, although they start off with different gradients,
they very rapidly converge upon the mean. As shown
above, deviations from the mean depend on the number
of domains traversed. In Fig. 7 we plot the relative devia-
tions from the mean, and find that for Milky-Way-sized
masses they do indeed become negligible very rapidly.
There is very little scatter at z * 0:1.
We can now use our numerical analysis to show the

limitations of the analytic approximations. These are
shown for comparison in the right-hand panel of Fig. 6.
Although not perfect, it is can be seen that (56) with h�i ¼
2=3 offers a reasonable approximation. With h�i ¼ 7=10,
however, we find that Eq. (56) fits the numerical results
almost perfectly. We will therefore use this semianalytic
value for h�i in our calculations, later on.
It is also now possible to compare the two matching

schemes we outlined above, for propagating geodesics
between cells. As advertised, we find that the effect on

0.2 0.4 0.6 0.8 1
zFRW

0.2

0.4

0.6

0.8

1
z

FIG. 5. The approximate relation expected between redshift in
a lattice universe, z, and the corresponding redshift in a FRW
universe, zFRW. The solid line is for null trajectories not lying on
a principle axis, and the dotted line is for near radial geodesics.

15This should be a good approximation as long as the cells are
small.
16Such that ð1þ z1!3Þ ¼ ð1þ z1!2Þð1þ z2!3Þ.
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physical quantities is negligible, showing that the ‘‘aver-
age’’ tangency of 3-spaces is indeed a valid concept. In
Fig. 8 we show this explicitly with a plot of �z=z as a
function of zFRW, for the two different choices. The relative
error is at the level of less than 1% out as far as zFRW ’ 2,
which is remarkably accurate.

In what follows it will also be useful to know the
cosmological time, �, and redshift, z, as functions of the

affine distance along the geodesics, �. One finds, both
analytically and numerically, that

�

�0
’ ð1þ �Þ3=ð2h�iþ3Þ; (58)

where �0 is the current age of the Universe and � has been

FIG. 6. The relation between redshift in a lattice universe, z, and the corresponding redshift in a FRW universe, zFRW, for five
different trajectories starting off with different orientations. Close to the observer (left panel) there is still a fair amount of scatter, but
after traversing a few Schwarzschild domains, this scatter becomes negligible (right panel). We also plot the analytic fit with h�i ¼ 2=3
from expression (56) (dashed line). Equation (56) with h�i ¼ 7=10 (solid line) lies directly on top of the numerical results (dotted line).

FIG. 7. The error in the z� zFRW relation for 40 random
trajectories.

FIG. 8. The relative difference in the z� zFRW relation for the
two choices of matching conditions at the cell boundaries.
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chosen so that it is 0 at � ¼ �0, and �1 at � ¼ 0. In Fig. 9
we plot both � ¼ �ð�Þ and z ¼ zð�Þ all the way from the
initial singularity (� ¼ �1) to the present day (� ¼ 0).
These results are derived from averaging over a set of 40
realizations. We find that the numerical results fit Eq. (58)
almost perfectly.

V. OPTICS OF A DISCRETIZED MATTER
DISTRIBUTION

While the dynamical evolution of a cosmological model
is important for understanding, for example, the growth of
structure, one could argue that it is of equal, or even
greater, importance for understanding its optical proper-
ties. While the latter requires a knowledge of the former,
there is no guarantee that similar average dynamical prop-
erties in two space-times should lead to similar optical
properties. In fact, we have already seen that the lattice
space-time gives different redshifts to FRW and, as we
discussed in the introduction, there are good reasons to
suspect that there should be considerable differences in
distance measures too.

There are various reasons to suspect this. First, the
dynamical equation for the expansion of a bundle of null
geodesics is driven by a term / R, the Ricci curvature
tensor. In the continuous fluid approximation this is non-
zero, while in a universe with discrete islands of matter it
will be exactly zero everywhere outside of the matter itself.
What is more, the shear in a homogeneous and isotropic
perfect fluid universe is zero, while in a universe with

discrete matter sources it will be nonzero. These differ-
ences have competing effects on the luminosity of astro-
physical sources, the former making them dimmer in the
lattice universe, and the latter making them brighter. These
phenomena have been described by Bertotti [69].
To investigate the optical properties of the space-time

we will have to integrate the Sachs optical equations [54]
along each null trajectory. These equations read

d~�

d�
þ ~�2 �!2 þ ��� ¼ � 1

2
Rabk

akb (59)

d!

d�
þ 2!~� ¼ 0 (60)

d�

d�
þ 2�~� ¼ Cabcdðt�Þakbðt�Þckd; (61)

where ~�,!, and� are the expansion, rotation, and complex
shear scalars, respectively. The Cabcd is Weyl’s tensor, Rab

is the Ricci tensor, and ta is a vector that is orthogonal to
ka, null, and has a magnitude of 1 (i.e. taka ¼ 0, tata ¼ 0,
and taðt�Þa ¼ 1). In Schwarzschild space-time Rab ¼ 0,
and the driving term in the � equation can then be found
to be

C ¼ Cabcdðt�Þakbðt�Þckd ¼ 3mJ2

r5
ei�; (62)

where� is a constant, specifying the complex phase. Once
the expansion scalar is known, then the angular diameter
distance is given by the integral

rA / exp

�Z o

e

~�d�

�
; (63)

and the luminosity distance is given by Etherington’s
theorem [70] as

rL ¼ ð1þ zÞ2rA: (64)

It can also be seen that for a point source ! ¼ 0 is always
an integral of (60). Choosing units appropriately we then
have the two equations

1

rA

d2rA
d�2

þ ��� ¼ 0 (65)

d�

d�
þ 2�

rA

drA
d�

¼ 3mJ2

r5
ei�: (66)

The initial conditions for integrating these equations are
then �jo ¼ 0, rAjo ¼ 0, and drA=d�jo ¼ constant. (The
reader should not confuse r and rA in these equations). The
value of r ¼ rð�Þ should be substituted from the solution to

FIG. 9. The functional dependence for both z ¼ zð�Þ and � ¼
�ð�Þ, averaged over a set of 40 runs.
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the geodesic equations, together with the relevant value of
J and � in each cell.

Let us now write the complex shear as

� � j�jei�; (67)

and define the new variable X � j�jr2A. This expression for
� has two independent real parts, j�j and�, and therefore
contains all the information about the shear scalar.

In terms of these new variables the evolution equations
for the optical scalars (65) and (66) become

r3A
d2rA
d�2

þ X2 ¼ 0; (68)

and

dX

d�
¼ 3mJ2r2A

r5
cosð���Þ (69)

X
d�

d�
¼ 3mJ2r2A

r5
sinð���Þ; (70)

for the real and imaginary parts of (66), respectively. These
last two equations can then be integrated to give

X

X0
¼ sinð�0 ��0Þ

sinð���Þ ; (71)

where X0, �0, and �0 are constants. This results in the
single equation for the evolution of the shear�

dX

d�

�
2 ¼

�
3mJ2r2A

r5

�
2
�
1� X2

0sin
2ð�0 ��0Þ
X2

�
; (72)

where the sign of dX=d� is given by the sign of cosð��
�Þ. Once we know X0, �0, and �0 in a given cell, we can
then solve the Eqs. (68) and (72), above.

A. Evolving shear between cells

We now want to know how to evolve shear between
cells. It should be the case that observable quantities are
continuous along trajectories, so we know that rA and X
should be the same on starting the next cell as they were on
leaving the last one. It remains to determine how the phase
factors � and � are propagated across cell boundaries.

It is clear from (68)–(72) that the difference between �
and � is of primary importance for evolving the optical
scalars. To make clear what this quantity corresponds to,
let us consider further the 4-vectors ta. We can think of
them as giving a set of two mutually orthogonal spacelike
unit vectors, that are orthogonal to ka, via

ta ¼ 1ffiffiffi
2

p ðpa þ iqaÞ; (73)

such that papa ¼ qaqa ¼ 1 and paka ¼ qaka ¼ paqa ¼
0. The phases � and � therefore correspond to the ori-
entation of the shear and of the driving term (62) in the

plane spanned by pa and qa. The quantity ��� is their
relative orientation.
Now, in a space-time that is globally Schwarzschild (i.e.

with only one pointlike mass in the whole space-time) it
can be seen from (70) that � is driven toward �. This
means that the direction that the beam is sheared in is
drawn into alignment with the term driving the shearing,
just as should be expected. In the present situation, how-
ever, when we pass between cells the orientation of the
shear that has accumulated up until that point, �, will not,
in general, be in the same direction as the term driving the
shear in the new cell, �. Stated another way, the beam is
sheared in different directions as it passes through the
different cells. This change of direction is given by the
change in ��� as the beam passes a cell boundary.
We are, of course, free to perform an arbitrary change of

ta as we move between cells. If we were to do this,
however, then we should expect to have to work out both
� and�with respect to the new set of 4-vectors. Instead, it
makes sense to not rotate pa and qa at the boundary, so that
we can keep the phase of accumulated shear up until that
point, �, the same. This can be achieved by a direct
transform from the coordinate system of the first cell, xa,
into the coordinate system of the second, xâ, via xâ ¼
xâðxaÞ. The vector ta then transforms as

t̂ âjentry to new cell ¼ @xâ

@xb
tbjexit from old cell � tâjexit from old cell:

(74)

This is the same coordinate transformation that was used
previously on na, and hats mean quantities in the cell with
the hatted coordinate system. We now need to know the

phase of the driving term in the second cell, �̂, with respect
to these vectors.
To find this, consider that for the Schwarzschild geome-

try (8) and tangent vector (25) we can write ta, for E ¼ 1,
as

ta ¼ e�i�=2ð�ta þ �kaÞ; (75)

where

�t a ¼ r _�ffiffiffi
2

p
J

�
inr; i

�
1þ

ffiffiffiffiffiffiffi
2m

r

s
nr
�
;� sin�n�;

n�

sin�

�
; (76)

and where � and � are real and complex functions,
respectively.17 To see that this � is the same as that in
(62), simply contract it with the Weyl tensor using the
result18

�C ¼ Cabcdk
að�t�Þbkcð�t�Þd ¼ 3mJ2

r5
: (77)

17They represent the three required degrees of freedom from the
eight components of ta, and the five conditions it must satisfy.
18The symmetry of Cabcd ¼ �Cbacd ¼ �Cabdc means that the
term involving � in ta does not contribute to C.
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We now need to know how � and � evolve inside each
cell. To find this let us impose that ta is parallelly propa-
gated along the null curve. This then gives

Dta

d�
¼ kbta;b ¼ e�i�=2

�
� ita

2

d�

d�
þ ka

�
iBffiffiffi
2

p
J
þ d�

d�

�	
¼ 0;

(78)

which results in

� ¼ �0 ¼ constant and � ¼ �0 � iBffiffiffi
2

p
J
�; (79)

where �0, Reð�0Þ and Imð�0Þ are constants. These can
initially be set to zero in the first cell, without loss of
generality, but in subsequent cells are generally nonzero.

Now, the tangent vector in the new cell, kâ, is already

known from the previous section, and �̂tâ is the same as in

(76), but with na replaced by nâ. The values of �̂0, Reð�̂0Þ,
and Imð�̂0Þ can then be found from (74).19 Although �̂0 is
not needed directly for integrating (72), it is needed to find

�̂0, and so should be recorded. Its value at exit from cell
two is found from (79). This gives us the required value of
��� when starting the new cell.

The prescription for calculating shear is then the follow-
ing:

(1) At the beginning of the cell, take X0,�0,�0, and�0

for that cell. These will have been calculated at the
end of the previous cell (see steps below). If this is
the first cell then take X0 ¼ �0 ¼ �0 ¼ �0 ¼ 0.

(2) Substitute X0, �0, and �0 into (72), and integrate
from the beginning of the cell until the trajectory
hits another edge.

(3) Use this X ¼ Xð�Þ to integrate (68) along the same
trajectory, to find rA.

(4) We now want to calculate X̂0 and �̂0 for the next

cell (hats indicate quantities in the next cell). X̂0 is

given by X̂0 ¼ Xe, where subscript e means eval-

uated at the exit from the cell. The value of �̂0 is
given by

�̂ 0 ¼ �e ¼ �0 � arcsin

�
X0

Xe

sinð�0 ��0Þ
�
:

(5) It remains to find �̂0 and �̂0. These will be found
from Eq. (74). Now, tâ (at the exit from the first cell)
is known from (75), (76), and (79). In evaluating tâ

take B, J, �0, �0, and ka all from the first cell, and
use r and � as appropriate at the cell boundary. This
gives the right-hand side of (74). The left-hand side
is given by

t̂ â ¼ e�i�̂0=2ð �̂tâ þ �̂k̂âÞ:

The �̂tâ and k̂â in this expression are different from �ta

and ka, and are not just a coordinate transformation

of them. The tangent vector k̂a is the tangent vector
in the new cell (evaluated at the boundary still). This
is the new vector found in the previous section. The

vector �̂tâ has the same functional form as (76), but
now with all hatted quantities, as found in the new
cell (including J from the new cell).

B. Solving the equations

The influence of shear complicates the solving of the
optical equations (68) and (72). We can, however, make
quick progress if we are prepared to make approximations.
The system we are describing involves the propagation of
geodesics through multiple lattice cells. At low redshifts,
and for trajectories that do not pass close to a central mass,
we expect the effect of the shear to be small, as the driving
term C� 1=r5. In the absence of shear, when �� 0, we
can write the solution for rA in (65) as

rA ’ c1 þ c2�: (80)

At larger redshifts, and for trajectories that pass close to a
central mass, however, the influence of shear will accumu-
late and become non-negligible.
In a classic paper, Press and Gunn [71] addressed the

impact of condensed objects on the optical properties of the
Universe. They modeled the evolution of the optical equa-
tions in a clumpy universe as a Markov process, with �
performing a random walk through sporadic scattering
events. It was found that, apart from some extreme scat-
tering events, the cumulative effect of the source terms in
the Sachs equations is negligible unless the correlation
length of the objects is very large, or the distances traveled
were very great. In fact, the change in shear over a Hubble

length H�1
0 should be � ’ H3=2

0 and hence �=H0 � 1. We

find that the main features derived in [71] are, essentially,
in agreement with the numerical results that come from
integrating the optical equations through a lattice universe.
In Fig. 10 we plot rAðzÞ for two different cases; one in

which� is always negligible, and one in which� increases
substantially. Of course, shear is always negligible initially.
Far from the origin the situation is more complex, and j�j
(or X) can deviate considerably from zero. We find that j�j
evolves as if it were subject to a Markov process, perform-
ing a random walk and slowly diverging away from zero.
Once it reaches a critical value, the angular diameter
distance, rA, is found to stop growing, and to subsequently
decrease, leading to the formation of a caustic. The like-
lihood of this happening for a random trajectory is small,
but may become non-negligible at moderate to high red-
shift, when many cells have been traversed. The result, if
such events do occur, is a substantial suppression of rA,
corresponding to a significant brightening of distant
sources viewed along the trajectory in question.

19Equation (74) is four equations for three variables, so it must
be the case that only three of these four are independent.
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We will now refine Press and Gunn’s calculation, and
work out how likely it will be for the shear to diverge and
lead to a turnover in rA. To do so, we first note that there is a
high degree of regularity and recurrence and that, for the
most part, it should be acceptable to consider propagation
through each domain as almost independent from those
that have come before. In each domain we rotate the
coordinate system so that the photon enters each cell in
an upward direction [i.e. through the ðx; yÞ plane]. By
approximating the lattice side as a disk we can then write
the point of entry into cell i as

r i � Lqi ¼ Lðq̂i cos�i; q̂i sin�i;�1=2Þ;

where L is the side length of the cell, and the probability
distributions for q̂i and �i are Pðq̂i; �iÞdq̂id�i ¼
q̂idq̂id�i, where q̂i 2 ½0; 1=2� and �i 2 ½0; 2��. The di-
rection vector at the point of entry can then be written

_r i ’ _�iðsin� cos; sin� sin; cos�Þ;

where � 2 ½0; �=2� and  2 ½0; 2��. The vector compo-
nents in the expressions above are given in a Cartesian
coordinate system.

We now wish to find the approximate evolution of X.

The _X and _� equations tell us that � ! constant, as X
becomes large. We also know that � is constant in each
domain, but rotates randomly between domains. We then
have

Xð�Þ ’ XN
i¼0

Ai cosð�i ��iÞ;

where

Ai � 3mJ2i

Z �iþ1

�i

d�
r2A
r5

:

In this limit the trajectory X ¼ Xð�Þ can be seen to become
stochastic.
Ultimately, we are interested in the case where a photon

crosses a large number of cells. The central limit theorem
then implies that X should have a Gaussian distribution.
What we want to know now is the mean and the variance of
this distribution. To find these consider that hcosð�i �
�iÞi ¼ 0 and hcosð�i ��iÞ cosð�j ��jÞi ¼ 1

2
ij. We

then have

hXð�Þi ¼ 0 hX2ð�Þi ¼ 1

2

XN
i¼0

A2
i :

To proceed further we need to work out an approximate
expression for Ai. If the angular momentum in cell i is
given by J2i ¼ ðri � _riÞ2 then we have

J2i ¼ r2i _r
2
i � ðri � _riÞ2 ¼ L2 _�2i ½q2i � ðqi � niÞ2�: (81)

We now assume that we can approximate each geodesic as
a straight line. This gives

r ¼ ri þ _rið�i � �Þ ¼ ri � �0 _ri
r2 ¼ r2i þ _r2i �

02 � 2r � _ri�0

r2 ¼ L2q2i þ _�2i �
02 � 2 _�iLðqi � niÞ�0:

We will assume that �i is approximately constant in each
domain, and set rA ¼ rAi � �i�

0. We then have that the
integral Ai becomes

Ai ¼ 3mJ2i

Z ��i

0

r2Ad�
0

½L2q2 þ _�2i �
02 � 2 _�iLðq � nÞ�0�5=2 :

If we change variable to � ¼ ��i�
0 then this becomes

Ai ¼ � 3mJ2i
�i

Z �i

0

ðrAi þ �Þ2d�
½L2q2 þ ð _�i

�i
Þ2�2 þ 2ð _�i

�i
ÞLðq � nÞ��5=2 :

The further change of variables to Y ¼ _�i
L�i

� then gives

Ai ¼ �3mJ2i
�2
i

_�3i

1

L2

Z �Yi

0

ðYAi þ YÞ2dY
½ðq2 þ Y2 þ 2ðq � nÞY�5=2 ;

where we have assumed L ’ constant over one domain,
and defined YAi ¼ _�irAi=�iL. The upper limit of integra-

tion is �Yi ¼ � _�i
L�i

�i
�i ¼ _�i��i

L , which we can approxi-

mate to 1. The integral is therefore time-independent, and
depends only on the stochastic variables q and n (except
for the presence of YAi). Note, however, that in the limit of
multiple scattering events we have that Y � YAi, so that

FIG. 10. The top panel shows the evolution of rA as a function
of z for a case where � is negligible (top, solid line) and for the
case where it diverges (bottom, dotted line). In the bottom panel
we plot the evolution with redshift of the corresponding j�j.
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Z �Yi

0

ðYAi þ YÞ2dY
½ðq2 þ Y2 þ 2ðq � nÞY�5=2

’ Y2
Ai

Z �Yi

0

dY

½ðq2 þ Y2 þ 2ðq � nÞY�5=2 :

We then have that

Ai ¼ � 3m _�i ��
2�2

L2
F ðq;nÞ; (82)

where

F ðq;nÞ ¼ ½q2 � ðq � nÞ2�
Z 1

0

dY

½ðq2 þ Y2 þ 2ðq � nÞY�5=2

¼ ðq2Þ3=2ð1þ q � nÞð2þ 3q2 þ 4q � n� ðq � nÞ2Þ þ q � nð1þ q2 þ 2q � nÞ3=2ððq � nÞ2 � 3q2Þ
3ðq2Þ3=2ð1þ q2 þ 2q � nÞ3=2ðq2 � ðq � nÞ2Þ ;

and we have taken rA ¼ ���. If we now take _�i ¼ _�0=a and
L ¼ L0a then we can write the variance of X as

hX2i ¼ 9m2 _�20 ��
4

2L4
0

XN
i¼0

�4F 2

a6
: (83)

The continuum limit of this is

hX2i ¼ 9m2 _�20 ��
4hF 2i

2L5
0

Z �0

�

�4

a7
d�0; (84)

where we have used �i ¼ ���i=L, and taken the infini-
tesimal limit so that di ¼ �d�=L. Now with h�i ¼ 7=10
we have that a ¼ ð�=�0Þ2=3 and 	� ¼ ðð�=�0Þ22=15 � 1Þ,
which allows us to perform the integral above to find

G �
Z �0

�

�4

a7
d�0

¼ �0
11	4

�
3

�
�0
�

�
11=3 � 20

�
�0
�

�
11=5 þ 90

�
�0
�

�
11=15

þ 60

�
�

�0

�
11=15 � 5

�
�

�0

�
11=5 � 128

	

¼ �0
11	4

Ĝ:

We can then finally write

hX2i ¼ 9m2 _�20 ��
4hF 2i�0

22L5
0	

4
Ĝð�Þ: (85)

Let us now determine an estimate for the critical value of
X at which the shear becomes important, and the diver-
gence from the background evolution occurs. First we
define the area of a bundle of geodesics focused at the
observer to be Y � r2A. This gives the equation for €rA (68)
as

Y €Y

2
¼ _Y2

4
� X2:

Now let us take as our benchmark for the point at which
divergence begins to be €Y ¼ 0. Recall that €Y ’ constant in
the absence of shear, and goes from being initially positive

(when shear is negligible) to being negative when shear
causes the turnover and eventual divergence of rA. Taking
€Y ¼ 0 seems like as reasonable a place as any to mark the
separation of these two regimes. At this point we then find
the critical value of X to be

Xc ¼
_Y

2
¼ rA _rA ¼ r2A

�
¼ ��2� ¼ ��2

	

��
�

�0

�
22=15 � 1

�
;

(86)

where we have used rA ¼ ���, as above (although this is
only strictly true when shear is completely negligible). The
ratio of hX2i to X2

c is then given by

hX2i
X2
c

¼ 9m2 _�20hF 2i�0
22L5

0	
2

Ĝ

ðð�=�0Þ22=15 � 1Þ2 ; (87)

where hF 2i ’ 10 and Ĝð�Þ is given by the expression

FIG. 11. The critical redshift, zcrit, as a function of the ratio of
mass separation, L0, to Hubble scale, H0. At z ¼ zcrit we expect
�1=3 of the trajectories will have experienced enough shear to
cause a caustic. For Milky-Way-sized galaxies L0H0 ’ 10�4.
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above. When this ratio becomes greater than 1, about 1=3
of the trajectories will begin to diverge.20.

In Fig. 11 we plot the critical redshift as a function of the
ratio of mass separation, L0, to Hubble scale, H0. We find
that, in the regime that we are considering, only a tiny
fraction of trajectories should experience enough shear to
cause the optical scalars to diverge. For Milky-Way-sized
galaxies we find that the critical redshift is zcrit ’ 2:8, and
up until z ’ 1 it should be an excellent approximation to
take � ’ 0.

VI. COSMOLOGICAL OBSERVABLES

Having discussed the dynamical and optical properties
of an archipelagian universe in some detail, let us now
consider the effects such a model of the Universe has on the
interpretation of cosmological observables. Clearly, the
optical properties of the Universe are of great importance
for very many different types of cosmological observables.
These include reconstruction of the Hubble diagram, inter-
pretation of anisotropies in the CMB, and relating dis-
tances to redshifts for the purpose of understanding
galaxy number counts and baryon acoustic oscillations.
In this section we will consider how these types of observ-
ables will differ from FRW, in the model currently under
consideration.

A. Distance measures and the Hubble diagram

In this section we will focus on the reconstruction of the
Hubble diagram in a universe with discrete matter content.
In the previous section we argued that shear will play a
negligible role in the optical equations, at least out to
redshifts �1. Very few supernovae have been measured
beyond this value, and hence we feel justified in using
Eq. (80).

If we enforce the condition that � ¼ 0 at the observer
then c1 ¼ 0, and (80) gives rA / �. We now want to relate
� to �. It was found above that

1þ z ¼ _�e
_�0
’
�
�0
�e

�
2h�i=3

: (88)

Integrating this gives

�ð2h�i=3Þþ1
e � �ð2h�i=3Þþ1

0 / �; (89)

where we have chosen the integration constant such that
� ! 0 as �e ! �0. This can now be substituted into (45) to

find rA / 1� ð1þ zÞ�1�ð3=2h�iÞ. Etherington’s theorem,
rL ¼ ð1þ zÞ2rA, then gives the luminosity distance as a
function of redshift as

rL ¼ ð1þ zÞ2 � ð1þ zÞ1�ð3=2h�iÞ (90)

� zþ
�
1� 3

4h�i
�
z2 þ ð3� 2h�iÞ

8h�i2 z3 þOðz4Þ; (91)

where the constants of proportionality have been absorbed
into rL. This can be compared to rdSL ¼ zþ z2, rMilne

L ¼
zþ z2=2, and rEdSL ¼ zþ z2=4� z3=8þOðz4Þ.
For h�i ¼ 1 rL is somewhere between Milne and EdS,

and is actually the same as was predicted by Bertotti [69],

rBertottiL ¼ zþ ð1� q0Þ
2

z2 þ q0
2
ðq0 � fÞz3 þOðz4Þ; (92)

with the deceleration parameter q0 ¼ 1=2 and the mass
fraction21 f ¼ 0. In this case objects at the same z appear
dimmer than in FRW.
For h�i ¼ 2=3 or 7=10 the result is somewhat different.

The lower redshift means that objects with the same z now
appear brighter than their FRW counterparts. More gener-
ally, from the above we can see that these models have an
effective deceleration parameter given by

qlattice0 ¼ 3

2h�i � 1; (93)

in the absence of shear. Using our semianalytically deter-
mined value of h�i ¼ 7=10 we find that

rL ¼ ð1þ zÞ2 � ð1þ zÞ�ð8=7Þ (94)

� z� 1

14
z2 þ 20

49
z3 þOðz4Þ: (95)

As advertised, the luminosity distance as a function of
redshift is such that the Universe is perceived to be decel-
erating at an even more efficient rate than in FRW. Indeed,
we find q0 ¼ 8=7 for the archipelagian universe, as op-
posed to q0 ¼ 1=2 for the Einstein–de Sitter model. The
luminosity distance (94) is shown graphically in Fig. 12, in
the form of the distance modulus,22 �dm.

B. Other observables

Hubble diagrams are, of course, not the only cosmologi-
cal observables that are sensitive to the optical properties
of the Universe. There are various others, and indeed the
CMB is famously an excellent probe of the dynamics and
optical properties of the Universe since the epoch of last
scattering, before which the Universe was opaque. If we
assume the growth of structure in the Universe is well
specified by the usual perturbative analysis around a
FRW background, then the principle way in which the
CMB will be sensitive to the new distance relations found
here will be in the relation between angles on the sky today,

20Under the assumption of the central limit theorem.

21Taking f ¼ 1 in (92) gives the FRW distances supplied
above.
22Distance modulus is defined by �dm � 5log10ðrL=rMilne

L Þ.
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and length scales at last scattering: the projection of the
CMB onto our sky.

A useful probe of such effects on the CMB is the ‘‘shift
parameter,’’ which specifies how much the peaks in the
acoustic spectrum of primary anisotropies are expected to
move. The usual convention is to specify this shift with
respect to an EdS universe, in which case it is simply given
by the ratio of angular diameter distances in the test
cosmology and the corresponding distance in an EdS uni-
verse. These distances must be specified so that the Hubble
rate at last scattering is the same in each of the two
universes, so that the physics up until that point is also
the same.

From the considerations above we know that the angular
diameter distance in the archipelagian universe is, in the
absence of shear, given by

rlatticeA ¼ 7

22Hlattice
0

�
1� 1

ð1þ zÞ22=7
	
: (96)

The corresponding distance in EdS is given by

rEdSA ¼ 2

HEdS
0

�
1

ð1þ zÞ �
1

ð1þ zÞ3=2
	
: (97)

As mentioned above, in this kind of procedure one would
normally have to relate HEdS

0 to Hlattice
0 , ensuring that in

both space-times the Hubble rate at last scattering was the
same. Here, however, we have that the dynamics of the two
space-times under consideration are, in fact, the same. We
therefore have simply that HEdS

0 ¼ Hlattice
0 , and so the shift

parameter, S, is given by

S � rlatticeA

rEdSA

¼ 7

44

ð1� ð1þ zÞ�ð22=7ÞÞ
ð1� ð1þ zÞ�ð1=2ÞÞ ð1þ zÞ: (98)

This is shown graphically in Fig. 13.
It is clear that the CMB is very sensitive indeed to the

type of modifications to the usual distance relations that we
are considering. If we are conservative, and only apply (96)

out to a distance of z ¼ 2, then we can see from Fig. 13 that
this already produces a shift in the CMB acoustic spectrum
of �10%. This effect is already huge, with current experi-
ments able to constrain the shift to the order of 1%.
Extrapolating our results to higher redshifts is somewhat

tricky. Of course, we know that at distances z * Oð1Þ we
should include the effects of shear. This will likely have a
significant effect on the angular diameter distance to last
scattering. Furthermore, the assumption of Milky-Way-
sized central masses for our cells will likely become a
poor approximation at high z, especially when we get to
the kind of redshifts before these structures even form. As
mentioned previously, one may consider a different type of
lattice in which dark matter particles make up the central
masses of much smaller lattice cells, although the transi-
tion from galaxies to dark matter particles will certainly be
a highly nontrivial process.
For these reasons our numerical codes are currently

unable to make predictions out to the very high redshifts
required to perform a proper analysis of the CMB, but the
discussion above indicates that there could be significant
deviations from the standard FRW picture. We will leave
further considerations about CMB observations in these
cosmologies, which will likely be a highly nontrivial mat-
ter, to future publications.
As well as Hubble diagrams and the CMB there is a

wealth of other observables available to cosmologists.
Many of these, such as baryon acoustic oscillations and
galaxy number counts are highly sensitive to the relation
between cosmological time and redshift. In our models,
this relation can be read off from Eq. (56). The smaller
redshifts, that appear to be a generic prediction of this
model, mean that baryon acoustic oscillations should be
measured at a lower redshift in these models, as compared
to the case of FRW. In terms of galaxy number counts, the
lower redshift will mean that more spatial volume will be
included out to some particular z, and hence one should
expect a higher density of galaxies.
There are clearly many observational consequences of

treating the matter distribution as being discrete, rather
than continuous. It is not the purpose of the current paper
to work through all of these rigorously, or to provide a

0.5 1 1.5 2
z

0.95

1.05

1.1

S

FIG. 13. The shift parameter, from Eq. (97), as a function of z.
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FIG. 12. The distance modulus �dm for the archipelagian
universe (solid line), an Einstein–de Sitter universe (dashed
line), a de Sitter universe (dot-dashed line), and for a trajectory
with h�i ¼ 1 (dotted line).
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complete working alternative to the standard �CDM con-
cordance model. Rather, we have aimed at gaining a decent
understanding of the simplest dynamical and optical prop-
erties of the simplest models. Once again, more thorough
investigations of the generalizations of these models, and
their observational consequences, will be postponed to
future studies.

VI. DISCUSSION

In this paper we have considered an inhomogeneous
cosmological model with basic properties that are, in es-
sence, similar to our own Universe. The idea underlying
the model is that we should break away from the doctrine
that the Universe is permeated by a continuous fluid of
matter, and instead consider the view that it is predomi-
nantly empty space, punctuated by islands of mass. We
identify these islands as the de facto building blocks of
structure: galaxies with a mass similar to that of the Milky
Way.

Our study extends and applies the ideas of the lattice
universe model proposed by Lindquist and Wheeler [55]
that has, until now, remained relatively unexplored. We
expect this approach to cosmology to allow fresh insights
into the effects of inhomogeneity in the Universe and,
perhaps, to allow fresh approaches to understanding
some of the unresolved problems that have recently been
revealed by observations. The most notable of these is the
evidence for dark energy. Such evidence relies heavily on
understanding how to relate luminosities and redshifts of
distant astrophysical sources to the expansion history of the
Universe, and although we do not uncover any evidence
that dark energy itself could be explained by considerations
of the type explored in this study, this does not mean that
refinements of the usual FRW cosmology will not be of use
for properly interpreting observational data.23 Neither does
it mean that future generalizations and refinements of this
model will not be more successful in this regard. We
consider the exploration of the optical properties of differ-
ent space-times to be essential to gaining a full under-
standing of observations in cosmology.

Although we have chosen to study a highly symmetric
model—evenly spaced masses with a critical density—we
believe that it does allow us to reach some conclusions that
should have consequences for the real Universe. For a start,
the structures of the Sachs optical equations are such that a
bundle of null rays traveling through empty space, and with
negligible shear, should expand to give an angular diameter
distance rA / �. This corresponds to sources at the same
affine distance being dimmer in the archipelagian cosmol-

ogy than they would be in the corresponding Einstein–
de Sitter universe. It appears to us that this should be a
robust generic prediction for any space-time which is
mostly empty space. If the photons themselves do not
pass through the notional continuous fluid, then they do
not experience the extra focusing that such a fluid would
produce. Photons experience the integrated effects of the
geometry through which they pass, and not the average
global geometry.
Similar effects have also been found in the context of

weak lensing. In most studies on this subject it is usual to
take the approach used by Press and Gunn [71] whereby
one considers a tube of FRW space-time, removes the
evenly distributed mass, and replaces it with the equivalent
density of compact objects. The cosmological dynamics
are then assumed to remain FRW, while for the purposes of
integrating the optical equations one assumes a vacuum. It
has been shown byWeinberg [72] and Kibble and Lieu [73]
that this approach leads to a distribution of magnitudes
with the same average as would have resulted from the
continuous energy density.24 However, the distribution of
magnitudes is highly skewed [75], with a large number of
trajectories experiencing little shear, and a small number
experiencing large shear due to the occurrence of rare
lensing events. The sample mean of a limited number of
supernovae at small z can therefore result in deviations
from the FRWaverage [76], and the skew can be used as a
test of the discreteness of the matter content [77]. Although
our model is different from those just mentioned, our
results with regard to the effect of lensing do not appear
to be in disagreement.
We also find, however, that redshifts can be altered from

their FRW values. We have shown that, in the context of
our model, the redshift can be reasonably well understood
in terms of the relative motion of the boundaries of the
lattice cells. Unlike in a FRW cosmology, however, it is
only radial geodesics that experience redshifts that would
correspond to the Doppler shift due to the recessional
velocity of the global expansion. All nonradial geodesics
experience smaller redshifts, as they see a locally aniso-
tropic geometry, and not the global average. Despite the
additional complications that arise from this anisotropy, we
find that after traversing a large number of cells typical

trajectories quickly approach a mean value 1þ z ’ ð1þ
zFRWÞ7=10.
These results allow us to then calculate observable mea-

sures of distance as a function of the redshift, as would be
recorded by astronomers. We find that although objects
appear dimmer at the same affine distance, they appear
brighter at the same redshift. This is due to the redshift
being lower to distant objects, as discussed above. Hence,
we find that the distance moduli measured in a critical

23In [61] we use Schwarzschild–de Sitter cells, instead of
Schwarzschild cells, to construct a lattice universe. In this way
it is possible to study the effects of discretization of the matter
content on estimates of cosmological parameters in a more
realistic fashion, by including the effects of �.

24See, however, [74] who point out the occurrence of caustics
changes this result.
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density archipelagian universe should fare even worse
when compared to supernova observations than a standard
Einstein–de Sitter universe. This is so even in the case of
negligible shear, and can be made worse when shear is
included. Other cosmological observables are also dis-
cussed, and the influence of the current considerations on
interpreting them is outlined.

An interesting effect that does not occur in FRW cos-
mology, but seems to be an inevitable feature of archipe-
lagian cosmology, is the formation of caustics in the
trajectories of photons. The discrete nature of the mass in
this model means that shear, even if it is negligible initially,
will eventually accumulate, leading to the focusing, and
hence extreme brightening, of some distant sources. We
find this effect to be small out to redshifts of a few if the
masses involved are sufficiently small,25 but that it in-
creases substantial if we consider large agglomerations of
mass, and large redshifts. Such considerations may there-
fore be important when observing distant objects, and for
CMB observations, in particular (see [74]).

The Lindquist-Wheeler model is highly idealized, and is
only an approximate solution of Einstein’s equations.
Nevertheless, it has allowed us to draw conclusions about
space-times which are qualitatively different from the
standard FRW space-time. An obvious next step to im-
prove the realism of the model is to consider irregular
lattices, such as those provided by, for example, a
Voronoi tessellation. This is an ambitious proposal, and
will undoubtedly throw up many difficulties that the
Lindquist-Wheeler model avoids. However, it could allow
us to model the observed Universe in a new way, and
provide a new laboratory to study, for example, nonpertur-
bative backreaction. Improving on the accuracy of the
geometry as a solution of Einstein’s equations could be
more difficult still, and the only way we can see to make
progress on this front is by using either numerical methods
or weak field approximations.

Finally, we should be careful to ensure that systematic
errors have not unduly influenced our results. While it is
routine to assume that the vacuum space-time geometry
outside mass concentrations such as galaxies is well ap-
proximated by the Schwarzschild solution, this is not ex-
actly true: There will be external influences from other
gravitational sources that will deviate from perfect spheri-
cal symmetry. Determining the extent to which such influ-
ences effect the result we have found here is likely to be a
complicated matter, and will be the subject of future pub-
lications. One may also be concerned as to the possibility
of introducing systematic errors from the matching con-
ditions at cell boundaries. Here we have used two different
methods to propagate trajectories between cells, and found
that our results are largely insensitive to which is chosen.
This suggests that the boundary conditions are not a source

of considerable error. Furthermore, we have found analytic
approximations that are in good agreement with our nu-
merical integrations, and that allow us insight into the
physical origin of the effects we have found. We also
show in a separate publication that the familiar optical
relations of de Sitter space are recovered in the limit�� !
1 [61]. We consider these results to suggest that the system-
atic errors in our model are indeed under control.
Confirming this by determining the observational conse-
quences of the approximations used in this model will be
the subject of future work.
In conclusion, we have shown that the differences be-

tween making observations in a standard Einstein–de Sitter
universe, and in a universe with discretized matter content,
can be substantial. A lesson we take away from this study is
that the assumption of continuity of energy in the Universe,
while appearing innocuous, can affect our interpretation of
redshifts and luminosity distances considerably. In order to
make precise statements about the Universe, we should
therefore make sure we take these issues into account.
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APPENDIX A: TILING THE 3-SPACE

In order to consider a lattice model of the Universe, it is
first necessary to consider how to build a lattice out of
tessellating cells that fill the 3-space. This problem is
known as ‘‘tiling’’, and has been considered in detail by
Coxeter [64].
In Table I, we show all the regular polyhedra that tile all

3-spaces of constant curvature. For the case of a positively
curved 3-space, as considered by LW, there are six possible
tilings with regular polyhedra. These are withN ¼ 5, 8, 16,
24, 120, and 600 cells. For flat 3-space there is only one
possible tiling, consisting of an infinite number of cubes.
Lastly, for negatively curved, hyperbolic 3-space, there are
four polyhedra that can completely tile the space. Lattices
constructed on flat and negatively curved backgrounds
have been considered in a cosmological context by
Redmount in [78].
The structure of a lattice can be well described using the

compact notation fpqrg, which is given for the possible
tilings of 3-spaces of constant curvature in Table I. In this
notation p denotes the number of edges on the face of a
lattice cell, q denotes the number of faces that meet at the
apex of any individual cell, and r denotes the number of
cells that meet at an edge. Hence we have f434g for the25For example, if they are Milky Way sized.

TIMOTHY CLIFTON AND PEDRO G. FERREIRA PHYSICAL REVIEW D 80, 103503 (2009)

103503-22



cubic tiling of a flat space, as there are p ¼ 4 edges to the
square face of a cubic cell, r ¼ 3 squares meeting at the
corner of each individual cell (if it were considered in
isolation from the other cells), and r ¼ 4 cubes meeting
around every edge of every square.

For discussion of the efficacy of replacing the above
polyhedra with spheres, the reader is referred to [55].

APPENDIX B: GEOMETRIC SETUP WITH A
COSMOLOGICAL CONSTANT

It is straightforward to generalize the lattice cosmology
to include a nonzero �. The metric in each lattice cell
simply becomes Schwarzschild–de Sitter, with the line-
element

ds2 ¼ �
�
1� 2m

r
��

3
r2
�
dt2 þ dr2

ð1� 2m
r � �

3 r
2Þ

þ r2d�2: (B1)

A coordinate system in which spacelike surfaces, with � ¼
constant, are orthogonal to the worldlines of elements of
radially free-falling timelike shells is then given by the
coordinate transformation (with E> 1)

dt ¼ d�ffiffiffiffi
E

p þ ðE� ð1� 2m
r � �

3 r
2ÞÞdr

ð1� 2m
r � �

3 r
2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 � Eð1� 2m

r � �
3 r

2Þ
q ;

(B2)

so that the line-element (B1) becomes

ds2 ¼ � 1

E

�
1� 2m

r
��

3
r2
�
d�2

� 2

E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r
��

3
r2
�s
d�drþ dr2

E
þ r2d�2:

(B3)

Under the relabelling r ! a, m ! M=2, and E ! 1� k
we then have the equation of motion for a timelike particle
in radial free-fall being given by

_a2

a2
¼ M

a3
� k

a2
þ�

3
; (B4)

which is the Friedmann equation for dust, with a cosmo-
logical constant.
In this case the normalized 4-velocity of a free-falling

object is

ua ¼
�
1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r
��

3
r2
�s
; 0; 0

�
; (B5)

and it can be seen that such trajectories are orthogonal to
surfaces of constant � as

uana ¼ 0 (B6)

for any arbitrary vector na ¼ ð0;nr; n�; n�Þ that exists in
such a surface.

APPENDIX C: GEODESIC EQUATIONS IN
CARTESIAN COORDINATES

For E ¼ 1 we can also express the geodesic equations in
terms of Cartesian coordinates, rather than spherical po-
lars. The line-element (8) then appears as

ds2 ¼ �
�
1� 2m

r

�
d�2 � 2

ffiffiffiffiffiffiffi
2m

r3

s
ðxdxþ ydyþ zdzÞd�

þ dx2 þ dy2 þ dz2: (C1)

In terms of these variables the Euler-Lagrange equations
read

�
1� 2m

r

�
_�þ

ffiffiffiffiffiffiffi
2m

r3

s
ðx _xþ y _yþ z _zÞ ¼ B (C2)

€x

x
¼ €y

y
¼ €z

z
¼

ffiffiffiffiffiffiffi
2m

r3

s
€�� m

r3
_�2; (C3)

with the null constraint

2m

r3
ðx _xþ y _yþ z _zÞ2 þ

�
1� 2m

r

�
ð _x2 þ _y2 þ _z2Þ ¼ B2:

(C4)

These equations do not allow integrals as easily as in the
spherical polar case, but have fewer problems with coor-
dinate singularities.

TABLE I. Polyhedra that tile 3-surfaces of constant curvature,
the number of cells required to fill the space, and the structure of
the lattice (in the form fpqrg). Hyperspherical space is denoted
by þ, flat 3-space by 0, and hyperbolic 3-space by �. See the
text for an explanation of fpqrg. For further details see [64].

Lattice

structure

Background

curvature Cell shape

Number

of cells

f333g þ Tetrahedron 5

f433g þ Cube 8

f334g þ Tetrahedron 16

f343g þ Octahedron 24

f533g þ Dodecahedron 120

f335g þ Tetrahedron 600

f434g 0 Cube 1
f435g � Cube 1
f534g � Dodecahedron 1
f535g � Dodecahedron 1
f353g � Icosahedron 1
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APPENDIX D: GEODESIC EQUATIONS WITH A
COSMOLOGICAL CONSTANT

The Euler-Lagrange equations for null geodesics in the
space-time specified by (B3) can be written

d

d�

��
1� 2m

r
��

3
r2
�
_�þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r
��

3
r2
�s
_r

�
¼ 0

(D1)

d _r

d�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r
��

3
r2
�s
d _�

d�
þ

�
m

r2
��

3
r

�
_�2

¼ Er _�2 þ Ersin2� _�2 (D2)

d

d�
ðr2 _�Þ ¼ r2 sin� cos� _�2 (D3)

d

d�
ðr2sin2� _�Þ ¼ 0; (D4)

together with the null constraint

�
�
1� 2m

r
��

3
r2
�
_�2 þ _r2 þ Er2 _�2 þ Er2sin2� _�2

� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E�

�
1� 2m

r
��

3
r2
�s
_r _� ¼ 0: (D5)

APPENDIX E: FINDING h�i
To find h�i consider a photon entering the spherical cell,

rather than the cube, as illustrated in Figs. 14 and 15.
Now consider a random set of trajectories in flat three-

dimensional space (random refers to the measure of tra-
jectories which is invariant under translations, rotations,
and reflections). These trajectories represent the paths of
photons in our model. We now want to know the distribu-
tion of chords that result from these trajectories intersect-
ing a unit sphere that is placed in this space. It is shown in
[79] that this situation is exactly equivalent to selecting at
random two points on the surface of the sphere and joining
them with a chord. In this case we can choose a coordinate
system so that the first point is at the south pole. For the
chord in question the ratio �=	 is then given by x=l ¼
cos�, from Fig. 15. We will now proceed as prescribed by
Berengut [79] to find the mean and variance of cos�.

The probability of finding our second point a chord
length l < L < lþ dl away is given by the area of the
band in Fig. 14 over 4� (we consider a unit sphere for
now). To find the area, A, of this band consider the cartoon
schematic shown in Fig. 15. It can be seen that

dl ¼ dS cos� ¼ dS sin�; (E1)

as � ¼ �=2� �. The band area is then

A ¼ dS� 2�l sin� ¼ 2�ldl ¼ 8� cos�d cos�; (E2)

as l ¼ 2 cos�, and the probability of finding our second
point in this band is

Pðcos� < cos�< cos�þ d cos�Þ ¼ A

4�
¼ 2 cos�d cos�;

(E3)

giving the distribution fðcos�Þ ¼ 2 cos�. The mean and

variance of cos� are then given by cos� ¼ 2=3 and�2
cos� ¼

1=18.

l+
dl

A

B

l

FIG. 14. The spherical boundary of a cell. We can consider the
photon to enter at the south pole, without loss of generality.

dS

dl

l

dx

x dθ

φ

φ
θ

A

B

FIG. 15. A schematic of the chord joining the south pole and
another random point on the surface of the sphere.
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The value of h�i will then be given by the mean of the
sample of n cells that the trajectory passes through, giving

h�i ¼ 2

3
(E4)

with variance

�2
h�i ¼

1

18n
: (E5)

For a large number of cells this variance will soon become
negligible, and we will have h�i ! 2=3, as n ! 1.
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