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Taking into account the SUð3Þf breaking effects, the strong coupling constants of the �, K, and �

mesons with decuplet baryons are calculated within the light cone QCD sum rules method. It is shown that

all coupling constants, even in the case of SUð3Þf breaking, are described in terms of only one universal

function. It is shown that for ��0 ! ��0�, transition violation of SUð3Þf symmetry is very large and for

other channels when SUð3Þf symmetry is violated, its maximum value constitutes 10%� 15%.
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I. INTRODUCTION

Exciting experimental results are obtained on pion and
kaon photo and electric production of nucleon during the
last several years. These experiments are performed at
different centers, such as MAMI, MIT, Bates, BNL, and
Jefferson laboratories. To study the properties of the reso-
nances from the existing data, the coupling constants of �,
K, and � mesons with baryon resonances are needed.

In extracting the properties of baryon resonances, the
hadronic reactions also play an important role. Therefore,
for a more accurate description of the experimental data,
reliable determination of the strong coupling constants of
pseudoscalar mesons is needed. Calculation of the strong
coupling constants of baryon-baryon-pseudoscalar meson
(BBP) using the fundamental theory of strong interactions,
QCD, constitutes a very important problem. The strong
coupling constants of BBP belong to the nonperturbative
sector of QCD and for estimating these couplings, we need
some nonperturbative approaches. Among all nonpertur-
bative approaches, the most predictive and powerful one is
the QCD sum rules method [1]. In the present work, we
calculate the strong coupling constants of the pseudoscalar
mesons with the decuplet baryons within the framework of
the light cone QCD sum rules (LCSR) method. In this
method, the operator product expansion is performed
over twist rather than dimension of the operators, which
is carried out in the traditional sum rules. In the LCSR,
there appears matrix elements of the nonlocal operators
between the vacuum and the corresponding one-particle
state, which are defined in terms of the, so-called, distri-
bution amplitudes (DAs). These DAs are the main non-
perturbative parameters of the LCSR method (more about
LCSR can be found in [2,3]). Note that the coupling

constants of pseudoscalar and vector mesons with octet
baryons is investigated within the framework of the LCSR
in [4,5], respectively.
The paper is organized as follows. In Sec. II, the strong

coupling constants of the pseudoscalar mesons with the
decuplet baryons are calculated within the framework of
the LCSR method, and relations between these coupling
constants are obtained where SUð3Þf symmetry breaking

takes place. In Sec. III, the numerical analysis of the
obtained sum rules for the pseudoscalar-meson decuplet-
baryon coupling constants is performed.

II. LIGHT CONE QCD SUM RULES FOR THE
PSEUDOSCALAR-MESON DECUPLET-BARYON

COUPLING CONSTANTS

In this section, we obtain LCSR for the pseudoscalar-
meson decuplet-baryon coupling constants. For this aim,
we consider the following correlation function:

�B1!B2P
�� ¼ i

Z
d4xeipxhP ðqÞjT f�B2

� ðxÞ ��B1
� ð0Þgj0i; (1)

where P ðqÞ is the pseudoscalar meson with momentum q
and �B

� is the interpolating current of the considered dec-

uplet baryon. The sum rules for the above-mentioned
correlation function can be obtained, on the one side, by
calculating it in terms of the physical states of hadrons
(phenomenological part), and on the other side, calculating
it at p2 ! �1 in the deep Euclidean region in terms of
quarks and gluons (theoretical part), and equating both
representations through the dispersion relations.
First, let us concentrate on the calculation of the phe-

nomenological side of the correlation function (1). The
phenomenological part can be obtained by inserting a
complete set of baryon states having the same quantum
numbers as the interpolating current �B

�. Isolating the

ground state of baryons, we obtain
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�B1!B2P
�� ¼ h0j�B2

� jB2ðp2Þi
p2
2 �m2

2

hB2ðp2ÞP ðqÞjB1ðp1Þi

� hB1ðp1Þj ��B1
� j0i

p2
1 �m2

1

þ � � � ; (2)

where p1 ¼ p2 þ q, mi is the mass of baryon Bi, and � � �
represents the contributions of the higher states and the
continuum.

The matrix elements of the interpolating current be-
tween vacuum and the hadron states is determined as

h0j��jBðp; sÞi ¼ �Bu�ðp; sÞ; (3)

where �B is the overlap amplitude, and u�ðp; sÞ is the

Rarita–Schwinger tensor spinor with spin s. The matrix
element hB2ðp2ÞP ðqÞjB1ðp1Þi is parametrized as

hB2ðp2ÞP ðqÞjB1ðp1Þi ¼ gB1B2P �u�ðp2Þ�5u
�ðp1Þ: (4)

In order to obtain the expression for the phenomenologi-
cal part of the correlation function, the summation over the
spins of the Rarita–Schwinger fields is performed, i.e.,

X
s

u�ðp; sÞ �u�ðp; sÞ ¼ ðp6 þmÞ
�
�g�� þ 1

3
����

� 2p�p�

3m2
� p��� � p���

3m

�
: (5)

In principle, Eqs. (2)–(5) allow us to write down the
phenomenological part of the correlation function.
However, here the following two principal problems ap-
pear: (1) not all Lorentz structures are independent; (2) not
only spin-3=2, but also spin-1=2 states contribute. Indeed,
the matrix element of the current ��, sandwiched between

the vacuum and the spin-1=2 states, is different than zero
and determined in the following way:

h0j��jBðp; s ¼ 1=2Þi ¼ Að4p� �m��Þuðp; s ¼ 1=2Þ;
(6)

where the condition ���
� ¼ 0 has been used.

There are two different alternatives to remove the un-
wanted spin-1=2 contribution and take into account only
the independent structures: (1) ordering the Dirac matrices
in a specific way and eliminate the ones that receive con-
tributions from spin-1=2 states; (2) introduce projection
operators for the spin-3=2, that do not contain spin-1=2
contribution.
In the present work, we have used the first approach and

choose the ��p6 q6 ���5 ordering of the Dirac matrices.

Having chosen this ordering for the Dirac matrices, we
obtain

��� ¼ �B1
�B2

gB1B2P

ðp2
1 �m2

1Þðp2
2 �m2

2Þ
ðg��p6 q6 �5

þ other structures with�� at the beginning and�� at the end; or terms that are proportional top1� orp2�Þ:
(7)

The advantage of choosing the structure g��p6 q6 �5 is in
the fact that, the spin-1=2 states do not give contribution to
this structure. This fact immediately follows from Eq. (6),
which tells that spin-1=2 states contribution is proportional
to p� or ��.

In order to calculate the theoretical part of the correla-
tion function (1) from the QCD side, we need the explicit
expressions of the interpolating currents of the decuplet
baryons. The interpolating currents have the following
forms [6]:

�� ¼ A�abc½ðqaT1 C��q
b
2Þqc3 þ ðqaT2 C��q

b
3Þqc1

þ ðqaT3 C��q
b
1Þqc2�; (8)

where a, b, c are the color indices and C is the charge

conjugation operator. The values of A and the quark flavors
q1, q2, and q3 for each decuplet baryon are presented in
Table I.
Before presenting detailed calculation of the correlation

function from the QCD side for determination of the
coupling constants of pseudoscalar mesons with decuplet
baryons, let us establish the relation among the correlation
functions, more precisely, relations among the coefficients
of the invariant functions for the structure g��p6 q6 �5. For

this aim, we will follow the works of [4,5], and we will
show that all correlation functions which describe the
strong coupling constants of pseudoscalar mesons with
decuplet baryons can be written in terms of only one
invariant function. It should especially be noted that the
approach we present below automatically takes into ac-
count the SUð3Þf symmetry breaking effects.
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In obtaining relations among the invariant functions,
similar to works [4,5], we start by considering the correla-
tion function describing the ��0 ! ��0�0 transition. This
correlation function can formally be written in the follow-
ing form:

���0!��0�0 ¼ g�uu�1ðu; d; sÞ þ g�dd�
0
1ðu; d; sÞ

þ g�ss�2ðu; d; sÞ; (9)

where the �0 current can formally be written as

J ¼ X
q¼u;d;s

g�qq �q�5q; (10)

where g�0uu ¼ �g�0dd ¼ 1=
ffiffiffi
2

p
and g�0ss ¼ 0 for the �0

meson. The functions �1, �
0
1, and �2 describe radiation

the �0 meson from u, d, and s quarks of the ��0 baryon,
respectively.

The interpolating current ���0
is symmetric under the

change u $ d, and therefore �0
1ðu; d; sÞ ¼ �1ðd; u; sÞ.

Hence, Eq. (9) can be written as

���0!��0�0 ¼ 1ffiffiffi
2

p ½�1ðu; d; sÞ ��1ðd; u; sÞ�: (11)

For convenience, let us introduce the notations

�1ðu; d; sÞ ¼ h �uuj��0��0j0i;
�2ðu; d; sÞ ¼ h�ssj��0��0j0i: (12)

Obviously, �2 � 0 for the transition ��0 ! ��0�0.
In the transition with the � meson, the situation is more

complicated, since strange quark is in the quark content of
the � meson. In the present work, we neglect the mixing
between the � and �0 mesons and the � meson current is
taken to have the following form:

J� ¼ 1ffiffiffi
6

p ð �u�5uþ �d�5d� 2�s�5sÞ: (13)

A simple analysis shows that the ��0 ! ��0� transition
has the similar form as is given in Eq. (9)

���0!��0� ¼ g�uu�1ðu; d; sÞ þ g�dd�
0
1ðu; d; sÞ

þ g�ss�2ðu; d; sÞ: (14)

Using the definition given in Eq. (12), one can easily show
that

�2ðu; d; sÞ ¼ �1ðs; d; uÞ: (15)

For this reason, using Eqs. (13) and (15), we get from
Eq. (14)

���0!��0� ¼ 1ffiffiffi
6

p ½�1ðu; d; sÞ þ�1ðd; u; sÞ

� 2�1ðs; d; uÞ�: (16)

The invariant function describing the ��þ ! ��þ�0

transition can be obtained from Eq. (9) with the help of
the replacements d ! u in �1ðu; d; sÞ and using the fact

��0 ¼ � ffiffiffi
2

p
��þ, which results in

4�ðu; u; sÞ ¼ 2h �uuj��þ��þj0i: (17)

The presence of factor 4 on the left-hand side of Eq. (17)
can be explained as follows. Each ��þ contains two u
quarks and therefore there are 4 ways that the �0 meson
can be radiated. Since ��þ does not contain the d quark,
for the ��0 ! ��0�0 transition, it can be written from
Eq. (9) that

���þ!��þ�0 ¼ g�0uuh �uuj��þ��þj0i
þ g�0ssh �ssj��þ��þj0i

¼ ffiffiffi
2

p
�1ðu; u; sÞ: (18)

The result for the��� ! ����0 transition can easily be
obtained by making the replacement u ! d in Eq. (9) and

using ��0ðu ! dÞ ¼ ffiffiffi
2

p
���, from which we obtain

����!����0 ¼ g�0ddh �ddj������j0i
þ g�0ssh �ssj������j0i

¼ � ffiffiffi
2

p
�1ðd; d; sÞ: (19)

TABLE I. The values of A and the quark flavors q1, q2, and q3.

A q1 q2 q3

��0 ffiffiffiffiffiffiffiffi
2=3

p
u d s

��þ � ffiffiffiffiffiffiffiffi
1=3

p
u u s

��� � ffiffiffiffiffiffiffiffi
1=3

p
d d s

�þ ffiffiffiffiffiffiffiffi
1=3

p
u u d

�þþ 1 u u u
�0

ffiffiffiffiffiffiffiffi
1=3

p
d d u

�� 1 d d d
��0 ffiffiffiffiffiffiffiffi

1=3
p

s s u
��� ffiffiffiffiffiffiffiffi

1=3
p

s s d
�� 1 s s s
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In the case of exact isospin symmetry, it follows from

Eqs. (11), (18), and (19) that ���0!��0�0 ¼ 0 and

���þ!��þ�0 ¼ �����!����0
.

Let us now calculate the invariant function responsible
for the �þ ! �þ�0 transition. Since �þ ¼ ��þðs ! dÞ,
we get from Eq. (18)

��þ!�þ�0 ¼ g�0uuh �uuj��þ��þj0iðs ! dÞ
þ g�0ssh�ssj��þ��þj0iðs ! dÞ

¼ ffiffiffi
2

p
�1ðu; u; dÞ � 1ffiffiffi

2
p �1ðd; u; uÞ: (20)

Similarly, it is not difficult to obtain the relations for the
transitions in which �0, �þþ, and �� decuplet baryons
and the �0 meson participate:

��0!�0�0 ¼ ����!����0ðs ! uÞ
¼ � ffiffiffi

2
p

�1ðd; d; uÞ þ 1ffiffiffi
2

p �1ðu; d; dÞ;

��þþ!�þþ�0 ¼ ���þ!��þ�0ðs ! uÞ ¼ 3ffiffiffi
2

p �1ðu; u; uÞ;

���!���0 ¼ ����!����0ðs ! dÞ ¼ � 3ffiffiffi
2

p �1ðd; d; dÞ;

��0!�0�0 ¼ 1ffiffiffi
2

p �1ðu; s; sÞ;

���!���0 ¼ � 1ffiffiffi
2

p �1ðd; s; sÞ: (21)

We can proceed now to obtain similar relations in the
presence of charged the � meson. In order to obtain these
relations, we consider the matrix element h �ddj��0��0j0i,
where d quarks from each��0 form the final �dd state and, u
and s quarks are the spectators. In the matrix element
h �udj��þ��0j0i, the d quark from the ��0 and u quark
from ��þ form the �ud state and the other u and s quarks
are the spectators. For these reasons, it is natural to expect
that these matrix elements should be proportional to each
other. Direct calculations confirm this expectation, i.e.,

���0!��þ�� ¼ h �udj��þ��0j0i ¼ ffiffiffi
2

p h �ddj��0��0j0i
¼ ffiffiffi

2
p

�0
1ðu; d; sÞ ¼

ffiffiffi
2

p
�1ðd; u; sÞ: (22)

Making the replacement u $ d in Eq. (22), we get

���0!����þ ¼ h �duj�����0j0i ¼ ffiffiffi
2

p h �uuj��0��0j0i
¼ ffiffiffi

2
p

�1ðu; d; sÞ: (23)

Along the same lines of reasoning, similar calculations for
� and � decuplet baryons are summarized below:

���0!����þ ¼ h �duj��0���j0i ¼ � ffiffiffi
2

p h �uuj��0��0j0i
¼ �1ðd; s; sÞ;

����!��0�� ¼ h �udj�����0j0i ¼ �1ðu; s; sÞ;
��þ!�0�þ ¼ 2�1ðd; d; uÞ;

��þþ!�þ�þ ¼ ffiffiffi
3

p
�1ðd; u; uÞ;

��0!���þ ¼ ffiffiffi
3

p
�1ðu; d; dÞ;

��0!�þ�� ¼ 2�1ðu; u; dÞ;
��þ!�þþ�� ¼ ffiffiffi

3
p

�1ðu; u; uÞ;
���!�0�� ¼ ffiffiffi

3
p

�1ðd; d; dÞ:

(24)

The correlation function involving the K meson can be
obtained from the previous results as follows:

���0!��þK� ¼ ��0!�þ��ðs $ dÞ ¼ 2�1ðu; u; sÞ
����!���K0 ¼ ���0!�þK�ðu ! dÞ ¼ 2�1ðd; d; sÞ
���þ!��0Kþ ¼ ���0!�þK�ðu $ sÞ ¼ 2�1ðs; s; uÞ:

(25)

The remaining correlation functions involving � and K
mesons are presented in the Appendix. It follows from the
results presented above that all coupling constants of pseu-
doscalar mesons with decuplet baryons can be expressed
by only one independent invariant function, which consti-
tutes the main result of the present work.
Having obtained this result, our next task is the calcu-

lation of the correlation function from the QCD side. The
correlation function in deep Euclidean domain p2

1 ! �1,
p2
2 ! �1, can be calculated using the operator product

expansion. For this purpose the propagators of light quarks,
as well as their DAs are needed. The matrix elements
hP ðqÞj �qðx1Þ�q0ðx2Þj0i that parametrized in terms of DAs
are given in [7–9]
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hP ðpÞj �qðxÞ���5qð0Þj0i ¼ �ifPq�
Z 1

0
duei �uqx

�
’P ðuÞ þ 1

16
m2

P x
2AðuÞ

�
� i

2
fPm

2
P

x�

qx

Z 1

0
duei �uqxBðuÞ;

hP ðpÞj �qðxÞi�5qð0Þj0i ¼ �P

Z 1

0
duei �uqx’PðuÞ;

hP ðpÞj �qðxÞ	�
�5qð0Þj0i ¼ i

6
�P ð1� ~�2

P Þðq�x
 � q
x�Þ
Z 1

0
duei �uqx’	ðuÞ;

hP ðpÞj �qðxÞ	���5gsG�
ðvxÞqð0Þj0i ¼ i�P

�
q�q�

�
g�
 � 1

qx
ðq�x
 þ q
x�Þ

�
� q�q�

�
g�
 � 1

qx
ðq�x
 þ q
x�Þ

�

� q
q�

�
g�� � 1

qx
ðq�x� þ q�x�Þ

�
þ q
q�

�
g�� � 1

qx
ðq�x� þ q�x�Þ

��

�
Z

D�eið� �qþv�gÞqxT ð�iÞ; hP ðpÞj �qðxÞ���5gsG�
ðvxÞqð0Þj0i

¼ q�ðq�x
 � q
x�Þ 1

qx
fPm

2
P

Z
D�eið� �qþv�gÞqxAkð�iÞ

þ
�
q


�
g�� � 1

qx
ðq�x� þ q�x�Þ

�
� q�

�
g�
 � 1

qx
ðq�x
 þ q
x�Þ

��
fPm

2
P

�
Z

D�eið� �qþv�gÞqxA?ð�iÞ;

hP ðpÞj �qðxÞ��igsG�
ðvxÞqð0Þj0i ¼ q�ðq�x
 � q
x�Þ 1

qx
fPm

2
P

Z
D�eið� �qþv�gÞqxV kð�iÞ

þ
�
q


�
g�� � 1

qx
ðq�x� þ q�x�Þ

�
� q�

�
g�
 � 1

qx
ðq�x
 þ q
x�Þ

��
fPm

2
P

�
Z

D�eið� �qþv�gÞqxV?ð�iÞ; (26)

where

�P ¼ fP
m2

P

mq1 þmq2

; ~�P ¼ mq1 þmq2

mP
;

and q1 and q2 are the quarks in the meson P ,D� ¼ d� �qd�qd�g�ð1� � �q � �q � �gÞ, and the DAs ’P ðuÞ, AðuÞ, BðuÞ,
’PðuÞ, ’	ðuÞ, T ð�iÞ, A?ð�iÞ, Akð�iÞ, V?ð�iÞ, and V kð�iÞ are functions of definite twist and their expressions are
given in the next section.

For the calculation of the correlation function, we use the following expression for the light quark propagator,

SqðxÞ ¼ ix6
2�2x4

� mq

4�2x2
� h �qqi

12

�
1� i

mq

4
x6
�
� x2

192
m2

0h �qqi
�
1� i

mq

6
x6
�

� igs
Z 1

0
du

�
x6

16�2x2
G��ðuxÞ	�� � ux�G��ðuxÞ�� i

4�2x2
� i

mq

32�2
G��	

��

�
ln

��x2	2

4

�
þ 2�E

��
; (27)

where �E ’ 0:577 is the Euler constant. In the numerical calculations, the scale parameter 	 is chosen as factorization
scale, i.e., 	 ¼ 0:5� 1:0 GeV. This point is discussed in detail in [10,11].

Using Eqs. (26) and (27) and separating the coefficient of the structure g��p6 q6 �5, the theoretical part of the correlation

function can be calculated straightforwardly. Equating the coefficients of the structure g��p6 q6 �5 from physical and

theoretical parts, and performing Borel transformation in the variables p2
2 ¼ p2 and p2

1 ¼ ðpþ qÞ2 in order to suppress the
higher states and continuum contributions [12,13], we get the sum rules for the corresponding pseudoscalar-meson
decuplet-baryon coupling constants.

As the result of our calculations, we obtain the following expression for the invariant function �1ðu; d; sÞ:
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�1ðu;d; sÞ ¼ 1

54�2
M4E1ðxÞ½9fPms�P ðu0Þþ 2ð1� ~�2

P Þ�P�	ðu0Þ�

þ 1

36�2
ffPM2E0ðxÞ½�3m2

PmsðAðu0Þ� 4iðAk;1� 2vÞÞ� 16�2�P ðu0Þðh �ddiþ h�ssiÞg

þ 1

216M6
h �ddihg2G2imsð�1þ ~�2

P Þ�	ðu0Þðm2
0 þ 2M2Þþ 1

7776�2M2
½27fPm2

Pmshg2G2iðAðu0Þ
� 4iðAk;1� 2vÞþ 4iðVk;1ÞÞþ 32�2m2

0ms�P ð1� ~�2
P Þðh �ddiþ 2h�ssiÞ�	ðu0Þ�

þ 1

72�2

�
fPms

�
�E þ ln

	2

M2

�
ð24m2

PM
2E0ðxÞiðVk;1Þþ hg2G2i�P ðu0ÞÞ

�
þ 1

9
fPm

2
PAðu0Þðh �ddiþ h�ssiÞ

� 4fPm
2
P ðh �ddiþ h�ssiÞ½iðAk;1� 2vÞ� iðVk;1Þ�þ 1

324�2
fP

�
�3mshg2G2iþ 40m2

0�
2ðh �ddiþ h�ssiÞ�P ðu0Þ

� 2

9
ms�P ð1� ~�2

P Þh �ddi�	

�
; (28)

where

�P ¼ fPm
2
P

mq1 þmq2

; ~�P ¼ mq1 þmq2

mP
;

and the function ið’; fðvÞÞ is defined as follows:

ið’; fðvÞÞ ¼
Z

D�i

Z 1

0
dv’ð� �q; �q; �gÞfðvÞ�ðk� u0Þ;

where

k ¼ �q þ �g �v; u0 ¼ M2
1

M2
1 þM2

2

;

M2 ¼ M2
1M

2
2

M2
1 þM2

2

:

In calculating the coupling constants of pseudoscalar
mesons with decuplet baryons, the value of the overlap
amplitude �B of the hadron is needed. This overlap ampli-
tude is determined from the analysis of the two-point
function which is calculated in [12,13]. Our earlier con-
siderations reveal that the interpolating currents of decup-
let baryons can all be obtained from the ��0 current, and
for this reason we shall present the result only for the
overlap amplitude of ��0:

M��0�2
��0e

�ððm2
�
Þ=ðM2ÞÞ ¼ ðh �uuiþ h �ddiþ h�ssiÞ M

4

9�2
E1ðxÞ� ðmu þmd þmsÞ M6

32�4
E2ðxÞ

� ðh �uuiþ h �ddiþ h�ssiÞm2
0

M2

18�2
E0ðxÞ� 2

3

�
1þ 5m2

0

72M2

�
ðmuh �ddih�ssiþmdh �ssih �uuiþmsh �ddih �uuiÞ

þ ðmsh �ddih�ssiþmuh �ddih �uuiþmdh �ssih �uuiÞ m2
0

12M2
; (29)

where x ¼ s0=M
2.

The contribution of the higher states and continuum in �1 are subtracted by taking into account the following
replacements:

e�m2
P =4M

2

M2

�
ln
M2

	2
� �E

�
!

Z s0

m2
P =4

dse�s=M2
ln
s�m2

P=4

	2

e�m2
P =4M

2

�
ln
M2

	2
� �E

�
! ln

s0 �m2
P =4

	2
e�s0=M

2 þ 1

M2

Z s0

m2
P =4

dse�s=M2
ln
s�m2

P=4

	2

e�m2
P =4M

2 1

M2

�
ln
M2

	2
� �E

�
! 1

M2
ln
s0 �m2

P =4

	2
e�s0=M

2 þ 1

s0 �m2
P=4

e�s0=M
2 þ 1

M4

Z s0

m2
P =4

dse�s=M2
ln
s�m2

P =4

	2

e�m2
P =4M

2

M2n ! 1

�ðnÞ
Z s0

m2
P =4

dse�s=M2ðs�m2
P =4Þn�1:

(30)
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III. NUMERICAL ANALYSIS

In this section, we present the numerical calculations for the sum rules for the couplings of the pseudoscalar mesons with
decuplet baryons. The main nonperturbative parameters of LCSR are the DAs of the pseudoscalar mesons, whose explicit
forms entering Eq. (26) are given in [7–9]:

�P ðuÞ ¼ 6u �u½1þ aP1 C1ð2u� 1Þ þ aP2 C
3=2
2 ð2u� 1Þ�; T ð�iÞ ¼ 360�3� �q�q�

2
g

�
1þ w3

1

2
ð7�g � 3Þ

�
;

�PðuÞ ¼ 1þ
�
30�3 � 5

2

1

�2
P

�
C1=2
2 ð2u� 1Þ;þ

�
�3�3w3 � 27

20

1

�2
P

� 81

10

1

�2
P

aP2

�
C1=2
4 ð2u� 1Þ;

�	ðuÞ ¼ 6u �u

�
1þ

�
5�3 � 1

2
�3w3 � 7

20
�2

P � 3

5
�2

Pa
P
2

�
C3=2
2 ð2u� 1Þ

�
;

V kð�iÞ ¼ 120�q� �q�gðv00 þ v10ð3�g � 1ÞÞ;
Akð�iÞ ¼ 120�q� �q�gð0þ a10ð�q � � �qÞÞ;
V?ð�iÞ ¼ �30�2

g

�
h00ð1� �gÞ þ h01ð�gð1� �gÞ � 6�q� �qÞ þ h10

�
�gð1� �gÞ � 3

2
ð�2

�q þ �2
qÞ
��

;

A?ð�iÞ ¼ 30�2
gð� �q � �qÞ

�
h00 þ h01�g þ 1

2
h10ð5�g � 3Þ

�
;

BðuÞ ¼ gP ðuÞ ��P ðuÞ; gP ðuÞ ¼ g0C
1=2
0 ð2u� 1Þ þ g2C

1=2
2 ð2u� 1Þ þ g4C

1=2
4 ð2u� 1Þ;

AðuÞ ¼ 6u �u

�
16

15
þ 24

35
aP2 þ 20�3 þ 20

9
�4 þ

�
� 1

15
þ 1

16
� 7

27
�3w3 � 10

27
�4

�
C3=2
2 ð2u� 1Þ

þ
�
� 11

210
aP2 � 4

135
�3w3

�
C3=2
4 ð2u� 1Þ

�
;þ

�
� 18

5
aP2 þ 21�4w4

�
½2u3ð10� 15uþ 6u2Þ lnu

þ 2 �u3ð10� 15 �uþ 6 �u2Þ ln �uþ u �uð2þ 13u �uÞ�;

(31)

where Ck
nðxÞ are the Gegenbauer polynomials, and

h00 ¼ v00 ¼ �1
3�4; a10 ¼ 21

8�4w4 � 9
20a

P
2 ; v10 ¼ 21

8�4w4; h01 ¼ 7
4�4w4 � 3

20a
P
2 ;

h10 ¼ 7
4�4w4 þ 3

20a
P
2 ; g0 ¼ 1; g2 ¼ 1þ 18

7 a
P
2 þ 60�3 þ 20

3�4; g4 ¼ � 9
28a

P
2 � 6�3w3:

(32)

The values of the parameters aP1 , a
P
2 , �3, �4, w3, and w4

entering Eqs. (32) are given in Table II for the �, K, and �
mesons.

In the numerical calculations, we set M2
1 ¼ M2

2 ¼ 2M2

due to the fact that the masses of the initial and final
baryons are close to each other. With this choice, we
have u0 ¼ 1=2. The values of the other input parameters
entering the sum rules are h �qqi ¼ �ð0:24� 0:01 GeVÞ3,

m2
0 ¼ ð0:8� 0:2Þ GeV2 [12], f� ¼ 0:131 GeV, fK ¼

0:16 GeV, and f� ¼ 0:13 GeV [7].

The sum rules for the coupling constant of pseudoscalar
mesons with decuplet baryons contain two auxiliary,
namely, Borel parametersM2 and the continuum threshold
s0. Obviously, we need to find such regions of these
parameters where coupling constants are practically inde-
pendent of them.
The upper limit ofM2 can be found by requiring that the

higher states and continuum contributions to the correla-
tion function should be less than 40%–50% of the total
value of the correlation function. The lower bound of M2

can be obtained by demanding that the contribution of the
highest term with power 1=M2 is less than, say, 20%–25%
of the highest power of M2. Using these two conditions,
one can find regions of M2 where the results for the
coupling constants are insensitive to the variation of M2.
As has already been noted, another auxiliary parameter

of the sum rules is the continuum threshold, and in the
present work we will follow the standard procedure in

TABLE II. Parameters of the wave function calculated at the
renormalization scale � ¼ 1 GeV.

� K �

aP1 0 0.050 0

aP2 0.44 0.16 0.2

�3 0.015 0.015 0.013

�4 10 0.6 0.5

w3 �3 �3 �3
w4 0.2 0.2 0.2
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choosing it, i.e., s0 is taken to be independent of theM
2 and

q2 whose value is varied in the range 2:5 GeV2 	 s0 	
4:0 GeV2. In this connection it is shown in [14] that the
continuum threshold is strongly dependent on M2 and q2.
This modification leads to the standard criteria in the sum
rules, namely, stability of the results with respect to the
variation inM2 does not provide realistic errors, and in fact
the actual error turns out to be large. Following [14], we
consider that these systematic errors are around 15%.
Furthermore, in [14] it is also shown that the standard
procedure works very well (better that 2%) at low q2 (q2 <
2 GeV2) in determining the q2 dependence of the form
factors. In the present work, since q2 ¼ m2

P < 2 GeV2, the

standard procedure explained in [14] should work rather
well, and for this reason we prefer this approach in deter-
mining the value of s0.

As an example, in Fig. 1, we depict the dependence of

the g�
�þ!��þ�0

coupling constant on M2 at fixed values of
the continuum threshold. From this figure, one can see that

the g�
�þ!��þ�0

coupling constant demonstrates good
stability to the variation in M2. The numerical results for
the coupling constants of pseudoscalar mesons with dec-
uplet baryons are presented in Table III. Note that in this

table, we give only those results which are not obtained
from each other by SUð2Þ and isotopic spin relations. It
should be remembered that the sum rules cannot fix the
signs of the residues and for this reason the signs of the
couplings are not fixed. However, they can be fixed if we
use SUð3Þf symmetry (for more about this issue, see [4]).

The errors in the results in Table III are coming from the
variation of s0, and Borel parameterM2, as well as from the
systematic uncertainties. From this table, we can deduce
the following conclusions:
(i) In all considered couplings except ��0 ! ��0� our

predictions consist with the SUð3Þf symmetry.

Maximum violation of SUð3Þf symmetry is about

15%.
(ii) In SUð3Þf symmetry the limit coupling constant for

��0 ! ��0� transition is equal to zero, but our
prediction on this constant differs from zero consid-
erably when violation of SUð3Þf symmetry is taken

into account. Only for this channel, violation of
SUð3Þf symmetry is huge. In principle, investiga-

tion of this coupling constant can shed light on the
structure of the � meson.

(iii) Sign of coupling constant of decuplet baryons to
the K meson and also��0 ! ��0� is negative, but
for all other cases is positive.

In summary, considering the SUð3Þf symmetry breaking

effects, the coupling constants of the decuplet baryons with
pseudoscalar �, K, and � mesons have been calculated in
the framework of light cone QCD sum rules. It was shown
that all aforementioned coupling constants is described
with the help of one universal function. We obtained that
for the��0 ! ��0� transition, violation of SUð3Þf is very
large.

APPENDIX

In this Appendix, we present the correlation functions
involving �, K, and � mesons which is not given in the
main text.
(i) Correlation functions for the couplings involving the

�þ meson

���þ!��0�þ ¼ ffiffiffi
2

p
�1ðd; u; sÞ:

(ii) Correlation functions for the couplings involving
the �� meson

����!��0�� ¼ ffiffiffi
2

p
�1ðu; d; sÞ;

��0!�þ�� ¼ 2�1ðu; u; dÞ:

(iii) Correlation functions for the couplings involving
the K meson

FIG. 1. The dependence of the g�
�þ!��þ�0

coupling constant
on M2 at fixed values of the continuum threshold.

TABLE III. Coupling constants of pseudoscalar mesons with
decuplet baryons.

Channel Coupling Coupling in SUð3Þ limit

��þ ! ��þ�0 11:3� 2:5 11:0� 2:5
�þ ! �þ�0 5:5� 1:6 5:5� 1:4
��0 ! ��0�0 5:2� 1:4 5:5� 1:5
��0 ! �þK� �17:4� 4:1 �18:0� 4:3
��0 ! ��þK� �25:4� 6:1 �27:0� 6:3
��þ ! �þþK� �21:2� 5:2 �22:0� 5:4
�� ! ��0K� �20:7� 5:1 �22:2� 5:4
��þ ! ��0Kþ �22:2� 5:3 �27:0� 5:6
��0 ! ��0� 0:65� 0:15 0:0� 0:0
�þ ! �þ� 12:5� 3:2 12:6� 3:2
��0 ! ��0� �11:2� 2:6 �13:2� 3:1
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���0!�þK� ¼ ffiffiffi
2

p
�1ðs; u; dÞ;

����!��0K� ¼ ffiffiffi
2

p
�1ðu; d; sÞ;

���!��0K� ¼ 0;

���þ!�þþK� ¼ ffiffiffi
3

p
�1ðu; u; uÞ;

����!�0K� ¼ �1ðs; d; dÞ;
����!��0K� ¼ 0;

���!��0K� ¼ ffiffiffi
3

p
�1ðs; s; sÞ;

��0!��þK� ¼ 0;

��þ!��0Kþ ¼ ffiffiffi
2

p
�1ðs; u; dÞ;

��0!���Kþ ¼ �1ðs; d; dÞ;
���þ!�0Kþ ¼ 0;

��þþ!��þKþ ¼ ffiffiffi
3

p
�1ðu; u; uÞ;

���0!���Kþ ¼ 0;���0!��0 �K0 ¼ ���0!��0 �K0

¼ ���0!��0K0 ¼ ���0!��0K0

¼ ffiffiffi
2

p
�1ðd; u; sÞ;

����!��� �K0 ¼ ����!���K0 ¼ 2�1ðs; s; dÞ;
���!��� �K0 ¼ ����!�� �K0 ¼ ���0!��Kþ

¼ ���!���K0 ¼ ����!��K0

¼ ffiffiffi
3

p
�1ðs; s; sÞ;

���0!�0 �K0 ¼ ��0!��0 �K0 ¼ ���0!�0K0

¼ ffiffiffi
2

p
�1ðs; d; uÞ;���þ!�þ �K0

¼ ��þ!��þ �K0 ¼ �1ðs; u; uÞ;
���!��� �K0 ¼ ����!�� �K0 ¼ ffiffiffi

3
p

�1ðs; d; dÞ;
��þ!��þK0 ¼ ���þ!�þK0 ¼ �1ðs; u; uÞ;
���!���K0 ¼ ����!��K0 ¼ ffiffiffi

3
p

�1ðs; d; dÞ;
��0!��0K0 ¼ ffiffiffi

2
p

�1ðs; u; dÞ;
����!��K0 ¼ 2�1ðd; d; sÞ:

(iv) Correlation functions for the couplings involving
the � meson

���0!��0� ¼ 1ffiffiffi
6

p ½�1ðu; d; sÞ þ�1ðd; u; sÞ

� 2�1ðs; d; uÞ�;
���þ!��þ� ¼ 2ffiffiffi

6
p ½�1ðu; u; sÞ ��1ðs; u; uÞ�;

����!���� ¼ 2ffiffiffi
6

p ½�1ðd; d; sÞ ��1ðs; d; dÞ�;

��þ!�þ� ¼ 1ffiffiffi
6

p ½2�1ðu; u; dÞ þ�1ðd; u; uÞ�;

��þþ!�þþ� ¼
ffiffiffi
6

p
2

�1ðu; u; uÞ;���!���

¼
ffiffiffi
6

p
2

�1ðd; d; dÞ;

��0!�0� ¼ 1ffiffiffi
6

p ½2�1ðd; d; uÞ þ�1ðu; d; dÞ�;

���0!��0� ¼ 1ffiffiffi
6

p ½�1ðu; s; sÞ � 4�1ðs; s; uÞ�;

����!���� ¼ 1ffiffiffi
6

p ½�1ðd; s; sÞ � 4�1ðs; s; dÞ�:
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