
Gribov’s horizon and the ghost dressing function

Ph. Boucaud,1 J. P. Leroy,1 A. Le Yaouanc,1 J. Micheli,1 O. Pène,1 and J. Rodrı́guez-Quintero2
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We study a relation recently derived by K. Kondo at zero momentum between the Zwanziger’s horizon

function, the ghost dressing function and Kugo’s functions u and w. We agree with this result as far as bare

quantities are considered. However, assuming the validity of the horizon gap equation, we argue that the

solution wð0Þ ¼ 0 is not acceptable since it would lead to a vanishing renormalized ghost dressing

function. On the contrary, when the cutoff goes to infinity, uð0Þ ! 1, wð0Þ ! �1 such that uð0Þ þ
wð0Þ ! �1. Furthermore w and u are not multiplicatively renormalizable. Relaxing the gap equation

allows wð0Þ ¼ 0 with uð0Þ ! �1. In both cases the bare ghost dressing function, Fð0;�Þ, goes

logarithmically to infinity at infinite cutoff. We show that, although the lattice results provide bare results

not so different from the Fð0;�Þ ¼ 3 solution, this is an accident due to the fact that the lattice cutoffs lie

in the range 1–3 GeV�1. We show that the renormalized ghost dressing function should be finite and

nonzero at zero momentum and can be reliably estimated on the lattice up to powers of the lattice spacing;

from published data on a 804 lattice at � ¼ 5:7 we obtain FRð0; � ¼ 1:5 GeVÞ ’ 2:2.
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I. INTRODUCTION

Kondo has derived in recent papers [1,2] a relation
between the k ¼ 0 values of the ghost dressing function
FðkÞ, Zwanziger’s horizon function hðkÞ, Kugo’s function
uðkÞ, and an additional function wðkÞ. Applying to this
relation Zwanziger’s horizon gap equation and assuming
that wð0Þ ¼ 0 he derives the surprising result that uð0Þ ¼
�2=3. This is surprising as so simple constraints on bare
quantities are rare. We know only the case of the electric
charge which benefits of the Ward identity. This surprising
result deserves some closer investigation, even more so as
lattice results are not so far from it as we shall see. Indeed it
has given rise to several publications and there is far from a
consensus on this matter [3–6].

To understand better the issue we try in this note to
reconsider every point of the discussion from first prin-
ciples. Our starting point is a set of relations between the
functions we have just mentioned. They concern bare
quantities, which imposes to use a finite ultraviolet cutoff,
else we would have to deal with divergent quantities. In
Sec. II we propose a faster derivation of these relations. If
one assumes the validity of the Zwanziger horizon gap
equation this boils down to very simple relations giving
uð0Þ and wð0Þ as functions of Fð0Þ. We then discuss
whether uð0Þ can be�2=3 or any finite quantity. We argue
that it is not possible if we assume F to be multiplicatively
renormalizable, which nobody would deny. In Sec. III we
use lattice QCD and ghost-propagator Dyson-Swinger
equation (GPDSeq) to get numbers. From the GPDSeq at
small momentum we find that ratio of the bare (resp.

renormalized) ghost dressing functions at small and zero
momentum, assuming the latter to be finite, is essentially
cutoff and renormalization point independent. We extract
an estimate of the renormalized FRð0Þ. Finally we discuss
the status of the Zwanziger horizon gap equation on the
lattice. Convinced that it has no reason to be valid, we
generalize the result of Sec. II for a more general case.

II. GHOST DRESSING FUNCTION, HORIZON
FUNCTION, u AND w

The discussion which follows deals with bare quantities.
These are singular and need a regulator, or cutoff, which
we will call � (in the lattice case, this regulator is a�1, a
being the lattice spacing). The dependence in � will often
be kept implicit, to avoid heavy notations, but is always
understood speaking of bare quantities. Renormalized
quantities will be marked by the index R. There is no
need to specify the renormalization scheme being used,
since our results do not depend on a particular choice;
however, regarding lattice results, we shall refer as usual
to the MOM scheme.

A. Gribov-Zwanziger action

In [1,2], it has been claimed that three-point and four-
point functions for gluon and ghost fields can be related in
such a manner that the Zwanziger horizon condition
strongly constrains the ghost propagator and the ghost-
gluon vertex.
It is well-known, since Gribov’s famous paper [7], that

the gauge-fixing procedure in QCD using the standard
Faddeev-Popov procedure is not unambiguous. It leads to
a discrete set of solutions, named ‘‘Gribov copies’’. One
solution, proposed by Zwanziger [8], which aims at re-
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stricting the Gribov copies within the Gribov Horizon,
consists in using the Gribov-Zwanziger partition function
in Landau gauge,

Z� ¼
Z
½DA��ð@AÞ detðMÞe�SYMþ�

R
dDxhðxÞ; (1)

for the D-dimensional Euclidean Yang-Mills theory, where
SYM stands for the Yang-Mills action, M is the Faddeev-
Popov operator,

Mab ¼ �@�D
ab
� ¼ �@�ð@��ab þ gfabcAc

�Þ (2)

and hðxÞ is the Zwanziger horizon function,

hðxÞ ¼
Z

dDygfabcAb
�ðxÞðM�1Þceðx; yÞgfafeAf

�ðyÞ; (3)

that restricts the integration over the gauge group to the
first Gribov region, provided that the Gribov parameter, �,
is a positive number that is to be determined by solving the
so-called gap equation:

hhðxÞi� ¼ ðN2 � 1ÞD: (4)

The horizon function is a bare quantity depending on the
cutoff parameter, as � also does through the implementa-
tion of the horizon condition that requires that the gap
equation be solved for every cutoff value. Wewill postpone
the discussion of this gap equation to a later section. In any
case, the horizon function is a well defined bare quantity
and it is relevant to first derive, independently of eq. (4) the
relation its v.e.v. has with other quantities.

B. Relating hð0Þ, uð0Þ, wð0Þ and Fð0Þ
In this subsection we propose a simplified derivation of

Kondo’s relation (cf [1,2]) which relates the v.e.v. of the
horizon function hð0Þ to the ghost dressing function at
vanishing momentum and the Kugo-Ojima parameters.
Then, contrarily to Kondo, we will add no assumption
about the Kugo-Ojima parameters but simply combine
Kondo’s relation with the one discovered by Kugo between
the ghost dressing in Landau gauge with these Kugo-Ojima
parameters and discuss about their general implications.

hhð0Þik¼0 ¼ lim
k2!0

1

VD

Z
dDx

Z
dDyhgfabcAb

�ðxÞðM�1Þce

� ðx; yÞgfafeAf
�ðyÞieik�ðx�yÞ

¼ lim
k!0

1

VD

Z
dDx

Z
dDyhðgfabcAb

�c
cÞx

� ðgfafeAf
� �ceÞyieik�ðx�yÞ

¼ lim
k2!0

Z
dDðx� yÞhðgfabcAb

�c
cÞx

� ðgfafeAf
� �ceÞyieik�ðx�yÞ

¼ hðgfabcAb
�c

cÞðgfafeAf
� �ceÞik2!0 (5)

where we use the simplified notation:

hð. . .Þð. . .Þik �
Z

dDðx� yÞhð. . .Þxð. . .Þyieik�ðx�yÞ (6)

that was introduced in Refs. [1,2] and that will be followed
from now on. To establish Eq. (5), nothing is needed but the
relation between the inverse Faddeev-Popov operator and
the ghost and antighost fields and the translational invari-
ance. Define then the function uðk2Þ, the value of which at
vanishing momentum gives the Kugo-Ojima parameter, as

hðDab
� cbÞðgfcdeAd

� �c
eÞik ¼ ��T

���
acuðk2Þ; (7)

where k2�T
��ðkÞ � k2��� � k�k� and the transversality is

guaranteed by the well-known identity:

hð@�Dab
� cbÞðgfcdeAd

� �c
eÞik ¼ �ik�hðDab

� cbÞðgfcdeAd
� �c

eÞik
¼ 0: (8)

Now, by merely invoking the definitions of u (Eq. (7)) and
of the covariant derivative,

Dab
� � �ab@� þ gfacbAc

�; (9)

acting on the ghost and antighost fields, one obtains

hðgfabcAb
�c

cÞðgfdefAe
� �c

fÞik ¼ hðDac
� ccÞðgfdefAe

� �c
fÞik|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

��T
��ðkÞ�aduðk2Þ

� h@�caðgfdefAe
� �c

fÞik|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�ik�hcaðgfdefAe

� �c
fÞik

(10)

which proves that the transversal part of the left-hand side
(lhs) of Eq. (10) is given by Eq. (7),

�T
��0 hðgfabcAb

�0ccÞðgfdefAe
� �c

fÞik ¼ ��T
��ðkÞ�aduðk2Þ:

(11)

while the longitudinal part can be written as follows:

k�hðgfabcAb
�c

cÞðgfdefAe
� �c

fÞik
¼ ik2hcaðgfdefAe

� �c
fÞik

¼ ik2hca �ca0 i|fflfflfflffl{zfflfflfflffl}
�aa0Fðk2Þ

hca0 ðgfdefAe
� �c

fÞi1PIk ; (12)

where Fðk2Þ is the bare ghost-propagator dressing function
and 1PI notes the one-particle irreducible contribution to
the v.e.v. obtained through the amputation of the external
ghost leg. Let us then define the function wðk2Þ in order to
parametrize this longitudinal contribution to Eq. (10)
through

hcaðgfdefAe
� �c

fÞi1PIk ¼ i�adk�ðuðk2Þ þ wðk2ÞÞ: (13)

This definition is equivalent to the one given in terms of
diagrams in Refs. [1,2]. Note also thatwð0Þwas taken to be
0 in the seminal work by Kugo and Ojima.
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Taking together Eqs. (10) and (13) one gets:

hðgfabcAb
�c

cÞðgfdefAe
� �c

fÞik ¼ ��ad

�
�T
��uðk2Þ þ Fðk2Þ

� k�k�

k2
ðuðk2Þ þ wðk2ÞÞ

�
;

(14)

and for the v.e.v of the horizon function [1,2]:

hhð0Þik¼0

DðN2 � 1Þ ¼ � 1

DðN2 � 1Þ hðgf
abcAb

�c
cÞ

� ðgfafeAf
� �ceÞik2!0

¼ � 1

D
½ðD� 1Þuð0Þ þ Fð0Þðuð0Þ þ wð0ÞÞ�:

(15)

From now on we make explicit the dependence on the
cutoff, �, of all the bare quantities, which generally will
diverge in the infinite cutoff limit.1

Kugo has shown in Refs. [9,10] that the Landau gauge
condition, @�A� ¼ 0, can be exploited to give:

ð1þ uð0;�Þ þ wð0;�ÞÞFð0;�Þ ¼ 1: (16)

This result can also be easily derived from the ghost-
propagator Dyson-Schwinger equation which, in Landau
gauge, can be written as:

1

Fðk2Þ ¼ �ab

k2ðN2 � 1Þ hc
a �cbi�1

¼ 1� ik�hcaðgAe
�f

def �cfÞi1PI �ab

k2ðN2 � 1Þ
¼ 1þ uðk2;�Þ þ wðk2;�Þ (17)

Then, the two Eqs. (15) and (16) can be combined to
obtain, without any hypothesis about uand w,

uð0;�Þ ¼ Fð0;�Þ � 1

D� 1
� D

D� 1

� hhð0Þik¼0

DðN2 � 1Þ
�

wð0;�Þ ¼ �1� uð0;�Þ þ 1

Fð0;�Þ
¼ �Fð0;�Þ þ ðD� 2Þ

D� 1
þ 1

Fð0;�Þ
þ D

D� 1

� hhð0Þik¼0

DðN2 � 1Þ
�

(18)

as general solutions for the Kugo-Ojima parameters,
uð0;�Þ, and wð0;�Þ in terms of the bare ghost dressing
function at vanishing momentum. If, in addition, we as-
sume that the gap equation eq. (4) is satisfied the square
bracket in Eq. (18) is equal to 1, independently of the cutoff
and we get

uð0;�Þ ¼ Fð0;�Þ � 1�D

D� 1

wð0;�Þ ¼ �1� uð0;�Þ þ 1

Fð0;�Þ
¼ �Fð0;�Þ � 2

D� 1
þ 1

Fð0;�Þ

(19)

In Fig. 1, the solutions of Eq. (19) are plotted as func-
tions of Fð0;�Þ. It is obvious from Eq. (19) (see also
Fig. 1) that, had we required wð0;�Þ ¼ 0, the solution
proposed in Refs. [1,2] would emerge: uð0;�Þ ¼ �2=3
and Fð0;�Þ ¼ 3, for D ¼ 4. However we shall present in
the next subsection the arguments which lead us to believe
that no solution implying a cutoff independent and finite
value2 for Fð0Þ can be accepted.

C. Constraints from renormalizability

In this section we assume the validity of the relation (4)
Let us start from the basic equation

Fð0;�Þ ¼ ~Z3ð�2;�Þ
�
FRð0; �2Þ þO

�
1

�n

��
; (20)

0 1 2 3 4 5 6 7 8 9 10

F(0,Λ)

-3

-2

-1

0

1

2

3

4

5
u(0,Λ)
w(0,Λ)
u(0,Λ)+w(0,Λ)
Kondo’s solution

FIG. 1 (color online). The solutions for uð0;�Þ and wð0;�Þ
given by Eq. (19) plotted as a function of Fð0;�Þ. This plot can
be understood as a function of ~Z3 for a given nonzero value of
FRð0; �2Þ. Then the infinite cutoff limit is the limit at infinity of
the horizontal axis. The particular solution proposed in
Refs. [1,2] (black circles), obtained by imposing wð0;�Þ ¼ 0,
corresponds to the intersection of uþ w and u. It cannot hold
when ~Z3 ! 1. The current lattice solutions for the bare ghost
dressing functions at vanishing momentum lie inside the green
dotted square (see Fig. 3). This apparent approximate agreement
is misleading and due to the moderate cutoff value on the
lattices.

1It is well-known that the ghost dressing function diverges
logarithmically at infinite cutoff in the UV momentum domain.

2This finite value is independent of the number of colors and,
provided that wð0;�Þ ¼ 0, should be the same whichever regu-
larized Yang-Mills action we use (any lattice action, for instance)
or even including any nonzero number of quark flavors for the
action.
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where FR is the renormalized dressing function in the
infinite cutoff limit and n some positive number. For any
quantity which is multiplicatively renormalizable, a field-
theory nonperturbative renormalization scheme (in par-
ticular, those applied in lattice field theory) implies a
relation of this kind where the crucial point is that the
cutoff dependence is an inverse power of the cutoff and
cannot behave like some power of the cutoff’s logarithm
[11,12]. Now, we know from perturbation theory how
~Z3ð�2;�Þ depends on the cutoff; choosing a fixed value
�0 and sending� ! 1, ~Z3 diverges logarithmically in the
infinite cutoff limit, regardless of the renormalization pro-
cedure:

~Z3ð�2;�Þ
~Z3ð�2;�0Þ

¼
�
logð�=�QCDÞ
logð�0=�QCDÞ

�
9=44ð1þOð�ÞÞ; (21)

Although this behavior is quite general, the specific value
9
44 of the exponent is valid only in the case N ¼ 3, Nf ¼ 0.

This provides us with two main objections for a finite bare
ghost dressing function:

(i) A finite value of Fð0;�Þ requires, through Eq. (20),
that FRð0; �2Þ be zero; taking into account the fact
that the subdominant terms, which vanish as � !
1, are supposed not to be logarithmic contributions
but, at least, of the order of 1=� we are forced to
conclude that zero is the only allowed finite value
that the bare ghost dressing function can hit for Eq.
(20) to be consistently satisfied.

(ii) We can apply Eq. (29a) which will be discussed later
and implies at small q2 a cutoff independent factor,
decreasing with q2, which multiplies Fð0;�Þ and as
well FRð0; �2Þ. Recalling that the path integration
has been limited by the Zwanziger procedure to a
region in which the Faddeev-Popov operator is posi-
tive, we see that if FRð0; �2Þ ¼ 0, FR can only
assume the value 0 throughout some range of q2,
which sounds weird. Even more, there are numerical
evidences that the ghost dressing function Fðq2;�Þ
decreases for all q2. Then FRðq2; �2Þ ¼ 0 should
hold for any q2.

Therefore, the only way out we see is that the bare ghost
dressing function diverges logarithmically in the infinite

cutoff limit and that multiplication by ~Zð�1Þ
3 provides a

strictly positive renormalized value. Then, Eq. (19) can
be rewritten as:

FRð0; �2Þ ¼ ~Z�1
3 ð�2;�ÞððD� 1Þuð0;�Þ þDþ 1Þ

¼ ðD� 1Þ
�
~Z�1
3 ð�2;�Þuð0;�Þ

þO
�

1

log�

��
uð0;�Þ þ wð0;�Þ

¼ �1þO
�

1

log�

�
: (22)

An important consequence of the first of Eqs. (22) is that
the function uð0;�Þ cannot be multiplicatively renormal-
ized. The fact that, when multiplied by Z�1

3 , it gives a finite

result in the infinite cutoff limit does not suffice. As we
have already recalled, it has to differ from its asymptotic
value by inverse powers of the cutoff, which is obviously
wrong in Eqs. (22) where ~Z�1

3 uð0;�Þ only converges up to
inverse powers of the logarithm of the cutoff. The same is
true for wð0Þ. This is not surprising since they are defined
by the insertion of the composite operators shown in
Eqs. (7) and (13).
Only the combination 1þ uð0;�Þ þ wð0;�Þ vanishes

logarithmically as � ! 1 so that,

~Z 3ð�2;�Þð1þ uð0;�Þ þ wð0;�ÞÞ

¼ 1

FRð0; �2Þ þO
�
1

�

�
; (23)

while both uð0;�Þ and wð0;�Þ diverge but their divergen-
ces cancel in Eq. (23). Thus, as done in [2,13], one can
consider 1þ uþ w to be renormalized3 by ~Z3. However,
let us repeat, 1þ u and w cannot be separately renormal-
ized and wð0;�Þ ¼ 0 cannot be accepted since in conjunc-
tion with Eqs. (4) and (18) it provides a finite
uð0;�Þ ¼ �2=3 and a finite Fð0;�Þ ¼ 3 which we have
shown above to be forbidden.

III. COLLECTING AND EXTRAPOLATING BARE
GHOST LATTICE DATA

Lattice simulations first provide us with estimates for
bare quantities (correlation functions) in the lattice regu-
larization scheme, where the role of the regularization
cutoff is played by the inverse of the lattice spacing, a�1.
In present simulations a�1 is moderate, ranging from
�1 GeV�1 for � ¼ 5:7 up to �3:5 GeV�1 for � ¼ 6:4.
Those bare quantities should be further renormalized by
applying MOM-like schemes. That this multiplicative re-
normalization procedure works has been proven by Reisz
in Ref. [11]; the remaining corrections due to finite spacing
(vanishing in the continuum limit) are considered to be-
have as powers of the lattice spacing. Those renormalized
quantities are usually the reliable result of the simulations
and the ones directly connected with physical predictions.
On the contrary, the recent work [1,2] we discussed above
supplies a prediction for a bare quantity: the bare ghost-
propagator dressing function. Therefore, the nonrenormal-
ized lattice estimates for this dressing function deserve by
themselves a particular interest, as far as they could allow
us to test that prediction.
In the last few years, many works have been devoted, at

least partially, to the lattice computation of the ghost

3Renormalized in the sense that the (logarithmically vanish-
ing) cutoff dependence can be killed at a given renormalization
point up to vanishing powers of the cutoff
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propagator. They mainly follow Ref. [14] in writing the
Faddev-Popov operator as a lattice divergence:

MðUÞ ¼ � 1

N
r � ~DðUÞ; (24)

where the operator ~D reads

~D�ðUÞ�ðxÞ ¼ 1

2
ðU�ðxÞ�ðxþ �̂Þ � �ðxÞU�ðxÞ

þ �ðxþ �̂ÞUy
�ðxÞ �Uy

�ðxÞ�ðxÞÞ: (25)

Those definitions, complemented with conversion routines
between the Lie algebra and the Lie group, allow for a very
efficient lattice implementation. Some details about the
procedure for the inversion of the Faddeev-Popov operator
and some results will be found in [15].

The gauge fixing, in particular, for Landau gauge, is a
more delicate issue. A minimization of the functional

FU½g� ¼ Re
X
x

X
�

�
1� 1

N
gðxÞU�ðxÞgyðxþ �̂Þ

�
(26)

can be achieved by the use of some algorithm driving the
gauge configuration to a local minimum of FU½g�. The
gauge configurations obtained in this way will lie in the
first Gribov region but, in general, they do not reach the
fundamental modular region defined as the set of absolute
minima of FU½g� on all gauge orbits. A ‘‘best-copy’’
algorithm (basically consisting in choosing the gauge con-
figuration providing the lowest minimum after several
minimizations) has also been used as well as a procedure
that essentially consists in a simulated annealing technique
and is claimed to reach gauge-functional values closer to
the global minima than the standard approach (see for
instance [16,17] and references therein). Figure 3 presents
together results collected from Ref. [16] (for very big
lattice-volume simulations with the simulated annealing
gauge-fixing) and data from Refs. [15,18,19] (obtained
using the standard gauge-fixing); it shows only a weak
dependence in the cutoff a�1. This is not surprising since
one knows from Eq. (21) that it should behave at leading

log as �9=44 which gives no larger effect than 2.5% on the
whole range of �’s.

In order to compare the lattice data with the previous
results we need to extrapolate them to zero momentum. To
carry this task out we derive now from the bare ghost-
propagator Dyson-Schwinger equation (GPDSeq) a small-
momentum formula the coefficients of which are fitted
against the lattice data. The bare GPDSeq can be regular-
ized and evaluated with the help of a subtraction procedure
at two different momenta p and k,

1

Fðp2;�Þ �
1

Fðk2;�Þ
¼ Ng2ð�ÞH1ð�Þ

Z q2<� d4q

ð2�Þ4
Fðq2;�Þ

q2

�
�ðk � qÞ2

k2
� q2

��
Gððq� kÞ2;�Þ

ðq� kÞ4 �Gððq� pÞ2;�Þ
ðq� pÞ4

�

(27)

as explained in Refs. [19,20].4 In this equation N is the
number of colors, gð�Þ the bare, cutoff dependent, cou-
pling constant and G stands for the gluon propagator
dressing function and H1 is one of the form factors for
the bare ghost-gluon vertex,

~�abc
� ð�q; k; q� kÞ ¼ �ig0f

abcðq�H1ðq; kÞ
þ ðq� kÞ�H2ðq; kÞÞ; (28)

that should be finite and only weakly dependent on the
momenta by virtue of Taylor’s nonrenormalisation theo-
rem [21] and that, consequently, is usually assumed to be
constant with respect to the momenta. Such a bare (and
cutoff dependent) GPDSeq can be numerically solved, as
was done in Ref. [19], with the help of the lattice gluon
propagator estimate to be inserted in the integral in
Eq. (27). It is known (cf. [19]) that the solutions can belong
to 2 different types: while the generic solution goes to a
finite nonzero limit in the infrared there exists also an

exceptional one which diverges as 1=
ffiffiffiffiffi
k2

p
in this same

limit. The solutions appear to be dialed by the size of the
coupling gð�Þ in front of the integral in Eq. (27), the
exceptional one resulting for a given critical value of the
coupling. The same is found by the authors of Ref. [22] but
depending on whether Fð0Þ, taken as a boundary condition,
is 1 (exceptional solution) or not (regular). The lattice
simulations clearly favor the first type and it is implied in
the coming discussion that we are in this situation. The
only unknown ingredient is the (constant) value for the
ghost-gluon vertex form factor,H1ð�Þ. In addition, follow-
ing Ref. [20], one can derive a small-momentum expansion
for its solution

Fðq2;�Þ ¼ Fð0;�Þ
�
1þ NH1ð�ÞRð�Þ

16�
q2 logðq2Þ

þOðq2Þ
�
; (29a)

with: Rð�Þ ¼ g2ð�Þ
4�

Fð0;�Þ2
�
lim
k!0

Gðk2;�Þ
k2

�

¼ lim
k!0

�Tðk2Þ
k2

þO
�
1

�

�
; (29b)

where �T is the coupling constant defined in the Taylor

4In these references we dealt with renormalized quantities but
everything applies straightforwardly for bare ones.
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scheme [23]. Before turning to exploit this expansion we
shall comment briefly on the various parameters it
involves.

Insofar as the gluon propagator reaches a finite nonzero
value at vanishing momentum (as it appears to be true on
the lattice), Rð�Þ takes a finite value which depends on the
cutoff by inverse powers. Thus, the dominant (in relative
terms) q2-dependent part of F in the vicinity of 0 [i.e. the
second term in the bracket of Eq. (29a)] does not require
any renormalization,

lim
�!1

Fðq2;�Þ
Fð0;�Þ ¼ 1þ NH1

�Tðq2Þ
16�

logðq2Þ þOðq2Þ:
(30)

This (quasi-)independence of the slope with respect to the
cutoff is of course important to ensure multiplicative re-
normalizability, since the latter demands that the
q2-dependence of the bare and renormalized Green’s func-
tions be the same up to negative powers of the cutoff. On
the contrary the global multiplicative factor Fð0;�Þ is
known to be logarithmically divergent with �, which
implies that its variation could be appreciable.

Since Rð�Þ is to be evaluated from lattice estimates of
zero-momentum gluon and ghost propagators, one expects
it to be sensitive to finite-volume artefacts, to which much
attention should therefore be paid. In Fig. 2 one notices the
strong dependence of the zero-momentum gluon propaga-
tor on the lattice size, which implies an equally strong
dependence for Rð�Þ. When evaluated from the zero-
momentum estimates for a 804-lattice at � ¼ 5:7 in
Ref. [16], Rð� ¼ 5:7Þ takes on the value of 10.3 (while,
for instance, from the data for a 324-lattice at � ¼ 5:8 in

Ref. [19], one would obtain Rð� ¼ 5:8Þ ’ 19). The bare
vertex form factor (supposed to be constant) was indirectly
estimated in ref. [19] for a 324-lattice at � ¼ 5:8 and
appeared to be H1ð� ¼ 5:8Þ ’ 1:2.
Provided that finite-size and lattice-spacing artefacts can

be neglected for the bare ghost-gluon vertex, the values of
R andH1 we have just determined can be used to attempt to
describe the ghost dressing function at small momenta
estimated from the 804 lattice at � ¼ 5:7 in Ref. [16].
Then the only parameter in Eq. (29a) which remains to
be determined by the best fit is the zero-momentum ghost
dressing function. Actually, since a value for Fð0;�Þ is
required in computing Rð�Þ one has to proceed by iter-

ations: the known value ofGð2Þð0;�Þ and an initial guess of
Fð0;�Þ are inserted in Eq. (29b) to produce a first estimate
of Rð�Þ. The latter is then used in Eq. (29a) to perform a
new fit of the 804-lattice data deprived of the few momenta
with p < 4�=L. It appears actually that, for all the lattice
data sets plotted in Fig. 3, only the momenta satisfying his
condition are affected by sizeable lattice-volume artefacts.
This produces a new estimate of Fð0Þ and the process is
iterated until it eventually converges to

Rð� ¼ 5:7; 80Þ ¼ 10:3; Fð� ¼ 5:7; 80Þ ¼ 3:50:

(31)

The fit is presented as a solid line in Fig. 3.
The impact of the finite-volume effect due to the lattice

determination of Rð�Þ can be approximatively estimated in
the following way. First, the zero-momentum gluon propa-
gator data for the three different lattice volumes at � ¼ 5:7
in Fig. 2 can be extrapolated up to infinite volume (wework
only with data for the same �, in order avoid any mixing
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FIG. 2 (color online). Bare zero-momentum gluon propagator
estimated from different lattice data sets plotted in terms of the
inverse of the lattice size in physical units. The data for the two
bigger lattice volumes are taken from Ref. [16], the smaller
volume at � ¼ 5:7 corresponds to Ref. [27] and the others to
Refs. [15,19]. A linear fit for the three data at � ¼ 5:7 to
extrapolate at infinite volume is presented as a solid red line.
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FIG. 3 (color online). Bare ghost dressing function estimated
from different lattice data sets. The data for the two larger lattice
volumes are taken from Ref. [16] and the others from
Refs. [15,19]. the solid line is for the best fit with the small-
momentum expansion in Eq. (29a) with Rð� ¼ 5:7ð804ÞÞ and the
dashed one stands for the best fit with Rð� ¼ 5:7;1Þ, both
computed as explained in the text.
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between lattice-spacing and volume effects). This is the
starting point to repeat the iterative procedure explained
above and one gets Rð� ¼ 5:7;1Þ ¼ 8:2 and Fð� ¼
5:7;1Þ ¼ 3:40. The extrapolation is also shown (with a
dashed line) in Fig. 3.

As for the bare Kugo-Ojima parameter uð0;�Þ, it is
estimated to be of the order of �ð0:6� 0:8Þ in
Refs. [24,25] and very recently in Ref. [13] by using a
mixed approach, analogous to the one previously applied
to solve Eq. (27), in which DS equations are solved with
the input of a lattice estimate of the gluon propagator.

A. Horizon gap equation and lattice QCD

A few words are in order to compare the two approaches
we have considered in this note.

The Gribov-Zwanziger (GZ) approach Eq. (1) proposes
a modification of the standard QCD action in order to limit
the domain of the path integration to the domain within the
Gribov horizon, in which the Faddeev-Popov (FP) operator
is positive, i.e. all its eigenvalues are positive.

Lattice QCD uses the genuine QCD action. Some algo-
rithm minimizes the functional which discretizes the func-
tional

R
d4xA�

a A
�
a . These algorithms differ, but they all

stop at a local minimum. Local minimum means that all
the second order derivatives are positive, i.e. that the FP
operator is positive.

Therefore the two approaches share the property that
they limit themselves to the interior of the Gribov horizon.
None of them manages to find the absolute minimum of
that functional, i.e. to stay within the fundamental domain.
There is also a ‘‘thermodynamic’’ argument claiming that
one stays close to Gribov’s horizon which means in a
domain where the eigenvalues of the FP operator should
be small. This also seems to be valid for both approaches.

Now come the differences. The GZ approach gives some
weight to the different Gribov copies within the Gribov
horizon. The lattice algorithms give another one, which,
moreover, presumably depends on the specific features of
each algorithm: it has been argued that stimulated anneal-
ing [16,17] leads to smaller values of the minimized
functional.

On the lattice it is possible in principle to compute the
v.e.v. of the horizon function hhð0Þi. Nothing imposes that
it should be independent on the cutoff and we do not see
any reason why it should verify the horizon gap equation
Eq. (4). This is precisely a place where the differences we
just mentioned could be visible.

In order to discuss this situation let us define a factor
	ð�Þ such that

hhð0Þik¼0 ¼ lim
k!0

1

VD

Z
dDxhhðxÞieik�x ¼ 	ð�ÞðN2 � 1ÞD:

(32)

The value 	ð�Þ ¼ 1 corresponds to Eq. (4). Equation (18)
now reads

uð0;�Þ ¼ Fð0;�Þ � 1

D� 1
�D	ð�Þ

D� 1

wð0;�Þ ¼ �1� uð0;�Þ þ 1

Fð0;�Þ
¼ �Fð0;�Þ þD� 2

D� 1
þ 1

Fð0;�Þ þ
D	ð�Þ
D� 1

(33)

If the gap equation Eq. (4) is relaxed in this way it
becomes possible to have wð0Þ ¼ 0 as shown in [13,26]
in the Landau background gauge and assumed in [1,2]. The
solution becomes

	ð�Þ ¼ Fð0;�Þ
D

þD� 2

D
� D� 1

DFð0;�Þ
uð0;�Þ ¼ 1

Fð0;�Þ � 1:

(34)

implying that 	ð�Þ ! 1 and uð0;�Þ ! �1 when � ! 1
(see Fig. 4). This does not change our major conclusion
that no finite value of Fð0;�Þ independent of � is accept-
able. In particular it happens that uð0;� ! 1Þ converges
to �1, nevertheless Kugo-Ojima’s condition only emerges
at the infinite cutoff limit and thus 0< FRð0; �2Þ<1.
Lattice measurements, which correspond to ��

1–4 GeV, give an estimate of 	ð�Þ which, with u�
ð0:6–0:8Þ and Fð0Þ � 3:5, leads to 	ð�Þ ’ 1:2–1:3.
However this does not tell how 	ð�Þ depends on �.

IV. CONCLUSIONS

We have generalized the solution recently proposed by
Kondo for the zero-momentum ghost dressing function and
the Kugo-Ojima parameter, uð0;�Þ, by deriving Eqs. (18)
where both Kugo-Ojima parameters, uð0;�Þ and wð0;�Þ
appear written in terms of Fð0;�Þ and the horizon func-
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u(0,Λ)
Kondo’s solution
ω(0,Λ)

FIG. 4 (color online). The same plot shown in Fig. 1 but the
gap equation is given here by Eq. (32), the solid blue line being
for the new factor 	ð�Þ in that equation, and wð0;�Þ is required
to be zero, as explained in the text. Again, current lattice
estimates lie inside the green dotted square.
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tion, hhð0;�Þi, at any finite cutoff. In particular, we have
shown that the one relating uð0;�Þ and Fð0;�Þ, after
applying the gap equation, Eq. (4), is close to be verified
by lattice estimates for� ¼ a�1 � 1 GeV, but that this is a
pure coincidence due to the small cutoff in lattice calcu-
lations. We have argued that neither u nor w can be multi-
plicatively renormalized. Indeed, from the anomalous
dimension of the ghost-propagator renormalization con-
stant we conclude that no solution with a cutoff indepen-
dent bare Fð0;�Þ is possible. If the gap equation is valid,
for � ! 1, then uð0;�Þ ! 1 and wð0;�Þ ! �1 such
that uð0;�Þ þ wð0;�Þ ! �1. If one relaxes the gap equa-
tion Eq. (32), one can satisfy wð0;�Þ ¼ 0 with 	ð�Þ ! 1
and uð0;�Þ ! �1. The Kugo-Ojima condition uð0Þ ¼ �1
is asymptotically fulfilled for the bare u while the renor-
malized ghost dressing function is finite and nonzero. We
have argued that lattice QCD, notwithstanding some simi-
larity with the Gribov-Zwanziger approach, has no reason
to fulfill Zwanziger’s horizon gap equation. We have
shown, however, that this fact will not change much about
our conclusions concerning the ghost propagator.

Our major conclusion about the ghost propagator is
obtained from the joint use of lattice data and of a result
stemming from the ghost-propagator Dyson-Schwinger
equation: this result consists in a simple and cutoff inde-
pendent formula for the ghost-propagator dependence at
small momentum. If we choose 1.5 GeV as the renormal-
ization scale, we get from lattice

Fð1:5 GeVÞ � ~Z3 ’ 1:6 whence FRð0; 1:5 GeVÞ ’ 2:2:

(35)

This has of course to be refined particularly regarding

finite-volume effects which should be considered with
more care. The major point in this note, from the point of
view of the renormalizability of the theory, is that lattice
artefacts behave as powers of a (in this case Oða2Þ). Of
course at � ¼ 5:7 lattice spacing is not yet small and this
leads to a significant uncertainty which deserves further
study. Any statement from lattice concerning bare quanti-
ties has to be taken with great caution since the very slow
logarithmic dependence has chances to escape numerical
observation.
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Note added in proof.—After the submission of this

manuscript, a new paper [28] from K-I. Kondo appeared
and dealt with the matter by implementing the horizon
condition in the ghost-propagator DSE in a different way.
The author discussed two different horizon-condition defi-
nitions and also did for both the same sort of analysis we
proposed in this paper. The main source of discrepancy
between his conclusions and ours in this paper comes from
the proposal he made of a solution with a finite ghost
dressing function, Fðk2Þ at the infinite cutoff limit with
uðk2;�Þ þ wðk2;�Þ being divergent.F, u andw being bare
objects computed with bare fields and couplings. But this is
in contradiction with the ghost-propagator DSE written in
Eq. (17) [eq. (2.7] of [28]) because, as was discussed in
Sec. II C, if uðk2;�Þ þ wðk2;�Þ diverges at the infinite
cutoff limit, then Fðk2;� ! 1Þ should vanish for the
ghost-propagator DSE Eq. (17) to be obeyed.
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