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We introduce a toy model implementing the proposal of using a custodial symmetry to protect the

ZbL �bL coupling from large corrections. This ‘‘doublet-extended standard model’’ adds a weak doublet of

fermions (including a heavy partner of the top quark) to the particle content of the standard model in order

to implement an Oð4Þ �Uð1ÞX � SUð2ÞL � SUð2ÞR � PLR �Uð1ÞX symmetry in the top-quark mass

generating sector. This symmetry is softly broken to the gauged SUð2ÞL �Uð1ÞY electroweak symmetry

by a Dirac mass M for the new doublet; adjusting the value of M allows us to explore the range of

possibilities between the Oð4Þ-symmetric (M ! 0) and standard-model-like (M ! 1) limits. In this

simple model, we find that the experimental limits on the ZbL �bL coupling favor smaller M while the

presence of a potentially sizable negative contribution to �T strongly favors large M. Comparison with

precision electroweak data shows that the heavy partner of the top quark must be heavier than about

3.4 TeV, making it difficult to search for at LHC. This result demonstrates that electroweak data strongly

limit the amount by which the custodial symmetry of the top-quark mass generating sector can be

enhanced relative to the standard model. Using an effective field theory calculation, we illustrate how the

leading contributions to �T, �S, and the ZbL �bL coupling in this model arise from an effective operator

coupling right-handed top quarks to the Z boson, and how the effects on these observables are correlated.

We contrast this toy model with extradimensional models in which the extended custodial symmetry is

invoked to control the size of additional contributions to �T and the ZbL �bL coupling, while leaving the

standard model contributions essentially unchanged.
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I. INTRODUCTION

Although the standard model (SM) is in excellent agree-
ment with the experimental data, the triviality and natural-
ness problems in the Higgs sector demonstrate that it is, at
best, an effective field theory valid up to some energy scale
�. The literature contains a rich variety of ideas about what
kind of new physics might subsume or augment the SM at
energies above those explored by current experiments. In
building models of new physics, incorporating the large
mass of the top quark while still conforming to the preci-
sion electroweak data remains a challenge. In particular,
the interactions introduced to give rise to the top-quark
mass typically introduce corrections to the ZbL �bL cou-
pling, gLb. Not only is gLb tightly constrained by experi-
ment, but the value predicted at the one-loop level in the
SM is already about 2� away from the central experimen-
tal value—so that radiative corrections of the wrong sign
will tend to push the theoretical value further from agree-
ment with experiment.

Agashe et al. [1] have shown that the constraints
on beyond the standard model physics related to the
ZbL �bL coupling can, in principle, be loosened if the

global SUð2ÞL � SUð2ÞR symmetry of the electroweak
symmetry-breaking sector is actually a subgroup of a larger
global symmetry of both the symmetry-breaking and top-
quark mass generating sectors of the theory. In particular,
they propose that these interactions preserve an Oð4Þ �
SUð2ÞL � SUð2ÞR � PLR symmetry, where PLR is a parity
interchanging L $ R. The Oð4Þ symmetry is then sponta-
neously broken to Oð3Þ � SUð2ÞV � PLR, breaking the
electroweak interactions but protecting gLb from radiative
corrections, so long as the left-handed bottom quark is a
PLR eigenstate.
In this paper we construct an explicit realization of the

simplestOð4Þ-symmetric extension of the SM. For reasons
that will shortly become clear, we call this model the
doublet-extended standard model, or DESM. Because the
DESM is minimal, it displays the essential ingredients
protecting gLb without the burden of additional states,
interactions, or symmetry patterns that might otherwise
obscure the role played by custodial Oð3Þ. Because it is
concrete, it also enables us to explore how the new sym-
metry impacts the model’s ability to conform with the
constraints imposed by other precision electroweak data.
In our model, all operators of dimension four in the

Higgs potential and the sector generating the top-quark
mass respect a global Oð4Þ �Uð1ÞX symmetry; the
Uð1ÞX enables the SM-like fermions to obtain the appro-
priate electric charges and hypercharges. In addition to the
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particle content of the SM, we introduce a new weak
doublet of Dirac fermions, � ¼ ð�; T0Þ, and combine
�L with the left-handed top-bottom doublet ðt0L; bLÞ to

form a ð2; 2�Þ under the global SUð2ÞL � SUð2ÞR symme-
try. The bL state is thereby endowed with identical charges
under the two global SUð2Þ groups, T3

L ¼ T3
R, making it a

parity eigenstate, as desired. We also find that the T0 mixes
with t0 to form a SM-like top quark and a heavy partner.
The Oð4Þ �Uð1ÞX-symmetric Yukawa interaction can, of
course, be extended to the bottom quark and the remaining
electroweak doublets, by adding further spectator fermi-
ons; here we focus exclusively on the partners of the top
quark since they give the dominant contribution to gLb.

To enable electroweak symmetry breaking and fermion
mass generation to proceed, the global symmetry is explic-
itly broken to SUð2ÞL �Uð1ÞY by a dimension-three Dirac
mass M for �. As M ! 1 the ordinary SM top-Yukawa
interaction is recovered; as M ! 0 the model becomes
exactly Oð4Þ �Uð1ÞX symmetric; adjusting the value of
M allows us to interpolate between these extremes and to
investigate the limits to which the custodial symmetry of
the top-quark mass generating sector can be enhanced.
When we calculate the dominant one-loop corrections to
gLb in our model, we find, consistent with Ref. [1], that
because bL is a PLR eigenstate, gLb is protected from
radiative corrections in the M ! 0 limit and these correc-
tions return as M is switched on. However, when we study
the behavior of oblique radiative corrections asM is varied,
we find that in the small-M limit where gLb is closer to the
experimental value, the oblique corrections become unac-
ceptably large. In particular, in the M ! 0 limit the en-
hanced custodial symmetry produces a potentially sizable
negative contribution to �T. Using effective field theory
methods, we illustrate how the leading contributions to�T,
�S, and the ZbL �bL coupling in this model arise from a
single effective operator coupling right-handed top quarks
to the Z boson. We then contrast this toy model with
extradimensional models in which the extended custodial
symmetry is invoked to control the size of additional
contributions to �T and the ZbL �bL coupling, while leaving
the standard model contributions essentially unchanged.

The paper is organized as follows: In Sec. II we review
the concept of using custodial symmetry to protect gLb
from large corrections, and then present the DESM as a
concrete realization of this idea. In Sec. III we calculate
gLb at one-loop order, and compare it with the experimen-
tally measured value gexLb; indeed, varyingM to move away

from the SM limit does allow gLb to approach the experi-
mental value more closely. In Sec. III we calculate the
oblique electroweak parameters �S and �T, finding that
the latter provides tighter constraints on M that push the
model back towards the SM limit. We then compare the
DESM’s joint prediction for �S and�T to the region of the
�S–�T plane that gives the best fit to existing data [2] and
find that the DESM is most consistent with experiment in

the limit where it most closely approximates the SM. Using
effective field theory, in Sec. IV we compute the leading-
log contributions to �T, �S, and the ZbL �bL coupling in the
DESM. We demonstrate that these corrections all arise
from a single effective operator coupling right-handed
top quarks to the Z boson and are therefore correlated. In
Sec. V we contrast the DESM toy model with extradimen-
sional models in which the extended custodial symmetry is
invoked to control the size of additional contributions to
�T and the ZbL �bL coupling, relating our results to those
previously discussed in [3,4] and commenting on the
model-independent analysis presented in Ref. [5].
Section VI summarizes our results and presents our
conclusions.

II. DOUBLET-EXTENDED STANDARD MODEL

A. Custodial symmetry and Z coupling

The tree-level coupling of a SM fermion c to the Z
boson is

e

cwsw
ðT3

L �Qsin2�WÞZ� �c��c ; (1)

where T3
L and Q are, respectively, the weak isospin and

electromagnetic charges of fermion c , e is the electromag-
netic coupling; cw and sw are the cosine and sine of the
weak mixing angle. Because the electromagnetic charge is
conserved, loop corrections to the Z �c c coupling do not
alter it; however, the weak symmetry SUð2ÞL is broken at
low energies, and radiative corrections to the T3

L coupling
are present in the SM.
Following the proposal of [1], we wish to construct a

scenario in which the T3
L coupling is not subject to flavor-

dependent radiative corrections. To start, we note that the
accidental custodial symmetry of the SM implies that the
vectorial charge T3

V � T3
L þ T3

R is conserved:

�T3
V ¼ �T3

L þ �T3
R ¼ 0: (2)

This suggests a way to evade flavor-dependent corrections
to T3

L itself, by adding a parity symmetry PLR that ex-
changes L $ R. If c is an eigenstate of this parity sym-
metry and the symmetry persists at the energies of interest,
then

�T3
L ¼ �T3

R: (3)

Now, we see that Eq. (2) is satisfied by having the two
terms on the right-hand side vanish separately, rather than
remaining nonzero and canceling one another. In other
words, �T3

L ¼ 0 and the Z �c c coupling remains fixed
even to higher order in this scenario. We will now show
how to implement this idea for the b quark in a toy model
and examine the phenomenological consequences.

CHIVUKULA et al. PHYSICAL REVIEW D 80, 095001 (2009)

095001-2



B. The model

Let us construct a simple extension of the SM that
implements this parity idea for the third-generation quarks,
in order to suppress radiative corrections to the Zb �b vertex.
We extend the global SUð2ÞL � SUð2ÞR symmetry of the
Higgs sector of the SM to an Oð4Þ �Uð1ÞX � SUð2ÞL �
SUð2ÞR � PLR �Uð1ÞX for both the symmetry-breaking
and top-quark mass generating sectors of the theory. As
usual, only the electroweak subgroup, SUð2ÞL �Uð1ÞY , of
this global symmetry is gauged; our model does not in-
clude additional electroweak gauge bosons. The global
Oð4Þ spontaneously breaks to Oð3Þ � SUð2ÞV � PLR

which will protect gLb from radiative corrections, as above,
provided that the left-handed bottom quark is a parity
eigenstate: PLRbL ¼ �bL. The additional global Uð1ÞX
group is included to ensure that the light t and b eigen-
states, the ordinary top and bottom quarks, obtain the
correct hypercharges.

In light of the extended symmetry group, the relation-
ships between electromagnetic charge Q, hypercharge Y,
the left- and right-handed T3 charges, and the new charge
QX associated with Uð1ÞX are as follows:

Y ¼ T3
R þQX; (4)

Q ¼ T3
L þ Y ¼ T3

L þ T3
R þQX: (5)

Since the bL state is supposed to correspond to the familiar
bottom quark, it has the familiar SM charges T3

LðbLÞ ¼�1=2, and QðbLÞ ¼ �1=3, and YðbLÞ ¼ 1=6. Because bL
must be an eigenstate under PLR, we deduce that T

3
RðbLÞ ¼

T3
LðbLÞ ¼ �1=2. Then to be consistent with Eqs. (4) and

(5), its charge under the new global Uð1ÞX must be
QXðbLÞ ¼ 2=3. Moreover, since the left-handed b quark
is an SUð2ÞL partner of the left-handed t quark, the full left-
handed top-bottom doublet must have the charges T3

R ¼
�1=2 and QX ¼ 2=3, just as the full doublet has hyper-
charge Y ¼ 1=6. Finally, the nonzero TR

3 charge of the top-

bottom doublet tells us that this doublet forms part of a
larger multiplet under the SUð2ÞL � SUð2ÞR symmetry and
it will be necessary to introduce some new fermions with
T3
R ¼ 1=2 to complete the multiplet.
We therefore introduce a new doublet of fermions � �

ð�; T0Þ. The left-handed component, �L, joins with the
top-bottom doublet qL � ðt0L; bLÞ to form anOð4Þ �Uð1ÞX
multiplet,

Q L ¼ t0L �L

bL T0
L

� �
� ðqL �L Þ; (6)

which transforms as a ð2; 2�Þ2=3 under SUð2ÞL � SUð2ÞR �
Uð1ÞX. The parity operation PLR, which exchanges the
SUð2ÞL and SUð2ÞR transformation properties of the fields,
acts on QL as

PLRQL ¼ �½ði�2ÞQLði�2Þ�T ¼ T0
L ��L

�bL t0L

� �
(7)

exchanging the diagonal components, while reversing the
signs of the off-diagonal components. Thus t0L and T0

L are
constrained to share the same electromagnetic charge, in
order to satisfy Eq. (5). In fact, we will later see that the t0
and T0 states mix to form mass eigenstates corresponding
to the top quark (t) and a heavy partner (T). The charges of
the components of QL are listed in Table I.
We assign the minimal right-handed fermions charges

that accord with the symmetry-breaking pattern we envi-
sion: the top and bottom quarks will receive mass via
Yukawa terms that respect the full Oð4Þ �Uð1ÞX symme-
try, while the exotic states will have a dimension-three
mass term that explicitly breaks the large symmetry to
SUð2ÞL �Uð1Þ. Moreover, to accord with experiment,
the t0R and bR must have T3

L ¼ 0 and share the electric
charges of their left-handed counterparts. The top and
bottom quarks will receive mass through a Yukawa inter-
action with a SM-like Higgs multiplet that breaks the
electroweak symmetry. The simplest choice is to assign
the Higgs multiplet to be neutral under Uð1ÞX; in this case,
both t0R and bR share the QX ¼ 2=3 charge of t0L and bL.
Therefore, from Eqs. (4) and (5), we find T3

Rðt0RÞ ¼ 0
[meaning that t0R can be chosen to be an SUð2ÞR singlet]
and T3

RðbRÞ ¼ �1 [so that bR is, minimally, part of an
SUð2ÞR triplet if we extend the symmetry to the bottom-
quark mass generating sector]. Turning now to the T0

R and
�R states, we see that they must form an SUð2ÞL doublet
with hypercharge 7=6 so that the Dirac mass term for �
preserves the electroweak symmetry as desired.1 Finally,
we choose T3

Rð�RÞ ¼ T3
RðT0

RÞ ¼ 0, which implies QX ¼
7=6 for both states, as the minimal choice satisfying the
constraint imposed by Eq. (4); other choices of T3

R charge
would involve adding additional fermions to form com-
plete SUð2ÞR multiplets. The charges of the fermions are
listed in Table I.
Now, let us describe the symmetry-breaking pattern and

fermion mass terms explicitly. Spontaneous electroweak

TABLE I. Charges of the fermions under the various symmetry
groups in the model. Note that, as discussed in the text, other T3

R

and QX assignments for the �R and T0
R states are possible.

t0L bL �L T0
L t0R bR �R T0

R

T3
L

1
2 � 1

2
1
2 � 1

2 0 0 1
2 � 1

2

T3
R � 1

2 � 1
2

1
2

1
2 0 �1 0 0

Q 2
3 � 1

3
5
3

2
3

2
3 � 1

3
5
3

2
3

Y 1
6

1
6

7
6

7
6

2
3 � 1

3
7
6

7
6

QX
2
3

2
3

2
3

2
3

2
3

2
3

7
6

7
6

1This means that the �R and T0
R states do not fill out the

SUð2ÞR triplet to which bR belongs—which is uncharged under
SUð2ÞL and carries hypercharge 2=3; other exotic fermions must
play that role if we wish to extend the symmetry to the bottom-
quark mass generating sector.

LIMITS OF CUSTODIAL SYMMETRY PHYSICAL REVIEW D 80, 095001 (2009)

095001-3



symmetry breaking proceeds through a Higgs multiplet
that transforms as a ð2; 2�Þ0 under SUð2ÞL � SUð2ÞR �
Uð1ÞX:

� ¼ 1ffiffiffi
2

p vþ hþ i�0 i
ffiffiffi
2

p
�þ

i
ffiffiffi
2

p
�� vþ h� i�0

 !
: (8)

Again, the parity operator PLR exchanges the diagonal
fields and reverses the signs of the off-diagonal elements.
When the Higgs acquires a vacuum expectation value, the
longitudinal W and Z bosons acquire mass and a single
Higgs boson remains in the low-energy spectrum. The
Higgs multiplet has an Oð4Þ �Uð1ÞX-symmetric Yukawa
interaction with the top quark

L Yukawa ¼ ��t Trð �QL ��Þt0R þ H:c: (9)

that contributes to generating a top-quark mass. In princi-
ple, the same Higgs multiplet can also contribute to the
bottom-quark mass through a separate, and similarly
Oð4Þ �Uð1ÞX-symmetric, Yukawa interaction involving
the SUð2ÞR triplet to which bR belongs. Since the phe-
nomenological issues that concern us in this paper are
affected far more strongly by mt than by the far-smaller
mb, we will neglect this and any other Yukawa interaction.

Next we break the full Oð4Þ �Uð1ÞX symmetry to its
electroweak subgroup.We do so first by gauging SUð2ÞL �
Uð1ÞY . In addition, we wish to preserve theOð4Þ symmetry
of the top-quark mass generating sector in all dimension-
four terms, but break it softly by introducing a dimension-
three Dirac mass term for �,

L mass ¼ �M ��L ��R þ H:c:; (10)

that explicitly breaks the global symmetry to SUð2ÞL �
Uð1ÞY . Note that we therefore expect that any flavor-
dependent radiative corrections to the ZbL �bL coupling
will vanish in the limit M ! 0, as the protective parity
symmetry is restored; alternatively, as M ! 1, the larger
symmetry is pushed off to such high energies that the
resulting theory looks more and more like the SM.

In addition to the fermions explicitly described above, a
more complete version of this toy model must contain
several other fermions to fill out the SUð2ÞR multiplet to
which the bR belongs and also some spectator fermions
that cancel Uð1Þ anomalies. However, the toy model suffi-
ces for exploration of the issues related to the ZbL �bL
coupling that is the focus of this paper.

C. Mass matrices and eigenstates

When the Higgs multiplet acquires a vacuum expecta-
tion value and breaks the electroweak symmetry, masses
are generated for the top quark, its heavy partner T, and the
exotic fermion � through the mass matrix

L mass ¼ �ð t0L T0
L Þ m 0

m M

� �
t0R
T0
R

� �
�M ��L�R þ H:c:;

(11)

where

m ¼ �tvffiffiffi
2

p : (12)

Note that the� field is decoupled from the SM sector, and
its mass is simply m� ¼ M. The bottom quark remains
massless because we have ignored its Yukawa coupling.
Diagonalizing the top-quark mass matrix yields mass

eigenstates t (corresponding to the SM top quark) and T (a
heavy partner quark), with corresponding eigenvalues

m2
t ¼ 1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m4

M4

s �
M2 þm2;

m2
T ¼ 1

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4m4

M4

s �
M2 þm2:

(13)

The mass eigenstates are related to the original gauge
eigenstates through the rotations

t0R
T0
R

� �
¼ cos�R sin�R

� sin�R cos�R

� �
tR
TR

� �
;

t0L
T0
L

� �
¼ cos�L sin�L

� sin�L cos�L

� �
tL
TL

� �
;

(14)

whose mixing angles are given by

sin�R ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1� 2m2=M2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m4=M4
p

vuut ;

sin�L ¼ 1ffiffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4m4=M4
p

s
:

(15)

From these equations the decoupling limit M ! 1 is
evident: mt approaches its SM value as in Eq. (12), the t�
T mixing goes to zero, and T becomes degenerate with �.
Conversely, in the limit M ! 0, the full Oð4Þ �Uð1ÞX
symmetry is restored and only the combination T0

L þ t0L
couples to tR with mass m.
For phenomenological discussion, it will be convenient

to fix mt at its experimental value and express the other
masses in terms of mt and the ratio � � M=m. Figure 1
shows how m, M, and mT vary with �; the horizontal line
represents mt, which is being held fixed at 172 GeV. In the
limit as � becomes large, m ! mt, mT �M grows stead-
ily, and the mixing angles decline toward zero; this is a
physically sensible limit that ultimately leads back to the
SM. However we see that the opposite limit, where� ! 0,
can only be achieved for m ! 1, which is not physically
reasonable since it corresponds to taking �t ! 1. Hence,
we will need to take care in talking about the case of small
�.
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III. PHENOMENOLOGY

A. Z coupling to bL �bL

We are now ready to study how the flavor-dependent
corrections to the ZbL �bL coupling behave in our toy model.
Specifically, if we write the ZbL �bL coupling as

e

cwsw

�
� 1

2
þ �gLb þ 1

3
s2w

�
Z�

�bL��bL; (16)

then all the flavor dependence is captured by �gLb. At tree
level, the ZbL �bL coupling in our model has its SM value,
with �gLb ¼ 0, because the bL has the same quantum
numbers as in the SM. However, at one loop, flavor-
dependent vertex corrections arise and these give nonzero
corrections to �gLb; these corrections differ from those in
the SM due to the presence of vertex corrections involving
exchange of T, the heavy partner of the top quark.

The calculation may be done conveniently in the
‘‘gaugeless’’ limit [6–9], in which the Z boson is treated
as a nonpropagating external field coupled to the current
j�3L � j�Qs

2
w. Operationally, this involves replacing Z� with

@��
0=mZ in the gauge current interaction, where �0 is the

Goldstone boson eaten by the Z:

e

cwsw
Z�ðj�3L � j

�
Qs

2
wÞ ! e

cwswmZ

@��
0ðj�3L � j

�
Qs

2
wÞ

¼ 2

v
@��

0ðj�3L � j
�
Qs

2
wÞ: (17)

The general vertex diagram shown in Fig. 2 will yield
radiative corrections to the effective operator
@��

0 �bL�
�bL; that is, the expression for this diagram

will include a term of the form

A@��
0 �bL�

�bL: (18)

Comparing the last three equations shows that the coeffi-
cient A is proportional to the quantity we are interested in:

�gLb ¼ v

2
A: (19)

We have calculated the several loop diagrams repre-
sented by Fig. 2 and obtained the following expression
for �gLb:

�gLb ¼ m2
t

16	2v2

�
cos2�Lðcos2�L þ sin2�RÞ

þm2
T

m2
t

sin2�Lðcos2�R � cos2�LÞ

�mT=mt

2
sin2�L

�
m2

T=m
2
t þ 1

2
sin2�R

� 2
mT

mt

sin2�L

�
logðm2

T=m
2
t Þ

m2
T=m

2
t � 1

�
; (20)

where the prefactor proportional to m2
t is the SM result for

this class of diagram. We expect to see �gLb vanish in the
limit M ! 0 as the parity symmetry is restored; this ex-
pectation is fulfilled, since mt ! 0 in this limit. At the
other extreme, for large M, we expect to find �gLb take on
its SM value by having the factor within square brackets
approach one. This may be readily verified if we take the
equivalent limit as � ! 1 for fixed mt:

�gLbð� ! 1Þ ! m2
t

16	2v2

�
�
1þ 1þ logð1=�2Þ

�2
þOð1=�4Þ

�
;

(21)

since in this limit sin�L ! 1=�2, sin�R ! 1=�, and
m2

T=m
2
t ! �2. In other words, we find that adjusting the

value of M allows us to interpolate between the SM value
for �gLb at large M and the absence of a radiative correc-
tion at smallM. While the limit of small� is less useful, as
we mentioned earlier, for completeness we note that

FIG. 2. One-loop vertex correction diagram for 	Z ! b �b in
our model. The ti;j may be either the top quark (t) or its heavy

partner (T).

mT

mt

m

M

0 1 2 3 4
0

200

400

600

800

1000

1200
M

as
s

G
eV

FIG. 1 (color online). The curves show the behaviors of m
(dotted), M (dashed), and mT (upper solid) as functions of � �
M=m when mt is held fixed. The solid horizontal line corre-
sponds to mt ’ 172 GeV.
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�gLbð�! 0Þ ! m2
t

16	2v2

�
logð2=�Þþ�2

�
3

4
þ 1

2
logð�=2Þ

�

þOð1=�4Þ
�
; (22)

since in this limit sin�L ! ð1= ffiffiffi
2

p Þð1��2=4Þ, sin�R !
ð1��2=8Þ, and m2

T=m
2
t ! 4=�2. This growth at small

� is visible in Fig. 3.
We now use our results to compare the value of gLb in

our model (as a function of � for fixed mt) with the values
given by experiment and the SM, as illustrated in Fig. 3.
The experimental [10] value gexLb ¼ �0:4182� 0:0015
corresponds to the thick horizontal line; the thin (red)
horizontal lines bordering the shaded band show the
�1� deviations from the experimental value. We calcu-
lated the SM value using ZFITTER [11,12] with a reference
Higgs mass mh ¼ 115 GeV, and obtained gSMLb ¼
�0:421 14 (which matches the result in [10]). This is
indicated by the dashed horizontal line, and may be seen
to deviate from gexLb by 1:96�. The (solid blue) curve shows
how gLb varies with � in our model; we required gLb to
match the SM value with mt ¼ 172 GeV and v ¼
246 GeV as � ! 1 and the shape of the curve reflects
our results for �gLb in Eq. (21). We see that gLb in our
model is slightly more negative than (i.e. slightly farther
from the experimental value than) the SM value for�> 1,
agrees with the SM value for � ¼ 1, and comes within
�1� of the experimental value only for �< 1. Given the
shortcomings of the small-� limit, this is disappointing.

B. Oblique electroweak parameters

The flavor-universal corrections from new physics be-
yond the SM can be parametrized in a model-independent
way using the four oblique electroweak parameters �S,

�T, ��, �
; the first two are the oblique parameters [13–
15] for models without additional electroweak gauge bo-
sons, while the other two incorporate the effects of an
extended electroweak sector. In general, the oblique pa-
rameters are related as follows [16,17] to the neutral-
current

�MNC ¼ 4	�
QQ0

P2

þ ðT3 � s2wQÞðT03 � s2wQ
0Þ

ðs2wc2w4	� � S
16	ÞP2 þ 1

4
ffiffi
2

p
GF

ð1� �T þ ��
4s2wc

2
w
Þ

þ ffiffiffi
2

p
GF

��

s2wc
2
w

T3T03 þ 4
ffiffiffi
2

p
GFð�
� �TÞ

� ðQ� T3ÞðQ0 � T03Þ; (23)

and charged-current electroweak scattering amplitudes

�MCC ¼ ðTþT0� þ T�T0þÞ=2
ð s2w
4	� � S

16	ÞP2 þ 1
4
ffiffi
2

p
GF

ð1þ ��
4s2wc

2
w
Þ

þ ffiffiffi
2

p
GF

��

s2wc
2
w

ðTþT0� þ T�T0þÞ
2

; (24)

with P2 a Euclidean momentum-squared. In the DESM we
may set �
 ¼ �T, because the model contains no extra
Uð1Þ gauge group, and � ¼ 0, because there is no extra
SUð2Þ gauge group. We therefore work purely in terms of
�S and �T from here on. We take the origin of the �S, �T
parameter space to correspond to the SM with mH ¼
115 GeV; this ensures that any nonzero prediction for the
oblique parameters for a Higgs of this mass arises from
physics beyond the SM. At the one-loop level, the only new
contributions to�S and�T in the DESM come from heavy
fermion loops in the vacuum polarization diagrams indi-
cated in Fig. 4. We therefore expect �S and �T to be of
order a few percent.2

In this section, wewill first separately derive expressions
for �T and �S in DESM and see how each compares to
current constraints from [2]. We then compare the DESM’s
joint prediction for �S and �T as a function of � to the
region of the �S� �T plane that gives the best fit to
existing data [2] and thereby derive a 95% confidence level
lower bound on �.

1. Parameter �T

The custodial-symmetry-breaking parameter �T is de-
fined as [13]

0 5 10 15 20

0.422

0.420
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0.416

0.414

g L
b

FIG. 3 (color online). The solid (blue) curve shows the DESM
model’s prediction for gLb, Eq. (21). The thick horizontal line
corresponds to gexLb ¼ �0:4182, while the two horizontal upper

and lower solid lines bordering the shaded band correspond to
the �1� deviations [10]. The SM prediction is given by the
dashed horizontal line. The leading-log contribution, Eq. (44), is
shown by the dotted curve.

2There are, in principle, additional oblique parameters such as
�U that arise at higher order. These will be suppressed relative to
�S or �T by a factor of order m2

Z=m
2
T; since we can see from

Fig. 1 that mT > 2mt, the suppression is by at least an order of
magnitude and we shall neglect �U and its ilk from here on.
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�T ¼
�
�WWð0Þ
M2

W

��ZZð0Þ
M2

Z

�
; (25)

where the contributions proportional to g�� in the vacuum
polarization diagrams of Fig. 4 for theW and Z are labeled
�WW and �ZZ, respectively. Each contribution sums over

various f �f0 pairs—for W we have f �f0 ¼ t �b, T �b, t ��, T ��;

while for Z, we have f �f0 ¼ t�t, T �T, t �T, � ��, b �b, b ��.
The analytical result for �TDESM cannot be written in

compact form; the result3 in the limit � 	 1 is

�TDESM ¼ 3m2
t

16	2v2

�
1� 4

ln�2

�2
þ 22

3�2

�
: (26)

One can see that, for � ! 1, Eq. (26) reproduces the
leading SM result �TSMðmtÞ ¼ 3m2

t =ð4	vÞ2 [13], as ex-
pected. It interesting to note that the leading-log contribu-
tion arising from the heavy states reduces4 the value of �T.
This is to be expected, since the custodial symmetry is
enhanced in the small-� limit and�T measures the change
in the amount of isospin violation relative to the standard
model.

Subtracting the SM contribution from the top quark, the
numerical value of

�Tth ¼ �TDESM � �TSMðmtÞ (27)

as a function of � is plotted as the solid blue curve in
Fig. 5; the dotted curve shows just the leading-log term
[second term of Eq. (26)]. The thick solid horizontal line
corresponds to the best-fit value of �T ¼ 0:16� 10�3

obtained by Ref. [2] when setting U ¼ 0; the two horizon-
tal solid lines bordering the shaded band show the relative
�1� deviations from that central fit value. Unlike the case

of �gLb, the experimental constraints on �T clearly favor
large values of �, closer to the SM limit.
By way of comparison, it is interesting to note that the

authors of [3,4] studied the case where an SM-like weak-
singlet top quark was in the same SOð5Þ multiplet as extra
quarks forming a weak doublet and concluded that this
produced an experimentally disfavored large negative con-
tribution to �T at one-loop. Given that their SOð5Þ multi-
plet in four dimensions (4D) includes an
SOð4Þ ¼ SUð2ÞL � SUð2ÞR bidoublet, our results are con-
sistent with theirs—see Sec. V below for further
discussion.

2. Parameter �S

The parameter S is defined as [13]

�S ¼ 16	�

�
d

dq2
�33ð0Þ � d

dq2
�3Qð0Þ

�
; (28)

where q is the gauge boson momentum. The complete
expression for �SDESM cannot be written in compact
form; the limiting case where � 	 1 is given by

�SDESM ¼ 1

6	

�
3þ 2 ln

mb

mt

þ 8

�2
ð2� ln�Þ

�
; (29)

where we reintroduce a nonzero mass for the b quark to cut
off a divergence in the integral over the fermion loop
momenta. One can check that Eq. (29) reproduces the
SM result �SSMðmt;mbÞ [13] for � ! 1. Defining

�Sth ¼ �SDESMð�Þ � �SSMðmt;mbÞ; (30)

we plot the result in Fig. 6, along with the value, �S ¼
0:31� 10�3, that provides an optimal fit to the data (for
U ¼ 0) and the �1� relative deviations [2]. From Fig. 6
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FIG. 5 (color online). The solid (blue) curve shows the DESM
model’s prediction for �Tth as a function of �. The horizontal
lines show the optimal fit value of �T ¼ 0:16� 10�3 (thick
solid line) and the relative�1� deviations (solid lines bordering
the shaded band) from [2]. The line �T ¼ 0 corresponds to the
SM value (with mh ¼ 115 GeV), by definition. The leading-log
contribution to �T, see Eq. (42), is shown by the dotted curve.

FIG. 4. Vacuum polarization diagram contributing to the
oblique electroweak parameters. The indices i, j ¼ 1, 2, 3, Q
refer to weak (i ¼ 1, 2, 3) or electromagnetic (Q) generators,
while f, f0 run over the appropriate combinations of t, b, T, and
�.

3This is consistent with Eq. (33) in [5] when only the con-
tributions from new fermions are included (cL ¼ 0 in the lan-
guage of [5]).

4This does not violate the theorem [18,19] stating that �
 
 0
when mixing occurs only between particles of the same T3 and
hypercharge. In the DESM, there is significant mixing between
the t0L and T0

L which have different T3 and hypercharge values.
As a result, we also expect significant Glashow-Iliopoulos-
Maiani violation in the third generation.
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one can see that �S is within the �1� bounds unless �<
3; as with �T, smaller values of � are disfavored, though
the constraint in this case is less severe.

C. The �S–�T plane

In Fig. 7 we show the DESM predictions for
½�Sthð�Þ; �Tthð�Þ� from Eqs. (30) and (26) using mh ¼
115 GeV, and illustrating the successive mass-ratio values
� ¼ 3; 4; . . . ; 20;1; the point � ¼ 1 corresponds to the
SM limit of the DESM and therefore lies at the origin of the
�S–�T plane. On the same plane we also plot the elliptical

curves that define the 95% confidence level (CL) bounds
on the �S–�T plane, relative to the optimal values of �S
and �T found in [2]. Reference [2] provides the best-fit
values and corresponding �1� deviations for mh ¼
115 GeV, 300 GeV, along with the correlation matrix;
we obtained the approximate values appropriate to mh ¼
1 TeV by extrapolating based on the logarithmic depen-
dence of �S and �T on mh. To calculate the 95% CL
ellipses, we solved the equation��2 ¼ �2 � �2

min ¼ 5:99,
as appropriate to the �2 probability distribution for 2
degrees of freedom.
From this figure, we observe directly that the 95% CL

lower limit on � for mh ¼ 115 GeV is about 20, while for
any larger value ofmh the DESM with� � 20 is excluded
at the 95% CL. In other words, the fact that a heavier mh

tends to worsen the fit of even the SM (� ! 1) to the
electroweak data is exacerbated by the new physics con-
tributions within the DESM. The bound � 
 20 corre-
sponding to a DESM with a 115 GeV Higgs boson also
implies, at the 95% CL, that mT 
 �mt ffi 3:4 TeV, so
that the heavy partners of the top quark would likely be too
heavy for detection at LHC.

IV. EFFECTIVE FIELD THEORY

In this section, we use a simple effective field theory
calculation to understand the size and form of the non-SM
corrections to �T, �S, and the ZbL �bL coupling in the
large-� limit of the DESM. At large �, the fields � are
approximately mass eigenstates with mass mT 
 M. We
proceed by using the equations of motion to ‘‘integrate
out’’ the heavy � fields and construct the effective theory
relevant for energies less than M but greater than mt.
We start from the Lagrangian terms for the new fermion

doublet �:

L� ¼ i �� 6D��M ���� �t Trð �QL ��ÞtR þ H:c: (31)

In order to identify the terms involving �, it is convenient
to rewrite the Higgs field �, introduced in Eq. (8), as

� ¼ ð ~� �Þ where � � 1ffiffiffi
2

p i
ffiffiffi
2

p
�þ

vþ h� i�0

 !
; and

~� ¼ i�2�
�; (32)

so that (ignoring terms not involving �)

L� ¼ i �� 6D��M ���� �t
��L�tR þ H:c: (33)

Requiring the variation of L� with respect to ��L;R to

vanish yields the equations of motion

i 6D�L �M�R ¼ �t�tR; (34)

i 6D�R �M�L ¼ 0; (35)

which we may solve iteratively in 1=M. Doing so, we find
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FIG. 7 (color online). The dots represent the theoretical pre-
dictions of the DESM (with mh set to the reference value
115 GeV), showing how the values of �S and �T change as
� successively takes on the values 3; 4; 5; . . . ; 20;1. The three
ellipses enclose the 95% CL regions of the �S–�T plane for the
fit to the experimental data performed in [2]; they correspond to
Higgs boson mass values of mh ¼ 115 GeV, 300 GeV, and
1 TeV. Comparing the theoretical curve with the ellipses shows
that the minimum allowed value of � is 20, for mh ¼ 115 GeV.
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FIG. 6 (color online). The solid curve shows the DESM mod-
el’s prediction for �Sth as a function of �. The horizontal lines
show the optimal fit value of �S ¼ �0:31� 10�3 (thick solid
line) and the relative �1� deviations (solid lines bordering the
shaded band) from [2]. The line �S ¼ 0 corresponds to the SM
value (with mh ¼ 115 GeV), by definition. The leading-log
contribution to �S, see Eq. (43), is shown by the dotted curve.
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�R ¼ ��t

M
�tR þO

�ði 6DÞ2�tR
M3

�
; (36)

�L ¼ � �t

M2
i 6Dð�tRÞ þO

�ði 6DÞ3�tR
M4

�
: (37)

Plugging these expressions into Eq. (33), we obtain the
non-SM terms in the low-energy effective theory

L eff ¼ �2
t

M2
�tR�

yi 6Dð�tRÞ þ . . . ; (38)

where subsequent terms are suppressed by higher powers
of 1=M2. Note that, in terms of � [defined in Eq. (8)],

Tr ð�y@���3Þ ¼ 2½ð@��yÞ���y@���; (39)

and hence the operator in Eq. (38) violates custodial sym-
metry since it is the product of an SUð2ÞR singlet with one
component of a triplet.5 Diagrammatically, this operator
can be seen to arise from the process illustrated in Fig. 8.

In unitary gauge this term gives rise to an ‘‘anomalous’’
coupling of the Z boson to top quarks,

�2
t

M2
�tR�

yði 6DÞ�tR ! e�2
t v

2

4swcwM
2
�tRZ6 tR (40)

and is therefore capable of contributing to �T via oblique
corrections to the Z propagator. Note that the sign of this
anomalous contribution is fixed by the gauge charge of the
operator �tR, and that there is no induced correction to the
Wtb coupling and therefore no correction to the W
propagator.

Given the definition of �T from Eq. (25), it is clear that
the leading non-SM contribution comes from the vacuum
polarization diagrams shown in Fig. 9, with one standard
Z�tt vertex plus one nonstandard Z�tt vertex due to integrat-
ing out the heavy fermions, �. Evaluating this diagram
yields

�ZZð0Þ ¼ 2 � 3
�

e2�2
t v

2

8s2wc
2
wM

2

��
� 1

8	2
m2

t ln
m2

t

M2

�
; (41)

where the 2 reflects the fact that either vertex could be the

nonstandard one, the 3 comes from summing over the
colors of the internal quarks, and the factor in square
brackets is the product of the vertex coefficients. The factor
in parentheses is the result of the loop integral, with the
large log arising from the separation between the scales of
the � and top masses. Since there is no correction to
�WWð0Þ from integrating out the heavy fermions �, we
conclude that

�Teff ¼ ��ZZð0Þ
M2

Z

¼ 3m2
t

16	2v2

�
�4

m2
t

M2
ln
M2

m2
t

�
(42)

where we have used mt ¼ �tv=
ffiffiffi
2

p
, as appropriate to the

large-M limit of the DESM. Recalling that � 
 M=mt for
large �, we see that our effective theory result is identical
to the leading (large log) correction to �TDESM from non-
SM physics obtained earlier in Eq. (26).
Similarly, calculation of �33 and �3Q in the effective

theory yields

�Seff ¼ 1

6	

�
� 8m2

t

M2
log

M2

m2
t

�
; (43)

FIG. 8. Tree-level diagram which, when integrating out the
heavy � field, yields the operator in Eq. (40).

FIG. 9. Neutral vacuum polarization diagrams giving the lead-
ing contribution to �
 at scales below M, as a result of
integrating out the new � fermions. The nonstandard vertex,
identified by the black dot, arises from the operator in Eq. (38),
and the crosses correspond to mass insertions.

FIG. 10. Leading-log nonstandard contribution to the Zb �b
vertex in the low-energy effective theory for scales below M
yet above mt. The nonstandard vertex, identified by the black
dot, arises from the operator in Eq. (38), and the crosses
correspond to mass insertions.

5A similar computation shows that Trð�y@��Þ ¼ 2@�ð�y�Þ
is an Oð4Þ singlet.
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in agreement with Eq. (29). The leading-log contribution to
the Z ! b �b vertex can analogously be understood as aris-
ing from the diagram illustrated in Fig. 10, yielding

�geffLb ¼
m2

t

16	2v2

�
m2

t

M2
log

m2
t

M2

�
; (44)

in agreement with the leading log of Eq. (21).
Since all of the effects on all three observables (�T, �S,

and �gLb) arise from the operator in Eq. (38) in the DESM,
we see why the size and signs of these effects are correlated
as observed in the previous sections.

V. RELATION TO EXTRADIMENSIONALMODELS

In extradimensional models there are Kaluza-Klein
(KK) excitations for the gauge fields and the fermion fields.
In the top-quark mass generating sector, these extra fields
give rise to additional contributions to �S, �T, and the
ZbL �bL coupling [20]. Incorporating an approximate
Oð4Þ �Uð1ÞX symmetry has been proposed as a mecha-
nism to control the size of these additional contributions to
�T and the ZbL �bL coupling [1]. Such effects have been
thoroughly analyzed in the case of an SOð5Þ gauge-Higgs
model in Refs. [3,4]; here we review the top-quark Yukawa
sector of that extradimensional model and compare it with
our model. We also comment on the model-independent
analysis in Ref. [5] that discusses these effects.

In a 5D model of the kind discussed in [3,4], the custo-
dial symmetry is imposed on the bulk interactions.
Crucially, however, the standard SUð2ÞL quark doublet
qL and the new doublet �L, which make up the ð2; 2�Þ
multiplet QL, have different boundary conditions: ðþ;þÞ
for qL and ð�;þÞ for �L. These allow a qL zero mode to
exist, but forbid a�L zero mode. The singlet quark state tR
has boundary conditions ðþ;þÞ and thus also has a zero
mode. As a consequence, in the unbroken electroweak
phase the 4D fermions consist of a massless SUð2ÞL dou-
blet q0L, a massless singlet t0R, and a tower of KK Dirac
fermions which we will denote by qn, tn, and �n for n ¼
1; 2; . . . . (Recall, again, that the� has no zero mode, due to
the boundary conditions.) By incorporating the Oð4Þ �
Uð1ÞX symmetry in the bulk but breaking it via boundary
conditions, the spectrum and top-quark mass generating
interactions are essentially the same as those in the stan-
dard model for the zero modes, but (especially in the limit
of large Oð4Þ-symmetric bulk mass) are approximately
custodially symmetric for the KK modes.

As we now demonstrate, the enhanced custodial sym-
metry of the KK sector mitigates the size of additional
contributions to �T and the ZbL �bL coupling, while the
zero-mode contributions approximately give rise to the
usual standard model contributions. Consider the 4D
Lagrangian for the top-quark mass generating sector of
zero modes and the first level of KK fermions, which has
the form

L4D ¼ �q0Li 6Dq0L þ �t0Ri 6Dt0R þ �q1i 6Dq1 þ ��1i 6D�1

þ �t1i 6Dt1 �M�1

��1�1 �Mq1
�q1q1 �Mt1

�t1t1

� ð�00 �q0L ~�t0R þ 
10
��1L�t0R þ �01 �q0L ~�t1R

þ 
11
��1L�t1R � �10 �q1L ~�t0R � �11 �q1L ~�t1R

� �0
11 �q1R

~�t1L � 
0
11

��1R�t1L þ H:c:Þ; (45)

where the masses Mq1 , M�1
, and Mt1 have approximately

the same size (of order a TeV). The Yukawa couplings
depend on the Higgs and fermion profiles, and therefore
generally differ from one another, although they are all
expected to be of the order of the SM top-Yukawa cou-
pling. Notice that the Oð4Þ symmetry in the bulk, which
relates the same-level KK modes of qL and �L, implies

�1i ’ 
1i; (46)

thus, for large values of the common (extradimensional)
bulk mass, we find

Mq1 ’ M�1
: (47)

This contrasts with the situation in our model where �00 ¼

10 because theOð4Þ symmetry relates q0L and�1L; in the
5D models, q0L and�1L belong to different KK levels, and
such a symmetry does not arise.
Integrating out the heavy fermions (q1, �1, and t1) at

tree level gives rise to the higher-dimensional operators

Leff ¼ �2
10

M2
q1

�t0R ~�yi 6Dð ~�t0RÞ þ 
2
10

M2
�1

�t0R�
yi 6Dð�t0RÞ

¼ Tr

2
664

�2
10

M2
q1

0

0

2
10

M2
�1

0
BB@

1
CCA�t0R�

yi 6Dð�t0RÞ

3
775: (48)

The operator proportional to 
2
10 is the same as in Eq. (38),

and diagrammatically comes from the exchange of a �1.
The operator proportional to �2

10 is not present in our

model, and comes from q1 exchange. The exchange of a

heavy singlet t1 induces an operator involving ~�yq0L
which also gives rise, in unitary gauge, to anomalous Z
and W couplings. The focus of our discussion of the 5D
model relative to ours, however, is the presence of the
heavy doublet q1. After electroweak symmetry breaking,
both of these operators contribute to the ZtR �tR coupling,
which yields (at one loop) corrections to �S, �T, and the
ZbL �bL coupling as we demonstrated in Sec. IV.
Notice, in particular, that the �t0RZ6 t0R vertex receives

contributions of opposite sign from the two operators in

Eq. (48), due to the different T3 charges of h�i and h ~�i.
Furthermore, Eqs. (46) and (47) tell us that these contri-
bution are approximately equal in absolute value, so they
will tend to cancel each other. As displayed in the last
equality in Eq. (48), in the custodially symmetric limit,
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�2
10=M

2
q1 ¼ 
2

10=M
2
�1 and the combination of operators is

manifestly Oð4Þ symmetric.
Thus we have the following picture. In the 5D model the

q1 and �1 KK modes approximately give equal but oppo-
site contributions to Z �bLbL. This is true because the fer-
mion KK modes form approximate ð2; 2�Þmultiplets under
Oð4Þ. The remaining and dominant contribution is the SM
one. Because of the cancellation of the KK contributions to
the ZbL �bL coupling in these 5D models, it is possible to
find a region of parameter space in which the KK fermion
contributions to �S, �T, and the ZbL �bL coupling are
small. In this case, the extra fermions in the 5D model
can be relatively light [3,4].

By contrast, in the DESM it is qL and �L which belong
to the same Oð4Þ multiplet, and the contributions from �
and the standard model top-bottom loops tend to cancel in
their contributions to electroweak processes. As shown
above, however, the custodial violation characteristic of
the standard model is required by electroweak data, and we
are therefore pushed into the regime where the extra fer-
mions of the DESM are very heavy.

Reference [5] also investigated the low-energy effective
theories that arise when integrating out the new vector and
fermion states generically present in extradimensional or
strongly coupled models of electroweak symmetry break-
ing that feature the custodial symmetries protecting Zb �b.
The authors’ results for the effects of integrating out the
new fermions in this framework are consistent with the
analysis given above, confirming the broad applicability of
this aspect of our findings. Specifically, they also find that
integrating out the new fermions gives rise to the operator
in Eq. (38) and that this operator affects �T as shown in
Eq. (26). Our more stringent lower bound on mT arises
from the different central values and tighter S� T corre-
lations in the 2008 data [2,10], compared with the 2004
data they employed [17]. In the gauge sector, Ref. [5] finds
that additional custodial-symmetry-violating operators
arise from integrating out the extra vector bosons, provided
that custodial-symmetry violation is present in the bound-
ary conditions. These extra operators contribute to gLb,
�T, and �S, and can also be adjusted to achieve agreement
with experimental bounds.

VI. CONCLUSIONS

We have introduced the DESM as a simple realization of
the idea [1] of using custodial symmetry to protect the
ZbL �bL coupling (gLb) from receiving large radiative cor-
rections. In this toy model, all terms of dimension four in
the top-quark mass generating sector obey a globalOð4Þ �

Uð1ÞX symmetry, which includes a parity symmetry pro-
tecting gLb from radiative corrections. That global sym-
metry is softly broken to its SUð2ÞL �Uð1ÞY subgroup by a
Dirac mass term for the extra fermion doublet that incor-
porates the heavy partner of the top quark. Varying the size
of this Dirac mass M allows the model to interpolate
between the Oð4Þ �Uð1ÞX-symmetric case (M ¼ 0) in
which �gLb ¼ 0 and the SM-like case (M ! 1) in which
the one-loop corrections to gLb are as in the SM, and
enabled us to investigate the degree to which the custodial
symmetry of the top-quark mass generating sector can be
enhanced. By comparing the predictions of the DESMwith
experimental constraints on the oblique parameters �S and
�T from [2], we found the DESM to be consistent with
experiment only for�> 20 at 95% CL, with a Higgs mass
mh ¼ 115 GeV. The bound on � translates into the 95%
CL lower bound of 3.4 TeV on the masses of the extra
quarks—placing them out of reach of the LHC. This result
demonstrates that electroweak data strongly limit the
amount by which the custodial symmetry of the top-quark
mass generating sector can be enhanced relative to the
standard model.
In addition, we performed an effective field theory

analysis of the energy regime between M and mt. We
demonstrated that the leading contributions to �S, �T,
and the ZbL �bL coupling in the DESM arise from an
effective operator coupling right-handed top quarks to the
Z boson. Extending our effective field theory analysis, we
considered extradimensional models in which the en-
hanced custodial symmetry is invoked to control the size
of additional contributions to �T and the ZbL �bL coupling,
while leaving the standard model contributions essentially
unchanged [3,4]. In such models, the global Oð4Þ symme-
try causes a cancellation among contributions to the effec-
tive operator coupling tR to the Z, allowing relatively light
5D fermions to be consistent with experiment. Finally, our
results are also consistent with those of Ref. [5], which
confirms that the toy doublet-extended standard model
illustrates the electroweak physics operative in a broad
class of models.
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