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Diverse mass and mixing patterns between the quarks and leptons makes it challenging to construct a

simple grand unified theory of flavor. We show that SO(10) supersymmetry grand unified theories with

type II seesaw mechanism giving neutrino masses provide a natural framework for addressing this issue. A

simple ansatz that the dominant Yukawa matrix (the 10-Higgs coupling to matter) has rank one appears to

simultaneously explain both the large lepton mixings as well as the observed quark flavor hierarchy in

these models. A testable prediction of this ansatz is the neutrino mixing, Ue3, which should be observable

in planned long baseline experiments.
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I. INTRODUCTION

Understanding the origin of the hierarchical pattern of
quark masses and mixings has long been recognized as a
challenge for physics beyond the standard model [1]. The
discovery of neutrino masses and mixings with totally
different flavor patterns than quarks (i.e. �l23 � 45� and

�l12 ’ 35� as against �q23 � 2:5� and �q12 � 13�) has added
more mystery to the flavor problem. In generic bottom-up
pictures where quarks and leptons are treated as different
species of particles with no particular relation between
them, this problem is not so serious since one can simply
focus on each sector separately, as is often done for neu-
trinos [2]. However, in grand unified theories (GUTs)
where the quarks and leptons unify at a very high scale,
one would naively expect that their masses and mixings
would exhibit a similar pattern. The fact that they are so
different may be a hint of some really new exciting under-
lying physics. In this note, we address this question in the
context of supersymmetric SO(10) models with renorma-
lizable Yukawa couplings being responsible for fermion
masses.

We show that in SO(10) models with 10, 126 plus
possibly another 10 or 120 Higgs fields where fermion
masses are generated by renormalizable Yukawa couplings
[3] only and where type II seesaw is responsible for neu-
trino masses [4], there is a natural way to have a unified
understanding of both large lepton mixings and small
quark ones. The basic idea is to require that one of the
10 Yukawa couplings is the dominant one contributing to
up, down, and charged lepton masses and has rank one with
other smaller couplings providing neutrino masses, as well
as most of the quark-lepton flavor hierarchy. Rank one plus
small corrections as a way to unravel fermion flavor in
D-brane models was discussed in [5]. We find that SO(10)
models with type II seesaw [3,4,6,7] are ideally suited for
such an ansatz. A specific form of the rank one matrix can
lead to tri-bimaximal mixing with corrections dictated by
the quark flavor pattern.

This paper is organized as follows: in Sec. II, we review
the mass formulae in SO(10) models with renormalizable
couplings; in Sec. III, we summarize our basic strategy for
understanding the quark-lepton flavor in a unified manner,
discuss the rank one ansatz, and apply it to both the two
generation case (IIIA) and three generation cases (IIIB). In
Sec. III C, we present realistic three generation models and
outline their predictions. Section IV is devoted to some
specific conjectures for the rank one matrix which could
emerge from discrete symmetry models with a specific
discussion on the correction to tri-bimaximal mixings.
Section V is devoted to a possible way to obtain the rank
one ansatz in SO(10) models, and in Sec. VI, we present
our conclusions.

II. OVERVIEW OF RENORMALIZABLE SUSY
SO(10) MODELS FOR FERMION MASSES

The basic idea in this class of models is to consider
SUSY SO(10) theory with Higgs fields that give fermion

masses to be in 10 (denoted byH) and 126þ 126 (denoted

by � and ��) plus either an extra 10 (H0) or 120 (�). The

GUT symmetry is broken by 210þ 54þ 126þ 126 [8].
The Yukawa superpotential of this model is

WY ¼ hc cH þ fc c ��þ h0c c ð� or H0Þ; (1)

where the symbol c stands for the 16 dimensional repre-
sentation of SO(10) that represents the matter fields. The
coupling matrices h and f are symmetric, and h0 is sym-
metric or antisymmetric depending on whether we adopt
H0 or �. The representations H, H0, and � have two
standard model doublets in each of them; whereas, � has
four such doublets. The general way to understand so many
standard model doublets is that at the GUT scaleMU, once
the GUT and the B� L symmetry are broken, one linear
combination of the up-type doublets and one of down-type
ones remain almost massless; whereas, the remaining ones
acquire GUT scale masses just like the color triplet and
other non-minimal supersymmetric standard model mul-
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tiplets. The electroweak symmetry is broken after the light
minimal supersymmetric standard model doublets (to be
calledHu;d) acquire vacuum expectation values (vevs), and

they then generate the fermion masses. The resulting mass
formulae for different fermion masses are given by

Yu ¼ hþ r2fþ r3h
0; Yd ¼ r1ðhþ fþ h0Þ;

Ye ¼ r1ðh� 3fþ ceh
0Þ; Y�D ¼ h� 3r2fþ c�h

0;
(2)

where Ya are mass matrices divided by the electroweak vev
vwk, and ri and ce;� are the mixing parameters which relate

the Hu;d to the doublets in the various GUT multiplets.

More precisely, the matrices h, f, and h0 in Ya are multi-
plied by the Higgs mixings. The precise definitions of the
couplings and the Higgs mixings are given in Ref. [7].
When H0 is adopted for the h0 coupling, ce ¼ 1 and c� ¼
r3. In generic SO(10) models of this type, the neutrino
mass formula has type I [9] and type II [10] contributions:

M � ¼ fvL �MD

1

fvR

Mt
D; (3)

where vL is the vev of the B� L ¼ 2 triplet in the 126

Higgs field and is given by vL ’ ��v2
wk

M2
�L

. Note that in gen-

eral, the two contributions to neutrino mass depend on two
different parameters, and it is easy to have a symmetry
breaking pattern in SO(10) [11], where the first contribu-
tion (the type II term) dominates over the type I term. The
neutrino mass formula then becomes

M � ¼ fvL: (4)

Note that f is the same coupling matrix that appears in the
charged fermion masses in Eq. (2), up to factors from the
Higgs mixings and the Clebsch-Gordan coefficients. The
Eqs. (2) and (4) are the key equations in our unified
approach to address the flavor problem.

The main hypothesis of our approach is that the fermion
mass formula of Eq. (2) is dominated by the matrix h with
the contributions of f and h0 being small perturbations. In
the limit of f, h0 ! 0, the quark and lepton mixings vanish
as do the neutrino masses. We will show below that this
simple hypothesis combined with Eq. (4) can simulta-
neously explain large lepton mixings while keeping the
quark mixings proportional to jfj=jhj and hence small. We
will subsequently assume that the matrix h has rank one in
which case the mass hierarchy can also be explained in a
natural manner.

III. EXPLAINING QUARK-LEPTON FLAVOR
HIERARCHIES

The quark and lepton mixing matrices are given by the
product of diagonalizing unitary matrices for quark and
lepton mass matrices as follows: denoting the diagonaliz-
ing matrices of Mu, Md by Vu and Vd, respectively [e.g.,

VuMuM
y
uV

y
u ¼ diag:ðm2

u;m
2
c; m

2
t Þ and similarly for the

down quark mass matrix], the Cabibbo-Kobayashi-

Maskawa (CKM) quark mixing matrix is given as VCKM ¼
VuV

y
d . The Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

lepton mixing matrix is given as UPMNS ¼ ðVeV
y
� Þ� in the

similar notation [e.g., V�M�V
t
� ¼ diagðm1; m2; m3Þ].

In general, when two matrices with random Oð1Þ ele-
ments are considered, the mixing angles of the relative
diagonalizing unitary matrices are allOð1Þ in radian, while
the eigenvalues can have a hierarchy of Oð0:1Þ. In such an
anarchical scenario, the neutrino masses and mixings can
be explained (except for the CHOOZ bound of 13 neutrino
mixing): the neutrino mixings are generically Oð1Þ, and
there is a little hierarchy for the neutrino mass squared
difference ratio �m2

12=�m
2
23 [12]. On the other hand, since

the quark mixings are all smaller thanOð1Þ and the masses
of quarks and charged leptons are very much hierarchical,
anarchic mass matrices in general provide no explanation
of these observations. Besides, it appears that the mass
ratios and CKM mixings have several correlations among
them. It is therefore to be expected that the quark and
lepton matrices, instead of being independent anarchic
matrices, must have some relations among them and an
underlying theory leading to these relations. In this paper,
we find that SO(10) with type II seesaw could be such a
theory. We will first extrapolate the fermion masses [13] to
the GUT scale of about 1016 GeV assuming that below the
GUT scale, the electroweak theory is the minimal super-
symmetric standard model. As a result, once our model
predictions match those values, they will be in agreement
with observations when extrapolated back to the weak
scale.
When the fermion masses are given by the Eqs. (2) and

(4), several possible outcomes are obtained by simple
assumptions. To understand these possible outcomes
from Eqs. (2) and (4), let us first ignore h0. We then have
the following possibilities:
Assumption 1:
Take that h, f are general rank three matrices, and f is

small. This is the case analyzed to fit observed experimen-
tal data and to obtain predictions from the minimality of
the number of parameters in various papers [4]. Here, we
list the properties resulting from the smallness of f without
resorting to any numerical fit.
(i) The CKM mixings are small, due to the fact that

there is an approximate up-down symmetry and

VCKM ¼ VuV
y
d [14].

(ii) Bottom-tau unification up to Oðf=hÞ.
(iii) The 3 neutrino mixings are generically of Oð1Þ,

since h and f are unrelated matrices. The type II
seesaw dominance of the neutrino mass is crucial
for the generic largeness of the neutrino mixings.

Thus it is interesting that without any special assumption,
the gross features of fermion mixings can be reproduced.
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This does not, however, shed any light on the mass hier-
archies among quarks and leptons, though one can fit the
experimental results by the choices of parameters (even in
the type I seesaw) [4,15,16]. Since we use the experimental
data as an input, these scenarios do not provide a funda-
mental understanding of either the mass hierarchy for
quarks and charged leptons, or why the 13 neutrino mixing
(Ue3) is less thanOð1Þ. A similar situation holds for models
where h0 is added [17,18].

Assumption 2:
Let us next consider the specific case when h is a rank

one matrix [7], and f is a rank three matrix with eigenval-
ues of f being hierarchical (f1, f2 � f3) and small com-
pared to the elements of h. As we noted in Ref. [7], this
choice helps suppress proton decay in SUSY SO(10) mod-
els without invoking huge cancellations among the colored
Higgsino exchange amplitudes. In this case, we will show
in the next two subsections that the following results
follow:

(1) CKM mixings are small.
(2) Approximate bottom-tau unification occurs.

(3) mc

mt
: ms

mb
:
m�

m�
’ r2:1:� 3.

(4) The quark mixings are related to Vcb �ms=mb þ
ei�mc=mt (where� is a phase) and Vub � Vcbf2=f3.

(5) Atmospheric and solar neutrino mixings are generi-
cally large, but 13 mixing is �f2=f3.

All of these predictions are in qualitative agreement with
observations. The advantage of the rank one assumption is
that it naturally explains the mass hierarchies among
quarks and leptons in addition to large lepton mixings.
We emphasize that these features are obtained from the
rank one assumption above without using any numerical
inputs, and our claim here is not based on the scenario of
the numerical predictions from a fit in which the minimal-
ity of parameters plays a key role.

Before we do a full demonstration of these results in the
context of a three generation model, let us illustrate the first
four points in the context of a two generation model.

A. A two generation illustration

In this subsection, we apply our rank one hypothesis to
the second and the third generation. We will confirm the
results 1–4 mentioned above. The starting point is the mass
relation from Eqs. (2) and (4), where we ignore the h0
contribution. Using our assumption, we have h ¼
ðsin� cos�Þtðsin� cos�Þh3 and f ¼ diagðf2; f3Þ (without
loss of generality, we can parametrize f to be diagonal).
The parameter � is of Oð1Þ in general. We now have ten
parameters (�, h3, and r1 as real parameters, f2, f3, and r2
as complex parameters, and vL for neutrino mass scale)
describing ten observables of all lepton and quark mixings
and masses.

One can easily obtain r1mt ’ mb tan� ’ m� tan� at the
leading order neglecting the Oðf3=h3Þ correction, where

tan� is a ratio of vevs of Hu and Hd. Therefore, r1
corresponds to the freedom of tan�, r1 � tan�=50.
When f2 � f3 � h3, we obtain

mc

mt
’ r2

f3
h3

sin2�;
ms

mb

’ f3
h3

sin2�;

m�

m�

’ �3
f3
h3

sin2�:

(5)

Because mc=mt � ms=mb, r2 is small, i.e. r2 ’
mc=mt=ðms=mbÞ.
To proceed further, we first diagonalize the charged

fermion mass matrices to zeroth order in f2, f3 ! 0. The
matrix diagonalizing is given by

U0 ¼ cos� � sin�
sin� cos�

� �
; (6)

sinceU0ðsin� cos�Þt ¼ ð01Þt. Let us now see how the small
quark mixings arise despite large mixings in U0. Because
U0YdU

t
0 has a small off-diagonal element, r1ðf2 � f3Þ�

sin� cos�, the down-type quark mass matrix is diagonal-
ized by Vd ¼ ~VdU0, where ~Vd is close to the unit matrix
whose off-diagonal element is ’ f3=h3 sin� cos�. The
up-type quark mass matrix is diagonalized by Vu ¼
~VuU0, where the off-diagonal element of ~Vu is ’
r2f3=h3 sin� cos�. The quark mixing matrix is then

given by VCKM ¼ VuV
y
d ¼ ~Vu

~Vy
d ; in this product U0

cancels out, leaving small mixings between the two gen-
erations i.e. small Vcb ’ ð1� r2Þf3=h3 sin� cos� ’
ðms=mb þ ei�mc=mtÞ cot�, where � is a phase of r2.
Coming now to lepton mixings, suppose that the charged

lepton mass matrix is diagonalized by V‘; then it can be
written as V‘ ¼ ~VeU0, where ~Ve is close to a unit matrix

similarly to the quark sector, and is roughly equal to Vy
CKM.

Since the neutrino mass matrix is already diagonal as a
parametrization, the PMNS matrix is given by the charged
lepton mixings so thatUPMNS ¼ V�

‘ ’ Vt
CKMU

0
L. This leads

to a large lepton mixing as desired. In the two generation
case, � describes approximately (up to small corrections of
order Vcb) the ‘‘atmospheric mixing angle.’’ Since this was
an input into our rank one ansatz, we can choose to be large
to explain the observations.
If f2, f3, and r2 are assumed to be real, then there are six

real parameters in this model. In this case, mb, ms, �atm,
andm2=m3 can be written as a function ofmc, mt, m�, m�,

and Vcb for example. Even if f2, f3, and r2 are all complex,
we have the following approximate relation at the grand
unified scale:

ms

mb

¼ Vcb tan�

�
1þO

�
f3
h3

��
;

mb ¼ m�

�
1þO

�
f3
h3

��
;

ms ¼ � 1

3
m�

�
1þO

�
f3
h3

��
:

(7)
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We note that the relation ms ¼ � 1
3m� is approximately

satisfied for GUT scale extrapolated values of known muon
and strange quark masses and in the context of theoretical
models first emphasized by Georgi and Jarlskog [19]. Since
the relations are satisfied under the assumption of approxi-
mate rank one property irrespective of the counting of
freedom, they are stable even in the case of the three
generation model. Indeed, the predictability from the min-
imality of the parameter is related to the Oðf3=h3Þ correc-
tions, and the minimality does not play a crucial role in the
approximate relations from the rank one assumption.

It is known that there is a solution in which the large
atmospheric mixing is obtained even if the smallness of f
is not assumed a priori. In the scenario, the b-� mass
convergence, as well as the other experimental inputs,
predict the neutrino mixing as an output [4]. Our main
goal in this section is not to give numerical predictions, but
rather to show how one can get a qualitatively expected
hierarchical pattern for masses and mixings. Later, we of
course study the detailed numerical predictions. As it turns
out, there is a fine-tuned solution to fit the experimental
data even if f3 is comparable to h3. However, such a fine-
tuned solution is sensitive to the numerical inputs, and
therefore the numerical predictions in this case may be
unstable under a possible higher order correction. In our
case where the quark and lepton mass hierarchy is pre-
dicted by the rank one assumption, they are stable under
radiative corrections.

While the qualitative predictions are in the expected
range, we note that the approximate relation tan�atm ’
ðms=mbÞ=Vcb is not in very good agreement with the
current observation, and small h0 will be invoked to obtain
the best fit of the experimental data. We emphasize that our
final solutions do not use any fine-tuned cancellations, and
thus are stable even if we add small corrections to fit the
numerical experimental data.

B. Three generation case

The fermion mass equations for this case are those in
Eq. (2) with all coupling matrices being 3� 3. The as-
sumption that h has rank one means that we can write it as

h ¼
c
b
a

0
@

1
A c b a
� �

; (8)

f ¼ diagðf1; f2; f3Þ; ðf1;2 � f3Þ: (9)

Again, we can parametrize f to be diagonal and a, b, c to
be real without loss of generality. At first, we ignore h0. In
order to analyze the detailed consequences of this assump-
tion, we go to the basis where h is diagonal. This is
achieved by the matrix

U0 ¼
cos�s sin�s 0

� cos�a sin�s cos�a cos�s � sin�a
� sin�a sin�s sin�a cos�s cos�a

0
@

1
A; (10)

where tan�s ¼ �c=b and tan�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
=a with

U0hU
t
0 ¼ diagð0; 0; h3Þ; (11)

where h3 ¼ a2 þ b2 þ c2. It is interesting to note that in
the diagonalization matrix, there is an ambiguity resulting
from the residual SU(2) flavor symmetry in h (i.e. one of
three mixing angles is not fixed at this stage). We choose
the unitary matrix U0 to be an approximate leading order
diagonalization matrix of Yu, Yd, and Ye as in the previous
subsection (Vu ¼ ~VuU0, Vd ¼ ~VdU0, and V‘ ¼ ~VeU0

where ~Vu, ~Vd, ~Ve are close to a unit matrix). Then, once
the f contribution is included, the afore mentioned SU(2)
flavor symmetry is broken and the ambiguity in mixing
angles alluded to above is removed. We wish to note that in
our original parametrization of U0, we chose the 13 ele-
ment to be zero since even after including the f contribu-
tion, the 13 element goes to zero in the limit f1;2=f3 ! 0
(which is the limit where Yu;d;e is rank two). We have not

used prejudices from the neutrino experiment.
By the same argument as in the case of two generations,

U0 is cancelled out in the CKM mixing matrix and the
quark mixings are small. The PMNS matrix is given by

UPMNS ¼ ~V�
eU0; (12)

and since the off-diagonal elements of ~V‘ are small (being
related to quark mixings), neglecting the 23 and 13 quark
mixings, we get for the solar and atmospheric mixing
angles [5]

�atm ’ �a; �� ’ �s � �13 cot�a cos�; (13)

where � is defined as the diagonal phase matrix
diagð1; ei�; ei�Þ needed to diagonalize the charged lepton
mass matrix [20].
We also get a formula for Ue3 as follows:

Ue3 ¼ ð ~VeÞ12 sin�a: (14)

To proceed with the rest of the masses and mixings, let
us define the matrices in the U0 rotation: ~Ya 	 U0YaU

t
0,

~f 	 U0fU
t
0, and so on. In this notation, ~Va is a diagonal-

ization matrix of ~Ya. Because ~f23 ¼ ðf2 � f3Þ sin�a cos�a
and ~f13 ¼ ðf2 � f1Þ sin�a sin�s cos�s, one can obtain

Vub ’ Vcb

f2 � f1
f3

sin�s cos�s
cos�a

: (15)

NeglectingOðf3=h3Þ andOðf1;2=h3Þ corrections, ~Va can

be approximately as

�V ¼
cos �� � sin �� 0
sin �� cos �� 0
0 0 1

0
B@

1
CA; (16)
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where

sin �� ’ f2 � f1
f3

cos�a sin�s cos�s
sin2�a

; (17)

and thus

Ue3 ’ f2 � f1
f3

cot�a sin�s cos�s: (18)

Thus we have obtained all of the features listed before.
Because of the generic largeness of the relative mixing
angles of the unrelated matrices, solar and atmospheric
neutrino mixing angles are of Oð1Þ generically. On the
other hand, 13 mixing is not in the category of the generic
largeness, since it is related to the ratio of eigenvalues of f.
The eigenvalue ratio is also related to Vub=Vcb implying
that the 13 mixing angle has to be small in our approach. It
is important to note that we do not assume a particular
flavor texture such as a hierarchical pattern in one matrix to
obtain the feature. The key property to obtain the features
for the neutrino mixings is that the correction to the rank
one charged lepton mass matrix and the type II seesaw term
are unified (or more roughly, simultaneously diagonal-
ized), as a result of SO(10) unification.

C. Realistic model with h0

The discussion above gives the qualitative consequences
of the rank one property, and the experimental inputs are
not used to obtain the features. The discussion below will
address the issue of the experimental data for the first
generation. Actually, we have not listed the first generation
masses and Vus before. In fact, if h0 ¼ 0, then one obtains
the following relation among the fermion masses:

mu

mt
:
md

mb

:
me

m�

’ r2ð1þ r2XÞ:1þ X:� 3ð1� 3XÞ; (19)

where X ¼ f1f2f3=ða2f1f2 þ b2f1f3 þ c2f2f3Þ. When
one fits down quark and electron masses (e.g., X ¼ 0:35),
the up quark mass is clearly too large since r2 ’
mc=mt=ðms=mbÞ � 0:1. As a result, one of the first gen-

eration masses cannot be fitted. Besides, since �V in
Eq. (16) is common for up- and down-type quarks, Vus

becomes too small compared to observations, since Vus ’
VcbVub. Therefore, one needs a nonvanishing contribution
from h0 to obtain realistic masses for the first generation
and Vus under the rank one assumption.

As it is well-known, the empirical relation Vus ’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
md=ms

p
is obtained when ð ~YdÞ11 ! 0 and ð ~YdÞ12 ’

ð ~YdÞ21. Therefore we choose ~f11 ! 0. When ð ~YdÞ11,
ð ~YeÞ11 ! 0 is assumed, the choice of ð ~YeÞ12 �
ð ~YeÞ21 � ð ~YdÞ12ð ~YdÞ21 satisfies the Georgi-Jarskog (GJ) re-
lation (mem�m� �mdmsmb) for the down-type quarks and

charged lepton masses. The up quark mass can be fitted
using the freedom of r3. As a result, we have the following

two solutions typically to fit the first generation masses and
Vus in a simple manner.

Case A: ~f11 ’ 0 and j~f12 þ ~h012j ’ j � 3~f12 þ ~h012j. The
smallness of the up quark mass is realized by a cancellation

in ð ~YuÞ12 ¼ r2 ~f12 þ r3 ~h
0
12.

In this case, h0 has to be symmetric, which we can obtain

by employing an extra 10 Higgs field. For example, ~h012 ’
~f12 is the simplest solution, giving

Ue3 ’ 1

3
Vus sin�a; (20)

Vus ’ 2 sin �� ’ 2
f2
f3

cos�a
sin2�a

tan�s; (21)

where �� is given in Eq. (17), and we have used a relation

f1 ’ �f2tan
2�s from ~f11 ’ 0. Assuming that the correc-

tions from the other elements of ~h0 (e.g., ~h013;23) are small,

we have an approximate relation

Vub

Vcb

� 1

2
Vustan

2�a; (22)

which is in good agreement with the experiment.

Case B: In this case, we have ~f11 ~f22 � ~f212 ’ 0. Then, 11

and 12 elements of ( �V ~f �Vt) are zero, where �V in Eq. (16) is
an approximate diagonalization matrix in the limit h0 ! 0.

The 12 element of �V ~h0 �Vt produces the Cabibbo angle. The

GJ relation is manifest when jcej ¼ 1 and ð �V ~h0 �VtÞ11 ’ 0.
The up quark mass is fitted by the smallness of r3,
mu=mc ’ r23=r2md=ms.

In this case, h0 can be either symmetric or antisymmet-
ric. Since the 11 element vanishes automatically, the anti-
symmetric coupling from 120Higgs field is a better choice.

As is noted, �V contributes to Ue3, but it does not contribute
to the Cabibbo angle. As a result, we obtain from Eq. (14)

jUe3j ’ sin�a

��������sin ��þ ei	ce
1

3
Vus

��������
’
��������f2
f3

tan�s cot�a þ ei	ce
1

3
Vus sin�a

��������; (23)

where 	 is a relative phase between ~f12 and ~h012 roughly,
and we have used a relation f1 ’ �f2tan

2�s. Since Vus is
generated purely from h0, it is not directly correlated to
Vub=Vcb, contrary to the case A.
As we have noted, to fit Vcb, ms=mb and �atm very well,

one needs a correction in ~h023. However, the correction does
not affect the approximate expressions for Ue3 very much.
It is interesting that theUe3 is related to the mass ratio of

neutrino in both cases. Since the GJ relation and the
empirical relation of Vus are not exact relations, there can
be a shift from them in a numerical fit analysis.
Here, we assumed ð ~YaÞ11 ! 0 to satisfy the GJ relation

and the empirical relation of Vus in a simple manner. When
one introduces other parameters especially for symmetric
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h0, there will be an accidental fine-tuned solution for the
relations in a general fit for ð ~YaÞ11 � 0. Actually, when h0
is symmetric (ce ¼ 1) and r3 ¼ 1, it results in a minimal

model in which only one 10 and 126 Higgs fields couple to
fermions with h being rank three. In the minimal model for
the fermion sector, it is known that there is a fine-tuned
solution to fit fermion masses and mixings [16] unless the
minimality of the Higgs potential is taken into account. In
this case, when the first generation masses and Vus are
tuned, there is no freedom to adjust Ue3, and thus the
approximate relation in the previous subsection holds,
Ue3 � f2=f3. When r3 � 1 (but r3 ’ 1), Ue3 can be tuned
to be any value (including zero), since first generation
masses and Vus can be fitted even if ð ~YeÞ12 ¼ 0. (When h
is rank one and h0 is antisymmetric, there is no such fine-
tuned solution. When h is rank three, the fine-tuning fit for
Ue3 ¼ 0 is allowed [17].) Therefore, the assumption
ð ~YaÞ11 ! 0 to satisfy the GJ relation in a simple manner
is crucial to keep the Ue3 prediction. Actually, when
ð ~YaÞ11 ! 0 is assumed, the fine-tune solutions are re-
moved, and the Ue3 is predicted as we have noted, irre-
spective of the number of parameters. We also note that the
assumption ð ~YaÞ11 ! 0 is preferable to suppress nucleon
decay amplitudes naturally.

The case with the assumption that h (rank one) and f are
real and antisymmetric h0 is purely imaginary (in which
case, the charged fermion mass matrices are hermitian) is
in fact the model discussed in [7]. For this case, cancella-
tion cannot happen between f and h0 and thus the numeri-
cal fit does not shift very much from the above expression.
In the numerical fit, it predicts jUe3j ¼ 0:08–0:12 in the
case where jcej ¼ 1 (and the GJ relation is manifest).
Under the hermiticity assumption, one obtains ei	 ¼ �i
and it is consistent with the above expression. In this case,
since ð ~YeÞ22 is real, the PMNS phase is roughly the same as
the phase in the expression in Eq. (23) and thus

tan
PMNS ’ 1

3

ceVus

sin ��
; (24)

and we obtain 
PMNS ’ �30� or 180� 30� using the
experimental inputs.

For the case of jcej � 1, one can also fit the experimen-
tal data, and the prediction is jUe3j ¼ 0:05–0:14. Since the

cancellation is not allowed between ~f13 and ~h013, the ex-
perimental data of Vub cuts the upper region of experimen-
tally allowed mass squared ratio difference, and then gives
an upper bound of Ue3.

IV. TRI-BIMAXIMAL ANSATZ

In the previous section, we incorporated large lepton
mixings but their values were inputs into the theory. In
this section, we consider special cases where the dominant
part of the lepton mixing is in the tri-bimaximal form [21].
This would require special form for the rank one matrix h.
We envision that the rank one form for h, as well as the

matrix forms for f and h0, come from some vacuum align-
ment of flavon fields, e.g., [22–24].
In the triplet flavon models, the 3� 3 matrix can be

expanded by the tensor products of the flavon fields when
there are three independent flavons. The three flavon fields
can be expressed (without loss of generality, by making
unitary transformations) as

�1 ¼ ð0; 0; 1Þ; �2 ¼ ð0; a; bÞ; �3 ¼ ðc; d; eÞ:
(25)

In general, there is no reason for the flavon vevs to be
hierarchical, and the large neutrino mixings can originate
from a� b, c� d� e [25]. The experimental result from
the neutrino oscillation seems to imply a special alignment
of flavon vevs rather than the generic largeness, namely
[22],

�1 ¼ ð0; 0; 1Þ; �2 ¼ ð0;�1; 1Þ= ffiffiffi
2

p
;

�3 ¼ ð1; 1; 1Þ= ffiffiffi
3

p
:

(26)

The vacuum alignment can be obtained by imposing a
discrete flavor symmetry [23], leading to tri-bimaximal
neutrino mixings.
It is worth pointing out at the beginning that the aligned

flavon fields can be written in several ways by choice of
coordinates (or by making unitary transformations), and
the final results are independent of the coordinate choice.
It is interesting to note that the aligned flavon vevs

correspond to a link of a hexahedron, a diagonal line of a
lateral surface, a diagonal line of a regular hexahedron,
respectively. The interpretation becomes clear when the
flavon fields are expanded in terms of the following or-
thogonal axes of coordinates (called hexahedral coordi-
nate):

x1 ¼ ð1; 0; 0Þ; x2 ¼ ð0; 1; 0Þ; x3 ¼ ð0; 0; 1Þ;
(27)

which correspond to the three lateral links of the regular
hexahedron. The hexahedral coordinate is convenient to
describe the Z4 rotation around the surface-diagonal axes
of the hexahedron. In fact, the regular hexahedron has
different coordinates to describe the symmetry of the
shape. One can consider a coordinate system, which proves
convenient to describe the Z3 rotation around the vertex-
diagonal axes of the hexahedron,

x01 ¼ ð2;�1;�1Þ= ffiffiffi
6

p
; x02 ¼ ð1; 1; 1Þ= ffiffiffi

3
p

;

x03 ¼ ð0;�1; 1Þ= ffiffiffi
2

p
:

(28)

The axes of the coordinates x01 and x03 are on the regular

triangle, which is formed by three of the hexahedron’s
vertices, and x02 is perpendicular to the triangle. We call
this tetrahedral coordinate.
The unitary matrix for the coordinate transformation

from hexahedral (unprimed) to tetrahedral (primed) coor-
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dinate is the tri-bimaximal (TB) matrix i.e. x0 ¼ xUt
TB,

where

UTB ¼

ffiffi
2
3

q ffiffi
1
3

q
0

�
ffiffi
1
6

q ffiffi
1
3

q
�

ffiffi
1
2

q
�

ffiffi
1
6

q ffiffi
1
3

q ffiffi
1
2

q

0
BBBB@

1
CCCCA: (29)

Therefore, in general (irrespective of the rank one assump-
tion), if the charged lepton mass matrix is (nearly) diagonal
in the hexahedral coordinate and the neutrino mass matrix
is (nearly) diagonal in the tetrahedral coordinate, then the
neutrino mixing matrix is (nearly) tri-bimaximal and given
by

UMNSP ¼ VeUTBV
y
� ; (30)

where Ve is a diagonalizing matrix of Ye in the hexahedral
coordinate, and V� is a diagonalizing matrix of M� in the
tetrahedral coordinate.

Suppose that the vacuum alignment in Eq. (26) is given
in the hexahedral coordinate as we have noted. Then, those
flavons in the tetrahedral coordinate are given as (�0

i ¼
�iUTB)

�0
1 ¼ ð�1;

ffiffiffi
2

p
;

ffiffiffi
3

p Þ= ffiffiffi
6

p
; �0

2 ¼ ð0; 0; 1Þ;
�0

3 ¼ ð0; 1; 0Þ:
(31)

Therefore, from the discussion in the previous section, one
can easily check that the nearly tri-bimaximal neutrino
mixings are obtained when h is rank one formed by �1

(irrespective of the choice of the coordinate), and f is
formed by �2 and �3. We have defined �4 as an outer
product of �2 and �3, i.e. �4 ¼ �3 ��2. In the tetrahe-
dral coordinate, �0

4 ¼ ð1; 0; 0Þ.
As we have mentioned, the Yukawa matrices can be

expressed in terms of the tensor products of the flavon
fields. The symmetric matrices can be formed by six bases.
Since we set the 11 element to be zero in the hexahedral
coordinate, we define the following matrices as the bases to
form the linear space of symmetric matrices:

Y1 ¼ �t
1�1 ¼

0 0 0
0 0 0
0 0 1

0
@

1
A; (32)

Y2 ¼ 2�t
2�2 ¼

0 0 0
0 1 �1
0 �1 1

0
@

1
A; (33)

Y3 ¼ 2

�
�t

3�3 � 1
2�

t
4�4

�
¼

0 1 1
1 1

2
1
2

1 1
2

1
2

0
B@

1
CA; (34)

Y4 ¼
ffiffiffi
6

p ð�t
2�3 þ�t

3�2Þ ¼
0 �1 1
�1 �2 0
1 0 2

0
@

1
A; (35)

Y5 ¼
ffiffiffi
3

p ð�t
2�4 þ�t

4�2Þ ¼
0 �1 1
�1 1 0
1 0 �1

0
@

1
A; (36)

where the elements of the matrices are presented in the
hexahedral coordinate.
In the following, we will consider two models: (I) V� is a

unit matrix (f is diagonal in the tetrahedral coordinate),
(II) V� is close to a unit matrix.

A. Model I: V� ¼ 1

The Model I can have both case A and case B solutions
as described in the previous section. The case A solutions
are, however, more natural in this model. In order to obtain
such a solution, we employ additional 10 Higgs to obtain a
correction matrix h0, and h0 is a symmetric matrix.
We arrange the h, f, h0 couplings as follows:

h ¼ h3Y1; (37)

f ¼ h3�ðY2 þ �Y3Þ; (38)

h0 ¼ h3��
Y4; ðor h3��
Y5Þ: (39)

Then, since the ratio of eigenvalues of f is 1:�:� �=2,
we obtain �m2

sol=�m
2
atm ¼ 3

4�
2. In the parametrization in

the previous section, U0 in Eq. (10) is the tri-bimaximal

matrix, because a:b:c ¼ ffiffiffi
3

p
:
ffiffiffi
2

p
:� 1.

The fermion Yukawa matrices are

Yu ¼ hþ r2fþ r3h
0 (40)

¼ h3

0 ��ðr2 � r3
Þ ��ðr2 þ r3
Þ
��ðr2 � r3
Þ r2�ð1þ �

2Þ þ r3x��
 ��r2ð1� �
2Þ

��ðr2 þ r3
Þ ��r2ð1� �
2Þ 1þ r2�ð1þ �

2Þ � r3x��


0
B@

1
CA; (41)

Yd ¼ r1ðhþ fþ h0Þ (42)
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¼ r1h3

0 ��ð1� 
Þ ��ð1þ 
Þ
��ð1� 
Þ �ð1þ �

2Þ þ x��
 ��ð1� �
2Þ

��ð1þ 
Þ ��ð1� �
2Þ 1þ �ð1þ �

2Þ � x��


0
B@

1
CA; (43)

Ye ¼ r1ðh� 3fþ h0Þ (44)

¼ r1h3

0 ��ð�3� 
Þ ��ð�3þ 
Þ
��ð�3� 
Þ �3�ð1þ �

2Þ þ x��
 3�ð1� �
2Þ

��ð�3þ 
Þ 3�ð1� �
2Þ 1� 3�ð1þ �

2Þ � x��


0
B@

1
CA; (45)

where x ¼ �2 when h0 / Y4, and x ¼ 1 when h0 / Y5.
For the numerical fits, the parameter � is given by ��

ms=mb � Vcb, and the parameter � is given by �ð1� 
Þ �
Vus.

When 
 ’ �1, then the Goergi-Jarskog relation is sat-
isfied naturally. At that time, ðYdÞ13 ’ 0. This is interesting,
since the empirical relation jVtdj ’ VusVcb is satisfied si-
multaneously when r2, r3 are small (up-type quark masses
are more hierarchical rather than down-type quark masses).

The parameter r2 is fixed as jr2j �mc=mt=ðms=mbÞ.
The up quark mass can be made small by a choice r3 �
r2=
.

Cabibbo angle, Ue3, and the ratio of mass squared
differences �m2

sol=�m
2
atm are all correlated by the parame-

ter �. The naive approximate relation is Ue3 ’ Vus=ð3
ffiffiffi
2

p Þ
as we have derived in the previous section.

In Fig. 1, we plot Ue3 as a function of the mass squared
difference ratio. In the plot, we fit me=m� and m�=m�

using 
 and � (which are assumed to be real in the plot).
Then, Ue3 is calculated as a function of �. (The mixing
angles do not depend on h3). We note that a correction
from h0 is needed to fit Vcb, e.g., �h

0 / �t
1�2 þ�t

2�1. As
we have mentioned, such a correction does not modify the
Ue3 very much. In Fig. 1, we also show the plot of Ue3 as a
function of �sol. Using the experimental constraint on

�m2
sol=�m

2
atm and the other input from quark masses and

mixings, we find that Ue3 is predicted to be 0.07–0.08. We
note that the smaller side of experimental range of
�m2

sol=�m
2
atm is preferred from the numerical fit, which

obeys from the naive relation �ð1� 
Þ � Vus. The solar
mixing angle �sol is found to be�32� from the plot, which
is obeyed by the approximation Eq. (13) when the PMNS
phase is 0 (or �), which results from the assumption where

 and � are real. The atmospheric mixing angle �atm is 45�
up to a�2–3� correction from Vcb for Model I irrespective
of case A or case B solutions.
The current allowed range for the neutrino parameters at

2� level are as follows [26]: �atm ¼ 37�–51�, �sol ¼
31:8�–36:4�, and �m2

sol=�m
2
atm ¼ 0:027–0:038.

B. Model II: V� � 1

The Model II can have both case A and case B solutions
as well. In this model, the case B solutions are more
natural. It is possible that the f coupling is not completely
diagonal in the tetrahedral coordinate. Using the available
freedom, we choose the 12 element of f in the hexahedral
coordinate to obtain the case B solution. Since the 12
elements of Y3 þ Y4 and Y3 þ Y5 are zero, one can con-
sider the choice:

FIG. 1. Ue3 is shown as a function of �m2
sol=�m

2
atm (left) and �s (right) for Model I.
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h ¼ h3Y1; (46)

f ¼ h3�ðY2 þ �ðY3 þ Y4ÞÞ; (47)

h0 ¼ h3��
Y4: (48)

The matrix Y4 can be replaced with Y5. One can also
choose h0 to be antisymmetric, e.g., h0 / �t

2�3 ��t
3�2.

In the tetrahedral coordinate, the f coupling is written
when f / Y2 þ �ðY3 þ Y4Þ (case B1) as

ftetra /
�1

2� 0 0

0 �
ffiffi
3
2

q
�

0
ffiffi
3
2

q
� 1

0
BBB@

1
CCCA; (49)

and if the notation in the previous section is used, we obtain

a:b:c¼ ð ffiffiffi
3

p
cosc þ ffiffiffi

2
p

sinc Þ:ð ffiffiffi
2

p
cosc � ffiffiffi

3
p

sinc Þ:� 1,

where tan2c ¼ ffiffiffi
6

p
�=ð1� �Þ. The mass squared ratio is

�m2
sol=�m

2
atm ¼ 3=4�2ð1� 4�þOð�2ÞÞ. When we use

f / Y2 þ �ðY3 þ Y5Þ (case B2),

ftetra /
� 1

2� 0
ffiffi
3

p
2 �

0 � 0ffiffi
3

p
2 � 0 1

0
B@

1
CA; (50)

we obtain a:b:c ¼ ð ffiffiffi
3

p
cosc 0 � sinc 0Þ:ffiffiffi

2
p

:ð� cosc 0 � ffiffiffi
3

p
sinc 0Þ, where tan2c 0 ¼ ffiffiffi

3
p

�=ð1þ
�=2Þ. The mass squared ratio is �m2

sol=�m
2
atm ¼

3=4�2ð1� �þOð�2ÞÞ.
We note that if there is a Oð�Þ correction in the 12

element in the tetrahedral coordinate, it modifies the �s
angle largely, and it separates from the nearly tri-
bimaximal mixing; thus we do not use the choice.

As we have obtained in the previous section, the Ue3

prediction is

jUe3j �
��������

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�m2
sol

�m2
atm

s
þ ei	

1

3
ffiffiffi
2

p Vus

��������: (51)

Clearly, if the parameters 
, �, � are all real, then, 	 ¼ 0 or
�, and the maximal and minimal values of Ue3 are ob-
tained. At that time, there is no phase in the PMNS mixing
matrix. (The Kobayashi-Maskawa phase can be obtained
from a phase of r2 and/or r3.)
In Fig. 2 [case B1, Eq. (49)] and Fig. 3 [case B2,

Eq. (50)], we plot Ue3 when 
, �, � are real to find the
lower and upper limits. Because of the off-diagonal ele-
ments of f in the tetrahedral coordinate, the atmospheric
angle shifts from 45�, and the shift is correlated to Ue3,
unlike the case of Model I.
In case B1, using the experimental constraint on

�m2
sol=�m

2
atm, we find that Ue3 is predicted to be 0.05–

0.08. This solution corresponds to the sign choice ei	 ¼
�1 in Eq. (51). We also plot atmospheric mixing angle in
Fig. 2 (right). It is interesting to note that for the case B1, �
should be negative for j�j � 0:1–0:3 to fit the mass squared
difference ratio, since �m2

sol=�m
2
atm ¼ 3=4�2ð1� 4�þ

Oð�2ÞÞ. As a result, the direction of the shift is determined
to fit experimental values, i.e. �atm > 45�.
In case B2, the mass squared ratio can be fitted for both

signatures of � (we find two branches in both graphs in
Fig. 3). The plot in Fig. 3 is shown constraining tan2�sol >
0:35, and one can find that �m2

sol=�m
2
atm becomes too

small for one of the branches to fit the solar mixing angle,
and �atm > 45� is favored in this case as well. Larger Ue3

values (> 0:15) are preferred once we include the experi-
mental limit on �m2

sol=�m
2
atm. The solution corresponds to

the sign choice ei	 ¼ þ1 in Eq. (51).
As we discussed above, both case A and case B solutions

can be obtained in Models I and II. The interesting question

FIG. 2. sin�13 is shown as a function of �m2
sol=�m

2
atm (left) and �atm is shown as a function of �m2

sol=�m
2
atm (right) for Model II,

case B1 (described in the text).
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is how can we distinguish these two models. For example,
the predictions of Ue3 (as shown in Figs. 1–3) distinguish
between the cases A and B. Actually, if Ue3 is just below
the current CHOOZ bound, then the case B solution with
ei	 ¼ 1 is preferred. Since the case A is a more natural
solution for Model I and case B is a more natural solution
for Model II, one may weakly conclude that this prediction
distinguishes between Models I and II. But a stronger way
to distinguish these models would be to use the predictions
of �atm. In Model I, �atm is fixed to be 45� up to �2–3�
corrections from Vcb; whereas, Model II prefers �atm >
45� (Figs. 2 and 3) in the experimentally allowed region.
This difference is directly due to the rigorousness of �-�
symmetry in the f coupling from the tri-bimaximal ansatz
[V� ¼ 1 (Model I)] where the f coupling has Z2 � Z2

symmetry. In Model I, the deviation from the maximal
angle is related to Vcb, while in Model II, the deviation is

related toUe3. The current best fit value of the atmospheric
mixing angle (�bestfitatm ¼ 43� [26]) is nearly the maximal
mixing, and it implies the Model I. However, the error is
still large. The accurate deviation from the maximal angle
will be obtained in a future three generation fit of the
neutrino oscillations [27], and it will give us an important
test for the tri-bimaximal ansatz.
The predictions for �sol are similar with a small margin

in these models, since the deviations from the tri-
bimaximal angle (�s ¼ 35:3�) are related to Ue3 in all
cases. In Model I, �sol is predicted to be �32�; whereas,
in Model II (Fig. 4), �sol is predicted to be�34� (case B1),
�33� (case B2), once we include all of the experimental
bounds. The PMNS phase is assumed to be 0 or � in the
plot, and the general phase fit will change the predictions of
the angle, especially for Model II.

FIG. 4. �sol is shown as a function of �m2
sol=�m

2
atm for Model II, case B1 (left), case B2 (right).

FIG. 3. �atm is shown as a function of �m2
sol=�m

2
atm (left) and sin�13 is shown as a function of �atm for Model II, case B2 (described

in the text).
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V. DERIVATION OF RANK ONE ANSATZ

The rank one Yukawa coupling with 10 Higgs field
generates the features of flavor hierarchy, and rank one
matrices can often appear in various ways (flavor symme-
try, discrete symmetry, and string models). In this section,
we give an SO(10) model, where the rank one ansatz used
in our discussion of flavor emerges from a discrete
symmetry.

When the direct couplings of chiral fermions with a
Higgs field are forbidden by a symmetry, and the effective
Yukawa couplings are generated by propagating vectorlike
matter fields, the rank of the effective Yukawa matrix
depends on the number of the vectorlike fields. Actually,
when there is only one pair of vectorlike matter fields as a
flavor singlet, the effective Yukawa matrix is rank one.

The model we assume has one extra vectorlike pair of
matter fields with a mass slightly above the GUT scale

(denoted by c V 	 16V 
 �c V 	 16V) and three gauge sin-
glet fields Ya. We add a Z4 discrete symmetry to the model
under which the fields c a ! ic a, and Ya ! �iYa. The
10-Higgs field H is invariant under this symmetry. The
gauge invariant Yukawa superpotential under this assump-
tion is given by

W ¼ c VH�c V þMVc V
�c V þ �c V

X
a

Yac a: (52)

When we give vevs hYai � 0, c V , and c a are mixed. The
heavy vectorlike fields, �c V and a linear combination of c V

and c a (i.e.MVc V þP
aYac a), and the effective operator

below its scale and at the GUT scale is given by

L eff ¼ �

M2
V þP

a
Y2
a

�X
a

Yac a

�
H

�X
b

Ybc b

�
: (53)

This gives rise to a rank one h coupling. We note that it
does not contradict the Oð1Þ top Yukawa coupling, when
M2

V �P
aY

2
a (or M2

V <
P

aY
2
a).

If we let the 126 Higgs field transform like�1 under Z4,
it can induce the f coupling with rank three.

Another way to get mass matrix patterns of types in
Sec. IV is to assume that there are three component flavon

fields (denoted by the dimensionless field �i 	 �
M ), which

are representations of some internal flavor group and
constrain their couplings to fermions by other symmetries.
As an example, let us choose four flavon fields which
transform as follows under a Z4 � Z2 � Z2 group:
�1ð�i;þ;þÞ; �2ð1;�;þÞ; �3ð1;þ;�Þ; �4ð1;�;�Þ;

c ði;þ;þÞ; ��ð�1;þ;þÞ; Hð1;þ;þÞ; H0ð�1;�;�Þ. The
invariant Yukawa coupling under these symmetries is

LY ¼ �t
1�1c cH þ�t

2�2c c ��þ�t
3�3c c ��

þ�t
4�4c c ��þ�t

2�3c cH0 þ H:c: (54)

In general, the vevs of the �i fields align as in Eq. (25),
which can then lead to our type of rank one models. With
suitable discrete symmetries, e.g., �ð27Þ [23], the flavon
vevs can align as in Eq. (26), leading to models of the type
considered here (Model I). When the Z2 group is chosen
instead of the Z2 � Z2 group such that �1ðþÞ; �2ð�Þ;
�3ð�Þ; �4ðþÞ; c ðþÞ; ��ðþÞ; HðþÞ; H0ðþÞ, the �t

2�3

term is allowed in the c c �� coupling and Model II (B1)
can be considered. More details on the flavon vev align-
ment with discrete symmetries and implications for rank
one models is currently under investigation.

VI. CONCLUSION

In conclusion, we have shown how a simple ansatz for
the dominant Yukawa coupling matrix in renormalizable
SO(10) models can lead to a unified understanding of the
diverse quark and lepton flavor hierarchies. We suggest this
a possible way to address the challenge of a unified de-
scription of quark-lepton flavor. We have not attempted in
this paper to derive our ansatz from any specific discrete
symmetries, although we show a guideline to obtain a rank
one form from a higher than GUT scale theory. This may
be the next step towards a complete theory of flavor.
Within our rank one hypothesis, we have considered two

classes of models which are nearly tri-bimaximal and point
out that both a measurement of �13 and the atmospheric
mixing angle �atm can distinguish between these models. In
these models, the natural minimal value of �13 is around
0.05; whereas, the maximal value can be larger than 0.15.
This range of �13 can be probed in the upcoming experi-
ments. The current estimate of �13 using the 1:5� excess of
events in MINOS �� � �e appearance channel [28] and all

other experimental data is sin2�13 ’ 0:02� 0:01 (1�) [29].
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