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In a model in which leptons, quarks, and the recently introduced hyperquarks are built up from two

fundamental spin- 12 preons, the standard model weak gauge bosons emerge as preon bound states. In

addition, the model predicts a host of new composite gauge bosons, in particular, those responsible for

hyperquark and proton decay. Their presence entails a left-right symmetric extension of the standard

model weak interactions and a scheme for a partial and grand unification of nongravitational interactions

based on, respectively, the effective gauge groups SUð6ÞP and SUð9ÞG. This leads to a prediction of the

Weinberg angle at low energies in good agreement with experiment. Furthermore, using evolution

equations for the effective coupling strengths, we calculate the partial and grand unification scales, the

hyperquark mass scale, as well as the mass and decay rate of the lightest hyperhadron.
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I. INTRODUCTION

In a composite model in which leptons and quarks are
bound states of two fundamental, massless spin- 12 preons,

called T and V, interacting via color and hypercolor forces
[1–3], a new class of fermionic bound states, called hyper-
quarks, has recently been introduced in order to satisfy a
special case of the ’t Hooft anomaly matching conditions
[4]. In contrast to quarks, which carry zero hypercolor and
open color, hyperquarks have zero color and open hyper-
color. The matching of the anomalies on the preon and
bound state levels that has been achieved by introducing
hyperquarks gives an answer to the question why there are
exactly three fermionic generations. At the same time it
raises new questions, foremost whether there is any experi-
mental evidence for hyperquarks.

Because hyperquarks are subject to confining forces one
would expect hyperquark bound states, such as hyperme-
sons and hyperbaryons to exist in nature. The nonobserva-
tion of these hyperhadrons with present accelerators
indicates that their masses are considerably larger than
those of ordinary hadrons, and that hyperquarks are much
heavier than quarks. Hyperhadrons might have been pro-
duced in the Early Universe. However, because not even
the lightest of these is observed today, the lightest hyper-
quark itself cannot be stable. Consequently, a new class of
massive bosons which generate hyperquark decays must
exist.

In this paper, we discuss the spectrum of composite spin
1 bosons that can be constructed in the preon model as well
as their role in various weak decay processes. We assume
that all massive composite bosons including the electro-
weak gauge bosonsW and Z of the standard model, as well
as those responsible for hyperquark decay, remain tightly
bound at least up to ffi 1016 GeV (grand unification scale).

Explicit preon degrees of freedom do not appear below this
scale so that the corresponding interactions between preon
bound states can be described by approximate effective
gauge theories. In particular, for low energies <103 GeV
(Fermi scale) one recovers the standard model Lagrangian
with left-right asymmetric weak interactions, while for ffi
109 GeV (partial unification scale), it is suggested that an
effective SU(6) gauge theory unifies left-right symmetric
extended weak interactions including the new gauge bo-
sons generating hyperquark decay with the hypercolor
interaction.
We also address the issue of the mass scale, where

hyperquarks appear. The momentum dependence of the
different gauge couplings is used to predict the energy
scale where they converge and a unified gauge theory
with a single coupling occurs. This in turn enables us to
put limits on the nonperturbative regime of the hypercolor
force and the mass of the lightest hypermeson. In short, the
purpose of this work is to address the following questions:
(i) How are massive weak gauge bosons described in

the preon model?
(ii) Which processes and gauge bosons are responsible

for hyperquark instability?
(iii) What is the effect of hyperquarks in various weak

interaction processes?
(iv) At what energy scale do hyperquarks and their com-

posites appear?
Important questions such as gauge boson and fermion

mass generation are not discussed here. It may suffice to
say that in the present model there are no fundamental
Higgs fields although there could be composite scalars
such as hyperquark bound states. This is reminiscent of
technicolor models and appears to be promising. However,
closer inspection shows that hyperquarks are singlets under
weak isospin. Therefore, they and their scalar bound states
do not have the same SUð2ÞWL

� Uð1ÞY group structure as

the standard model fermions and Higgs fields. Thus, hyper-
quark bound state scalars cannot give mass to any of the
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standard model gauge bosons and fermions. In this paper,
we concentrate on the spectrum of vector bosons. We hope
to come back to the issue of scalar particles and mass
generation in the preon model elsewhere.

The paper is organized as follows. Section II gives a
short review of fermionic bound states in the preon model.
In Sec. III, taking as straightforward a position as possible,
we discuss an extension of the standard electroweak theory,
making explicit the preon content of the massive electro-
weak gauge bosons including those responsible for
hyperquark-quark transitions. A further generalization of
the extended weak and the hypercolor interactions is dis-
cussed in Sec. IV. The resulting theory, which we call
partial unification, represents a necessary step towards
grand unification, as shown in Sec. V. Section VI provides
numerical results for the running couplings and unification
constraints from where mass ranges of the heavy bosons,
the lightest neutrino, and the hyperquarks are obtained.
The predicted hyperhadron masses are within reach of
the Large Hadron Collider at CERN. Section VII contains
a summary and outlook.

II. FERMIONIC BOUND STATES

In the Harari-Shupe model [1–3] all quarks and leptons
are built from just two spin- 12 fermions (preons). According

to Harari and Seiberg [2] the two types of preons belong to
the following representations of the underlying exact
gauge group SUð3ÞH � SUð3ÞC � Uð1ÞQ: T: ð3; 3Þ1=3 and

V: ð3; �3Þ0, where the first (second) argument is the dimen-
sion of the representation in hypercolor (color) space and
the subscript denotes the electric chargeQ. The fundamen-
tal Lagrangian of the preon model [3] reads

L ¼ �Tð@6 þ gHA6 H þ gCA6 C þ 1
3eA6 QÞT þ �Vð@6 þ gHA6 H

þ gCA6 CÞV � 1
4FHFH � 1

4FCFC � 1
4FQFQ; (2.1)

with A6 ¼ ��A
�
a �a representing the three fundamental

gauge fields of the theory with their respective coupling
strengths gH, gC, and e. The last three terms in Eq. (2.1)
represent the kinetic energies of the gauge fields, where the
field strength tensors F are as usual given in terms of the
A�. The �� are the Dirac matrices and �a are generators of

the corresponding gauge groups.
Although there are two degenerate types of preons (T

and V) there is no global SU(2) isospin symmetry on the
preon level because the charged and neutral preon belong
to different representations in color space. To be consistent
with the parity assignment for the standard model fermi-
ons, the intrinsic parity � of the T and V preons must be
different [4]. The different parities of T and V preons
provide a possible explanation for parity violation at low
energies as will be discussed in Sec. IV.

Preons and their bound states are characterized by new
quantum numbers [5]. These are the preon number P and
� number, which are linear combinations of the numbers

of T-preons nðTÞ and V-preons nðVÞ in a given state

P ¼ 1
3ðnðTÞ þ nðVÞÞ � ¼ 1

3ðnðTÞ � nðVÞÞ: (2.2)

The factor 1
3 in Eq. (2.2) is a convention. The � number is

also related to the baryon (B) and lepton (L) numbers of the
standard model as � ¼ B� L. The antipreon numbers
nð �TÞ and nð �VÞ are defined as nð �TÞ ¼ �nðTÞ and nð �VÞ ¼
�nðVÞ. The preon quantum numbers of individual preons
are summarized in Table I.
There is a connection between the P and � numbers,

and the electric charge Q of the preons

Q ¼ 1
2ðP þ�Þ; (2.3)

which can be readily verified from Table I. This general-
ized Gell-Mann-Nishijima relation does not only hold for
the preons but for all bound states, such as leptons, quarks,
hyperquarks and their bound states, as well as the effective
weak gauge bosons.
As shown in Ref. [4] the ’t Hooft anomaly condition,

which demands that the anomalies on the preon level
match those on the bound state level, can be satisfied if
in addition to leptons and quarks a third fermionic bound
state type, called hyperquarks, is introduced. Hyperquarks
have the same electric charge as the corresponding quarks.
However, instead of being color triplets and hypercolor
singlets as ordinary quarks, they are color singlets and
hypercolor triplets. Moreover, because of the different

parities of ~u and ~d one cannot define a weak SU(2) isospin
symmetry for hyperquarks. Therefore, they do not partici-
pate in the usual left-right asymmetric weak interaction but
must couple left-right symmetrically calling for a left-right
symmetric extension of weak interactions.
The same conclusion is also obtained from the anomaly

freedom constraint of this extended electroweak theory. In
the standard model the anomaly contributions of quarks
and leptons cancel. There are no additional fermionic
bound states that could cancel an anomaly contribution
coming from hyperquarks. Therefore, hyperquarks must
not contribute to electroweak anomalies. The only way this
can be achieved is that their weak interactions be left-right
symmetric. Formally, hyperquarks are obtained from
quarks by replacing their neutral preons with their antipar-
ticles. We refer to this process as hyperquark
transformation.

TABLE I. The color C, hypercolor H, electric charge Q, preon
number P , � number, and intrinsic parity � of preons and
antipreons (see also [4]).

preon H C Q P � �

T 3 3 þ 1
3 þ 1

3 þ 1
3 �1

V 3 �3 0 þ 1
3 � 1

3 þ1
�V �3 3 0 � 1

3 þ 1
3 �1

�T �3 �3 � 1
3 � 1

3 � 1
3 þ1
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In summary, we can construct two groups of preon
bound states (leptons and quarks) with the same intrinsic
parities and integer preon number for which a new quan-
tum number ‘‘weak isospin’’ corresponding to an effective
SU(2) chiral isospin symmetry can be defined in terms of
the preon number P as

T3 ¼ 1
2P : (2.4)

The members of the third group (hyperquarks) necessarily
have opposite intrinsic parities and fractional preon num-
ber and thus do not possess weak isospin. The three differ-
ent types of fermionic bound states and their quantum
numbers are shown in Table II.

III. BOSONIC BOUND STATES AND EXTENDED
WEAK INTERACTIONS

Hyperquarks are hypercolored objects and thus cannot
exist as free particles but must be confined into hyper-
colorless bound states such as hypermesons and hyper-
baryons. This is in complete analogy to quarks being
confined into colorless mesons and baryons. Although
hyperhadrons might have been created at sufficiently
high energies available in the Early Universe they are no
longer observed today and hence cannot be stable. This
leads to the question which gauge bosons are responsible
for their decay.

We begin our discussion with charged hypermeson de-
cay, which is generated by a new gauge boson ~W followed
by a short exposition of the charged and neutral weak
transitions between fermionic bound states. In
section III C we discuss the issue of hyperquark decay
and show that it is mediated by a six-preon bosonic bound
state, called �, which can be thought of as two-neutrino
bound state. The scenario of lepton number violating
neutrino-antineutrino oscillations characteristic of
Majorana neutrinos is described in section III D. There,
also the consequences for the formulation of an extended
left-right symmetric weak interaction theory are
expounded.

A. Weak meson and hypermeson decays into leptons

As stated in the introduction and shown in Fig. 1, in the
preon model the weak decays of hadrons and hyperhadrons
are mediated by composite gauge bosons. For example, the
weak decay of the positively charged�-meson into a muon
and a neutrino can be schematically written as

�þ uðTTVÞ
�dðTVVÞ

� �
! Wþ TTT

VVV

� �
! �þðTTTÞ þ �ðVVVÞ;

(3.1)

As is obvious from the notation, the compositeness of
quarks and leptons implies that the weak gauge bosons
are composed of six preons [3], and furthermore that initial
and final states correspond merely to different arrange-
ments of these preons.1

Similarly, the corresponding hyper-�-meson decay
reads

~�þ ~uðTT �VÞ
�~dðT �V �VÞ

 !
! ~Wþ TTT

�V �V �V

� �

! �þðTTTÞ þ ��ð �V �V �VÞ; (3.2)

A comparison of the preon content of the bound states in
Eq. (3.1) and (3.2) shows that the neutral preons V are
replaced by their antiparticles �V when going from quarks
to hyperquarks [4] or from mesons to hypermesons (hyper-
quark transformation). In addition, in both cases the inter-
mediate gauge bosons are formed by a mere rearrangement
of the initial state preons. Hence, we propose that the
existence of left-right symmetrically coupling hyperquarks
entails the existence of a new class of composite weak
gauge bosons, called ~W, which couple left-right symmet-
rically to fermions.
Although there is a certain analogy between weak me-

son and hypermeson decays into leptons there is an im-
portant difference between them. According to the
quantum number assignments in Table II, the latter process
simultaneously violates lepton and baryon number (�B ¼
�L ¼ �2), which indicates that it occurs only at a higher

TABLE II. Allowed three-preon bound states representing leptons, quarks, and hyperquarks
and their quantum numbers (see also [4]). Formally, the hyperquarks are obtained from the
corresponding quarks by interchanging: V $ �V (hyperquark transformation).

state preon content bound state P � B L Q � T3

leptons ðVVVÞ ð�e; ��; ��Þ þ1 �1 0 þ1 0 þ1 þ 1
2ð �T �T �TÞ ðe�; ��; ��Þ �1 �1 0 þ1 �1 þ1 � 1
2

quarks ðTTVÞ ðu; c; tÞ þ1 þ 1
3 þ 1

3 0 þ 2
3 þ1 þ 1

2ð �T �V �VÞ ðd; s; bÞ �1 þ 1
3 þ 1

3 0 � 1
3 þ1 � 1

2

hyperquarks ðTT �VÞ ð~u; ~c;~tÞ þ 1
3 þ1 þ1 0 þ 2

3 �1 0

ð �TVVÞ ð~d; ~s; ~bÞ þ 1
3 �1 �1 0 � 1

3 þ1 0

1For convenience the preon content of the intermediate W
boson is denoted by two rows of three preons.
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energy scale where left-right symmetry is restored. In
Sec. VI this scale is calculated as MP ffi 109 GeV. Note
that in both processes the preon P and � ¼ B� L num-
bers remain conserved.

B. Charged and neutral weak transitions between
fermionic preon bound states

In the preon model, the weak transitions among the
members of quark and lepton weak isospin doublets caused
by the charged weak currents of the standard model are
written as

uðTTVÞ ! dð �T �V �VÞ þWþ TTT
VVV

� �

e�ð �T �T �TÞ ! �ðVVVÞ þW� �T �T �T
�V �V �V

� �
;

(3.3)

In these transitions all three preons of the final fermionic
bound states are created from the vacuum, while the initial
state preons and the antiparticle counterparts of the three
vacuum pairs merge to form the weak gauge bosons.

Analogously, the corresponding weak transitions among
hyperquarks imply the existence of new gauge bosons, ~W,
which may then also generate transitions within lepton
doublets

~uðTT �VÞ ! ~dð �TVVÞ þ ~Wþ TTT
�V �V �V

� �

e�ð �T �T �TÞ ! ��ð �V �V �VÞ þ ~W� �T �T �T
VVV

� �
:

(3.4)

In contrast to the usual electron-neutrino transition in
Eq. (3.3), the ~W induced process in Eq. (3.4) leads to an
antineutrino in the final state and thus violates lepton
number conservation (�L ¼ �2). On the other hand, � ¼
B� L and P are conserved because � ¼ �2 and P ¼ 0
for the ~W� boson according to Table III. Similarly, in the
hyperquark sector the charged weak transition violates
baryon number (�B ¼ �2) but again � ¼ B� L and P
are conserved. One also notices that these charged weak
transitions leave the type of fermionic bound state invari-
ant, i.e., a quark remains a quark, a hyperquark remains a
hyperquark, and a lepton remains a lepton.

Because neutral currents do not change the internal
quantum numbers of the fermionic bound states involved
in the transition, the W0 boson must be a linear combina-
tion of the two neutral six-preon states. For the neutral
standard model gauge bosons we define

W0 ¼ 1ffiffiffi
2

p
� �T �T �T

TTT

� �
� �V �V �V

VVV

� ��

B0 ¼ 1ffiffiffi
2

p
� �T �T �T

TTT

� �
þ �V �V �V

VVV

� ��
:

(3.5)

Note that applying the hyperquark transformation to
Eq. (3.5) leaves these states invariant so that we need not
introduce additional neutral bosons ~W0 and ~B0. As a linear
combination of the two states in Eq. (3.5) the Z-boson is a
pure ð3V; 3 �VÞ state, while the orthogonal combination
ð3T; 3 �TÞ state can in some sense be interpreted as an
effective photon similar to the vector meson dominance
model. In this way the standard model weak forces are seen
to be mediated by effective gauge bosons composed of six
preons.
As far as we can see, 6T and 6 �T states do not occur in

any weak process and are not considered here. The same
applies to six-preon bound states consisting of one charged
preon and five neutral ones or one neutral preon and five
charged ones. In Table III we list the composite gauge
bosons introduced so far as well as their preon content
and quantum numbers.
In summary, for the weak gauge bosonsW, Z, and ~W, the

following rules apply: (i) leptons and quarks transform via
W exchange; (ii) leptons and hyperquarks transform via ~W
exchange; (iii) leptons, quarks, and hyperquarks transform
via Z exchange. But neither the standard model gauge

TABLE III. Preon content and quantum numbers of the stan-
dard model weak gauge bosons W and B0 and the newly
introduced gauge bosons ~W.

state content P � Q � T3

W� ð3 �T; 3 �VÞ �2 0 �1 �1 �1
Wþ ð3T; 3VÞ þ2 0 þ1 �1 þ1
W0=B0 ð3ðT �TÞ; 3ðV �VÞÞ 0 0 0 �1 0
~W� ð3 �T; 3VÞ 0 �2 �1 þ1 0
~Wþ ð3T; 3 �VÞ 0 þ2 þ1 þ1 0

VVV)ν(

+
µ( TTT)

T T T
VVVW+

u(TTV)

d(TVV)

+
µ( TTT)u(TTV)u(TTV)~

T T T
VVV

+W
~

VVV)ν(d(TVV)~

FIG. 1. Weak pion decay into leptons (left) and lepton number violating weak hyperpion decay (right) mediated by bosonic preon
bound states.
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bosons nor the newly introduced ~W can transform hyper-
quarks into quarks.

C. Weak hyperquark decays into quarks

Similar to the case of hypermesons discussed in
Sec. III A, the nonobservation of hyperbaryons implies
that they are not stable. Consequently, there must be tran-
sitions from hyperquarks to known fermionic preon bound
states. In principle, hyperquarks can decay into quarks and
into leptons. However, below the grand unification (GUT)
scale the former process dominates for the following rea-
son. The decay of quarks into leptons, as required for
proton decay is suppressed due to the heavy mass of the
GUT gauge bosons of the order of 1016 GeV, which cor-
responds to lifetimes of the order of 1035 y. Because the
preonic substructure of hyperquarks and quarks are very
similar, transitions from hyperquarks to leptons are also
suppressed at lower energies. The decay of quarks and
hyperquarks into leptons mediated by dipreonic bound
states U and ~U occurring at the GUT scale will be consid-
ered in Sec. V. Clearly, the fact that hyperquarks are not
observed today requires that their lifetime be much shorter
than the lifetime of the Universe (1010 y), and that the
gauge bosons N responsible for hyperquark decay into
quarks be lighter than the GUT bosons. The transitions
between the three types of fermionic bound states mediated
by dipreonic bound states N, U, and ~U are shown in Fig. 2.

In our previous paper [4], we have seen that the tran-
sition from hyperquarks to quarks is formally obtained by
interchanging the neutral preon by its antiparticle (V $
�V). Hyperquark decays into quarks are generated via a new
class of electrically neutral bosons, called N-bosons or
neutralons NðVVÞ and �Nð �V �VÞ

~uðTT �VÞ ! uðTTVÞ þ �Nð �V �VÞ
~dð �TVVÞ ! dð �T �V �VÞ þ 2NðVVÞ:

(3.6)

As color and hypercolor triplets, neutralons are confined
particles. In order to carry away the energy and momentum
made available in the ~q ! q transition, an unconfined
neutral particle must be emitted. Such a hypercolor and
color singlet can be formed by an N �N pair or three neu-
tralons. The emission of two N �N pairs, as occurring in
hyperproton decay according to Eq. (3.6) seems at first
sight possible. But an N �N state has neither weak isospin
nor electric charge and thus it cannot couple to any of the
known low-energy bosons such as Z or � into which it
could annihilate. Therefore, direct hyperproton decay via
the emission of two N �N pairs does not work. However,
annihilation into the vacuum is possible for threeN �N pairs.
In fact, 3N or 3 �N(and thus 3N �N) form colorless and
hypercolorless bound states which can decay into neutrinos
and antineutrinos. In the following the 3N and 3 �N states
are called � and ��.
More generally, we postulate that in all weak processes

occurring below the grand unification scale of 1016 GeV,
such as hyperquark-quark transitions, as well as in pro-
cesses involving W, ~W and Z exchange, the generation or
annihilation of preon-antipreon pairs is only possible for
integer multiples of three preon-antipreon pairs. This is
symbolically written as

nð �TTÞ þ nð �VVÞ ¼ 3k ðfor E � 1016 GeVÞ; (3.7)

where nð �TTÞ, nð �VVÞ, and k are natural numbers. Thus, in any

weak interaction below the grand unification scale, only
six-preon (see previous subsection) or three-dipreon bo-
sons (see next subsection) are involved. We refer to this as
‘‘preon triality rule.’’
The simplest hyperbaryon decay process seems to pro-

ceed via a ~� type hyperbaryon in which the six-preon
bound states � and �� are produced

~�þþð~u ~u ~uÞ ! �þþðuuuÞ þ ��

~��ð~d ~d ~dÞ ! ��ðdddÞ þ 2�;
(3.8)

and where the latter subsequently decay into two neutrinos
(� ! 2�) or antineutrinos ( �� ! 2 ��). Thus, the transition
from hyperquarks to quarks is only possible within bound
states of three hyperquarks of the same charge state (~u, ~c, ~t

or ~d, ~s, ~b). Other baryonic hyperquark bound states,
~�þð~u ~u ~dÞ and ~�0ð~u ~d ~dÞ, decay via a two-step process,

i.e., they first change into a ~�þþð~u ~u ~uÞ and ~��ð~d ~d ~dÞ
via ~W� emission as in Eq. (3.4) and then decay into
ordinary baryons via � emission as in Eq. (3.8). Because
of the vanishing isospin of hyperhadrons the spin-

symmetric ~� baryons are the lightest fermionic hyperha-
dron states.

U

N

U

l

qq

FIG. 2. Fermion triangle. The three fermionic bound states,
hyperquarks (~q), quarks (q), and leptons (l) and their antiparti-
cles are placed at the corners of a triangle. The dipreonic bound
states ðN;U; ~UÞ and their antiparticles describing transitions
between these fermions are placed along the edges.
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D. Left-right symmetric weak interactions and
neutrino-antineutrino oscillations

In this section we discuss in more detail how the exis-
tence of hyperquarks leads to a left-right symmetric ex-
tension of standard model weak interactions. As explained
before, hyperquarks do not have weak isospin and there-
fore they couple left-right symmetrically to the new gauge
bosons ~W andN. At the partial unification scaleMP, where
these new left-right symmetric gauge bosons appear, hy-
perquarks decay into quarks as in Eq. (3.6). Therefore, at
this scale quarks must also couple left-right symmetrically
to the standard model weak gauge bosons W. This entails
an extension of the standard model weak isospin group
SUð2ÞWL

to the gauge group SUð2ÞWL
� SUð2ÞWR

.

At the same energy, the effective gauge boson masses
MWR

, MWL
, M ~W are of order MP, and the left-right sym-

metric gauge bosons can transform into each other. In
particular, the W-bosons can change into the ~W-bosons
and vice versa,

~W þ TTT
�V �V �V

� �
$ Wþ TTT

VVV

� �
L=R

~W� �T �T �T
VVV

� �
$ W� �T �T �T

�V �V �V

� �
L=R

:

(3.9)

In addition, there are transitions between the �, Z, and ��
bosons

�ð��Þ $ Zð� ��Þ $ ��ð �� ��Þ: (3.10)

The transformations in Eq. (3.9) and (3.10) are a reflection
of left-right symmetry restoration at the partial unification
scale. These left-right symmetric interactions also enable
transitions between the left- and right-handed neutrino
sectors

� $ �� or �L $ �R (3.11)

characteristic for two-component Majorana neutrinos
[6,7], for which the difference between neutrino and anti-
neutrino is only one of helicity, i.e. �L � � and �R � ��.
Such neutrino-antineutrino transitions can be thought of as
proceeding via � $ Z $ �� transitions as depicted in
Fig. 3. Obviously, at this energy scale the inner parity
and weak isospin of preon bound states is no longer a
good quantum number.

In the preon model neutrino-antineutrino oscillations
may be allowed for the following reasons. As discussed

in sect. II, the neutral V and �V preons have different
SUð3ÞC � SUð3ÞH and parity assignments (see Table I).
Because none of the fundamental gauge interactions of
the theory, namely SUð3ÞC, SUð3ÞH, and Uð1ÞQ violates

parity conservation, there can be no direct transitions be-
tween the neutral V preon and its antiparticle �V. For the
same reason, transitions between the neutralons NðVVÞ
and �Nð �V �VÞ are forbidden. However, for bound states of
three V and three �V preons, which are electrically neutral
color and hypercolor singlets, there is from the viewpoint
of the fundamental gauge symmetries no distinction be-
tween �ðVVVÞ and ��ð �V �V �VÞ as pointed out by Harari and
Seiberg [5].
As one can readily see from Table I, the additive P and

� quantum numbers are simultaneously violated in Eq.
(3.11) but in such a way that the total electric charge
associated with the fundamental Uð1ÞQ gauge interaction

remains conserved in accordance with the generalized
Gell-Mann Nishijima relation Eq. (2.3), i.e., �Q ¼ 0
which entails �P ¼ ���. Furthermore, it is observed
that this violation can only occur for integer values of these
quantum number and processes involving three V or three
�V, whereas fractional values of P and � are strictly
conserved because of their connection with fundamental
gauge interactions (see Table I). Analogous to the P and�
number violation associated with the direct neutrino-
antineutrino oscillation, the intrinsic parity violation in
Eq. (3.11) only occurs at the level of bound states of at
least three preons.
Within each chiral sector the P and� quantum numbers

are conserved as required by the anomaly equations [4].
For this reason, any violation of these quantum numbers is
accompanied by a simultaneous change of the chiral sector,
which is only possible for massive particles. The corre-
sponding transition rate is determined by the ratio of the
neutrino mass and the partial unification scale, where the
right-handed electroweak gauge bosons occur [7,8]. The
heavier these bosons, the smaller the helicity changing
transition rate and therefore the neutrino rest mass. This
corresponds to the so-called seesaw mechanism [8,9]

m2
e

MP

¼ m�e
; (3.12)

where m�e
and me are the neutrino and electron mass, and

MP ffi 109 GeV is the scale of left-right symmetry
restoration.
The extended left-right symmetric electroweak interac-

tions, which go hand in hand with �� �� and �� Z� ��
oscillations as depicted in Fig. 3, lead to new � ¼ B� L
number violating processes, such as, for example,
(i) neutrinoless hyperbaryon decay where �- and B- num-
bers are violated and lepton number L is conserved and
(ii) neutrinoless double beta decay where �- and L- num-
bers are violated and B is conserved

νν
ν

χ Z

FIG. 3. Neutrino-antineutrino oscillation via � and Z emission
and absorption.
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~�þþð~u ~u ~uÞ ! �þþðuuuÞ þ Z; �� ¼ �B ¼ �2;

~��ð~d ~d ~dÞ ! ��ðdddÞ þ 2Z; �� ¼ �B ¼ 4;

2nðuddÞ ! 2pþðuudÞ þ 2e�; �� ¼ ��L ¼ �2:

(3.13)

The discovery of any one of these B or L violating decays
would lend some support to the ideas developed here.

IV. PARTIAL UNIFICATION

Having motivated an extension of the standard model
weak interaction that accounts for hyperquark decay, left-
right symmetric weak gauge bosons, and direct neutrino-
antineutrino oscillations, we study in this section further
aspects of this extension. In particular, we propose that the
generalized weak interactions are part of a larger unifica-
tion scheme for weak and strong interactions between
preon bound states that includes (i) 7 left-right symmetric
standard model weak gauge bosons WL, WR, B

0, trans-
forming according to a simply extended rank 3 gauge
group SUð2ÞWL

� SUð2ÞWR
�Uð1ÞY , (ii) 20 new left-right

symmetric gauge bosons ~W, N, �N, (iii) 8 hypergluons,
altogether 35 gauge bosons (see Table V) characteristic
of an effective SU(6) gauge group. In addition, we empha-
size that in the present model it is possible to connect the
left-right symmetry of weak interactions at high energies
and its breaking at low energies to the existence of hyper-
quarks and the new weak gauge bosons. Before this, we
discuss the consequences of the new effective gauge inter-
actions and of hyperquarks for the momentum transfer
dependence of the electroweak coupling strengths �W ,
�Y , and �Q and calculate the corresponding Weinberg

angle.

A. Extended electroweak couplings

In the standard model the left-handed leptons and quarks
form weak isospin doublets transforming according to the
gauge group SUð2ÞWL

whereas the right-handed leptons

and quarks are isospin singlets transforming only accord-
ing to the gauge group Uð1ÞY . The connection between
electric chargeQi, weak isospin T3i, and weak hypercharge
YWi of particle i is given by the Gell-Mann Nishijima
relation

Qi ¼ T3i þ YWi; (4.1)

where the particle index i stands for a member of the lepton
or quark doublets. The corresponding quantum numbers
are given in Table IV.

It has been shown in Sec. III B that hyperquarks do not
participate in the usual charged current interactions medi-
ated by W exchange. Therefore, with respect to the stan-
dard electroweak gauge group, the left- and right-handed
hyperquarks are isospin singlets (T3i ¼ 0) analogous to the
right-handed leptons and quarks. With these properties of

the composite fermions at hand, we can now proceed and
discuss how the coupling constants and their ratios are
affected by the presence of the hyperquarks.
First, we note the standard definitions of the three elec-

troweak couplings �Q, �W , and �0 and the relation be-

tween them [10,11]

�Q

�W

:¼ sin2�W ¼
P
i
T2
3iP

i
Q2

i

�Q

�0 :¼ cos2�W ¼
P
i
Y2
WiP

i
Q2

i

1

�Q

¼ 1

�W

þ 1

�0 ; (4.2)

where the third equation follows from dividing the sum of
the first two by �Q. This implies the relation

X
i

Q2
i ¼

X
i

T2
3i þ

X
i

Y2
Wi; (4.3)

which can also be obtained directly from the square of the
Gell-Mann Nishijima relation Eq. (4.1) because the sum
(over all fermions) of the mixed product terms vanishes.
In must be noted that an equality of �W and �0 cannot be

obtained because
P

T2
3i �

P
iY

2
Wi. Therefore, the following

coupling �Y is introduced

1

�0 ¼
1

�Y

P
i
Y2
WiP

i
T2
3i

(4.4)

which, when inserted in Eq. (4.2) gives

1

�Q
¼ 1

�W

þ
P
i
Y2
WiP

i
T2
3i

1

�Y

: (4.5)

In the standard electroweak theory (without hyperquarks)
we have at the weak scale MZ ¼ 91:2 GeV from Eq. (4.5)

TABLE IV. Weak isospin, weak hypercharge, baryon, and
lepton quantum number assignments of the left- and right-
handed leptons, quarks, and left-right symmetric hyperquarks.
The squares of weak isospin, hypercharge, and electric charge
are also given.

Fermion T3 YW B L T2
3 Y2

W Q2

�L þ 1
2 � 1

2 0 þ1 1
4

1
4 0

e�L � 1
2 � 1

2 0 þ1 1
4

1
4 1

e�R 0 �1 0 þ1 0 1 1

uL þ 1
2 þ 1

6 þ 1
3 0 1

4
1
36

4
9

uR 0 þ 2
3 þ 1

3 0 0 4
9

4
9

dL � 1
2 þ 1

6 þ 1
3 0 1

4
1
36

1
9

dR 0 � 1
3 þ 1

3 0 0 1
9

1
9

~uL=R 0 þ 2
3 þ1 0 0 4

9
4
9

~dL=R 0 � 1
3 �1 0 0 1

9
1
9
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1

�Q
¼ 1

�W

þ 5

3

1

�Y

: (4.6)

Above this scale, at a certain energy which will be
determined in Sec. VI as mhq ffi 26 TeV, the additional

contributions of the hyperquarks affect the sums in
Eq. (4.2) and (4.5) as discussed in the following. First,
the sum T2

3i over (left-handed) quarks and leptons remains

unmodified

X
i

T2
3iL ¼ NG

��
1

2

�
2

�
þ
�
� 1

2

�
2

e
þ NC

��
1

2

�
2

u
þ
�
� 1

2

�
2

d

��
;

(4.7)

because hyperquarks do not have weak isospin. Here, the
factor NC stands for the number of quark colors, and NG is
the number of generations. Second, the sum of the weak
hypercharge squares is modified by the presence of hyper-
quarks as

X
i

Y2
Wi ¼ NG

��
� 1

2

�
2

�L

þ
�
� 1

2

�
2

eL

þ ð�1Þ2eR þ NC

��
1

6

�
2

uL

þ
�
1

6

�
2

dL

þ
�
2

3

�
2

uR

þ
�
� 1

3

�
2

dR

�
þ NH

��
2

3

�
2

~uL

þ
�
� 1

3

�
2

~dL

þ
�
2

3

�
2

~uR

þ
�
� 1

3

�
2

~dR

��
; (4.8)

where NH is the number of hypercolors. Third, the sum
over the squared charges is

X
i

Q2
i ¼ 2NG

�
ð�1Þ2e þ NC

��
2

3

�
2

u
þ
�
� 1

3

�
2

d

�

þ NH

��
2

3

�
2

~u
þ
�
� 1

3

�
2

~d

��
; (4.9)

where the factor of 2 is due to equal contributions from
left-handed fermion doublets and right-handed fermion
singlets, and numerically NC ¼ NH ¼ NG ¼ 3 according
to Ref. [4].

Because hyperquarks carry electric charge and weak
hypercharge but no weak isospin, their inclusion in
Eq. (4.2) leads to the following Weinberg angle

sin 2�W ¼ �Q

�W

¼
P
i
T2
3iP

i
Q2

i

¼ 3

13
: (4.10)

Thus, we have sin2�W ¼ 3=13 ffi 0:231, which is close to
the experimental Weinberg angle 0.23119(14) at MZ ¼
91:2 GeV [12]. We take this as an indication for the
physical relevance of hyperquarks. In the original preon
model of Harari and Seiberg [2] the weak mixing angle was
predicted as sin2�W ¼ 1=4.

Because of left-right symmetry restoration at the partial
unification scale MP ffi 109 GeV discussed in sect. III D
we have left-right symmetric couplings of the standard
weak gauge bosons and the new gauge bosons ~W and �

to the fermions. Consequently, above this scale, the sum
over the squared isospin quantum numbers for leptons and
quarks must run over both left- and right- handed fermionsX

i

T2
3i ¼

X
i

T2
3iL þX

i

T2
3iR; (4.11)

and hence is twice as large as in Eq. (4.10). Furthermore, at
the energy scale of MP ffi 109 GeV, where left-right sym-
metry is restored, the electroweak coupling constants will
necessarily have equal strength (see Fig. 5)

�W=Y :¼ �W ¼ �Y: (4.12)

Using these conditions in Eq. (4.10) one obtains then for
the Weinberg angle at MP

sin 2�W ¼ �Q

�W=Y

¼ 6

13
; (4.13)

which is twice the experimental value of sin2�W at MZ ¼
91:2 GeV. We note that for a simply extended weak gauge
group SUð2ÞWL

� SUð2ÞWR
� Uð1Þ without hyperquarks

one gets sin2�W ¼ 3=4.
The breaking of left-right symmetry in standard electro-

weak theory at theMZ scale leads to a smaller value for the
Weinberg angle which is only half of the value atMP given
by Eq. (4.13). This change of the Weinberg angle is ac-
companied by a mass shift from the left-right symmetri-
cally coupling bosons at MP down to their low energy
counterparts at the Fermi scale MZ.
At the energyMP, where left-right symmetry is restored,

the existence of an additional SUð2ÞWR
gauge group leads

to an extended electroweak group SUð2ÞWL
� SUð2ÞWR

�
Uð1ÞY [5] which itself is embedded in an even larger partial
unification group SUð6ÞP with a single coupling constant

�P :¼ 2�W=Y: (4.14)

Here, �P is to be evaluated at the scale of left-right
symmetry restoration and the factor 2 is due to the ensuing
strength doubling according to Eq. (4.11) and depicted by
the short dotted line in Fig. 5. Further aspects of the
unification of weak with hypergluon interactions will be
discussed next.

B. Partial unification group SUð6ÞP
We have seen that on the level of preon bound states new

effective gauge interactions emerge, e.g. those mediated by
the ~W and the N bosons, and that they occur at an energy
where a left-right symmetric extension of standard model
weak interactions is required. However, we have not yet
incorporated the new gauge bosons in an appropriately
enlarged effective gauge group. This can be achieved by
combining the extended weak and strong hypercolor gauge
interactions. Such a combination is also suggested by the
fact that the coupling constants of SUð3ÞH and SUð3ÞC
always run in parallel (see Fig. 5) and cannot reach equal
strength because both groups have the same structure.
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Consequently, one of these color groups has to be em-
bedded in a larger group if one wishes to unify the strong
and weak interactions between preon bound states.

We propose a partial unification by embedding the ex-
tended electroweak and hypercolor interactions within a
broken gauge group SUð6ÞP � SUð3ÞH � SUð2ÞWL

�
SUð2ÞWR

� Uð1ÞY . Note that SU(6) is the simplest rank 5

group having the same rank as its subgroups. At the partial
unfication scale MP, the following equality of coupling

constants is required to hold

�P :¼ �H ¼ 2�W=Y; (4.15)

where the last equality follows from Eq. (4.14). The SU(6)
group also contains the hypercolored neutralons and the
~W� bosons. The 6� 6 matrix representing the effective
SU(6) gauge bosons is schematically shown below

GP ¼
GH N

�N
W0

R Wþ
R

~Wþ
W�

R W0
L Wþ

L
~W� W�

L B0

0
B@

1
CA

0
BBB@

1
CCCA: (4.16)

This scheme includes 3� 3 matrices for the hypergluons
GH and the neutralons N and �N transforming according to
SUð3ÞH. For the latter only the hypercolor degree of free-
dom is considered when counting their multiplicity. The
partial unification group is then a unitary group of dimen-
sion 6, comprising 8 hypergluons, 9 left-right symmetric
weak gauge bosons, and 18 left-right symmetric dipreonic
neutralons, in total 35 generators as discussed above. The
corresponding gauge bosons with their respective energy
scales are listed in Table V. Note that the diagonal gener-
ators GH, W

0
R, and W0

L have a B0 admixture [11].
The relevant SU(6) representations for the fermionic

preon bound states arise from the direct product of three
fundamental six-dimensional representations, where the
‘‘6’’ is due to the three hypercolors and the two types of
preons. We then have for the fermions 6 � 6 � 6 ¼ 20 	
56 	 70 	 70, where only the lowest dimensional (anti-
symmetric) 20 is needed to represent the first generation
of leptons, quarks, and hyperquarks and their antiparticles.
The 20 dimensional representation decomposes into 4
hypercolor neutral leptons, 4 hypercolor neutral quarks,
and 12 hyperquarks where the multiplicity of hypercolor
(H) is included as indicated below

�
� ��
e� eþ

� �
u �u
d �d

� �
~u �~u
~d �~d

� �
H

�
P
: (4.17)

TABLE V. Gauge groups, gauge bosons, and corresponding energy scales.

gauge group generators gauge boson energy scale

Uð1ÞQ 1 AQ �Q ¼ 10�3 GeV
SUð3ÞC 8 GC �C ffi 0:2 GeV
SUð2ÞWL

� Uð1ÞY 4 W�
L ; W

þ
L ; W

0
L; B

0 MZ ¼ 91:18 GeV
SUð3ÞH 8 GH �H ffi 1700 GeV
SUð6ÞP 35 GH

W�
L ; W

þ
L ; W

0
L; W

�
R ; W

þ
R ; W

0
R; B

0

~W�; ~Wþ

ðN; �NÞH MP ¼ 8:3� 109 GeV
SUð9ÞG 80 GP

GC

ðX;Y; �X; �Y;U; �UÞC
ð ~X; ~Y; �~X; �~Y; ~U; �~UÞH

AQ MG ¼ 1:2� 1016 GeV
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FIG. 5. Running coupling constants. The dashed vertical line
indicates the expected hyperquark mass scale. Because hyper-
quarks are hypercolor triplets and charged weak isosinglets, they
only affect the SUð3ÞH coupling �H and the Uð1Þ gauge cou-
plings �Q and �Y . The dotted vertical line at 109 GeV indicates

the partial unification scale where the weak isospin and hyper-
charge couplings converge and are unified with the hypercolor
interaction to a common coupling �P. The three gauge couplings
�P, �C, and �Q meet at the grand unification scale of 1016 GeV.

Finally, from the grand unification scale to the point where �G

meets the gravitational coupling �g ( ffi 1018 GeV), preons

behave as quasifree particles.
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Wemention that at energies where SUð6ÞP comes into play,
anomaly freedom of SUð6ÞP is guaranteed because by
definition all its generators are left-right symmetric.
Furthermore, the charge sum of the above multiplet is zero.

C. Preon intrinsic parity and weak interaction
phenomenology

In this subsection we wish to comment on the different
intrinsic parity assignment for T and V preons (see Table I)
and its consequences for the effective preon bound state
interactions that have been discussed so far.

As shown in Table II, leptons and quarks have the same

intrinsic parity whereas the two hyperquarks ~u and ~d have
opposite intrinsic parities. Therefore, one can assign a
weak isospin to leptons and quarks but not to hyperquarks.
This means that only leptons and quarks can be divided
into left- and right-handed sectors carrying different weak
isospin TL and TR.

At low energies below the partial unification scale MP,
where chiral isospin symmetry is broken, this classification
of leptons and quarks in separate chiral sectors having
different weak isospin TL ¼ 1=2 and TR ¼ 0 goes hand
in hand with left-right asymmetric weak interactions me-
diated by the standard model gauge bosons WL and Z. In
contrast, hyperquarks do not possess a weak isospin and
consequently do not participate in the standard model weak
isospin interactions but only in left-right symmetric ~W, N,
and Z mediated interactions as discussed before.

For energies above MP, hyperquark-quark transitions
occur, and the left-right symmetric hyperquark interactions
entail left-right symmetric weak interactions also for
quarks and leptons coupling to the weak isospin TL and
TR with equal strength because at this scale the effective
masses of the WL, WR, ~W are of the same order as MP. At
this point the inner parity of preon bound states ceases to be
a good quantum number.

Thus, preon intrinsic parities reveal themselves in differ-
ent effective interactions of standard model fermions and
of hyperquarks. At low energies of 102 GeV, we have left-
right asymmetric interactions between particles having
definite intrinsic parities. At higher energies of 109 GeV
we have left-right symmetric interactions but intrinsic
parity violating transitions involving hyperquarks and
neutrino-antineutrino pairs.

These aspects of the extended weak interaction have
their origin in the different intrinsic parity assignments of
the fundamental preon building blocks. Moreover, the ex-
istence of left-right symmetry at high and left-right asym-
metry at low energies is seen to be closely connected with
the production and decay of hyperquarks and hence to
some extent explained in the preon model developed here.

V. GRAND UNIFICATION

As motivated in the previous chapter we are now left
with three gauge groups, namely SUð6ÞP, SUð3ÞC, and

Uð1ÞQ. At the grand unification scale MG, the correspond-

ing interactions strengths have the same strength and are
described by a common coupling constant (see Fig. 5).

�G :¼ �P ¼ �H ¼ �C ¼ �Q: (5.1)

At this scale the direct product, SUð6ÞP � SUð3ÞC � Uð1ÞQ
is embedded in the larger gauge group SUð9ÞG �
SUð6ÞP � SUð3ÞC � Uð1ÞQ. Thus, the unbroken funda-

mental gauge symmetry SUð3ÞH � SUð3ÞC � Uð1ÞQ of

the preon model is also part of this larger group, which
finds its expression in the equality of coupling constants
according to Eqs. (5.1).
The grand unification group SUð9ÞG contains in addition

to the gauge bosons already included in SUð6ÞP the follow-
ing color antitriplet and hypercolor singlet gauge bosons
generating transitions between quarks and leptons:

X ¼ TTV
TTV

� �
; Y ¼ �T �V �V

�T �V �V

� �
;

U ¼ TTV
�T �V �V

� �
¼ ðT �VÞ;

(5.2)

where the six-preon bound state U reduces to a dipreon
bound state with respect to its quantum numbers. These
bosons are responsible for proton decay, which has already
been predicted by the SU(5) grand unification [13] as well
as within the preon model [14].
Furthermore, there are new hypercolor antitriplet and

color singlet gauge bosons generating transitions between
hyperquarks and leptons

~X¼ TT �V
TT �V

� �
; ~Y¼ �TVV

�TVV

� �
; ~U¼ TT �V

�TVV

� �
¼ ðTVÞ:

(5.3)

Formally, the latter bosons are obtained from those in
Eq. (5.2) by the hyperquark transformation. The quantum
numbers of the six-preon GUT bosons X and Y generating
baryon decay into leptons and of the new GUT bosons ~X
and ~Y mediating hyperbaryon decay into leptons are listed
in Table VI.
The preon content of the dipreonic U and of the neu-

tralons N already introduced in Sec. IV is given in
Table VII. The transitions between the preons that are
generated by these dipreonic bosons are graphically de-
picted in Fig. 4.

A. Nucleon decay processes

Nucleon decay into leptons is mediated by six-preon
bound states and in an analogous way by dipreon bound
states. For example, in proton decay pðuudÞ ! eþ þ � the
preons in the two u-quarks combine into an intermediate
X-boson which then decays by rearrangement into an �d
quark and an eþ
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uðTTVÞ þ uðTTVÞ ! X
TTV
TTV

� �
! �dðTVVÞ þ eþðTTTÞ:

(5.4)

The remaining d-quark in the proton annihilates with the
final state �d-quark into a photon. An analogous proton
decay process of a ðudÞ quark pair in the proton involves
the dipreon U of Eq. (5.2)

uðTTVÞ þ dð �T �V �VÞ ! UðT �VÞ ! �uð �T �T �VÞ þ eþðTTTÞ;
(5.5)

where the final state is generated by creating two additional
T �T pairs from the vacuum. Note that the preon triality rule
of Eq. (3.7) is broken at the grand unification scale.

Similarly, neutron decay n ! ��þ � proceeds either by
rearrangement

dð �T �V �VÞ þ dð �T �V �VÞ ! Y
�T �V �V
�T �V �V

� �

! �uð �T �T �VÞ þ ��ð �V �V �VÞ; (5.6)

or via the dipreon U

uðTTVÞ þ dð �T �V �VÞ ! UðT �VÞ ! �dðTVVÞ þ ��ð �V �V �VÞ
(5.7)

requiring the creation of two V �V pairs from the vacuum.
Thus, these nucleon decay processes can be described by

six-preon bound states X and Y, as well as by the dipreon
bound state UðT �VÞ.
In analogy, hypernucleon decay processes involve the

corresponding ~X, ~Y, and ~UðTVÞ bosons as discussed before
and are obtained from Eq. (5.4), (5.5), (5.6), and (5.7) by
hyperquark transformation. Common to these processes is
that they cause a simultaneous violation of baryon- and
lepton-numbers (�B ¼ �L ¼ �1), whereas P and �
numbers are conserved. There are also B� L violating
proton decays [14] such as p ! �þ �þ which can be
thought of as being generated from the B� L conserving
p ! ��þ �þ decay via a �� �� oscillation as discussed in
sect. III D.
For completeness we mention that between the color

triplet six-preon bound states X, Y and the dipreonic U
gauge bosons there are the following weak transition pro-
cesses

X ! UþWþ; Y ! UþW�

~X ! ~Uþ ~Wþ; ~Y ! ~Uþ ~W�:
(5.8)

The reactions in the second line are generated by applying
the hyperquark transformation to the reactions in the first
line, emphasizing once again that the hyperquark trans-
formation is applicable to all preon bound states containing
neutral V preons.

B. Grand unification group SUð9ÞG
After having discussed the additional bosons needed to

enable transitions from quarks and hyperquarks to leptons,
we can now count the number of gauge bosons involved.
We find that the unitary group has to be as large as SU(9) to

TABLE VII. Dipreon bound states and their quantum num-
bers.

dipreon P � Q �

NðVVÞ þ 2
3 � 2

3 0 þ
�Nð �V �VÞ � 2

3 þ 2
3 0 þ

UðT �VÞ 0 þ 2
3 þ 1

3 þ
�Uð �TVÞ 0 � 2

3 � 1
3 þ

~UðTVÞ þ 2
3 0 þ 1

3 �
�~Uð �T �VÞ � 2

3 0 � 1
3 �

U

U

U

U

U

U VT

V

N NDD

T

FIG. 4. Preon square. The two fundamental preons ðT; VÞ and
their antiparticles are placed at the corners of a square. The
dipreon bound states and their antiparticles describing transitions
between preons are placed along the edges ðN;UÞ and diagonals
( ~U). The dipreon states DðTTÞ connecting T and �T can be
represented as a linear combination of ~U and U or U and N.
Thus they are not included as independent gauge bosons in
Table VII.

TABLE VI. Quantum numbers of the six-preon GUT gauge
bosons X and Y responsible for baryon decay into leptons, and of
the new GUT bosons ~X and ~Y mediating hyperbaryon decay into
leptons.

state content P � Q �

X ð4T; 2VÞ þ2 þ 2
3 þ 4

3 þ
�X ð4 �T; 2 �VÞ �2 � 2

3 � 4
3 þ

Y ð2 �T; 4 �VÞ �2 þ 2
3 � 2

3 þ
�Y ð2T; 4VÞ þ2 � 2

3 þ 2
3 þ

~X ð4T; 2 �VÞ þ 2
3 þ2 þ 4

3 þ
�~X ð4 �T; 2VÞ � 2

3 �2 � 4
3 þ

~Y ð2 �T; 4VÞ þ 2
3 �2 � 2

3 þ
�~Y ð2T; 4 �VÞ � 2

3 þ2 þ 2
3 þ
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accommodate all gauge bosons that have been introduced.
The corresponding 9� 9 matrix of gauge bosons is sche-
matically shown below

GG ¼

GC XYU ~X ~Y ~U
�X �Y �U GH N

�~X �~Y �~U �N
W0

R Wþ
R

~Wþ
W�

R W0
L Wþ

L
~W� W�

L B0

0
B@

1
CA

0
BBBBB@

1
CCCCCA:

This scheme includes the 6� 6 matrix of the SUð6ÞP
partial unification group GP of Eq. (4.16), the 3� 3matrix
of the QCD gluons GC transforming according to SUð3ÞC,
four blocks of 3� 3 matrices for the colored GUT bosons
X, Y, and U, their antiparticles, as well as their hyperquark
transformed states. In addition, we have to include the
elementary photon associated with the group Uð1ÞQ. The
generator AQ appears as an admixture in the diagonal

entries and must be included in the counting leading to
80 generators in total.

Representations for the fermionic preon bound states
arise from the direct product of three fundamental repre-
sentations of dimension 9, where the 9 is due to the three
color and three hypercolor degrees of freedom associated
with each preon. Note that the preon types T and V need
not be included as a separate degree of freedom, i.e. we do
not have an SU(18) because specifying the color and
hypercolor representations uniquely specifies the preon
type (see Table I).

We then have 9 � 9 � 9 ¼ 84 	 240 	 240 	 165,
where only the lowest dimensional (antisymmetric) 84 is
needed to represent the three generations of leptons,
quarks, and hyperquarks, as well as their antiparticles:

�
� ��
e� eþ

� �
u �u
d �d

� �
C

~u �~u
~d �~d

� �
H

�
G
: (5.9)

The 84 dimensional fermion representation decomposes as
follows: 12 leptons, 36 quarks, and 36 hyperquarks, where
the multiplicities of color (C), hypercolor (H), and genera-
tion number (G) for the bound states are included.

VI. RUNNING COUPLINGS AND ENERGY SCALES

On the basis of the model described so far, we discuss in
this section the momentum dependence of the couplings
�ðq2Þ described in Sec. IV, where q2 is the momentum
transfer exchanged in the interaction. Our aim is to deter-
mine the scale, where the lightest hyperquark bound states
appear, that is the mass scale �H of hyperchromodynam-
ics, where �H is of order Oð1Þ. This is analogous to QCD
where the lightest quark bound states (pions) appear at�C,
i.e. the scale where �C is of order Oð1Þ.

In analogy to QCD, �Hðq2Þ will decrease with increas-
ing q2 and the slope bH of this decrease depends on the
number of hyperquark flavors along the way to higher
energies in the same manner as the slope bC of �Cðq2Þ

depends on the number of quark flavors appearing with
increasing q2. It should be clear that we cannot determine
the exact position of each single hyperquark flavor but only
an average value of these hyperquark masses denoted as
mhq.

To fix the high q2 end of the running couplings we use
the constraints defining partial and grand unification of
Eq. (4.15) and (5.1) respectively as detailed in the next
section, where we also study how the 	-functions of the
different effective gauge groups change when Q2 crosses
the hyperquark mass scale.

A. �-functions of the SUðNÞ and U(1) gauge groups

In non-Abelian gauge theories the slope of the running
couplings is determined to first order by the 	-function bi

bi ¼ 11

3
Ni � 2

3
nf: (6.1)

where the index i stands for the different gauge groups, Ni

is number of degrees of freedom of the SUðNiÞ group, and
nf is the number of fermion flavors. For the running

coupling one has in one-loop approximation [15]

1

�iðq2Þ ¼ 1

�ið�2
i Þ
þ bi

4�
ln

�
q2

�2
i

�
: (6.2)

For the present purposes higher order approximations of �i

can be neglected. Equation (6.2) connects an a priori
unknown high energy scale q2 ¼ M2 to a known low-
energy scale �2 such as, for example, �C for QCD.
Constraints for the high energy scale are obtained from
the equality of certain coupling constants at this mass
scale.

1. The 	-functions of SUð3ÞC and SUð3ÞH
For the non-Abelian groups SUð3ÞC and SUð3ÞH and

where NC ¼ NH ¼ 3 we have

bC ¼ 11
3NC � 2

3ðnd þ nuÞ bH ¼ 11
3NH � 2

3ðn~d þ n~uÞ:
(6.3)

Because there are three generations for each fermionic
bound state type [4]

nd ¼ nu ¼ n~d ¼ n~u ¼ 3; (6.4)

we obtain for both gauge groups the same b value

bC ¼ bH ¼ 7: (6.5)

2. The 	-function of Uð1ÞQ
The running coupling constant of QED reads

1

�Qðq2Þ ¼ 1

�Qð�QÞ þ
bQ
4�

ln

�
q2

�2
Q

�
: (6.6)

Here, bQ is defined as
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bQ ¼ � 2

3

X
i

Q2
i ; (6.7)

where Q2
i is the square of the fermion charge (see

Table IV), and the sum extends over all fermions. Thus,
the 	-function of QED is

bQ ¼ � 2

3
2

�
ne þ 3

�
1

9
nd þ 4

9
nu

�
þ 3

�
1

9
n~d þ

4

9
n~u

��
;

(6.8)

where ne ¼ 3 is the number of leptonic flavors. The iden-
tical contributions of the left- and right-handed fermion
charges are taken into account by an overall factor 2, and
the color and hypercolor multiplicities are indicated by
factors 3 multiplying the quark and hyperquark
contributions.

At the hyperquark scale mhq the 	-function bQ changes

bQ ¼ � 32

3
ðwithout hyperquarksÞ;

bQ ¼ � 52

3
ðwith hyperquarksÞ

(6.9)

due to the additional contribution of the hyperquarks.

3. Electroweak 	-functions for Uð1ÞY and SUð2ÞW
For the Uð1ÞY group we replace in Eq. (6.6) �Q by �Y

and bQ by bY which is defined as

bY ¼ � 2

5

X
i

Y2
i ; (6.10)

where the sum extends over the fermionic preon bound
states. In addition, we have to take into account that left-
and right-handed fermions give different contributions. As
noted before hyperquarks are weak isospin singlets (T3 ¼
0) and therefore have a left-right symmetric coupling,
whereas quarks and leptons couple left-right
asymmetrically.

We then obtain for the 	-function according to Table IV

bY ¼ � 2

5

�
1

4
n� þ 5

4
ne þ 3

�
5

36
nd þ 17

36
nu

�

þ 3

�
2

9
n~d þ

8

9
n~u

��
; (6.11)

with n� ¼ 3 and where the factor in front of the ni come
from adding left- and right-handed contributions in
Eq. (4.8). Note that bY changes at the hyperquark mass
scale mhq due to the contribution of the hyperquarks as

bY ¼ �4ðwithout hyperquarksÞ;
bY ¼ �8ðwith hyperquarksÞ: (6.12)

For the non-Abelian weak isospin group SUð2ÞW the
corresponding 	-function reads

bW ¼ 11

3
N � 1

3
ðn� þ ne þ nd þ nuÞ (6.13)

where N ¼ 2. Here, only left-handed leptons and quarks
contribute and we obtain the standard model value bW ¼
10
3 .

4. The 	-function of the partial unification group SU(6)

Here, we deal with the non-Abelian gauge group SU(6)
as discussed in Sec. IV. At the MP scale the Majorana
description of the neutrinos implies that the right-handed
neutrinos are identical with antineutrinos, i.e., �R � ��.
Therefore, only the left-handed neutrinos are included in
the summation over the left- and right-handed fermions

bP ¼ 11
3NP � 1

3ðn� þ 2ðne þ nd þ nu þ n~d þ n~uÞÞ;
(6.14)

which gives bP ¼ 11 for NP ¼ 6.
We point out that two-state Majorana neutrinos provide

the only consistent description in the present framework. A
four-state Dirac neutrino would reduce the 	-function to
bP ¼ 10. As will be seen in Sec. VIB, the latter would lead
to inacceptable results for the energy scales MG, MP, and
mhq. In particular, it would imply a hyperquark mass scale

below the masses ofW and Z bosons, and a much too short
proton lifetime, both of which are in contradiction to
experimental facts.

5. The 	-function of the grand unification group SU(9)

At this scale the different bosons can be accommodated
into a larger gauge group SU(9). By an analogous counting
of the fermions as in Eq. (6.14) we obtain

bG ¼ 11
3NG � 1

3ðn� þ 2ðne þ nd þ nu þ n~d þ n~uÞÞ
(6.15)

which gives bG ¼ 22 for NG ¼ 9.

B. Calculation of energy scales

To obtain numerical values for MG, MP, and mhq one

starts from the following constraints. First, from Eq. (4.12)
we have at MP

1

�WðM2
PÞ

¼ 1

�YðM2
PÞ

1

�Wðm2
t Þ
þ bW

4�
ln

�
M2

P

m2
t

�
¼ 1

�Yðm2
t Þ
þ bYt

4�
ln

�m2
hq

m2
t

�

þ bY
4�

ln

�
M2

P

m2
hq

�
; (6.16)

where the evolution starts at the top quark mass mt.
According to Eq. (6.2) the first two terms on the right-
hand side can be written as 1=�YðmhqÞ, and the third term

on the right-hand side describes the evolution from mhq, at
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which point we have to include the hyperquarks to the
partial unification scale MP.

Second, from Eq. (4.14) and (5.1) evaluated at MG

follows

1

�CðM2
GÞ

¼ 1

�PðM2
GÞ

1

�Cðm2
t Þ
þ bC

4�
ln

�
M2

G

m2
t

�
¼ 1

2

�
1

�Wðm2
t Þ
þ bW

4�
ln

�
M2

P

m2
t

��

þ bP
4�

ln

�
M2

G

M2
P

�
; (6.17)

where the factor of 2 in the denominator of the first term on
the right-hand side comes from the strength doubling of
�W at the partial unification scale according to Eq. (4.15).

Third, from Eq. (5.1) also follows

1

�CðM2
GÞ

¼ 1

�QðM2
GÞ

1

�Cðm2
t Þ
þ bC

4�
ln

�
M2

G

m2
t

�
¼ 1

�Qðm2
t Þ
þ bQ

4�
ln

�m2
hq

m2
t

�

þ bQ
4�

ln

�
M2

G

m2
hq

�
: (6.18)

The energy scales where these conditions hold can now
be determined by solving the above three Eqs. (6.16),
(6.17), and (6.18) with three unknowns. This gives

mhq ¼ 2:6� 104 GeV MP ¼ 8:3� 109 GeV

MG ¼ 1:2� 1016 GeV:
(6.19)

In order to calculate the low-energy scale �H we use
Eq. (6.2) and start the evolution at the partial unification
scale MP where according to Eq. (4.15) the following
equality of coupling constants holds �P ¼ �H ¼ 2�W .
By backextrapolation we obtain

1

�Hð�2
HÞ

¼ 1

�HðM2
PÞ

� bH
4�

ln

�
M2

P

m2
hq

�
� bH1

4�
ln

�m2
hq

�2
H

�
;

(6.20)

where bH1 ¼ 31
3 is calculated according to Eq. (6.3) assum-

ing n~d ¼ 1 and n~u ¼ 0 for the contribution of the lightest
hyperquark below the average scale mhq. The slope bH1

corresponds to the dotted line segment of �H in the left
upper corner of Fig. 5. We then demand �Hð�2

HÞ ffi Oð1Þ
which, using the numerical values in Eq. (6.19), leads to a
prediction of the infrared cutoff mass of hypercolor inter-
actions

�H ffi 1700 GeV: (6.21)

This is different from the model of Harari-Seiberg which
gives a �H of order 109 GeV. The numerical values of the
	-functions, coupling constants, and energy scales calcu-
lated in this section are compiled in Table VIII.

With the constraint mhq1 
 �H where mhq1 denotes the

mass of the lightest hyperquark, we obtain for the weak
decay lifetime of hyperquark bound states, e.g., a hyper-
pion

� ~� ffi 1

�2
P

M4
P

m5
hq1

� 100 s: (6.22)

For the neutrino masses according we obtain according to
Eq. (3.12)

m�e
¼ 3:3� 10�8 eV; m��

¼ 1:3� 10�3 eV;

m��
¼ 3:8� 10�1 eV (6.23)

compared to m��
¼ 8:8� 10�3 eV and m��

¼
5:0� 10�2 eV obtained from upper limits of experimental
neutrino squared mass differences [16].
Furthermore, the large value of the SUð9ÞG boson

masses MG ¼ 1:2� 1016 GeV results in the following
value for the proton lifetime

�p ffi 1

�2
G

M4
G

m5
p

ffi 1035 y; (6.24)

where mp ¼ 938:3 MeV is the proton mass. This is in

good agreement with the experimental lower limit �p >

5:5� 1033 y [17].
We close this section with a remark on the evolution of

�G for still higher momentum transfers. The grand uni-
fication scaleMG calculated here is near the Planck scale of
quantum gravity MPl given by

M2
Pl ¼

@c

�G

; �g ¼ q2

M2
Pl

; (6.25)

where �G is the Newton gravitational constant. The cou-
pling �g is the only nonrenormalized coupling, having a

linear dependence on the momentum transfer q2.
Explicit preon degrees of freedom will become impor-

tant at the fundamental preon scale defined by the con-
straint �GðM2

prÞ ¼ �gðM2
prÞ. We can write

1

�GðM2
GÞ

þ bG
4�

ln

�
M2

pr

M2
G

�
¼ M2

Pl

M2
pr

: (6.26)

From this constraint we obtain using MPl ¼ 1:22�
1019 GeV for the Planck scale

Mpr ¼ 1:56� 1018 GeV (6.27)

for the scale Mpr where an asymptotically free preon

dynamics is expected.

C. Hyperquark and hyperhadron mass scales

We are now in the position to make statements about the
energy scale where the hyperquarks and their bound states
presumably occur. As mentioned before, it is reasonable to
assume that the new particles do not all appear at the same
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threshold level but that their mass values are distributed
over a certain range. Thus, the present result mhq ¼
26 TeV provides an average energy level but gives no
information concerning the size of the mass range over
which the particles are distributed. However, because of
the missing isospin degree of freedom the spectrum of
hyperhadrons is expected to be much wider than that of
ordinary hadrons.

For quark bound states we have the result m� ��C.
Analogously, for the bound states of hyperquarks we have
m ~� ��H. This leads to the following estimate for the
hyperhadron mass

m~h ffi
�H

�C

mh: (6.28)

With the numerical values m� ¼ 140 MeV, �C ¼
100 MeV, and �H ¼ 1700 GeV, we arrive at a hyperpion
mass m ~� ¼ 1100 GeV. Similarly, using the proton mass
mp ¼ 938 MeV as input we find hyperbaryon masses to be

of order m ~B ffi 104 GeV. These results are compiled in
Table IX.

We conclude this section with some remarks pertaining
to the hyperquark and hyperhadron masses and lifetimes.

Because hyperquarks ~d and ~u have different intrinsic par-
ities they do not form strong isospin doublets. Thus, unlike
the quarks of the first generation their masses need not be

close to each other. For the lightest hyperquark (~d) we find
a constituent mass of order m~d ffi �H ffi 1700 GeV. The
mass of the hyperquark (~u) could be substantially higher,
and is conjectured to be of order ðm~d þ�HÞ ffi 3400 GeV.
Consequently, unlike the standard model pions, hyperpions
do not form an isospin triplet and we expect that charged
hyperpions are heavier than neutral ones. Furthermore,
because of the missing isospin degree of freedom, the
lowest-lying hyperhadrons have a symmetric spin configu-
ration corresponding to spin 3

2 for hyperbaryons and spin 1

for hypermesons.
While neutral hyperquark bound states can decay elec-

tromagnetically, the charged ones can only decay via ~W
emission as discussed in sect. III A. Therefore, the life-
times of the charged hyperquark bound states are according
to Eq. (6.22) with �hq � 100 s substantially longer than the

TABLE IX. The H0 boson and low lying hyperhadrons.

boson spin � mass [GeV] lifetime [s] decay-mode

H0 0 þ ffi 350–500 10�26 Z, WþW�, f �f
~�0 1 � ffi 1100 10�27 H0,Z, �
~�� 1 þ � 3000 � 100 f �f
~�� 3

2 þ � 104 � 1 ��
~�þþ 3

2 � � 104 � 1 �þþ

TABLE VIII. Numerical values of 	 functions and coupling constants at the corresponding energy scales. The indicated errors are
due to the experimental input values.

MZ ¼ 91:18� 0:02 GeV
SUð3ÞC SUð2ÞW Uð1ÞY Uð1ÞQ
bCz ¼ 23

3 bWz ¼ 11
3 bYz ¼ � 103

30 bQz ¼ � 80
9

��1
Cz ¼ 8:24ð12Þ ��1

Wz ¼ 29:57ð05Þ ��1
Yz ¼ 59:00ð04Þ ��1

Qz ¼ 127:90ð02Þ
mt ¼ 176:9� 4:0 GeV
bC ¼ 7 bW ¼ 10

3 bYt ¼ �4 bQt ¼ � 32
3

��1
Ct ¼ 9:05ð15Þ ��1

Wt ¼ 29:96ð06Þ ��1
Yt ¼ 58:64ð05Þ ��1

Qt ¼ 126:96ð05Þ

mhq ¼ ð26:3� 2:3Þ � 103 GeV (�H ¼ ð1:66� 0:34Þ � 103 GeV)
SUð3ÞH SUð3ÞC SUð2ÞW Uð1ÞY Uð1ÞQ
bH ¼ 7 bC ¼ 7 bW ¼ 10

3 bY ¼ �8 bQ ¼ � 52
3

��1
Hh ¼ 5:58ð20Þ ��1

Ch ¼ 14:63ð18Þ ��1
Wh ¼ 32:62ð08Þ ��1

Yh ¼ 55:45ð07Þ ��1
Qh ¼ 118:47ð09Þ

MP ¼ ð8:31� 0:88Þ � 109 GeV
SUð6ÞP SUð3ÞC Uð1ÞQ
bP ¼ 11 bC ¼ 7 bQ ¼ � 52

3

��1
P ¼ 19:66ð08Þ ��1

Cp ¼ 28:73ð18Þ ��1
Qp ¼ 83:57ð09Þ

MG ¼ ð1:17� 0:12Þ � 1016 GeV
SUð9ÞG
bG ¼ 22
��1
G ¼ 44:48ð27Þ

Mpr ¼ ð1:56� 0:01Þ � 1018 GeV
��1
g ¼ 61:20ð37Þ
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lifetimes of the neutral ones. As to the experimental sig-
nature, a neutral hyperpion decays electromagnetically
into two photons with lifetime � ~� ¼ @=�~� � 10�27 s if
one assumes a decay width �~� ¼ 800 GeV derived from

�~h ffi �H

�C
�h in analogy to Eq. (6.28).

Hypermeson masses of order TeV correspond to a short-
range Yukawa coupling interaction with range @=m ~�c

2 ffi
10�19 m. At energies of several tens of TeV, hyperquarks
couple only to the Z boson and the photon. As a result,
there is a coupling of the neutral hyperpion to the Z boson.
This short-range interaction could lead to the formation of
a scalar ZZ bound state with spin 0, called H0, as shown in
Fig. 6, which could be a viable candidate for solving the
unitarity problem in W-W-scattering [18]. For the H0

boson mass and decay width an estimate according to

Ref. [18] using � ¼ Gfm
2
H0=

ffiffiffi
2

p
, where G�1=2

f ffi
293 GeV is the Fermi constant and 1 � � � 2 gives
mH0 ffi 350–500 GeV and �H0 ffi 40 GeV corresponding
to the lifetime �H0 ¼ @=�H0 ffi 10�26 s.

VII. SUMMARYAND OUTLOOK

The standard model leaves many questions unanswered;
for example, why leptons and quarks share the same weak
interaction, mediated by heavy vector bosons coupling
differently to left- and right-handed quarks and leptons.
This fact, among others, points to a deeper connection
between leptons and quarks. In the preon model, weak
interactions are qualitatively understood as a residual force
that is associated with the preon number of the bound state.
On the other hand, a model which contains only the un-
broken gauge interactions SUð3ÞH � SUð3ÞC � Uð1ÞQ be-

tween preons does not readily lend itself to a quantitative
description of the left-right asymmetric weak interactions
between preon bound states at low energies. Furthermore,
it does not provide a dynamical explanation for certain new
phenomena predicted by the present theory, for example,
the decay of hyperquarks into quarks. Therefore, we have
attempted to make some progress by considering approxi-
mate effective gauge theories on the level of preon bound
states.

In particular, we have investigated the bosonic sector of
the preon model in some detail. We have shown that the
introduction of hyperquarks in Harari’s theory requires
new classes of effective gauge bosons, called ~W and N in
order to describe weak transitions among hyperquarks and
between hyperquarks and quarks. The presence of these
additional gauge bosons leads to an extension of the stan-
dard SUð2ÞWL

� Uð1ÞY electroweak theory to a larger

gauge group emerging at an energy MP ffi 109 GeV. At
this scale, 9 left-right symmetric weak bosons, 8 hyper-
gluons, and 18 neutralons provide the 35 generators of an
effective SUð6ÞP gauge group, refered to as partial unifi-
cation group. This scheme predicts a Weinberg angle
sin2�W ¼ 6=13 at MP ffi 109 GeV, which is twice its
experimental value at MZ ¼ 91:2 GeV. Furthermore, it
shows that the breaking of left-right SUð2ÞWL

� SUð2ÞWR

symmetry into the standard model symmetry SUð2ÞWL
�

Uð1ÞY is closely connected with the production and decay
of hyperquarks and thus to some extent explained in the
present model.
At the grand unification scaleMG ffi 1016 GeV the spec-

trum of bosonic preon bound states is much larger. In
addition to the usual GUT bosons, which provide transi-
tions between quarks and leptons as in proton decay pro-
cesses, several new gauge bosons appear, the counting of
which leads to the grand unification group SUð9ÞG. Next to
the 35 gauge bosons of SUð6ÞP, there are 8 gluons of
SUð3ÞC, 18 colored bosons (X, Y, and U and their antipar-
ticles), 18 hypercolored bosons ( ~X, ~Y, and ~U and their
antiparticles), and the photon AQ of Uð1ÞQ, altogether 80
generators of SUð9ÞG.
The hyperquark mass scale has been found from the

dimension of these unified gauge groups, the number of
fermionic bound states, and the requirement that the cou-
pling constants of the various effective gauge interactions
are equal at the two unification scales. These constraints
lead to a system of three equations with three unknowns,
allowing the determination of both unification scales
MP ffi 109 GeV and MG ffi 1016 GeV, and the average
hyperquark mass scale mhq ffi 104 GeV. To obtain a mass

constraint for the lightest hyperquark bound state, the
hyperpion, we have extrapolated from the point mhq to

the point �H where �H ffi Oð1Þ and obtained �H ffi
1700 GeV, as the typical scale for hyperhadron masses,
which is within reach of the LHC at CERN.
Finally, from the unification constraints mentioned

above, the Majorana description of neutrinos is preferred.
For Dirac neutrinos the present theory leads to a proton
lifetime which is too short, and furthermore to a hyper-
quark mass scale below the masses of W and Z bosons,
both results contradicting experimental facts.
In summary, based on the introduction of hyperquarks as

a new class of fermionic bound states we have depicted a
scenario for the unification of forces that partly explains
the left-right asymmetry of weak interactions at low ener-

Z

ZZ

Z

π~

FIG. 6. ZZ bound state H0 generated via ~� exchange.
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gies and fills the large gap between the Fermi scale and
partial unification scale with a wide spectrum of hyper-
quark bound states.
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