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A first study of critical behavior in the vicinity of the chiral phase transition of (2þ 1)-flavor QCD is

presented. We analyze the quark mass and volume dependence of the chiral condensate and chiral

susceptibilities in QCD with two degenerate light quark masses and a strange quark. The strange quark

mass (ms) is chosen close to its physical value; the two degenerate light quark masses (ml) are varied in a

wide range 1=80 � ml=ms � 2=5, where the smallest light quark mass value corresponds to a pseudo-

scalar Goldstone mass of about 75 MeV. All calculations are performed with staggered fermions on

lattices with temporal extent N� ¼ 4. We show that numerical results are consistent with OðNÞ scaling in

the chiral limit. We find that in the region of physical light quark mass values, ml=ms ’ 1=20, the

temperature and quark mass dependence of the chiral condensate is already dominated by universal

properties of QCD that are encoded in the scaling function for the chiral order parameter, the magnetic

equation of state. We also provide evidence for the influence of thermal fluctuations of Goldstone modes

on the chiral condensate at finite temperature. At temperatures below, but close to the chiral phase

transition at vanishing quark mass, this leads to a characteristic dependence of the light quark chiral

condensate on the square root of the light quark mass.
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I. INTRODUCTION

Chiral symmetry and its spontaneous breaking in the
vacuum are key ingredients to our understanding of the
phase structure of strongly interacting matter at nonzero
temperature and vanishing baryon chemical potential. In
the limit of nf massless quark flavors the QCD phase

transition is controlled by the SULðnfÞ � SURðnfÞ chiral
symmetry. Quite general renormalization group arguments
suggest [1] that QCD with three degenerate light quark
flavors has a first order phase transition, whereas the 2-
flavor theory is expected to have a second order phase
transition. In the latter case the SULð2Þ � SURð2Þ chiral
symmetry is isomorphic to Oð4Þ and the transition there-
fore is expected to belong to the same universality class as
three-dimensional, Oð4Þ symmetric spin models.
Depending on the value of the strange quark mass the
QCD phase transition in the limit of vanishing light quark
masses (up, down) may be first order or a continuous
transition still belonging to the three-dimensional, Oð4Þ
universality class [1].

While numerical calculations in 3-flavor QCD gave
evidence for the existence of a first order transition,
many of the details of the transition in 2- or (2þ 1)-flavor
QCD with light up and down quarks are still poorly
constrained through lattice calculations. In particular,
we do not know whether the chiral phase transition in
(2þ 1)-flavor QCD is first or second order. An answer

to this question is not only of academic interest; it also
greatly influences our thinking about the phase diagram
of QCD at nonzero baryon chemical potential [2].
The present analysis, although still performed on rather
coarse lattices, is a first step towards answering this
question.
Attempts to verify the universal critical behavior asso-

ciated with the QCD chiral phase transition in 2-flavor
QCD have been made already in calculations with stag-
gered [3–9] and Wilson [10,11] fermions. None of
these lattice discretization schemes for the fermion sector
of QCD preserve the full chiral Oð4Þ symmetry of the
QCD Lagrangian. It therefore may not be too surprising
that the early attempts to verify universal scaling properties
of QCD were not too successful. In fact, at nonzero lat-
tice spacing the Wilson fermion formulation does not
preserve any continuous symmetry related to the chiral
sector of QCD. The staggered formulation preserves
at least an Oð2Þ symmetry at nonzero lattice spacing
that gives rise to a single massless Goldstone mode in
the chiral limit. Nevertheless, direct determinations of
critical exponents within the staggered discreti-
zation scheme [3,4,7] did not deliver the expected OðNÞ
results. Of course, due to the explicit breaking of Oð4Þ
symmetry in the staggered formalism at nonvanish-
ing lattice spacing one would not have expected to
be sensitive to Oð4Þ scaling. However, Oð4Þ and Oð2Þ
critical exponents are quite similar and one thus might
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have hoped to observe at least some generic evidence for
OðNÞ scaling.1

In the same spirit, the magnetic equation of state, i.e.
the scaling of the chiral order parameter as function of
reduced temperature and quark mass, has been analyzed
subsequently in calculations with staggered [5,6,8] and
Wilson fermions [10,11]. The studies performed with
Wilson fermions gave some indication for Oð4Þ scaling.
These calculations, however, had been constrained to the
high temperature, symmetry restored phase and had been
performed with rather large values of the quark mass.
They therefore did not allow to perform a test of scaling
in the symmetry broken phase and could not contribute
to the question of how Goldstone modes influence the
scaling behavior at low temperatures. This contri-
bution of Goldstone modes is a prominent feature of
the magnetic equation of state of OðNÞ symmetric theories
which has been analyzed in detail in OðNÞ symmetric
spin models [12–16]. In the case of staggered fermions
one might have hoped to find at least evidence for Oð2Þ
scaling.2 In fact, not only critical exponents, but also the
Oð2Þ and Oð4Þ magnetic equations of state are quite simi-
lar. Deviations from the scaling function, however, turned
out to be large in the low as well as high temperature
regions and even in calculations on lattices with rather
small lattice spacings [5,6]. The missing evidence for
OðNÞ scaling also left room for an interpretation of the
scaling behavior of 2-flavor QCD in terms of a first order
phase transition [8].

We will present here results from calculations with
staggered fermions. Contrary to most earlier studies of
scaling properties these calculations have been performed
with an action that suppresses cutoff effects induced by
a nonzero lattice spacing (a) in finite temperature calcu-
lations. Thermodynamic quantities are Oða2Þ improved.
A first analysis of Goldstone effects with this action
has been performed for rather large quark masses in
Ref. [18]. Our calculations have been carried out with
smaller than physical light quark masses so that the lightest
Goldstone mode is a factor two lighter than the physical
value of the pion mass. This will allow us to address the
basic features of the thermodynamics induced by
Goldstone modes and to gain some control over the uni-
versal features in the vicinity of the chiral phase transition
temperature. We will present numerical evidence that at
finite temperature, in the symmetry broken phase, the

dominant quark mass dependence of the chiral condensate
arises from fluctuations of the Goldstone modes that lead to
a square root dependence of the condensate on the light
quark masses. Such a behavior is expected in three-
dimensional theories with global OðNÞ symmetry [19–
22]. We will also show that universal scaling properties
of the condensate are consistent with the three-dimensional
OðNÞ universality class. Furthermore, an analysis of scal-
ing violations, induced by the regular part of the QCD
logarithm of partition function, suggests that the crossover
transition in QCD with physical quark masses is already
strongly influenced by contributions arising from the sin-
gular universal part of the QCD logarithm of partition
function. At present we are not sensitive to differences
between Oð2Þ and Oð4Þ scaling. However, we point out
that a combined analysis of scaling functions for the order
parameter and its susceptibility should provide unambig-
uous results on the universality class of the chiral transition
in QCD.
This paper is organized as follows. In the next section we

summarize universal properties of three-dimensional Oð2Þ
and Oð4Þ symmetric spin models and introduce notations.
In Sec. III we present our data on the quark mass and
temperature dependence of chiral condensates in (2þ 1)-
flavor QCD. The main results on the magnetic equation of
state are discussed in Sec. IV. In Sec. V we give a brief
account of properties of susceptibilities of the chiral order
parameter. Section VI contains our conclusions. In
Appendix A, for the readers’ convenience we compile
the asymptotic forms and the interpolations used for the
Oð2Þ and Oð4Þ scaling functions, as adopted from [15,16].
The numerical data which this paper is based on are
summarized in Appendix B.

II. OðNÞ SYMMETRY BREAKING

In the limit of vanishing light quark masses QCD is
expected to undergo a phase transition at some critical
temperature Tc at which chiral symmetry gets restored.
The light quark chiral condensate, h �c c il, will vanish at
this temperature. Its quark mass and temperature depen-
dence in the vicinity of the critical point, ðT;mlÞ � ðTc; 0Þ,
is controlled by a scaling function that arises from the
singular part of the logarithm of partition function. One
way of analyzing the nonanalytic structure of the QCD
partition function, which has been pursued in the past, is to
study the so-called magnetic equation of state. Before
continuing our discussion of critical behavior in QCD we
briefly summarize basic scaling relations using the con-
ventional spin model notation, where the order parameter
is denoted by M and the symmetry breaking field is de-
noted by H. The critical behavior of Oð2Þ and Oð4Þ spin
models in three dimensions has been analyzed extensively
in the past. We will follow here closely the discussion
given in [15].

1We are dealing here with numerical calculations of a cutoff
theory whose Lagrangian has a global Oð2Þ symmetry. The
relevant symmetry of QCD in the continuum limit, on the other
hand, is expected to be Oð4Þ. For many aspects of the discussion
of critical behavior presented here, the distinction between Oð2Þ
and Oð4Þ is of no importance. In these cases we will generically
talk about OðNÞ symmetric models.

2Convincing evidence for Oð2Þ scaling has been found in
calculations with a massless staggered fermion action to which
an irrelevant chiral four-fermion interaction has been added [17].
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A. Magnetic equation of state

In the vicinity of a critical point regular contributions to
the logarithm of the partition functions become negligible
and the universal critical behavior of the order parameter
M of, e.g. three-dimensional OðNÞ spin models, is con-
trolled by a scaling function fG that arises from the sin-
gular part of the logarithm of the partition function,

Mðt; hÞ ¼ h1=�fGðzÞ; (1)

with z ¼ t=h1=�� and scaling variables t and h that are
related to the temperature T and the symmetry breaking
(magnetic) field H,

t ¼ 1

t0

T � Tc

Tc

; h ¼ H

h0
: (2)

Here � and � are critical exponents characterizing the
approach of the order parameter M to the critical point
when one of the scaling variables is set to zero,

M ¼ ð�tÞ�; h � 0; t < 0; (3)

M ¼ h1=�; t � 0: (4)

These relations also fix the normalization of the scaling
variables t and h, i.e. they define the normalization con-
stants t0 and h0 introduced in Eq. (2). Equivalently one can
fix t0 and h0 through normalization conditions for the
scaling function fG,

fGð0Þ ¼ 1; lim
z!�1

fGðzÞ
ð�zÞ� ¼ 1: (5)

As it is of some relevance for our later discussion we note
here that the normalization conditions for the scaling func-
tion fG, which fix the scale parameters t0 and h0, refer to
values of the scaling variable z, that are infinitely apart.

For OðNÞ symmetric spin models in three dimensions
the scaling functions have been analyzed in much detail
using Monte Carlo simulations and renormalization group
techniques. In Fig. 1 we show results for the Oð2Þ [13] and
Oð4Þ [12,14] scaling functions obtained by using the im-
plicit parametrizations given in Ref. [15] and compiled in
Appendix A. There are clear differences between both
scaling functions. We note, however, that the manifestation
of the differences between the Oð2Þ and Oð4Þ scaling
functions in the limited range jzj � 5 shown in Fig. 1 relies
also on the normalization of these scaling functions in the
limit z ! �1. Without information on the scaling func-
tion at z ! �1, i.e. in a numerical study that only has
access to a limited range of z-values, the scale parameters
t0 and h0 could easily be adjusted to make the Oð2Þ and
Oð4Þ scaling functions almost coincide. For jzj � 5 this is
shown by the crosses in Fig. 1 which have been obtained by
rescaling the argument of the Oð4Þ scaling function, z !
1:2z, i.e. through a change of z0 by 20% in this interval.
This will lead to a violation of the normalization condition
at z ¼ �1 by a factor 1:2� ’ 1:07, for the Oð4Þ scaling
function.
The above discussion makes it evident that a numerical

analysis of the magnetic equation of state alone, in a
scaling regime as large as jzj � 5, will not allow to dis-
tinguish Oð2Þ scaling from Oð4Þ scaling, unless the nu-
merical accuracy is extraordinarily high. Additional
information will be needed to distinguish Oð2Þ from Oð4Þ
scaling. This can be achieved through accurate control over
the chiral limit, z ¼ �1, or through the analysis of other
scaling functions like the scaling function, f�ðzÞ, for the
susceptibility of the order parameter,

�Mðt; hÞ ¼ @M

@H
¼ 1

h0
h1=��1f�ðzÞ; (6)
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FIG. 1 (color online). Scaling functions for the universality classes of three-dimensional Oð2Þ and Oð4Þ models (left panel). Crosses
show theOð4Þ scaling function with an argument ~z ¼ 1:2z. The right-hand panel shows the scaling function for the chiral susceptibility
introduced in Eq. (7).
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f�ðzÞ ¼ 1

�

�
fGðzÞ � z

�
f0GðzÞ

�
: (7)

This scaling function is shown in Fig. 1 (right panel). It has
a maximum at zp which together with some critical ex-

ponents of the OðNÞ models is given in Table I. It is
obvious from this figure that a simple rescaling of the scale
parameter z cannot transform anOð2Þ scaling function into
that for Oð4Þ.

While different OðNÞ symmetric models are character-
ized by universal scaling functions, the scaling variables
have to be normalized properly. The scale parameters t0
and h0 are not universal. They depend on the OðNÞ sym-
metric model under consideration, the definition of the
scaling variables and also on the absolute normalization
of the order parameter M. For instance, a rescaling of the
order parameter by a constant factor, M ! bM, can be
absorbed in a redefinition of the normalization constants

t0 ! b�1=�t0 and h0 ! b��h0. This leaves the argument z
of the scaling function and the scaling function itself un-

changed, z ! z and M=h1=� ! M=h1=�. For a given defi-
nition of the symmetry breaking field H the combination

z0 ¼ h1=��0 =t0 therefore remains unchanged and is unique

for any OðNÞ symmetric model, i.e. its value is character-
istic for that theory. It, for instance, characterizes the
H-dependence of the pseudocritical line of transition tem-
peratures, TpðHÞ, determined from the peak position of the

order parameter susceptibility,

TpðHÞ � Tc

Tc

¼ zp
z0

H1=��: (8)

In Sec. IV we will determine the corresponding scaling
relation for the pseudocritical line of (2þ 1)-flavor QCD
from an analysis of the magnetic equation of state.

B. Contribution of Goldstone modes

The spontaneous breaking of the continuous OðNÞ sym-
metry at low temperature gives rise to massless Goldstone
modes. The fluctuations of these light modes are reflected
in the nonanalytic dependence of the order parameter on
the symmetry breaking variable h [19]. In three dimensions
this leads to [19,21,22]

Mðt; hÞ ¼ Mðt; 0Þ þ c2ðtÞ
ffiffiffi
h

p þOðhÞ for all t < 0: (9)

This leading correction to the temperature dependence of
the order parameter, which arises from a nonvanishing
explicit symmetry breaking (h > 0), is contained in the
scaling function fG. For large, negative values of z one has

fGðzÞ ’ f1G ðzÞ ¼ ð�zÞ�ð1þ ~c2�ð�zÞ���=2Þ;
for z ! �1: (10)

As has been discussed also in [15], Eq. (10) can easily be
obtained from the magnetic equation of state derived by
Wallace and Zia [19]. The universal amplitude ~c2 is also
given in Table I. In the following we will not make use of
the scaling behavior of fG in the opposite limit, z ! þ1.
We note, however, that in this limit fG is controlled by the
critical exponent � ¼ �ð�� 1Þ, fGðzÞ � R�z

��. The uni-

versal parameter R� has been determined for three-

dimensional Oð2Þ [13,23] and Oð4Þ [16,24] universality
classes.
The asymptotic form of the OðNÞ scaling function,

f1G ðzÞ, gives an excellent approximation to fGðzÞ in almost

the entire low temperature regime, t < 0. This is evident
from Fig. 2 where we compare fG to f1G as well as to the

leading order form, ð�zÞ�. For z <�2 differences be-
tween fG and f1G are less than 2% for Oð2Þ and less than

1% for Oð4Þ. The leading h-dependent correction that
arises from the presence of Goldstone modes thus gives
the dominant contribution to the order parameter in this
regime. In order to establish universal critical behavior
through an analysis of theOðNÞmagnetic equation of state
for QCD it therefore will be crucial to establish the influ-
ence of the Goldstone mode on the quark mass dependence
of the chiral condensate and its derivative, the chiral
susceptibility.

TABLE I. Critical exponents �, �, � and the universal con-
stant ~c2 for the three-dimensional Oð2Þ universality class are
taken from [15]; for Oð4Þ we use the data from [16]. The three
critical exponents are related through � ¼ �ð�� 1Þ. The last
column gives the location of the maximum of the scaling
function f� [15,16].

N � � � ~c2 zp

2 0.349 1.319 4.780 0.592(10) 1.56(10)

4 0.380 1.453 4.824 0.666(6) 1.33(5)
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FIG. 2 (color online). The Oð2Þ scaling function fGðzÞ com-
pared to the asymptotic form f1G ðzÞ and the leading order term

ð�zÞ�.
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III. CHIRAL SYMMETRY BREAKING IN (2þ 1)
FLAVOR QCD

A. Quark mass and volume dependence of the chiral
condensate

We discuss here our calculations performed for (2þ 1)-
flavor QCD on lattices with size N3

� � N�. We have fixed
the temporal extent, N� ¼ 4, and performed calculations
for different spatial lattice sizes N� ¼ 8, 16 and 32 to
control finite volume effects. All our calculations have
been performed with a tree level improved gauge action
and an improved staggered fermion action (p4-action),
which eliminates Oða2Þ discretization errors in thermody-
namic observables at the tree level. The value of the bare
strange quark mass in lattice units has been fixed to m̂s ¼
0:065. In earlier calculations of the equation of state [25]
and the transition temperature [26], performed with the
same improved gauge and staggered fermion actions, it had
been shown that in the present (small) range of gauge
couplings this value of the strange bare quark mass yields
almost physical values for the masses of the strange pseu-
doscalar meson and the kaon. The light quark masses have
been varied in the range 0:000 812 5 � m̂l � 0:026. The
smallest value, ml=ms ¼ 1=80, corresponds to a pseudo-
scalar Goldstone mass of about 75 MeV. For each of the 6
quark mass values chosen in the above interval we have
performed calculations at several values of the gauge cou-
pling in the range 3:28 � � � 3:33. As will become clear
later this covers a temperature range 0:96 & T=Tc & 1:06,
with Tc denoting the transition temperature in the chiral
limit on a lattice with fixed temporal extent. All calcula-
tions have been performed using the Rational Hybrid
Monte Carlo (RHMC) algorithm. In most cases we col-
lected 15 000 to 40 000 trajectories with length of half a

time unit. We give more details on our simulation parame-
ters, the statistics collected and expectation values of chiral
condensates in Appendix B.
Whenever we convert results to physical units we use the

scale setting and meson mass calculations performed in
connection with our calculation of the equation of state
[25] and the transition temperature [26]. The most central
anchor point for our current analysis is the determination of
the pseudoscalar mass (mps) and the Sommer scale pa-

rameter r0 for light quark massesml=ms ¼ 1=20 at a gauge
coupling � ¼ 3:30. This value of the gauge coupling is
close to the critical temperature in the chiral limit and the
light to strange quark mass ratio is close to the physical
mass ratio. For this parameter set we find mpsa ¼
0:1888ð6Þ and r0=a ¼ 1:8915ð59Þ in lattice units. This
converts to mps ¼ 150:2ð3Þ MeV when using r0 ¼
0:469 fm [27] as it has been done also in our earlier
calculations.
The main part of our analysis is based on calculations of

the light and strange quark chiral condensates,

h �c c il ¼ 1

N3
�N�

@ lnZ

@m̂l

¼ 1

4

1

N3
�N�

hTrD�1
l i;

h �c c is ¼ 1

N3
�N�

@ lnZ

@m̂s

¼ 1

4

1

N3
�N�

hTrD�1
s i;

(11)

where Dl and Ds denote the fermion matrices for light and
strange quarks, respectively.
A first overview on our data sample is given in the left-

hand panel of Fig. 3. This figure shows results for the light
quark chiral condensate in lattice units, calculated for
different values of the gauge coupling and 6 different
values of the light quark mass. For each parameter set we
only show results from the largest spatial lattices available.
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FIG. 3 (color online). The light quark chiral condensate in lattice units versus the ratio of the light and strange quark masses (left
panel) and its square root (right panel). The condensates have been calculated on lattice of size N3

� � 4 at the values of the gauge
couplings shown in the right-hand panel. The spatial lattice size for the two lightest quark mass values, ml=ms ¼ 1=80 and 1=40, is
N� ¼ 32 for ml=ms ¼ 1=20, and it is N� ¼ 32 for � ¼ 3:28. In all other cases (ml=ms ¼ 1=10; 1=5 and 2=5) the spatial lattice size is
N� ¼ 16.
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We comment on finite volume effects below. We also note
that we will conclude later that the chiral phase transition
temperature at m̂l ¼ 0 corresponds to �c ’ 3:30. As is
evident from Fig. 3 the light quark chiral condensate shows
a strong quark mass dependence that is not consistent with
a linear dependence on m̂l. In fact, as expected for con-
tributions that arise from fluctuations of the Goldstone
modes [see Eqs. (9) and (10)] the dominant quark mass
correction in the low temperature symmetry broken regime
seems to be proportional to

ffiffiffiffiffiffi
m̂l

p
. This is highlighted in the

right-hand panel of Fig. 3. The figure also shows that the
slope in

ffiffiffiffiffiffi
m̂l

p
increases in the symmetry broken phase as the

temperature increases. This is consistent with the structure
of the OðNÞ scaling function and, as will be discussed in
Sec. IV, leads to the good scaling behavior of the chiral
order parameter. Results for the light and strange quark
condensates are summarized in Appendix B.

In order to make sure that the drop in h �c c il, seen for
small values of the quark mass, is not due to a too small
spatial volume, we analyzed the volume dependence of our
results by performing calculations on lattices with spatial
extent N� ¼ 8, 16 and 32. We show some results from this
analysis in Fig. 4. As expected, the volume dependence of
the chiral condensate increases with decreasing value of
the quark mass. We have, however, no evidence for a strong
increase of the volume dependence close to the phase
transition temperature (� ’ 3:3). This suggests that also
for the smallest quark masses used, our results obtained on
lattices of spatial size 323 are close to the infinite volume
limit. We also note that the smallest quark mass value used
on our largest lattices corresponds to mpsN� ’ 3, where

mps denotes the lightest pseudoscalar meson mass, i.e. the

Goldstone meson in the staggered fermion formulation of
(2þ 1)-flavor QCD.

B. The chiral order parameter

The chiral condensate, as introduced in Eq. (11), is an
order parameter for the chiral phase transition. At non-
vanishing light quark mass an additive and multiplicative
renormalization is needed to define an order parameter in
the continuum limit. In Ref. [25] we introduced an order
parameter where quadratically divergent, additive contri-
butions, which are proportional to the quark mass, have
been removed by subtracting a suitable fraction of the
strange quark chiral condensate from the light quark con-
densate. Wewill use this observable also here.3 To take into
account the anomalous dimensions of the chiral condensate
we introduce a multiplicative renormalization, using the
strange quark mass. A similar procedure has been sug-
gested for 2-flavor QCD [5]. Furthermore, we express
this product in units of T4 to make it dimensionless. We
thus introduce as an order parameter for chiral symmetry
restoration in (2þ 1)-flavor QCD

M � m̂s

�
h �c c il � ml

ms

h �c c is
�
N4

�: (12)

For our scaling analysis at fixed N� a renormalization of
the order parameter is not at all necessary. We may as well
analyze the scaling behavior of the nonsubtracted chiral
condensate introduced in Eq. (11). To check the consis-
tency of our analysis, we will do so and in the following
also utilize the nonsubtracted order parameter

Mb ¼ N4
�m̂sh �c c il; (13)
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FIG. 4 (color online). The light quark chiral condensate in lattice units versus the inverse volume V � N3
�, for two values of the

gauge coupling in the low temperature phase, � ¼ 3:28, 3.29, and close to the transition temperature, � ¼ 3:30 for ml=ms ¼ 1=40
(left panel). The right-hand panel shows results for the three smallest values of the light quark mass at � ¼ 3:30, i.e. close to the chiral
transition temperature. For these quark mass values the largest lattice size, N� ¼ 32, corresponds to 3<mpsN� < 6. In the left-hand

panel data for h �c c il have been shifted by a constant as indicated in the figure.

3This does not remove divergencies that are logarithmic in the
cutoff. In the free field limit these divergencies are proportional
to ðml=TÞ3 and are therefore expected to be numerically small
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where we have introduced the constant multiplicative fac-
tor, N4

�m̂s, such that Mb and M agree in the chiral limit.

IV. THE MAGNETIC EQUATION OF STATE

Having introduced our numerical results for the light and
strange quark chiral condensates and the subtracted (M)
and nonsubtracted (Mb) order parameters, we are now
ready to discuss critical behavior in the vicinity of the
transition temperature in terms of the magnetic equation
of state.

A. Scaling analysis

In the vicinity of the chiral phase transition temperature
corresponding to vanishing light quark masses and for
sufficiently small explicit symmetry breaking, the order
parameter is expected to scale according to Eq. (1). We
introduce the reduced temperature and external field vari-
ables t and h as in Eq. (2). The definition of t obviously
carries over from the spin model context to QCD. For the
relation between the lattice gauge coupling � and the
temperature we exploit the parametrization of the
Sommer scale parameter r0 that has been determined in
our calculations for the equation of state [25] at ml=ms ¼
1=10. This takes into account deviations from asymptotic
scaling of the QCD �-function for the range of couplings
used here. We checked that the entire scaling analysis
presented here only for a small range of the lattice cutoff
is not really sensitive to these corrections and could as well
have been performed by determining t ¼ ðT � TcÞ=Tc us-
ing the asymptotic 2-loop �-function or other approaches
followed in earlier studies [3,6,8]. Likewise this analysis is,
of course, independent of any physical value used to set the
absolute scale for r0.

The symmetry breaking external field H is proportional
to the light quark mass. Also here we take care of the

anomalous scaling dimension of quark masses and express
the light quark mass in units of the strange quark mass, i.e.
we introduce H � ml=ms. An alternative, yet similar way
to deal with the anomalous dimensions has been suggested
in [5].
In the chiral limit, at finite value of the cutoff (fixed N�)

we expect the phase transition in (2þ 1)-flavor QCD to be
either first order or to belong to the universality class of
three-dimensional Oð2Þ models. In our current analysis we
did not find any indication for a strong volume dependence
or meta-stabilities in the time evolution of the chiral con-
densates or other observables. In particular, as is also
evident from Fig. 10 shown in Sec. V, we have no evidence
for a strong increase in the chiral susceptibility as function
of volume. Although we can, at present, not rule out a weak
first order phase transition at smaller quark masses, we
have no indications for that to happen. We therefore will
compare our data on the order parameter to the universal
Oð2Þ scaling function, i.e. the magnetic equation of state
introduced in Eq. (1) with critical exponents � and � given
in Table I. We start by determining the three free parame-
ters t0, h0 and the transition temperature Tc, from fits to the
order parameterM. For this we use the three lightest quark
mass values, ml=ms � 1=20, leaving out the lowest tem-
perature value, corresponding to � ¼ 3:28, and the two
highest temperature values, corresponding to� ¼ 3:32 and
3.33. For ml=ms ¼ 1=80 and 1=40 these data are from
lattices of size 323 � 4 while the ml=ms ¼ 1=20 data set
is taken from calculation on 163 � 4 lattices.
A posteriori we find that this temperature interval cor-

responds to 0:97 � T=Tc � 1:03. In this small temperature
interval and for the small quark mass regime, which does
include the light quark mass value corresponding to the
physical pion mass, we find good agreement between the
rescaled order parameter and the Oð2Þ scaling function.
This is shown in the left-hand panel of Fig. 5. The fit yields
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FIG. 5 (color online). Fit of the Oð2Þ scaling function to numerical results for the subtracted order parameter M (left panel) and the
nonsubtracted light quark condensateMb (right panel). This analysis has been performed for results obtained in calculations with light
quark masses ml=ms � 1=20 and gauge couplings in the interval � 2 ½3:285; 3:31�.
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�c ¼ 3:300ð1Þ for the critical coupling corresponding to a
phase transition temperature4 Tc ¼ 195:6ð4Þ MeV. We ob-
tain an equally good agreement with theOð2Þ scaling curve
from an analysis of the nonsubtracted order parameterMb.
This is shown in the right-hand panel of Fig. 5. A similar
analysis using the Oð4Þ scaling function and critical ex-
ponents yields scale parameters that are similar to those of
the Oð2Þ analysis, the largest differences occurring for t0
which comes out to be about 20% larger.

The scaling function fGðzÞ is defined in the limit t ! 0,

h ! 0, keeping z ¼ t=h1=�� fixed. In this limit the two
order parameters M and Mb coincide. From our scaling
analysis we therefore should find identical results for the
scale parameters, i.e. the critical temperature Tc as well as
the normalization constants t0, h0, if this analysis has been
performed sufficiently close to the chiral limit. We have
performed the scaling analysis for two different cuts on the
ratio of the light to strange quark masses, ml=ms � 1=20
and ml=ms � 1=40. The fit parameters obtained in these
two cases from an analysis of data for M and Mb are
summarized in Table II. We note that results for Tc and
t0 are within errors independent on the cut on ml=ms and
the observable used. The scale parameter h0 is more sensi-
tive on the choice of order parameter. However, there is a
tendency that results for h0 obtained from M and Mb

converge to a common value if the cut on ml=ms is
reduced.

The symmetry breaking field introduced in Eq. (2) is
given in terms of the ratio of light to strange quark masses.
To compare our result for scaling functions of QCD with
other (model) calculations it may be more convenient to
express H in terms of meson masses. In the present quark
mass and gauge coupling range we find the approximate
relation H ¼ ml=ms ’ 0:52ðmps=mKÞ2. We therefore may

write the scaling variable z as

z ¼ 1:48z0

�
T � Tc

Tc

���
mps

mK

�
2=��

: (14)

As discussed in Sec. II this allows to determine the scaling
behavior of the pseudocritical line determined by the peak
in the scaling function of the chiral susceptibility, f�,

TpðmpsÞ � Tc

Tc

¼ 0:68
zp
z0

�
mps

mK

�
2=��

: (15)

Using zp from Table I and the values for z0 given in Table II

we find 0:68zp=z0 ’ 0:1–0:2. These values, which are con-

sistent with earlier determinations of the slope of the

pseudocritical line [26,28], emphasizes the weak depen-
dence of the pseudocritical temperature on the pseudosca-
lar meson mass.
We stress that this analysis has been performed in QCD

at one nonvanishing lattice spacing, i.e. in the cutoff theory.
The cutoff dependence of the normalization constants, the
scale invariant ratio z0 and the subtle continuum limit need
to be studied in the future. We emphasize again, however,
that the above combination of normalization constants for
the scaling variables is an invariant of QCD and depends,
in the continuum limit, only on the strange quark mass
value.

B. Scaling violations

The scaling behavior observed for the chiral order pa-
rameters analyzed in the previous section is, of course,
expected to hold exactly only in the limit t ! 0 and h ! 0,

keeping the ratio z ¼ t=h1=�� fixed. At nonzero values of t
and h we expect to observe scaling violations that may
arise from subleading corrections to the scaling function as
well as from the regular part of the QCD partition function.
These corrections also depend on the definition of the order
parameter. In particular, the two order parameters, M and
Mb, introduced here differ in the treatment of contributions
that are linear in the light quark mass. In our analysis of the
order parameter, performed in a larger temperature and
quark mass interval, we clearly see these differences and
their role in contributing to violations of scaling. This is
shown in Fig. 6. Most prominent are effects arising from a
too large quark mass value. These effects show up in the
scaling plot as deviations from the scaling function in the
region of small z, i.e. for large quark masses at fixed t. They
lead to the sizeable displacement of results obtained for too
heavy quarks from the scaling curve. Effects that arise
because the temperatures chosen are too far away from
the critical point, t ¼ 0, are typically not that drastic in our
data sample. We fitted the scaling violations to an ansatz

Mðt; hÞ ¼ h1=�fGðt=h1=��Þ þ atthþ b1hþ b3h
3 þ b5h

5:

(16)

We also considered including a term quadratic in the
reduced temperature (� t2h). This correction, however,
turned out to vanish within the errors of our fits.

TABLE II. Fit results for the scale parameters h0 and t0 and the
chiral transition temperature Tc using the Oð2Þ scaling function.

The last column shows the combination of scale parameters z0 ¼
h1=��0 =t0.

ðml=msÞmax h0 t0 Tc [MeV] z0

M 1=20 0.0048(5) 0.0048(2) 195.6(4) 8.5(7)

Mb 1=20 0.0022(3) 0.0037(2) 194.5(4) 6.8(5)

M 1=40 0.0042(6) 0.0047(2) 195.3(4) 8.0(8)

Mb 1=40 0.0025(5) 0.0040(2) 194.8(4) 7.0(6)

4This value is in excellent agreement with our earlier analysis
performed with the p4 action on lattices with temporal extent
N� ¼ 4. We stress, however, that this transition temperature is
not extrapolated to the continuum limit and, in fact, within the
staggered fermion approach, the chiral extrapolation should be
performed after the continuum extrapolation to recover eventu-
ally the anticipated Oð4Þ scaling behavior.
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The fits of both order parameters performed with the
ansatz given in Eq. (16) are shown in Fig. 7. As expected,
we find that corrections linear in ml=ms are eliminated in
M. The corresponding fit parameter b1 is zero within errors
and we therefore have fixed it to be zero in the fit shown in
Fig. 7 (left panel). For the nonsubtracted order parameter
Mb this term gives the dominant finite quark mass correc-
tions. Here we find b1 ¼ 0:0013ð3Þ.

C. Scaling of the chiral condensate

We have seen in the previous section that order parame-
ters constructed from the chiral condensate are well de-
scribed by the magnetic equation of state for small enough
values of the light quark masses, ml=ms & 1=20. We want
to underscore this point here by displaying the order pa-
rameters not in their scaling form, but as a function of

temperature in units of the transition temperature deter-
mined in the previous section. This is shown in Fig. 8. The
curves drawn in this figure are taken from the scaling fits to
the subtracted and nonsubtracted order parameters shown
in Fig. 5. They had been obtained from the numerical
results for M (left panel) and Mb (right panel) in the range
ml=ms � 1=20 and T=Tc ¼ 1� 0:03.

D. Comparison with earlier calculations in 2-flavor
QCD

Asmentioned in the introduction, there have been earlier
attempts to compare the quark mass and temperature de-
pendence of the chiral order parameter with OðNÞ scaling
functions on lattices with temporal extent N� ¼ 4 [6,8,9].
These calculations had been performed for 2-flavor QCD
using unimproved gauge and staggered fermion actions. In
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FIG. 6 (color online). The order parameters M (left panel) and Mb (right panel) for all quark mass values, ml=ms � 0:4, and all
values of the gauge coupling, � 2 ½3:28; 3:33�, used in this study. The scaling variables t and h used to compare with the Oð2Þ scaling
function are taken from the fit to the light quark mass results shown in Fig. 5.
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Ref. [6] calculations with three quark mass values had been
performed, m̂ ¼ 0:008, 0.0125 and 0.025. The last two
masses are similar to the two mass values used in
Ref. [8], i.e. m̂ ¼ 0:013 35 and 0.0267. In fact, results for
chiral condensates obtained in these two calculations are in
good agreement with each other. This also is true for
calculations performed in [4] where m̂ ¼ 0:02 has been
used. All these calculations have been performed at values
of the gauge coupling in the vicinity of the crossover at the
corresponding quark mass values. They therefore mostly
explored the region of z > 0.

In Fig. 9 we compare results for the chiral condensate
obtained in 2-flavor calculations with unimproved gauge
and fermion actions with our results obtained in (2þ 1)-
flavor QCD with Oða2Þ improved gauge and fermion ac-
tions. In this figure we use a log-log plot as has been done
also in Ref. [6]. In the 2-flavor case the symmetry breaking
field has usually been chosen as H ¼ m̂N� while for the
reduced temperature variable we used ðT � TcÞ=Tc �
Rð�cÞ=Rð�Þ � 1, with �c ¼ 5:2435 as estimate for the
critical value of the gauge coupling in the chiral limit [8]
andRð�Þ denoting the 2-loop�-function for 2-flavor QCD.
In the log-log plot differences in the scale parameters h0
and z0 correspond to shifts in vertical and horizontal direc-
tions, respectively. We made no effort to optimize the
choice of these scale parameters for the 2-flavor data set.
In Fig. 9 we have positioned the data such that the cross-
over region roughly corresponds to the location of the
maximum in the Oð2Þ scaling function f�ðzpÞ, with zp ¼
1:56 (see also [9]); this required the choice z0 ’ 12.

When comparing results obtained with standard and
improved gauge actions the difference in the shape of the
data sets clearly is the most striking feature. Apparently the
(2þ 1)-flavor data set is in good agreement with OðNÞ
scaling while the results obtained with the standard stag-
gered action deviate strongly. Furthermore, there is no
tendency for better agreement with decreasing quark

mass. Closer to the continuum limit, i.e. for larger N�,
results obtained with the unimproved actions have a similar
shape [6] but seem to get somewhat closer to the OðNÞ
scaling curve.
To compare the quark mass values used in the 2-flavor

QCD calculations with those of the present (2þ 1)-flavor
study we note that for standard staggered fermions at gauge
couplings close to the crossover a bare quark mass m̂ ¼
0:025 corresponds to a pseudoscalar Goldstone massmps ’
350 MeV [29]. The lightest quark mass used in these
calculations, m̂ ¼ 0:008, therefore corresponds to mps ’
200 MeV, which is similar to the pseudoscalar mass ob-
tained in (2þ 1)-flavor QCD calculations for the light to
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FIG. 8 (color online). The subtracted chiral order parameter M, defined in Eq. (12), compared to the fit result for the magnetic
equation of state (left panel). The right-hand panel shows results for the unsubtracted, but normalized chiral condensate Mb defined in
Eq. (13).
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FIG. 9 (color online). Scaling plot for the chiral condensate
calculated with an improved staggered action in (2þ 1)-flavor
QCD (this work) and the standard staggered action in 2-flavor
QCD [6,8]. The results are shown in a log-log plot. For the
(2þ 1)-flavor data set labels indicate the ratio ml=ms, in the 2-
flavor case we give the bare quark masses m̂. Data for the lightest
quark mass are from [6]. Data for the other two quark mass
values are from [8]. For further discussion see text.
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strange quark mass ratio ml=ms ¼ 1=10. At this value for
the light quark mass we observe only mild violations of
scaling in calculations with the improved gauge and fer-
mion actions.

The number of flavors as well as the quark masses are
different in the data sets compared in Fig. 9. Nevertheless,
it seems unlikely that this is the origin of the observed
differences. It appears more probable that cutoff effects in
calculations with unimproved gauge and fermion actions
cause the differences.

V. SUSCEPTIBILITIES

In Eq. (6) we introduced the susceptibility �M as the
derivative of the order parameter M with respect to the
symmetry breaking field. Its temperature and quark mass
dependence is controlled by the scaling function f�ðzÞ
defined in Eq. (7), which is shown in the right-hand panel
of Fig. 1 for Oð2Þ and Oð4Þ. Similarly we can, of course,
introduce the susceptibility �Mb as a derivative of the order
parameter Mb with respect to H. Taking derivatives with
respect to h � ml=ðmsh0Þ, rather than with respect to the
ratio of quark masses, ml=ms, obviously requires knowl-
edge of the scale parameter h0 which we have determined
in the previous section.

In the analysis of QCD thermodynamics on the lattice it
is more customary to calculate light (�l

m) and strange (�
s
m)

quark chiral susceptibilities, which are defined as deriva-
tives of the corresponding chiral condensates with respect
to ml=T and ms=T, respectively

�q
m=T2 ¼ N3

�

dh �c c iq
dðmq=TÞ ; q ¼ l; s: (17)

To construct the susceptibility �M we will also need to take

into account a mixed chiral susceptibility,

�ls
m=T

2 ¼ N3
�

dh �c c is
dðml=TÞ : (18)

The susceptibility of the subtracted order parameter, M, is
then obtained as

�M ¼ @M

@h
¼ h0N

2
�m̂

2
s

�
�l
m

T2
� N2

�

m̂s

h �c c is � ml

ms

�ls
m

T2

�

¼ �Mb � h0N
4
�m̂sh �c c is � h0N

2
�m̂

2
s

ml

ms

�ls
m

T2
; (19)

where in the last equality we introduced the susceptibility
�Mb, of the nonsubtracted order parameter Mb. With this
we can construct the scaling function for the chiral suscep-
tibility,

f�ðzÞ ¼ �Mh0=h
1=��1 � h1=�0

�
ml

ms

�
1�1=�

�M; (20)

from �M and similarly also from �Mb.
The scaling functions f�, constructed from either �M or

�Mb, differ by terms that vanish in the chiral limit at Tc.
These terms therefore characterize once more systematic
differences that arise in the construction of scaling func-
tions due to the presence of regular terms that vanish, once
the appropriate scaling limits are taken. We show scaling
functions constructed from both order parameters in
Fig. 10. We stress that all parameters (Tc, t0 and h0) have
been determined in our analysis of the order parameters
themselves. No fits are therefore involved in the compari-
son of the OðNÞ scaling functions with the numerical
results for susceptibilities shown in this figure.
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FIG. 10 (color online). Susceptibilities constructed from the subtracted order parameter M (left panel) and the nonsubtracted light
quark chiral condensate Mb (right panel). The data give results from calculations in (2þ 1)-flavor QCD on lattices with temporal
extent N� ¼ 4 and light quark mass values ml=ms � 1=20 in the interval � 2 ½3:28; 3:33�. For the ml=ms ¼ 1=40 data sample we
show results for two different spatial lattice sizes. Filled symbols correspond to N� ¼ 32 and open symbols are for N� ¼ 16.
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It is obvious from Fig. 10 that violations of scaling are
significantly larger for susceptibilities than for the order
parameters. Susceptibilities extracted from M and Mb still
differ for ml=ms ¼ 1=20 but start to become compatible
within errors for ml=ms � 1=40. For ml=ms ¼ 1=40 we
also show results from calculations on two different lattice
size, 323 � 4 and 163 � 4. If any, the volume dependence
of susceptibilities is small at this value of the quark mass.

There is yet another difference between order parameter
susceptibilities derived in QCD, where the order parameter
is a composed operator constructed from fermionic fields,
and OðNÞ spin models, where the order parameter is the
expectation value of a scalar boson field. The order pa-
rameter susceptibilities in QCD receive two contributions,
usually called the disconnected and connected part of the
susceptibility,

�l
m � 2�dis

l þ �con
l ; (21)

with

�dis ¼ 1

16N3
�N�

fhðTrD�1
l Þ2i � hTrD�1

l i2g; (22)

�con ¼ 1

4

X
x

hD�1
l ðx; 0ÞD�1

l ð0; xÞi: (23)

While the first term, the disconnected part of the light
quark susceptibility, describes fluctuations of the light
quark condensate and has a direct analogy in the fluctua-
tions of the order parameter in an OðNÞ spin model, the
second term (�con) arises from the explicit quark mass
dependence of the order parameter, the chiral condensate.
The connected part is an integral over the (quark-line
connected) correlation function of the (isovector) scalar
operator, �c c . The integral has a rather subtle quark mass

dependence. Since � > 2, however, �con=h
1=��1 will van-

ish in the chiral limit. In this limit the connected part of the
susceptibility will therefore not contribute to the scaling
function f� which in turn will entirely be determined

through the disconnected part of the light quark
susceptibility.

At nonvanishing values of the light quark mass, how-
ever, the nonvanishing connected part of the chiral suscep-
tibility is responsible for additional scaling violations in
f�. In fact, the scaling violations due to the connected part

are distinctively different between Oð2Þ and Oð4Þ symmet-
ric theories [22]. It is only in the latter that fluctuations of
Goldstone modes do not contribute to �con. In the case of
Oð2Þ symmetric models �con is expected to diverge pro-

portional to 1=
ffiffiffi
h

p
just like the total order parameter sus-

ceptibilities will do.

In the staggered formulation of QCD with 2 light quark
flavors the lack of Oð4Þ symmetry in the Lagrangian is due
to explicit symmetry breaking terms (taste violations) that
disappear only in the continuum limit. Corresponding to
the Oð2Þ spin models, at finite values of the cutoff the
divergence of �con � 1=

ffiffiffiffiffiffi
m̂l

p
in the chiral limit can thus

be understood in terms of taste violating contributions to
the scalar correlation function [30]. We will discuss these
subtle aspects of susceptibilities of the order parameter, the
influence of taste violating terms in the staggered action on
scaling properties of these susceptibilities and the resulting
cutoff dependence of f� in more detail in a forthcoming

publication [31].

VI. CONCLUSIONS

We have performed a new analysis of scaling properties
of the light quark chiral condensate in (2þ 1)-flavor QCD.
In the chiral symmetry broken phase and for small values
of the light quark mass we find that the quark mass depen-
dence of chiral condensate is dominated by contributions
arising from fluctuations of Goldstone modes. This means,
in particular, that the chiral condensate in the light quark
mass limit has a characteristic dependence on the square
root of the quark mass which arises from fluctuations of
Goldstone modes as expected for models with globalOðNÞ
symmetry. We found that at fixed nonzero lattice spacing
the chiral condensate calculated with improved staggered
fermions shows scaling behavior in the chiral limit that is
consistent with Oð2Þ scaling.
Through the analysis of scaling properties with quark

masses that are smaller than the physical light quark
masses we could fix the normalization constants t0 and
h0 in the scaling variables t and h. This allowed us to
quantify scaling violations for nonzero values of the quark
masses in the vicinity of the phase transition temperature.
These scaling violations turned out to be small in the
magnetic equation of state already for physical values of
the quark mass.
On the basis of studying just the magnetic equation of

state, we gave arguments that it will remain difficult to rule
out Oð4Þ scaling without extraordinary precision of nu-
merical lattice data. However, a distinction between Oð2Þ
and Oð4Þ scaling might become possible through an accu-
rate analysis of susceptibilities of the order parameter. At
present, we still find significant deviations from scaling for
the chiral susceptibility. This will be discussed in more
detail in a forthcoming publication [31].
A determination of t0 and h0 also fixes the scale parame-

ter z0 ¼ h1=��0 =t0, which controls the quark mass depen-

dence of the pseudocritical line determined from the peak
in the chiral susceptibility. In our present analysis this
parameter, which uniquely characterizes nonuniversal as-
pects of critical behavior in QCD, has only been deter-
mined at one value of the lattice cutoff. Calculations at
smaller lattice spacings, together with good control over
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scaling violations induced at nonvanishing quark masses
will be needed to extract z0 in the Oð4Þ symmetric con-
tinuum limit.

The good scaling properties found here in calculations
with Oða2Þ improved gauge and fermion actions are in
contrast to earlier calculations that had been performed
with unimproved staggered fermion and gauge actions. We
argued that the observed differences are due to cutoff
effects.

In our analysis we have assumed that the strange quark
mass in (2þ 1)-flavor QCD is large enough to avoid a first
order phase transition in the light quark chiral limit.
Although the good scaling properties of the chiral order
parameters and the absence of a strong volume dependence
in the light quark susceptibilities support this assumption,
we clearly cannot exclude a first order transition to occur at
still lighter quark masses. Consistent with limits given on
the location of a first order transition in 3-flavor QCD
[32,33], however, our current analysis rules out such a
transition for pseudoscalar masses mps � 75 MeV.

ACKNOWLEDGMENTS

This work has been supported in part by Contract
No. DE-AC02-98CH10886 with the U.S. Department of
Energy, the BMBF under Grant No. 06BI401, the
Gesellschaft für Schwerionenforschung under Grant
No. BILAER, the ExtreMe Matter Institute under Grant
No. HA216/EMMI and the Deutsche Forschungs-
gemeinschaft under Grant No. GRK 881. Numerical simu-
lations have been performed on the BlueGene/L at the New
York Center for Computational Sciences (NYCCS) which
is supported by the U.S. Department of Energy and by the
State of New York, as well as the QCDOC computer of
USQCD. We thank J. Engels for discussions and for pro-
viding us with his programs to calculate the OðNÞ scaling
functions.

APPENDIX A: SCALING FUNCTIONS FOR
THREE-DIMENSIONAL Oð2Þ AND Oð4Þ MODELS

In this appendix we summarize the scaling functions for
models in the three-dimensional Oð2Þ and Oð4Þ universal-
ity classes. These interpolating functions have been taken
from Refs. [15,16]. We note that the original parameters for
the Oð4Þ model published in the tables of Ref. [15] had
been updated in [16]. Moreover, interpolating curves had
been constructed only for the scaling function fG.
Applying these interpolations also to f� required slight

adjustments of the interpolation parameters (y0, p).
In Eq. (1) we expressed the dependence of the order

parameter M on the scaling variables t and h in terms of a
scaling function, fG. Following the discussion given in
[15] we introduce the variables x and y,

y ¼ f��
G ; x ¼ ðt=h1=��Þf�1=�

G : (A1)

Obviously y � 0. For small and large values of y the
asymptotic forms that relate x to y are known. For small
y we have

xsðyÞ ¼ �1þ ð~c1 þ ~d3Þyþ ~c2y
1=2 þ ~d2y

3=2; (A2)

and for large values of y one finds

xlðyÞ ¼ ay1=� þ byð1�2�Þ=�: (A3)

One can smoothly interpolate between these two relations
[15] using the ansatz

xðyÞ ¼ xsðyÞ yp0
yp0 þ yp

þ xlðyÞ yp

yp0 þ yp
: (A4)

This ansatz has been used to obtain the scaling functions
shown in Fig. 1 for �0:5 & z & 2:0. For jzj outside this
interval the asymptotic expressions xlðyÞ and xsðyÞ have
been used. The constant ~c2 and the critical exponents �, �,
� are given in Table I, the other parameters needed for this
interpolation are collected in Table III.

APPENDIX B: CHIRAL CONDENSATES FROM
CALCULATIONS ON LATTICES WITH

TEMPORAL EXTENT N� ¼ 4

In this appendix we present data of our calculations
performed with the p4 staggered fermion action on lattices
with temporal extent N� ¼ 4 and spatial extentN� ¼ 8, 16
and 32. All calculations have been performed with 2 light
quarks and a strange quark of mass m̂s ¼ 0:065. The
improved gauge and fermion actions used for these calcu-
lations have been described in detail in Ref. [34]. Tables IV
and V give results of calculations performed at different
values of the gauge coupling (�). Results for light (l) and
strange (s) quark condensates as well as the disconnected
and connected contributions to the corresponding suscep-
tibilities are normalized to a single flavor. The last column
gives the number of trajectories generated for each parame-
ter set.
In Table VI we give for some selected values of the

gauge coupling � the conversion to a reduced temperature
scale.

TABLE III. Parameters of the fits to the scaling functions for
Oð2Þ and Oð4Þ.

~c1 þ ~d3 ~d2 a b y0 p

Oð2Þ 0.352(30) 0.056 1.260(3) �1:163ð20) 2.5 3

Oð4Þ 0.359(10) �0:025ð10Þ 1.071(4) �0:866ð38Þ 5.0 3
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TABLE IV. Light and strange quark condensates (h �c c il;s) for ml=ms � 1=20 and the corresponding disconnected and connected
parts of the chiral susceptibilities. The last column gives the number of trajectories of half unit length generated for each parameter set.

� h �c c il �con
l �dis

l h �c c is �con
s �dis

s # traj.

N3
� � N� ¼ 323 � 4, mla ¼ 0:000 812 5

3.2800 0.1322(3) 3.90(16) 2.43(24) 0.2575(1) 1.412(1) 0.47(4) 18 730

3.2900 0.1082(4) 4.73(12) 3.95(34) 0.2454(1) 1.477(1) 0.63(5) 20 070

3.3000 0.0715(4) 7.44(11) 6.10(44) 0.2294(1) 1.575(1) 0.63(4) 18 830

3.3025 0.0633(6) 8.46(13) 7.61(67) 0.2261(2) 1.593(1) 0.77(7) 15 810

3.3050 0.0553(5) 9.44(12) 7.46(55) 0.2228(2) 1.613(1) 0.78(7) 17 460

3.3075 0.0459(15) 11.30(35) 9.91(1.47) 0.2190(5) 1.634(3) 1.04(17) 4530

3.3100 0.0376(5) 12.31(14) 6.85(53) 0.2156(1) 1.656(1) 0.70(6) 15 850

3.3200 0.0195(4) 12.98(17) 3.07(23) 0.2054(2) 1.706(2) 0.57(4) 10 380

3.3300 0.0111(2) 10.48(11) 0.88(10) 0.1968(1) 1.745(1) 0.40(4) 6850

N3
� � N� ¼ 323 � 4, mla ¼ 0:001 625 0

3.2800 0.1386(2) 3.15(5) 1.81(14) 0.2590(1) 1.400(1) 0.42(3) 21 080

3.2850 0.1290(8) 3.28(20) 2.48(73) 0.2536(3) 1.433(3) 0.51(13) 3400

3.2900 0.1181(3) 3.80(6) 3.36(26) 0.2479(1) 1.460(1) 0.62(5) 20 940

3.2950 0.1009(12) 4.41(20) 2.28(49) 0.2396(5) 1.505(4) 0.41(6) 1900

3.3000 0.0888(4) 5.10(6) 4.95(39) 0.2336(1) 1.543(1) 0.74(6) 20 550

3.3025 0.0797(5) 5.63(8) 6.04(57) 0.2295(2) 1.568(2) 0.89(9) 16 870

3.3050 0.0690(4) 6.47(6) 5.17(35) 0.2249(1) 1.599(1) 0.69(5) 21 280

3.3075 0.0621(7) 6.94(9) 4.98(45) 0.2217(2) 1.616(2) 0.63(6) 6570

3.3100 0.0545(7) 7.45(9) 4.74(78) 0.2183(3) 1.633(2) 0.72(14) 7370

N3
� � N� ¼ 163 � 4, mla ¼ 0:001 625 0

3.2800 0.1380(7) 3.77(12) 2.12(13) 0.2593(3) 1.401(2) 0.44(3) 21 180

3.2900 0.1165(7) 4.47(12) 3.10(17) 0.2475(3) 1.462(2) 0.55(3) 27 440

3.3000 0.0880(10) 5.74(11) 5.35(38) 0.2337(4) 1.541(3) 0.76(6) 40 000

3.3050 0.0688(10) 7.11(10) 5.83(40) 0.2252(4) 1.599(3) 0.82(7) 42 000

3.3100 0.0533(11) 8.14(13) 4.88(30) 0.2182(4) 1.636(3) 0.63(4) 24 910

3.3200 0.0334(7) 9.05(8) 2.95(14) 0.2075(3) 1.692(2) 0.51(3) 25 050

3.3300 0.0202(4) 8.16(9) 1.09(6) 0.1975(3) 1.740(2) 0.39(3) 14 870

N3
� � N� ¼ 163 � 4, mla ¼ 0:003 250 0

3.2800 0.1487(4) 2.84(8) 1.73(8) 0.2615(2) 1.374(3) 0.44(2) 40 360

3.2850 0.1421(9) 2.93(10) 1.98(20) 0.2575(5) 1.405(5) 0.49(5) 13 260

3.2900 0.1308(5) 3.20(3) 2.20(11) 0.2510(2) 1.433(2) 0.50(2) 45 080

3.2950 0.1204(9) 3.56(7) 2.69(17) 0.2454(4) 1.469(4) 0.60(4) 19 110

3.3000 0.1083(6) 3.88(3) 3.16(18) 0.2388(3) 1.504(2) 0.64(3) 41 050

3.3050 0.0933(7) 4.43(5) 3.97(21) 0.2312(3) 1.551(3) 0.76(4) 39 960

3.3100 0.0792(7) 4.82(5) 4.12(18) 0.2239(3) 1.586(3) 0.77(3) 42 890

3.3200 0.0542(6) 5.88(4) 3.16(14) 0.2107(2) 1.668(2) 0.66(3) 44 490

3.3300 0.0336(3) 6.25(2) 1.41(8) 0.1984(2) 1.734(1) 0.46(2) 39 320

N3
� � N� ¼ 323 � 4, mla ¼ 0:003 250 0

3.2800 0.1488(2) - 1.61(13) 0.2615(1) - 0.46(3) 20 000

N3
� � N� ¼ 163 � 4, mla ¼ 0:000 812 5

3.3000 0.0627(25) - 7.64(94) 0.2279(9) - 0.71(10) 6690

N3
� � N� ¼ 83 � 4, mla ¼ 0:000 812 5

3.3000 0.0452(21) - 4.68(39) 0.2335(13) - 0.70(5) 25 830

N3
� � N� ¼ 83 � 4, mla ¼ 0:001 625 0

3.2800 0.1141(29) - 5.26(25) 0.2584(12) - 0.51(4) 38 280

3.2900 0.0963(21) - 5.24(17) 0.2485(9) - 0.61(3) 40 660

3.3000 0.0753(35) - 5.32(34) 0.2380(16) - 0.75(6) 40 100

N3
� � N� ¼ 83 � 4, mla ¼ 0:003 250 0

3.3000 0.0954(21) - 3.49(13) 0.2372(10) - 0.63(3) 30 000
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