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Past and recent data analyses gave some hints of steps in dark energy. Considering dark energy as a

dynamical scalar field, we investigate several models with various steps: a step in the scalar potential, a

step in the kinetic term, a step in the energy density, and a step in the equation-of-state parameter w. These

toy models provide a workable mechanism to generate steps and features of dark energy. Remarkably, a

single real scalar can cross w ¼ �1 dynamically with a step in the kinetic term.
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I. INTRODUCTION

Dark energy is a popular explanation for the recent
acceleration of our Universe. In order to draw a portrait
of dark energy, it is necessary to parameterize it and
constrain the parameters from observational data. By the
past and recent data analyses, it was indicated that the dark
energy could have various steps in its parameters. Several
years ago, a late-time transition in the equation of state
(EOS) was studied by Bassett et al. [1]. Very recently,
Huang et al. [2] reported that dark energy might spring
out at a low redshift. However, there were few theoretical
studies to explain such steps in the EOS or in the density of
dark energy.

Our purpose here is to make a step toward this direction.
We will treat dark energy as a dynamical scalar field, and
then study a step in the scalar potential, in the kinetic term,
in the energy density, and in the EOS, respectively.
Lacking enough observational data, hitherto the portrait
of dark energy is still vague and the hints of steps are weak,
so we do not attempt to build a realistic model in this paper.
Instead, to give a vivid picture of the mechanism, we will
play with simplified toy models and choose exaggerated
model parameters. Because these models are difficult to
solve analytically, for the most part we will rely on nu-
merical algorithms. The models and algorithms can be
easily extended and refined to give a more realistic de-
scription of dark energy.

Although this could be the first time to systematically
study cosmic steps in dark energy models with an explicit
Lagrangian, the stepped model is not novel in cosmology.
It is an old story: possibly steps of the inflaton potential
have left some fingerprints at the birth of our Universe [3].
Since the dark energy is more elusive, the physical origin
of the stepped dark energy field is less clear than the
stepped inflaton field.

II. METHODOLOGY

Before going to specific models, we will describe the
general framework and numerical methods in some detail.

Impatient readers can skip directly to the next section to get
our models (10), (13), and (20) and main results depicted in
figures.
In the absence of spatial fluctuations, the Lagrangian

density of a scalar field minimally coupled to gravity has
the form

L � ¼ a3
�
1

2
fð�Þ _�2 � Vð�Þ

�
; (1)

where a is the scale factor. Here the function fð�Þ in the
kinetic term is new. It is positive for quintessence [4] and
negative for phantom [5]. Later on we will also discuss a
new model in which fð�Þ evolves dynamically fromþ1 to
�1. In that situation, the single real scalar plays the role of
quintom [6].
In a flat universe dominated by dark energy together

with cold dark matter, if we ignore the contribution of
ordinary matter for simplicity, then the evolution dynamics
is governed by the following Friedmann equations:

H2 ¼ 8�GN

3
ð�m þ �Þ

¼ 8�GN

3

�
�m0a

3
0

a3
þ 1

2
fð�Þ _�2 þ Vð�Þ

�
; (2)

_H ¼ �4�GNð�m þ �þ pÞ

¼ �4�GN

�
�m0a

3
0

a3
þ fð�Þ _�2

�
: (3)

Here �m is the energy density of dark matter, taking value
�m0 at the present time with the scale factor a ¼ a0. The
dark energy � has an energy density � and a pressure p,
whose subscripts have been left out for briefness. One
should not mistake � and p as the total energy density
and the total pressure. The EOS parameter is defined by
w ¼ p=� as usual.
In the above we have used a dot to denote the derivative

with respect to comoving (physical) time t. For instance,

we have taken the convention of notation _� ¼ d�=dt and
defined H ¼ _a=a. It will be convenient to employ the
notations x ¼ lnða=a0Þ ¼ � lnð1þ zÞ and �0 ¼ d�=dx,*wangtao218@pku.edu.cn
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then they give us a useful relation _� ¼ H�0 ¼ �Hð1þ
zÞ�;z. Utilizing (2), we find the kinetic energy is

1

2
f _�2 ¼ 8�GNf½�m0ð1þ zÞ3 þ V�ð1þ zÞ2�2

;z

6� 8�GNfð1þ zÞ2�2
;z

: (4)

The equation of motion

f €�þ 3Hf _�þ 1

2
f;� _�2 þ V;� ¼ 0 (5)

for the scalar field can be written as

4�GNfð1þ zÞ½�m0ð1þ zÞ3 þ 4V��;z

¼ 8�GNfð1þ zÞ2½�m0ð1þ zÞ3 þ V��;zz

þ 16�2G2
Nf

2ð1þ zÞ3½�m0ð1þ zÞ3 þ 2V��3
;z

þ 4�GNf;�ð1þ zÞ2½�m0ð1þ zÞ3 þ V��2
;z

þ V;�½3� 4�GNfð1þ zÞ2�2
;z�: (6)

Given the explicit form of fð�Þ and Vð�Þ, Eq. (6) alone
dictates the evolution of dark energy. But this is a highly
nonlinear second order differential equation. In most cases
we have to resort to numerical methods. We will take two
slightly different schemes, dubbed the linear iteration
method and the cubic iteration method, since they reform
Eq. (6) into linear algebraic equations or cubic algebraic
equations, respectively. Let us elaborate on them now.

For numerically evolving Eq. (6) from an initial point zi
to the final point zf, we partition the interval ½zi; zf� into N
equal subintervals of width h ¼ zj � zj�1 ¼ ðzf � ziÞ=N.

It is convenient to notate �j ¼ �ðzjÞ for short, where j ¼
0; 1; 2; . . . ; N. For numerical computation, the derivatives
can be approximated by finite differences

d�

dz

��������z¼zj

¼ �jþ1 ��j�1

2h
; (7)

d2�

dz2

��������z¼zj

¼ �jþ2 � 2�j þ�j�2

4h2
: (8)

Making use of approximations (7) and (8), one can recast
Eq. (6) into a linear algebraic equation with respect to
�jþ2. Starting with the initial values of �j at j ¼ 0, 1, 2,

3, we can get the values of all�j with j > 3 iteratively. The

linear iteration method gives a unique path of � for nu-
merical evolutions. Its disadvantage is the excessive num-
ber of initial conditions. Remember that for a second order
differential equation we usually impose two initial condi-
tions. In practical operation, we treat with potentials flat at
the initial point �i, and set �0 ¼ �1 ¼ �2 ¼ �3 ¼ �i.

Rather than (8) one may tend to estimate the second
order derivative with

d2�

dz2

��������z¼zj

¼ �jþ1 � 2�j þ�j�1

h2
: (9)

Now we need only two initial conditions, for instance,
�0 ¼ �1 ¼ �i. This is the starting point of the cubic
iteration scheme. In such a scheme, instead of a linear
equation of �jþ2, one has to solve a cubic equation with

respect to�jþ1. The formula of roots of a cubic equation is

well known. For our purpose, it is enough to treat them in
two general categories: (i) if the equation has one real root
and a pair of imaginary roots, then�jþ1 takes a value of the

real root; (ii) if all roots are real, we determine the value of
�jþ1 by minimizing j�jþ1 ��jj. The trick enables us to

pick out the smoothest evolution path of�, and fortunately
this path is unique in our simulation. Even if the path is not
unique after applying the above trick, one can still find the
smoothest path by further minimizing j�jþ1 þ�j�1 �
2�jj, etc.
The above two methods are operated independently in

our algorithms. As double checks, they agree with each
other very well. In fact, the resulting graphs look like
duplicates. During the numerical simulation, we define
the reduced Planck mass Mpl ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�GN

p
, the fractional

density of dark energy �DE ¼ �DE=ð3M2
pH

2Þ and the

present fractional density of dark matter �m0 ¼
�m0=ð3M2

pH
2
0Þ, where H0 is Hubble parameter at the

present time. Moreover, we set �m0 ¼ 0:3 and work in
the unit Mpl ¼ 1. In a flat universe, ignoring the contribu-

tion of ordinary matter, one has�DE þ�m ¼ 1. For every
specific model below, we evolve Eq. (6) from zi ¼ 20 to
zf ¼ 0 with N ¼ 2000 subintervals. Fixing the initial con-

ditions and other parameters, if we increase either N or zi,
the change in results is unobservable. This confirms the
reliability of our methods above and results below.

III. MODELS WITH STEPS

A. Steps in the scalar potential

So far we have not specified our models. It will be done
in this section. First, suppose the potential of dark energy is
broadly flat but has a sudden transition near� ¼ b. Then it
is natural to model such a stepped potential in the follow-
ing form:

Vð�Þ ¼ V0

�
1þ c tanh

�
�� b

d

��
: (10)

For relatively small d, the hyperbolic tangent function is a
good smooth analytic approximation to a step function.
The parameter b determines the location of step in field
space, while c and d control the height and width of step,
respectively. Based on this model, more complicated ones
can be obtained by superposing the steps or replacing the
constant V0 with other functions. Note here c is a dimen-
sionless parameter, but b and d are in unit of reduced
Planck mass Mpl ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�GN

p
. However, in our simula-

tion and figures, we will simply set Mpl ¼ 1.
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We study this potential in the context of quintessence
with f ¼ þ1 and phantom with f ¼ �1, respectively.
Since �DE0 þ�m0 ¼ 1 in a flat universe with negligible
ordinary matter, it is easy to prove V0 ¼ 3H2

0ð1�
�m0Þ=ð1� jcjÞ for quintessence (lower sign) and phantom
(upper sign). The simulation results for stepped quintes-
sence are shown in Figs. 1 and 2. The results for phantom
are depicted in Fig. 3. In plotting them we have chosen the
step location b ¼ 0, and the initial value of � is chosen as
�i ¼ �4d at redshift zi ¼ 20. From the figures we can see

a step in the energy density. Quintessence falls down the
step but phantom climbs up. Although the location of step
in field space is fixed by b ¼ 0, its location in redshift
space is dependent of c and d. At the same location there is
a feature (a bump for quintessence or a dip for phantom) in
curves of kinetic energy and EOS parameter. Amplitudes
of steps and features are determined mainly by parameter
c. The initial value �i of the scalar field resides well in the
flat region of the potential because tanhð�4Þ ’ �0:999. If
we increase the absolute value of�i, the steps and features
will shift to lower redshift region.
From Figs. 2 and 3, one can roughly read the location zT

and width�T of the step as well as the initial density �i and
final density �f of the dark energy. In data analysis, it is

useful to capture these properties by parameterizing the
dark energy density as

� ¼ �i þ
�f � �i

1þ expðz�zT
�T

Þ

¼ �i þ �f

2
þ �i � �f

2
tanh

�
z� zT
2�T

�
: (11)

This parametrization is applicable when the dark energy
changes from �i to �f near the redshift zT . Assuming the

dark energy is decoupled with other ingredients, we have
the continuity equation _�þ 3Hð�þ pÞ ¼ 0 or equiva-
lently ðln�Þ0 ¼ �3ð1þ wÞ. Corresponding to (11), it gives

w ¼ ð1þ zÞð�i � �fÞ expðz�zT
�T

Þ
3�T½1þ expðz�zT

�T
Þ�½�f þ �i expðz�zT

�T
Þ� � 1: (12)

One may check that the function gives rise to a bump if
�i > �f or a dip when �i < �f, in agreement with Figs. 1

and 3.
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FIG. 1 (color online). Evolution curves of the quintessence
field with potential (10) and f ¼ þ1. There are bumps in the
curves of fractional density and EOS parameter, although the
bump in fractional density is almost unnoticeable. The amplitude
and location of bumps can be tuned by changing parameters in
our model. We set 8�GN ¼ 1 in all figures.
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FIG. 2 (color online). The rise and fall of the kinetic energy
and potential of a stepped quintessence with potential (10) and
f ¼ þ1. Both the kinetic energy and the potential are normal-
ized by 3H2

0 , where H0 is the Hubble parameter at z ¼ 0.
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FIG. 3 (color online). For stepped phantom with potential (10)
and f ¼ �1. The dark energy density climbs up a step, while
EOS parameter has a dip nearby. Similarly to the stepped
quintessence, the amplitude and location of the steps and dips
are tunable as we change the model parameters.
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B. Steps in the kinetic term

Having explored the steps in dark energy potential, we
discuss what will happen if there is a step in the coefficient
fð�Þ of the kinetic term. It is interesting to study a new
model

fð�Þ ¼ c tanh

�
�� b

d

�
; Vð�Þ ¼ V0

�
1þ tanh

�
�2

q2

��
:

(13)

In favor of the fact that�DE0 þ�m0 ¼ 1, we can set V0 ¼
3H2

0ð1��m0Þ=2. In the potential Vð�Þ there is a deep dip,
whose depth has been fixed. The coefficient fð�Þ is non-
trivial. It has a step located at � ¼ b with amplitude c and
width d. Again c is a dimensionless parameter, while b and
d are in unit of reduced Planck mass Mpl. As mentioned

before, we set Mpl ¼ 1 in our simulation and figures.

The idea is to settle the potential bottom � ¼ 0 in the
region f > 0 by ensuring c tanhð�b=dÞ> 0. Given an
appropriate initial condition, the scalar first rolls down to
the bottom of potential and then moves up, getting closer
and closer to the point � ¼ b. However, this model still
requires some fine-tuning, because it is not always possible
for the scalar field to pass the sign-inversion point of fð�Þ
after leaving the bottom of potential. We fine-tune the
parameters, and then numerically evolve the equation of
motion (6). According to the simulation results in Fig. 4,
both the density and the EOS parameter of dark energy
decrease near the sign-inversion point. In particular, the
EOS parameter jumps down abruptly from w>�1 to
w � �1. This is a simple way to cross the EOS barrier
w ¼ �1. To make it we need only one real scalar field,
completely relying on its own dynamics. However, one

should not regard (13) as more than a toy model. There
is an infamous instability in any model with a wrong-
signed kinetic term, e.g., in the phantom model [5]. We
suspect the stepped quintom model here suffers from the
same problem. Various issues on this class of model were
explored in [7–9].

C. Steps in the EOS parameter

If there is a step in the EOS parameter, one usually
parameterizes w in a form [1] similar to (11). However,
for building a model later, we parameterize it in an alter-
native way,

w ¼ wi þ
wf � wi

1þ ð 1þz
1þzT

Þ� ¼ wi þ
wf � wi

1þ ðaTa Þ�
; (14)

where � � 1. With this form, the continuity equation can
be integrated out as

� ¼ �T

�
aT
a

�
3ð1þwiÞ�1

2
þ 1

2

�
a

aT

�
�
�
3ðwi�wfÞ=�

¼ �T

�
aT
a

�
3ð1þwfÞ�1

2
þ 1

2

�
aT
a

�
�
�
3ðwi�wfÞ=�

: (15)

Note there is a duality wi $ wf, � $ �� in (14). We

are most interested in the following special cases:
(i) wi ¼ �1; Now the EOS takes the form

p

�
¼ wf �

1þ wf

2

�
�

�T

�
�=½3ð1þwfÞ�

: (16)

(ii) wf ¼ �1. In this case, we reexpress the EOS as

p

�
¼ wi � 1þ wi

2

�
�T

�

�
�=½3ð1þwiÞ�

: (17)

The equations of state (16) and (17) can be cast into a
unified form

p ¼ �ðwc � A��Þ; (18)

from which one can integrate the continuity equation to
give

�� ¼ 1þ wc

Aþ Ba3�ð1þwcÞ ¼
1þ wc

A½1þ ð aaTÞ3�ð1þwcÞ� : (19)

It is time for us to reconstruct the potential in accordance
with (1) and (14). This is accomplishable if the Universe is
exclusively dominated by the scalar field �. To do this, we
assume fð�Þ is a nonzero constant and �m ¼ 0, wc � �1.
For details on reconstructing the potential of scalar dark
energy, please refer to [10–13]. Making use of Eqs. (2), (3),
(18), and (19), we finally obtain
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FIG. 4 (color online). The evolution of the scalar field, dark
energy density and EOS parameter for the stepped quintom
model (13). In contrast with previous figures, a small change
in parameter d does not modify the evolution curves signifi-
cantly.
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a3�ð1þwcÞ ¼ A

B
sinh2

�
�

�c

�
;

Vð�Þ ¼ Vc

2
cosh�2=�

�
�

�c

��
2� ð1þ wcÞtanh2

�
�

�c

��

(20)

with ��1
c ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6�GNfð1þ wcÞ

p
and Vc ¼ ½ð1þ

wcÞ=A�1=�. For various choices of parameters, the shape
of this potential is illustrated in Fig. 5. The EOS parameter
w ! wc asymptotically as � ! �1. Near the bottom or
top of the potential, it approaches�1. The field rolls down
the potential as a quintessence ifwc >�1, but rolls up as a
phantom when wc <�1. We impose j3�ð1þ wcÞj � 1
by hand to accomplish the sudden EOS transition (14).

IV. DISCUSSION

Treating dark energy as a scalar field, we explicitly
modeled steps in its potential, kinetic term, density, and
EOS, and thus provided a workable mechanism to explain
the previously and recently claimed dark energy transi-
tions. To arrive at a realistic model, more experimental and
theoretical efforts are needed in the future. When this work
was near completion, a related paper [14] appeared, where
they arrived at models with an implicit potential similar to
the shape of Vð�Þ in (13). As a partial list, some previous
papers relevant to our work are [15–21].
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FIG. 5 (color online). A rough illustration of potential (20)
with different parameter choices. The arrows indicate evolving
directions of the dark energy field. For example, when �< 0 and
wc <�1, the potential is illustrated by the thin solid (blue) line,
and the scalar field rolls up the potential from the bottom � ¼ 0
to � ! �1, while the EOS parameter w evolves from�1 to wc

asymptotically. The dashed (blue) line corresponds to the po-
tential with �< 0 and wc >�1, in which case the scalar field
rolls down the potential from � ! �1 to one of the local
minimum point, and the EOS parameter w evolves form wc to
�1.
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