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Although gauge-boson propagators in asymptotically-free gauge theories satisfy a dispersion relation,

they do not satisfy the Källen-Lehmann (KL) representation because the spectral function changes sign.

We argue that this is a simple consequence of asymptotic freedom. On the basis of the QED-like Ward

identities of the pinch technique (PT) we claim that the product of the coupling g2 and the scalar part d̂ðq2Þ
of the PT propagator, which is both gauge invariant and renormalization-group invariant, can be factored

into the product of the running charge �g2ðq2Þ and a term Ĥðq2Þ both of which satisfy the KL representation

although their product does not. We show that this behavior is consistent with some simple analytic

models that mimic the gauge-invariant PT Schwinger-Dyson equations (SDE), provided that the dynamic

gauge-boson mass is sufficiently large. The PT SDEs do not depend directly on the PT propagator through

d̂ but only through Ĥ.

DOI: 10.1103/PhysRevD.80.096001 PACS numbers: 11.15.Tk, 11.15.Kc

I. INTRODUCTION

A. Positivity and gluon mass

A long-standing problem of non-Abelian gauge theories
(NAGTs) is the lack of positivity of the imaginary part of
the gauge-boson propagator, violating the Källen-
Lehmann (KL) representation. This was first pointed out
in an early paper on the gauge-invariant pinch-technique
(PT) propagator [1]. Later, many authors found the same
behavior in lattice simulations of the gauge-dependent and
unphysical propagator of the Landau gauge [2–4] (and
references therein). Although it is questionable to assign
a physical meaning to this lack of positivity in a gauge-
dependent quantity such as the Landau-gauge propagator,
many authors see it as a sign of confinement, since the
propagator of an unconfined field presumably has a normal
KL representation. Aubin and Ogilvie [3] trace it to tech-
nical deficiencies in lattice gauge-fixing procedures.

In this paper we argue that it is plausible (but unproven)
that this lack of positivity is an elementary consequence of
asymptotic freedom, and is simply resolved by a factoriza-
tion of the PT propagator into two terms each of which is
both gauge and renormalization-group (RG) invariant, and
each satisfies the KL representation. We construct some
simple analytic models of the PT propagator and vertex
that illustrate the necessary positivity and absence of un-
physical singularities, provided that there is a sufficiently-
large dynamical gluon mass. We also discuss models of the
analytic perturbation theory (APT) type, which can satisfy
positivity with zero gluon mass but still have unphysical
behavior.

Section II A briefly covers notation as well as some
background on the PT. In Sec. II B we argue that the lack
of positivity is a simple consequence of asymptotic free-
dom and the fact [1] that the product of the coupling g2 and

the (scalar part of the) gauge-invariant PT propagator d̂ðq2Þ
is not only gauge invariant but also RG invariant, indepen-
dent of the choice of a renormalization point. This makes
this product a truly physical quantity. The same is true for
the photon propagator in QED, as has been known for
decades, and for the same reason: The Ward identities of
QED or of the PT require that the gluon vertex function
renormalization constant and a wave-function renormal-
ization constant be the same.
Not every nonperturbative approximation for the propa-

gator can be expected to satisfy these positivity constraints,
in an asymptotically-free gauge theory. In the rest of the
paper we construct nonperturbative models that do satisfy
them, provided that there is a large enough dynamical
gluon mass.
Section II C is an illustration, within the context of an

analytically-soluble model similar to an earlier [1] one-
dressed-loop Schwinger-Dyson equation (SDE) for the PT
propagator, of how the positivity argument above can only
be realized with a sufficiently-large gluon mass. In the
model, provided that the gluon mass m is large enough
(on the QCD scale �) each factor in the product �g2 �H
behaves precisely as would be expected, with no bizarre
behavior coming from nonpositivity. But if m=� is less
than a critical valuemc=� spurious singularities arise, such
as ghost or spacelike poles in the propagator. We estimate
mc=� ’ 1:2 in our study of the one-dressed-loop PT
propagator; given the approximations made there, we be-
lieve the range should be from 1 to 1.5 or so. This effec-
tively provides, as wewill see, an upper limit to the running
charge at zero momentum: �sð0Þ � �g2ð0Þ=4� � 0:5–0:7.
This is fairly consistent with other determinations from
phenomenology [5], studies [1,6–8] of the PT SDE, and a
study of the functional Schrödinger equation [9].
Section III briefly reviews the evolution of APT from an

originally massless form [10] with correct positivity prop-
erties, yet showing unphysical behavior, to a massive form*cornwall@physics.ucla.edu
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rather similar to that of [1] and the present paper. In the
original APT positivity was satisfied, although the PT
upper limit on �sð0Þ is exceeded, with �sð0Þ � 1=ð4�bÞ �
1:1. This in itself is not necessarily serious, but what is
serious is that the APT running charge, even though finite
at zero momentum, has infinite slope. A later work [11]
corrects this deficiency by invoking an ad hoc gluon mass,
in somewhat the same spirit as the PT gluon mass, with
results quite similar to our first model. Other authors [12]
have also invoked masses as cutoffs for APT.

Section IV remarks on the important fact that the vertex
SDE can be reformulated entirely in terms of the propa-

gator factor Ĥ with a positive spectral function and a
special half-proper vertex that is both gauge and RG in-

variant; the original PT propagator d̂, with its positivity
violations, never appears. This reformulation avoids pos-
sible violations of positivity that could allow unphysical
vertex behavior. We illustrate with an analytic approxima-
tion inspired by a one-dressed-loop toy model [13] of the
Schwinger-Dyson equation for the three-gluon vertex and
show that it has a spurious spacelike singularity if the gluon
mass is too small.

Section IVC is a discussion of certain typical all-order
extensions and resummations of the massless toy model
that still lead to unphysical singularities; these can only be
resolved with a dynamical gluon mass.

B. The positivity problem and asymptotic freedom

Write the obvious factorization of the product g2d̂:

g2d̂ðq2Þ ¼ �g2ðq2ÞĤðq2Þ (1)

where �gðq2Þ is the gauge, scheme, and renormalization-
point independent running charge of the PT. The other

factor Ĥðq2Þ has the same properties, since the product
does. We argue that both factors obey a standard KL
representation with a positive imaginary part (our metric
is such that q2 > 0 for timelike vectors):

�g2ðq2Þ ¼ 1

�

Z 1

4m2
d�

�ð�Þ
�� q2 � i�

Ĥðq2Þ ¼ 1

�

Z 1

4m2
d�

�Hð�Þ
�� q2 � i�

(2)

and �, �H are positive. The lower limit involves the dy-
namical gluon mass m, which we discuss later.

We plausibly know the behavior at infinite momentum
of both factors in the product. Asymptotic freedom tells us
that

�gðq2Þ ���!
q2!1

1

b lnð�q2=�2Þ ; (3)

where b is the lowest-order coefficient in the beta function

and � is the QCD scale. As for Ĥðq2Þ there is no reason
from perturbation theory or nonperturbative PT construc-
tions to believe that it departs from the simple free-field

behavior 1=q2 for large momentum. For example, it is well
known that the PT is equivalent order by order to the
background field-Feynman gauge [14], and old perturba-
tive calculations in this gauge through two loops [15] show
that all large-momentum logarithms are accounted for in
the running charge. The result is that at large momentum

the PT propagator vanishes according to d̂ðq2Þ �
1=ðq2 lnq2Þ. But a propagator vanishing more rapidly
than 1=q2 implies that the spectral function in the would-
be KL representation is necessarily negative somewhere.
There is, we claim, only an indirect connection—at least
for the gauge-invariant PT propagator—between nonposi-
tivity and confinement (a connection only to the extent that
asymptotic freedom implies confinement). In fact, the
gluon is not confined, but screened, in the usual sense
that the string in the adjoint-representation Wilson loop
always breaks at sufficiently large distance even with no
adjoint matter fields. We will not attempt any analysis of
nonpositivity in the Landau gauge, but it is likely that even
if some nonpositivity comes from the Aubin-Ogilvie [3]
effect, there will still be some residual nonpositivity com-
ing from asymptotic freedom.
What happens at infrared momenta? It has long been

argued [1,16] that the QCD gluon should pick up a dy-
namical mass that completely preserves local gauge sym-
metry. This is consistent with phenomenology (for
example, [5,17]), and a number of studies of the PT
Schwinger-Dyson equations [18] have found [1,6–8] a
PT pole mass m of order 0.6 GeV. These studies also
indicate that the mass runs with momentum and should
be denoted mðq2Þ, consistent with the operator-product
expansion result that m2ðq2Þ vanishes (modulo logarithms)
like hG��G

��i=q2 at large momentum [19]. There is a

large body of lattice-simulation evidence in the Landau
gauge [20–38] for a gluon mass of several hundred MeV.
(The pole mass of the gluon propagator in any gauge is
gauge invariant and physical, although because it is a
timelike pole it is not easy to determine from lattices

simulations.) We think it plausible, then, that Ĥðq2Þ has
some such form as

Ĥðq2Þ ¼ 1

m̂2ðq2Þ � q2 � i�
(4)

where mðq2Þ is the running mass. For simplicity and brev-
ity, we use in this paper a fixed gluon mass; running does

not interfere with the main positivity arguments. Then Ĥ is
a simple free massive propagator.

II. A MODEL OF THE PT INVERSE PROPAGATOR

A. A few words on the pinch technique

We begin with some notation. The pinch-technique
propagator has the form
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�̂��ðqÞ ¼ P��ðqÞd̂ðqÞ þ 	
q�q�

q4
;

P��ðqÞ ¼ �g�� þ q�q�

q2
:

(5)

The corresponding inverse pinch-technique propagator is

�̂�1
��ðqÞ ¼ P��ðqÞ½q2 þ �̂ðqÞ� þ 1

	
q�q�: (6)

The scalar function d̂ is completely independent of the
gauge chosen.

The PT is a systematic way of extracting gauge-invariant
proper self-energies, vertices, and the like from gauge-
invariant quantities such as the S matrix. The PT propa-
gator, for example, is not constructed just from the usual
Feynman graphs; it also receives contributions from other
graphs through a so-called ‘‘pinch,’’ in which longitudinal
momenta in numerators, coming from vertices and propa-
gators, trigger Ward identities leading to the replacement
of certain propagators by unity. This changes the topology
of the graphs where this occurs, and some of these pinch
contributions are readily recognized as contributions of
propagator type. Although not recognized at the beginning,
it is now known [14] that the PT is the same graphical
expansion as that of the background field-Feynman gauge.
Because the whole point of the PT is to maintain gauge
invariance, it is essential that, when this graphical expan-
sion is resummed to a dressed-loop or skeleton expansion,
all Green’s functions appearing in the skeleton expansion
obey the correct Ward identities. In the case of the PT these
are the naive Ward identities of QED, with no ghosts.

It would appear that progress can only be made by
solving all possible SDEs at once, since that will guarantee
satisfaction of the Ward identities. However, it is possible
to find approximate three- and higher-point proper vertices
that satisfy the Ward identities exactly and that are ex-
pressed solely in terms of the PT propagator itself. This
approximation, known as the gauge technique, is valid for
infrared-dominated phenomena. Although we will not give
any details here, we have in mind the gauge technique of
Ref. [6], which gives the following expression (group
indices suppressed) for the gauge technique proper vertex:

�̂��
ðk1; k2; k3Þ ¼ g��ðk1 � k2Þ
 �
k1�k2�

2k21k
2
2

ðk1 � k2Þ�

� �̂�
ðk3Þ� ½P�
� ðk1Þ�̂��ðk2Þ

� �̂�
� ðk1ÞP��ðk2Þ�

k3


k23
þ cyc:perm: (7)

where the first term on the right is the bare vertex �̂0. Here

�̂�� ¼ P���̂ is the PT proper self-energy introduced

above. This vertex satisfies

k�1 f�̂��
ðk1; k2; k3Þ � �̂0
��
ðk1; k2; k3Þg

¼ �̂�
ðk2Þ � �̂�
ðk3Þ (8)

no matter what the choice of �̂ is. In consequence, an
approximate but fully gauge-invariant one-dressed-loop
SDE for the PT propagator can be written solely in terms
of that propagator. It is in this sense that we speak of
studying the PT propagator on its own terms, without
further specification of the vertex beyond that of the gauge
technique. In this paper we use the self-contained PT
propagator equation of Ref. [6]. Later we will study a toy
model of a ‘‘half-proper’’ three-gluon PT vertex SDE in
which some factors coming from the propagators are in-
corporated in the definition of the vertex, and we arrive at
essentially self-contained vertex SDEs.

B. Sign problems

We define a KL function as a real-analytic function with
at most one pole and a cut along the real positive axis,
satisfying an unsubtracted dispersion relation with a posi-
tive spectral function.
We conjecture that the PT propagator is the product of

two KL functions. The product of two KL functions may or
may not be a K-L function, but in the present case we know
it cannot be, because the product vanishes faster than 1=q2

near infinity. The product of two KL functions having this
property therefore requires a spectral function that changes
sign. Wemultiply together two KL functions, and call them
G1 and G2. For each function we have

Gi ¼
Z

d�
�ið�Þ
q2 � �

ði ¼ 1; 2Þ (9)

with �i nowhere negative. The product G1G2 obeys the
dispersion relation

G1G2 ¼
Z

d�
�1�2ð�Þ
q2 � �

(10)

with

�1�2ð�Þ ¼ P
Z

d�0 �1ð�Þ�2ð�0Þ þ �1ð�0Þ�2ð�Þ
�� �0 (11)

which may be negative in places.
We note parenthetically that it is possible, in certain field

theories involving scalar particles, for the propagator
(taken to be KL) to have a single zero between the particle
mass and the lowest two-particle threshold and for the
proper vertex to have a pole at the same place. In our

case this would correspond to a zero in Ĥðq2Þ for m2 <
q2 < 4m2. But for propagator models what we use as a
criterion for a critical mass, based on asymptotic freedom,
is not to exclude a zero of the propagator but to exclude an
unwanted pole. It is true that the vertex models we study
define a ‘‘critical’’ mass by excluding vertex singularities,

but these are not related in any obvious way to zeroes of Ĥ.
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In any case we explicitly exclude the possibility of a zero in

Ĥ by assumption, and our techniques show no signs of such
a zero developing. See [39] for further details and
references.

C. Mass parametrization

The conventional approach to the propagator, whether
from the PT or elsewhere, is to calculate in some approxi-
mation the proper self-energy, that is, the inverse propa-
gator. The technique of going from the propagator to the
inverse propagator (or vice versa) reminds us of APT,
which we discuss in the following section. APT was used
in the NAGT context to render �sð0Þ finite, even in the
zero-mass limit. However, an unphysical singularity re-
mains, and in fact mass-improved APT also has a critical
mass mc that is rather close to the values we give in this
section.

We assume that there is at most one pole in the PT
propagator, at q2 ¼ m2, representing dynamical gluon
mass formation, and no zeroes, and we replace the factor

Ĥ of Eq. (4) by the simple massive propagator ðq2 �m2 þ
i�Þ�1, where the mass does not run. Our pretensions to
accuracy in the infrared do not justify saving the running,
so m2 can be thought of as either the running mass at zero

momentum or the pole mass, within the accuracy to which
we aspire.
Long ago, a form of the pinch technique was used to

estimate the dynamical gluon mass [1,6], and interpreted in
the factorized form outlined above. In the formulas of [6]
we ignore the running of the mass, and the nonlinear
integral equation then becomes

½g2d̂ðqÞ��1 ¼ q2bZ� ib

�2

Z
d4kĤðkÞĤðkþ qÞ

�
q2 þm2

11

�
þ Cþ . . . (12)

where the constant C summarizes the seagull graph and
other momentum-independent terms, and we also omit
two-loop contributions. Rather than trying to solve this

equation we simply replace Ĥ by a free massive propaga-
tor, yielding

½g2d̂ðq2Þ��1 ¼ q2bZþ bJðq2; �2
UVÞ

�
q2 þm2

11

�
þ Cþ . . .

(13)

where �UV is an ultraviolet cutoff. Omitted terms are of
higher order in a dressed-loop expansion. The integral
Jðq2; �2

UVÞ is

Jðq2; �2
UVÞ ¼

i

�2

Z
d4k

1

ðk2 �m2 þ i�Þððk� qÞ2 �m2 þ i�Þ ; (14)

and the UV cutoff is defined through the Feynman-parameter representation

Jðq2; �2
UVÞ ¼

Z 1

0
d� ln

�
m2 � �ð1� �Þq2 � i�

�2
UV

�
: (15)

By appropriate choice of Z we make the combination Zþ J finite, and define a renormalized integral Jðq2;	Þ. Aside from
its Feynman-parameter form J has a dispersive representation

Jðq2;	Þ ¼
Z 1

0
d� ln

�
m2 � �ð1� �Þq2 � i�

	

�
¼ �q2

Z 1

4m2

d�

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4m2

�

s
1

�� q2 � i�
þ ln

�
m2

	

�
: (16)

The PT inverse propagator in finite terms is

½g2d̂ðq2Þ��1 ¼ q2b ~Zþ b

�
q2 þm2

11

�
Jðq2;	Þ þ Cþ . . .

(17)

Note that this is consistent with the renormalization invari-
ance of Eq. (1). We make a choice of 	 (or ~Z) that defines
what we mean by�, the finite QCD scale, by requiring that

d̂�1ðq2Þ ! bg2q2 ln

��q2

�2

�
½1þ oð1Þ� (18)

as q2 approaches infinity in any direction. [The nonleading
terms are Oðlnlnq2Þ and can affect the definition of � at
any particular momentum, but since we deal here only with
one-dressed-loop quantities we cannot use such higher-

order terms in the analysis; one should think of � as
applying to a specific range of large but finite momenta
and that effectively incorporates terms not vanishing at
infinity.] We choose

	 ¼ e�2�2 (19)

and then we can set ~Z ¼ 0.
Since the inverse propagator is to vanish at q2 ¼ m2 we

can eliminate C by writing

½g2d̂ðq2Þ��1 ¼ b

�
Jðq2;	Þ

�
q2 þm2

11

�
� Jðm2;	Þ 12m

2

11

�
:

(20)

This can be written in dispersive form by using Eq. (16)
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½g2d̂ðq2Þ��1 ¼ bðq2 �m2Þ
�
2þ ln

�
m2

�2

�
�

Z 1

4m2
d�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 4m2

�

s
1

�� q2 � i�

�
�
q2

�
þ 12m2

11ð��m2Þ
��
: (21)

We now assume, as discussed in connection with Eq. (4),
that

g2d̂ðq2Þ ¼ �g2ðq2Þ
q2 �m2 þ i�

(22)

which yields

½b �g2ðq2Þ��1 ¼ 2þ ln

�
m2

�2

�
�

Z 1

4m2
d�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� 4m2

�

s

� 1

�� q2 � i�

�
q2

�
þ 12m2

11ð��m2Þ
�
: (23)

Provided that m=� is sufficiently large, a condition that
we will investigate below and assume for now, the disper-
sion relation for the propagator has the properties discussed
in Sec. II B above. We write

�g 2ðq2Þ ¼ 1

�

Z 1

4m2
d�

�ð�Þ
�� q2 � i�

(24)

with � a function easily read off from Eq. (23); we need not
record it explicitly. This equation shows that �ð�Þ is posi-
tive, as we expect. An elementary calculation shows that

the dispersion relation for �g2d̂ðq2Þ, as taken from
Eq. (22), is

� g2d̂ðq2Þ ¼ R

m2 � q2 � i�
� 1

�

�
Z

d�
�ð�Þ

ð��m2Þð�� q2 � i�Þ (25)

where R is a positive residue, the on shell value of �g2

R ¼ 1

�

Z
d�

�ð�Þ
��m2

: (26)

Although each of the two factors �g2ðq2Þ and 1=ðm2 � q2Þ
have positive imaginary parts, the imaginary part of their
product, which is

Im ½�g2d̂ð�Þ� ¼ R�ð��m2Þ � �ð�Þ
��m2

(27)

has one positive term from the pole and another term from
the cut that is everywhere negative. This is, of course,
required by the large-q behavior of the product which
requires that the integral of the imaginary part vanish.

One implication of the dispersive form in Eq. (23) is that
�g2 is positive everywhere where it is real, that is, in the
region �1< q2 < 4m2. Another is that �g2 is monotoni-

cally increasing as q2 decreases. Since we expect �g2 to be
monotonically decreasing as the mass increases, there is a
critical mass mc such that if the physical mass exceeds mc

there is no spurious pole, while there is such a pole if m<
mc. This critical mass is determined by positivity of the
running coupling just below the threshhold and yields

mc=� ¼ exp½ ffiffiffi
3

p
�=33� ¼ 1:18.

All the integrals in Eq. (23) can be evaluated, giving the
running charge explicitly. In the regime 0< q2 < 4m2 the
explicit result is

½b �g2ðq2Þ��1 ¼ 1

q2 �m2 þ i�

��
q2 þm2

11

�
Jðq2;	Þ

�m2

12
Jðm2;	Þ

�

¼ ln

�
m2

�2

�
þ 2

q2 �m2

��
q2 þm2

11

�

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4m2 � q2

q2

s
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2

4m2 � q2

s
� 2

ffiffiffi
3

p
�

11

�
(28)

which has an obvious analytic continuation to other
regimes.
Let us compare this result for the running charge to the

old ansatz of [1], which is

½b �gðq2Þ��1 ¼ ln½ð4m2 � q2 � i�Þ=�2�: (29)

It is clear that this is not accurate for the above-threshold
region q2 � 4m2, because it has a pole at q2 ¼ 4m2 ��2,
which is timelike, provided that m>�=2, and lies below
threshold in the region where the running charge is real.
However, this expression does not differ very much from
the improved PT value of Eq. (28) above in the spacelike
regime. In Fig. 1 we compare the old expression of Eq. (29)
and the new expression in Eq. (23) plotted vs q2=m2, at a

-10 -8 -6 -4 -2 0 2 4

-2

-1

0

1

2

3

FIG. 1. Comparison of new and old expressions for
½b �g2ðq2Þ��1 below threshold. The upper curve is the new
[Eq. (23)] and the lower the old [Eq. (29)] expression at m ¼
�; the x axis is q2=m2.
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mass ratio m=� ¼ 1. For any other value, simply add
lnðm2=�2Þ to both expressions. They differ by about 15%
or less from their average in the spacelike regime but
separate increasingly for 0< q2 < 4m2 as the 1982 ex-
pression approaches its timelike divergence.

For most phenomenological applications one is inter-
ested in the running charge at a small spacelike momentum
transfer. Either the new expression from Eq. (23) or the old
one from Eq. (29) shows that �sð0Þ increases as m de-
creases. A single formula applies to both cases, with one
parameter � whose value depends on whether the new or
old expression is used. We find

�sð0Þ ¼
�

1

4�b

�
1

lnð�2m2

�2 Þ
(30)

which is positive provided that m=� � ��1. For the new
expression

��1
new ¼ exp

�
�1þ 12

11

�
1�

ffiffiffi
3

p
�

6

��
� 0:41 (31)

and for the old fit ��1
old ¼ 0:5—not much different. If

m=� � ��1 the squared running charge is positive for
all spacelike (q2 < 0) momenta.

What happens when m<mc? Is this unacceptable, or is
there a fix through APT?

III. APT AND OTHER MODELS

Massless APT [10] begins with ordinary perturbation
theory for the running charge, which at one loop is

Fðq2Þ � ½ �gðq2Þ1��1 ¼ b ln

��q2 � i�

�2

�
: (32)

The tachyonic pole at q2 ¼ ��2 is removed using a
renormalization-group-improved extension of 50-year-old
techniques that impose correct analyticity properties on
certain gauge-invariant quantities such as the Adler D
function or the photon propagator, which amounts to pos-
tulating the dispersion relation

�g 2ðq2ÞAPT ¼ 1

�

Z 1

0
d�

�ImF

jFj2
1

�� q2 � i�
: (33)

As needed, the imaginary part of �g2APT is positive. Since the
dispersion integral can have (by fiat) no pole, the simple
result is

�s;APTðq2Þ ¼ 1

4�b

�
1

ln½ð�q2 � i�Þ=�2� þ
�2

�2 þ q2

�
(34)

with a zero-momentum value of �sð0Þ ¼ 1=ð4�bÞ ’ 1:4
(for three-flavor QCD). Higher-order renormalization-
group improvement changes this value only slightly.
While this value for �sð0Þ is certainly in the right ballpark,
there is an uncomfortable flaw in APT. It predicts that the
slope d�sðq2Þ=dq2 at q2 ¼ 0 is negative infinity, which is
certainly unphysical. Consequently the predicted value in

Eq. (34) is not reliable, although that is not our main
concern here.
Obviously this massless APT treatment can be trivially

extended to the old proposal of Eq. (29), but this just
transfers the infinite slope to threshold. This is a fault to
be associated with the proposed running charge, which is
simply not physical near threshold.
Shirkov later [11] proposed to put in, by hand, a gluon

mass in a different way that actually is close in spirit to the
version of the PTwe use here. Although Shirkov’s work is
unclear on some relatively insignificant details, when
quarks are omitted it is essentially equivalent to the follow-
ing expression:

½b �g2ðq2Þ��1 ¼ Jðq2;	Þ: (35)

Just as in perturbation theory, Jðq2;	Þ may have an un-
physical pole coming from a zero of J; in the massive case
with m=�> 2 this pole lies in the region �2 < q2 < 4m2.
The locus of zeroes in Jðq2;	Þ in Eq. (16) is

ln

�
4m2

	

�
¼ 2f1� 
�1 arctan
g (36)

where


 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2

4m2 � q2

s
: (37)

This yields mc� ¼ 1. Of course, it might be possible to
remove this singularity form<mc by the same techniques
used for massless APT, with the dispersion relation

b �g2ðq2Þ ¼ �1

�

Z 1

4m2
d�

ImJð�;	Þ
jJð�;	Þj2ð�� q2 � i�Þ : (38)

However, from the expression for J above threshold

Jðq2;	Þ ¼ ln

�
m2

�2

�
þ 
�1 ln

�

þ 1


� 1

�
� i�
�1 (39)

one sees that at the critical mass both the real and the
imaginary parts of J vanish at threshold, leading to a
singular running charge at threshold. Presumably this is
unphysical. There are no singularities for larger values of
m=�, so it appears that for mass-improved APT there is a
critical mass: mc=� ¼ 1.

IV. TOY VERTEX MODELS AND POSITIVITY

It is much too difficult to consider the full Schwinger-
Dyson equations even at the lowest loop level for NAGTs,
so we construct an analytically-soluble toy model. This
new model is in the spirit of the old toy model of Ref. [13],
which is not analytically soluble. Both models have the
same large-momentum behavior, showing asymptotic free-
dom and a beta function with all terms negative and with
factorial growth.
Both models exploit the fact that, just as the product

g2d̂ðq2Þ is not only gauge invariant but renormalization-
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group invariant, there is a similar combination for the PT
vertex. We introduce the notation

d̂ðq2Þ ¼ Ĥðq2ÞẐ�1ðq2Þ: (40)

With our factorization conjecture for the PT propagator
this is equivalent to

�g 2ðq2Þ ¼ g2

Ẑðq2Þ : (41)

Because ĝ2ðq2Þ is positive for spacelike (negative) q2, so is
Ẑðq2Þ. We call the proper vertex function in the pinch

technique �̂abc
���ðq1; q2; q3Þ. This vertex function,

which like the PT propagator is gauge invariant and pro-
cess independent, obeys a Ward identity of QED type,
with no contributions from ghosts, schematically of the

form q1 	 � ¼ Ẑðq2Þ � Ẑðq3Þ. The gauge invariant and

renormalization-group invariant we call Ĝ (irrelevant
group and spin indices omitted):

Ĝðq1; q2; q3Þ ¼ g�̂ðq1; q2; q3Þ
ðẐðq1ÞẐðq2ÞẐðq3ÞÞ1=2

; (42)

where �̂ is the PT proper vertex function (again, irrelevant

indices omitted) and Ẑ is a factor in the propagator, as
given in Eqs. (40) and (41). When all the momenta are

OðqÞ the Ward identity tells us that �̂� g2 �g�2 at large

momentum, and then Eq. (42) shows that Ĝ� �gðqÞ, as
would be expected for a gauge-invariant vertex function.

One might think that the PT SDE for �̂ explicitly in-

volves the PT propagator d̂ that has a nonpositive imagi-
nary part. Instead we remark that this equation can be

rewritten in terms only of the normal propagators Ĥ and

the special vertex Ĝ. This is important because d̂ðq2Þ itself
violates the KL representation, and if the skeleton graphs
of the SDE were to be modeled by replacing bare propa-

gators by d̂ there could possibly be positivity problems in

the SDE arising from the d̂ terms. Schematically the one-
dressed-loop SDE is

Ĝ ¼ Ĝ0 þ
Z

Ĝ3Ĥ3 þ . . . (43)

Here Ĝ is the Born term, behaving like ðlnq2Þ�3=2 when all
momenta are large and OðqÞ. Note that this equation is

independent of the coupling constant g, as it must be if Ĝ is
renormalization invariant; this independence holds for all
vertex skeleton graphs. We can now draw conclusions

based on the (Euclidean) positivity of the Ĥ propagators
without fear of difficulties arising from nonpositivity of the
spectral function for the propagator itself.

So far we have not considered numerator factors.
Neither toy model has them, but each roughly accounts
for them by dropping one of the propagator factors in

Eq. (43). We know that Ĝ� ðlnq2Þ�1=2 at large q, which
dominates over the inhomogeneous Born term. Con-

sequently, in the toy model this inhomogeneous term is

dropped. Furthermore in the toy model, Ĝ depends on only
one momentum, and only the one-loop skeleton graph is
saved. The original toy model equation [13] is then

ĜðqÞ ¼ ib

2�2

�
Z d4k

ðk2 �m2 þ i�Þ½ðqþ kÞ2 �m2 þ i�� Ĝ
3ðkÞ
(44)

where b is the usual (no-quark) one-loop coefficient in the
beta function. This is a universal equation for any coeffi-
cient b in the beta function, as one sees by using the vertex

R � b1=2Ĝ in place of Ĝ.
We will work in Euclidean space, definingQ2 � �q2 as

the Euclidean square of the momentum, positive for space-
like q. Then the kernel of the nonlinear integral equation
(44) is positive. If m � 0 the kernel is nowhere singular,
but if m ¼ 0 the kernel is singular at zero momentum. One

implication is that the massless Ĝ is necessarily zero or
singular at zero momentum, already suggesting the neces-
sity of a mass. We briefly review these facts for the mass-
less model.

A. Massless toy model

The massless toy model can be converted [13] to a
differential equation

Ĝ tt þ Ĝt ¼ �b

2
Ĝ3 (45)

where the subscripts indicate derivatives with respect to the
variable t � lnðQ2=�2Þ and � is the usual QCD mass
scale. We would like to impose physically-sensible bound-
ary conditions at Q2 ¼ 0, or t ¼ �1, but this is impos-
sible: The massless version of Eq. (44) is singular at zero

momentum unless Ĝð0Þ ¼ 0, which we forbid. Never-
theless the differential equation can be solved, showing
features expected from perturbation theory, and we can
impose boundary conditions at t > 0 and study the ultra-
violet behavior.
In the ultraviolet regimes one finds results familiar from

the RG: The functional form of the asymptotic vertex is
precisely that of the full NAGT except for the value of
some numerical coefficients, and all signs agree with what
is needed for asymptotic freedom. For large t the second
derivative term is nonleading; if dropped, the general so-
lution to the first-order differential equation is

1

Ĝ2ðtÞ � bt ¼ const: (46)

This coupling is singular, as massless perturbation theory
must be. When the second derivative term is kept, a solu-
tion is generated which has all the same terms as the all-
order perturbative running charge in true QCD, but with
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somewhat different coefficients. All these coefficients have
the correct sign for an asymptotically-free theory.

There is also an interesting beta function, governed by
its own differential equation. This comes from the relation

Ĝ t ¼ 1
2�ðĜÞ (47)

plus Eq. (45) for the vertex, and is

�ðgÞ
�
1þ 1

2

d�

dg

�
¼ �bg3: (48)

It was shown [13] that this beta function behaves like
�g

P
N!ðbcg2ÞN for some positive constant c, qualita-

tively just the same as in any asymptotically-free NAGT,
and that the beta function solving Eq. (48) is singular at a
finite upper critical coupling gc.

B. Massive toy model

We give here a new toy model inspired by but differing
slightly from the original massive toy model of Eq. (44).
The new model is probably about as accurate as the origi-
nal in modeling the true SDE, but it can be analytically
solved and shows a critical mass value. It has the same
ultraviolet (massless) properties as the old model and as

QCD does itself. As before we take Ĥ as a free massive
propagator. There is no longer a simple differential form of
the original toy model equation Eq. (44) when masses are
included, but the following approximation to the Euclidean
angular integration does give an ordinary differential equa-
tion:

Z d�K

2�2

1

½ðQþ KÞ2 þm2� �
�ðQ2 � K2Þ
Q2 þm2

þ �ðK2 �Q2Þ
K2 þm2

:

(49)

The approximation is exact for large Q, K as well as when
Q> 0,K ¼ 0 (orK > 0,Q ¼ 0) and is otherwise too large
by a factor which is at most about 1.3 times the true angular
integral at Q ¼ K ¼ m. From this follows the one-
dimensional integral equation:

ĜðQ2Þ ¼ J1ðQ2Þ þ J2ðQ2Þ (50)

J1ðQ2Þ ¼ b

2ðQ2 þm2Þ
Z Q2

0
dK2 K

2Ĝ3ðK2Þ
K2 þm2

J2ðQ2Þ ¼ b

2

Z 1

Q2
dK2 K2Ĝ3ðK2Þ

ðK2 þm2Þ2 :
(51)

Every solution of this integral equation Ĝ satisfies the
differential equation:

½ðQ2 þm2ÞĜðQ2Þ�00 ¼ � bQ2Ĝ3ðQ2Þ
2ðQ2 þm2Þ2 (52)

where a prime indicates differentiation with respect to Q2.
If we now define t as

t ¼ ln

�
Q2 þm2

�2

�
; (53)

the differential equation can be written as an extension of
the massless equation

Ĝ tt þ Ĝt ¼ �b

2
Ĝ3

�
1�m2e�t

�2

�
: (54)

The difference from the massless equation is that at Q ¼ 0
the variable t is finite, not �1.
It is not difficult to check from the integral equation (50)

that at large momenta only the J2 term is leading, yielding

the exact leading behavior ĜðQ2Þ ! 1=ðb lnQ2Þ1=2 at large
Q2. The J1 term in Eq. (50) is O½ðlnQ2Þ�3=2Þ� and non-
leading. In neither the original toy model nor at present are
we interested in such nonleading terms, so we define our
new toy model by dropping the J1 term. Note also that
J1 ¼ OðQ4Þ at small Q2, while J2 ¼ Oð1Þ, since we re-

quire that Ĝð0Þ � 0; the missing J1 term is nonleading in
the infrared as well. [One can show that theOðQ4Þ terms in
J1 and J2 cancel in the full equation, leaving corrections to

Ĝð0Þ of OðQ6Þ. In fact, the exact solution Ĝ of Eq. (50)
with both terms show the self-consistent behavior leading
correction at small momentum

ĜðQ2Þ ’ Ĝð0Þ � Ĝð0Þ3
12

�
Q2

m2

�
3 þ . . .� (55)

Evidently the resulting integral equation with no J1 term
satisfies a first-order differential equation, which is just

Eq. (54) without the Ĝtt term. This equation has the exact

solution Ĝ1:

1

Ĝ2
1ðQ2Þ ¼ b

�
ln

�
Q2 þm2

�2

�
þ m2

Q2 þm2

�
: (56)

One can check that the beta function coming from Ĝ1 has

not only the usual �bĜ3
1 term but also terms involving

nonperturbative quantities such as exp½�1=ðbĜ2
1Þ�. This

approximation already shows a mass m0 at which �sð0Þ is
singular: m0=� ¼ e�1=2 � 0:61; smaller values lead to a

pole in Ĝ1. [We have done a quick numerical study of the
differential equation (54) of the modified model, and found
m0=� � 0:66.] The actual critical massmc might be about
twice as large as m0, based on our experience with the
propagator model.

C. Is a gluon mass really necessary?

One may ask whether higher-order effects in a massless
theory can somehow do away with the need for a gluon
mass. To study this possibility, let us now extend the basic
one-loop beta-function equation (48) to mimic multiloop
vertex contributions. Of course, we can only aspire to
qualitative accuracy, looking for mechanisms of limits on
g2 rather than for accurate values of these limits. These
models are essentially those of [40] devised for 3

6, with
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couplingG. In this theory it has been shown that the sum of
all K-loop vertex graphs is always positive and grows like
K!ðcG2ÞK, where c is a positive number. We conjecture that
the same holds for d ¼ 4 NAGTs, and that an appropriate
extension of the beta-function differential equation to
higher loops is

y

�
1þ 1

2
y0
�
¼ �x

XK
J¼1

J!x2J (57)

where

x ¼ ffiffiffi
b

p
g; yðxÞ ¼ ffiffiffi

b
p

�ðgÞ (58)

and the prime denotes an x derivative. One can verify that
the beta function solving this equation grows factorially
like K!ðcg2ÞK for some c, whose value is irrelevant to our
investigation. Our only interest is in seeing what happens
when the right-hand side of the vertex Schwinger-Dyson
equation has terms that grow factorially with loop number
K. In fact, we have tested the sensitivity of Eq. (57) to
fairly major changes in the coefficients on the right-hand
side, and find little change from the solutions to Eq. (57) as
shown in Fig. 2.

Table I show the upper bounds �c for quarkless QCD,
defined as the value of g2c=ð4�Þ at which the beta function
crosses the real axis, for various values of K. One should
expect the �c values to decrease as K increases, since
otherwise the right-hand side of the differential equation
will grow too large to balance the left-hand side. For all

values of K there is a singularity of the form �� ðgc �
gÞ1=2, where � has infinite slope at g ¼ gc and then turns
imaginary for g > gc. Note that there seems to be numeri-
cal convergence toward a value near 0.5, not far from
‘‘best’’ estimates based on the one-dressed-loop pinch
technique with a mass. But there is always a singularity.

Perhaps someway of summing the non-Borel-summable
series of Eq. (57) would remove this singularity. We have
tried, again in the spirit of [40], ‘‘regulating’’ the all-orders

behavior with a principal-part integral form of the Borel
integral corresponding to the sum in Eq. (57), using

yð1þ 1
2y

0Þ ¼ LðxÞ (59)

with

LðxÞ ¼ � x2

�1=2

Z 1

0

d�

�1=2

�
e��=x2 � e�1=x2

1� �

�
: (60)

The equation for the vertex itself, analogous to Eq. (45), is

Ĝ tt þ Ĝt ¼ b�1=2Lðb1=2ĜÞ: (61)

Actually, some form of principal-part regulation is de-
manded by dynamical boson mass generation [40], but
we need not inquire further into that here. We can under-
stand the basic behavior of the equation by looking at the
degree to which factorial growth at large coupling is tamed
by the principal-part prescription. The power-series expan-
sion of LðxÞ is

LðxÞ ¼ � 1ffiffiffiffi
�

p X
K¼1

x2Kþ1�

�
K � 1

2

�
þOðe�1=x2Þ (62)

and its asymptotic behavior at infinity is �2x. This is very
different from the finite-K models of Eq. (57). In these, the
increasingly-strong growth with x of the right-hand side as
K gets larger, which means that any singularity occurs at
smaller values of x. But for equations with the LðxÞ source
there is no such movement toward smaller couplings be-
cause LðxÞ is not growing rapidly at large x. In the beta-
function equation (59) one easily finds the large-x asymp-

totic behavior yðxÞ ! �cx with c ¼ �1þ ffiffiffi
5

p
. So instead

of generating a finite-g singularity, the beta function turns
from �bg3 behavior near the origin to linear at large
enough g; numerical simulations confirm this. For the
massless vertex equation (61) there is still a singularity in

the infrared, so that Ĝ gets large and the large x behavior of
LðxÞ matters. In this regime the massless equation (61)
becomes linear, and one finds unphysical behavior of the

type ðlnQ2Þ�1=2 cosð ffiffiffi
3

p
lnQ2Þ. So massless vertex dynam-

ics is not regularized by the specific behavior of LðxÞ. Mass
is important not only for the right-hand sides of the vertex
and beta-function equations, as summarized by the func-
tion L, but it is important in the left-hand side of such
equations, as we show below. In fact, the mass damping is
so strong that it is probably unnecessary to worry about

vertex graphs of very high order; Ĝ does not get large

enough to probe the asymptotic limit of LðbĜ2Þ, as it does
for the massless case.

0.25 0.5 0.75 1 1.25 1.5
x

-2

-1.5

-1

-0.5

0.5
y

FIG. 2. Solutions to the differential equation (57) for K ¼ 1
(right-most curve) to K ¼ 5 (left-most curve). Here x ¼ ffiffiffi

b
p

g
and y ¼ ffiffiffi

b
p

�.

TABLE I. Upper-bound couplings for various K.

K ¼ 1 2 3 4 5

�c ¼ 3.1 1.3 0.90 0.70 0.58
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V. SUMMARYAND CONCLUSIONS

We argue that although the gauge-invariant PT propa-
gator does not obey the KL representation, it is the product
of two factors that do have the required positive spectral
functions. We show that this holds true for an analytic
approximation to the one-dressed-loop PT propagator
equation, and that this approximation implies a critical
mass mc such that the true dynamical mass m must exceed
mc or spurious singularities arise. We construct an

analytically-soluble toy model of one-dressed-loop PT
three-gluon vertex model with a cubic nonlinearity and

show how the positivity of the factor Ĥ in the PT propa-
gator plays an essential role in the vertex dynamics, in
particular, the occurrence of a mass value which must be
exceeded by m to avoid unwanted singularities. We argue
that higher-order, even regulated all-order, extensions of
the massless toy model equations do not remove these
singularities.
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