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We study scalar glueballs and scalar mesons at T � 0 in the soft wall holographic QCD model. We find

that, using the anti-de Sitter–black-hole metric for all values of the temperature, the masses of the

hadronic states decrease and the widths become broader when T increases, and there are temperatures for

which the states disappear from the scalar glueball and scalar meson spectral functions. However, the

values of the temperatures in correspondence of which such phenomena occur are low, of the order of 40–

60 MeV. A consistent holographic description of in-medium effects on hadron properties should include

the Hawking-Page transition, which separates the phase with the anti-de Sitter metric at small tempera-

tures from the phase with anti-de Sitter–black-hole metric at high temperatures.
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I. INTRODUCTION

Finite temperature effects on hadron properties are cur-
rently investigated in heavy ion collision experiments, such
as the ones at the Relativistic Heavy Ion Collider at
Brookhaven, and will be the subject of analyses at the
CERN Large Hadron Collider [1]. It is presently believed
that the hot and dense medium where the hadrons are
created modifies masses and widths, and that this distortion
can be observed reconstructing the states produced in the
hadron decays. A significant example is represented by
heavy mesons like J=c and the radial and orbital c �c
excitations: it is expected that these mesons have different
behavior when the temperature of the medium varies, with
the lowest lying state (J=c ) surviving in the medium after
the deconfinement transition, up to temperatures T ’
1:5Tc, while the excited states melt at temperatures close
to the deconfinement temperature Tc [2].

The theoretical tools used to describe these phenomena
are lattice QCD, QCD Sum Rules, effective QCD theories,
and models of QCD [3]. Recently, in the framework of the
gauge/string duality approach [4–6], it has been suggested
that a description of a strongly coupled quantum gauge
theory at finite temperature can be obtained from a semi-
classical theory formulated into a higher dimensional anti-
de Sitter (AdS) space-time containing a black hole (BH)
[7]. In order to achieve smoothness and completeness of
the metric, the time direction must also be compact [7]; the
temperature is inversely proportional to the distance zh of
the black-hole horizon to the AdS boundary: T ¼ 1=ð�zhÞ.

Therefore, the smallest is the system, the highest is the
effect of the thermal fluctuations.
Another way to describe finite temperature effects in a

holographic description is to consider a thermal AdS space,
i.e. an anti-de Sitter space with a compact Wick-rotated
time, with no black hole. In this case, as in standard finite
temperature field theory, the temperature is given by the
inverse dimension of the compactified time direction.
In Ref. [7], the gravity dual ofN ¼ 4 super Yang-Mills

theory on S3 � S1, withN ! 1, has been studied, showing
the existence of two phases. A critical temperature was
found at which a first order Hawking-Page (HP) transition
[8] occurs between the thermal AdS and the anti-
de Sitter–black-hole (AdS-BH) geometries, due to an in-
version of the hierarchy of the free energies relative to the
two metrics [9]. The temperature at which this transition
occurs has been identified with the deconfinement tem-
perature of the gauge theory on the boundary [10], which in
this way receives a remarkable geometric interpretation.
A description inspired to gauge/string duality has been

applied to QCD considering, in particular, two holographic
models constructed in the (phenomenological) so-called
bottom-up approach [12]: the hard wall (HW) and the soft
wall (SW) model. In these two models, QCD is the gauge
theory defined on the boundary of a five-dimensional holo-
graphic space. Since gauge/gravity [anti-de Sitter/confor-
mal field theory (AdS/CFT)] correspondence has been
conjectured for a conformal theory defined on the bound-
ary, the generalization of duality to QCD (which is not a
conformal theory) requires a mechanism to break confor-
mal invariance. The HW and SW models differ in the way
this invariance is broken: a sharp cutoff of the holographic
space, up to a maximum value of the fifth coordinate zm, is
imposed in the HWmodel, with zm ¼ Oð��1

QCDÞ [14–18]; a
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background dilatonlike field, vanishing at the AdS bound-
ary and involving a dimensionful scale c ¼ Oð�QCDÞ, is
included in the soft wall model, implementing a smooth
cutoff of the holographic space [19,20]. At T ¼ 0, the two
models allow computation of QCD quantities such as the
spectrum and decay constants of light mesons and glue-
balls, meson form factors and strong couplings, and QCD
condensates; in many cases the agreement with the experi-
ment is noticeable. In those models, the metric is not a
dynamical field; hence, when generalized to the case of
finite temperature, there is no reason to justify the occur-
rence of a Hawking-Page phase transition of the kind
described in [7]. However, the existence of such a transi-
tion has been inferred [21,22]: considering the free ener-
gies of the thermal AdS and AdS-BH configurations, in
both of the models, it was found that the stable metric is
thermal AdS at low temperatures and AdS-BH at high
temperatures. The temperature at which the transition oc-

curs depends on the model: THP ¼ 21=4

�zm
in the case of the

hard wall model, with zm as the position of the hard wall;
THP ¼ 1

�
c

0:647 in the case of the soft wall model, with c as

the dimensionful constant introduced by the background
dilaton field in the model. Using the value for c determined
at zero temperature, in the SW model, the HP temperature

is THP ¼ 1
2�

m�

0:647 ’ 192 MeV, withm� as the mass of the �

meson [21]. Therefore, the Hawking-Page transition tem-
perature THP is close to the QCD deconfinement tempera-
ture obtained, e.g., by lattice QCD simulations. The
presence of the HP transition has been found also in differ-
ent holographic models of QCD [23].

An analysis of vector mesons at T � 0 has been carried
out in the SW model with an AdS-BH metric for all values
of T, and the temperature dependence of vector meson
masses and widths has been investigated [24]. In this
analysis, the scale fixing the physical temperature cJ=c ,

which appears once again in the dilaton field, has been
suitably chosen to obtain the masses of hidden charm
vector mesons (J=c and radial excitations) at T ¼ 0.
Thus, it is assumed that the model describes c �c in a
thermalized medium, and a critical temperature has been
identified, where the lightest charmed vector meson dis-
appears from the two-point spectral function of the re-
tarded two-point Green’s function of the vector operator
J� ¼ �c��c in the boundary theory [24].

Here, we consider an analogous problem: we investigate
the SW model with an AdS-BH metric for all values of T,
thus including the effects of the temperature with no ref-
erence to the HP transition, focusing on the cases of scalar
glueballs and scalar mesons. We show that, in both cases,
the qualitative dependence on the temperature of the had-
ron masses and widths follows general expectations, with
the masses becoming lighter and the widths broader than at
T ¼ 0. However, the physical values of the temperature at
which such phenomena occur are lower than found in
determinations based, e.g., on lattice QCD simulations,

and they occur in the confined phase of QCD, so the use
of an AdS-BH metric for all values of temperature is
inappropriate. In order to describe QCD at finite T by
this model, the Hawking-Page transition must be taken
into account, using the thermal AdS metric for T < THP

and the AdS-BH metric for T > THP. We consider this
case, finding a simple behavior of the hadron masses and
widths versus T, different from the behavior found using
AdS-BH for all T.
The plan of the paper is the following. In Sec. II, we

consider the sector of scalar glueballs at T � 0, with the
AdS-BH metric in the soft wall model. We discuss the
temperature dependence of the mass and width, finding the
values of the temperatures where the states dissolve in the
equilibrated medium. In Sec. III, we find the same features
in the sector of light scalar mesons described in the SW
AdS-BH model, finding that the scalar meson spectral
function does not reveal resonances already at low tem-
peratures. In Sec. IV, we discuss the model including the
Hawking-Page transition: now the spectral functions do not
display peaks at T � THP, therefore hadronic states do not
survive the deconfinement transition. In the Appendix, we
discuss the scalar glueball in the hard wall model at T � 0.

II. SCALAR GLUEBALL AT T � 0: SOFT WALL
MODELWITH ADS-BH METRIC

We start our discussion ignoring the issue of the stability
of the metric in different ranges of the temperature, and we
consider the case of a dual QCD model described, for all
values of T, by an anti-de Sitter–black-hole metric, defined
by the metric tensor

gMN ¼
�
R

z

�
2
diagðfðzÞ;�1;�1;�1;�1=fðzÞÞ (1)

(M, N ¼ 0, 1, 2, 3, 5), where R is the AdS radius, and

fðzÞ ¼ 1�
�
z

zh

�
4
: (2)

zh is the position of the black-hole horizon along the
holographic axis z and is related to the Hawking tempera-
ture T: T ¼ 1=ð�zhÞ. The fifth coordinate z varies in the
range 0< z < zh. In the five-dimensional (5D) space, we
define a field Xðx; zÞ dual to the QCD operator OG ¼
�ð�sÞGa

��G
��a (a is color index) with JPC ¼ 0þþ and

conformal dimension � ¼ 4; �ð�sÞ is the Callan-
Symanzik function. This operator is defined in the field
theory living on the four-dimensional boundary. According
to the AdS/CFT correspondence, the conformal dimension
of a (p-form) operator on the boundary is related to the
AdS massm5 of the dual field in the bulk by the relation [5]

m2
5R

2 ¼ ð�� pÞð�þ p� 4Þ: (3)

Following the AdS/QCD correspondence dictionary, the
dual Xðx; zÞ of the scalar (p ¼ 0) field OG is massless:
m2

5 ¼ 0 [25]. It can be described, in the soft wall model, by
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the 5D action SG:

SG ¼ 1

2k

Z
d4xdze��ðzÞ ffiffiffi

g
p

gMNð@MXðx; zÞÞð@NXðx; zÞÞ;
(4)

where k is a parameter rendering SG dimensionless, and g
is the determinant of the metric tensor.

The field � in Eq. (4) characterizes the holographic
model: it represents a background dilaton field depending
on the coordinate z only and vanishing at the AdS bound-
ary z ¼ 0. It introduces a dimensionful parameter c pro-
ducing a breaking of conformal invariance. In the model
proposed in [19], � is given by the expression

�ðzÞ ¼ ðczÞ2 (5)

and allows us to obtain, at T ¼ 0, linear Regge trajectories
for vector and axial-vector mesons [19], scalar glueballs
[25], and light scalar mesons [26]. The parameter c fixes
the hadronic scale; at T ¼ 0, it can be determined from the
spectrum of the vector mesons, in particular, from the �
mass and is given by [19]

c � c� ¼ m�

2
¼ 390 MeV; (6)

since the relation found for the masses of the vector mesons
is m2 ¼ 4ðnþ 1Þc2, with n ¼ 0; 1; � � � . We keep the value
(6) in the discussion below.

In order to determine the T dependence of the mass
spectrum associated to the operator OG, we follow the
method used in [24] and consider the equation of motion
for the field X obtained from (4)

e��ðzÞ ffiffiffi
g

p
g��@�@�Xðx; zÞ þ @zðe��ðzÞ ffiffiffi

g
p

gzz@zXðx; zÞÞ ¼ 0

(7)

(�, � ¼ 0, 1, 2, 3). According to the AdS/CFT dictionary,
field/operator duality implies that the function X0ðxÞ is
associated to the field Xðx; zÞ in the AdS space, such that
X0ðxÞ acts, in the generating functional of the boundary
theory, as the source of the four-dimensional (gauge in-
variant) local operator OGðxÞ dual to X. This implies the
definition of the bulk-to-boundary propagator K relating
the field Xðx; zÞ on the bulk to its value on the boundary
X0ðx0Þ:

Xðx; zÞ ¼
Z

d4x0Kðx; z; x0; 0ÞX0ðx0Þ (8)

with the condition Kðx; z; x0; 0Þ!z!0	
4ðx� x0Þ. In the mo-

mentum space, the relation involving the bulk-to-boundary
propagator ~K, the field ~X, and the source ~X0 is

~Xðq; zÞ ¼ ~Kðq; zÞ ~X0ðqÞ (9)

with ~Kðq; 0Þ ¼ 1.
From Eqs. (7) and (9), one finds that ~Kðq; zÞ satisfies the

equation

~K00ðq; zÞ � 4� fðzÞ þ 2c2z2fðzÞ
zfðzÞ

~K0ðq; zÞ

þ
�

q20
fðzÞ2 �

�q2

fðzÞ
�
~Kðq; zÞ ¼ 0; (10)

where q ¼ ðq0; �qÞ and the primes denote derivatives with
respect to the holographic variable z. This equation must be
solved for different values of q0 and ~q, and we first con-
sider the case of vanishing three-momentum ~q ¼ 0.
Putting ! ¼ q0, Eq. (10) can be written in terms of the
dimensionless variable u ¼ z=zh:

~K00ð!2; uÞ � 3þ u4 þ 2c2z2hu
2ð1� u4Þ

uð1� u4Þ
~K0ð!2; uÞ

þ !2z2h
ð1� u4Þ2

~Kð!2; uÞ ¼ 0 (11)

with the primes now denoting derivatives with respect to u.
Let us specify the boundary conditions for (11). The

solution for u ! 0 reads

~Kð!2; uÞ !
u!0

Að!2Þ
�
1þ!2z2h

4
u2 þ � � �

�

þ Bð!2Þ
�
c4z4h
2

u4 þ � � �
�
; (12)

so the condition ~Kð!2; 0Þ ¼ 1 fixes the coefficient A:
Að!2Þ ¼ 1. For the second boundary condition, we look
at the solutions of (11) near the horizon u ¼ 1:

~K �ð!2; uÞ ¼ ð1� uÞ�ði
ffiffiffiffiffiffiffiffi
!2z2

h

p
=4Þ: (13)

As discussed in [27], the choice of the boundary condition
at the horizon selects the Green function obtained using the
AdS/CFT procedure in the Minkowskian space-time. We
impose, as a boundary condition, the matching of ~K with
the in falling solution of (11) near the black-hole horizon:

~K !
u!1

~K�ð!2; uÞ � ð1� uÞ�ði
ffiffiffiffiffiffiffiffi
!2z2

h

p
=4Þ; (14)

so the matching of the boundary conditions of ~K for u ! 0
and u ! 1 fixes the coefficient function Bð!2Þ, which can
be determined numerically [28].
To get the glueball masses, we consider the relation

allowing us to compute, within the AdS/CFT correspon-
dence, correlation functions in the gauge theory defined on
the boundary of the AdS space starting from the effective
action in the 5D bulk theory [5,6] extended to the
Minkowskian space-time:

hei
R

d4xX0ðxÞOGðxÞiCFT ¼ eiS5D½Xðx;zÞ�: (15)

In our case, S5D½Xðx; zÞ� is the action (4) of the bulk field
Xðx; zÞ dual to OGðxÞ, with X0ðxÞ as a source term. As
discussed in [27], in case of Minkowskian correlators, the
retarded two-point Green’s function �R

G can be derived by

differentiating the right-hand side of Eq. (15) with respect
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to the source and by imposing the boundary conditions
discussed above. In terms of the bulk-to-boundary propa-
gator ~K, �R

G reads:

�R
Gð!2Þ ¼ 1

2k

R3fðuÞ
u3z4h

e��ðuÞ ~Kð!2; uÞ@u ~Kð!2; uÞju¼0:

(16)

Substituting Eq. (12) into Eq. (16), we determine the
spectral function, the imaginary part of �Rð!2Þ, which is
proportional to the imaginary part of the coefficient Bð!2Þ.
The resulting spectral function (modulo a numerical factor)
is depicted in Fig. 1 for several values of the physical
temperature obtained from the position zh of the BH hori-
zon, using the value of c in the dilaton background field
fixed in (6).

For each value of the temperature, the spectral function
in Fig. 1 displays various peaks, which become broader as

T increases. We identify the position of each peak with the
mass of scalar glueballs, in particular, the lowest lying state
and the first excitation. At small values of T, T < 20 MeV,
and the results in [25] for the mass spectrum are recovered:
m2

G ¼ ð4nþ 8Þc2, i.e. m2
G ¼ 1:217 GeV2 and m2

G ¼
1:825 GeV2 for the first two states. By increasing the
temperature T, the position of the peaks is shifted toward
smaller values, and the widths become broader. Both of
these quantities can be determined by fitting the spectral
function with a Breit-Wigner form [24]:

�ð!2Þ ¼ am�!b

ð!2 �m2Þ2 þm2�2
(17)

with parameters a and b. The results of m2 and � from the
fit are shown in Fig. 2(a) for the ground state and for the
first excited state. At temperatures below T � 20 MeV
(T � 17 MeV for the excited state), the horizon of the
black hole is far enough and the eigenfunctions vanish
before reaching it, so in this range of temperatures, it is
possible to determine glueball masses as the eigenvalues of
the equation

�H00ðm2; uÞ þ
�
15

4u2
þ 2c2z2h þ c4z4hu

2

�
Hðm2; uÞ

¼ m2z2hHðm2; uÞ (18)

coming from a Bogoliubov transformation of Eq. (11) as at
T ¼ 0 [25]. In the range T ¼ 20–22 MeV, the results
obtained solving the eigenvalue problem and fitting the
spectral function coincide.
At T ¼ 25–30 MeV, the squared glueball mass is re-

duced to about 80% of its value at T ¼ 0; the second peak
disappears at T � 29 MeV, while the peak corresponding
to the lowest lying state persists until T � 45 MeV. Let us
discuss in more detail the structure corresponding to the
lightest scalar glueball. At T ¼ 28 MeV, the width of the
first peak in the spectral function becomes sizeable, i.e.

0.8 1.0 1.2 1.4 1.6 1.8 2.0
0
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Im
B

T 44 MeV
T 29 MeV
T 25 MeV
T 21 MeV

FIG. 1 (color online). Imaginary part of the coefficient Bð!2Þ,
proportional to the spectral function Im�R

Gð!2Þ of Eq. (16), at
different temperatures T, in the case of the scalar glueball and
using the AdS-BH metric.
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FIG. 2 (color online). Squared mass (left) and width (right) of the lightest glueball state (continuous lines) and of the first excited
state (dashed lines) as a function of the temperature T (MeV) in the SW model with AdS-BH metric. Each curve ends at the
temperature where the corresponding peak disappears from the spectral function.
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larger than 1% of the corresponding mass. We fit the
spectral function by a Breit-Wigner term plus a function,
which we interpret as representing a continuum, of the
simple form PðxÞ ¼ aþ bxþ cxd, with 1< d< 2 and
x ¼ !2. We define a melting temperature as the one at
which the height of the Breit-Wigner peak obtained after
subtracting the continuum contribution from the spectral
function is less than 0.05 times the value at T ¼ 28 MeV.
In this way, we find the temperature T 	 45 MeV. The
result of subtracting the continuum is depicted in Fig. 3,
which shows the broadening and the shift of the mass of the
resonance. Near the melting temperature, we also observe
a slight rising of the mass, analogously to what found in
Ref. [24]. Using the same criterion, the melting tempera-
ture of the first excited state is T 	 29 MeV.

The behavior of the width of the first two peaks with
respect to T is shown in Fig. 2. It is qualitatively analogous
to the behavior of the scalar glueball mass and width
observed in lattice studies [29]; however, the temperature
scale is very different.

In [24], in the vector meson channel, a range of tem-
peratures was found where �m2 [with �m ¼
mðT ¼ 0Þ �mðTÞ] is linearly related to the width �ðTÞ;
in the case of the lowest lying scalar glueball, we find an
approximately linear dependence of �m2 on �ðTÞ in the
range T ¼ 20–45 MeV, as depicted Fig. 4. Such a relation
could represent a benchmark for other approaches to finite
T QCD.

For nonvanishing values of the three-momentum, �q � 0,
the results are similar. The spectral function can be ob-
tained from Eq. (10), imposing the same boundary con-
ditions as for ~q ¼ 0. As depicted in Fig. 5 at T ¼ 30 MeV
and for values of �q2 in the range �q2 ¼ 0� 0:8 GeV2, by
increasing �q2, the peaks of the spectral function are shifted
towards higher values of q20 and become broader. The

difference q20 � �q2 is not constant, as Lorentz invariance

is violated in the finite temperature theory. The same effect,

shown in Fig. 5, was found in the case of vector mesons
[24].
The qualitative behavior of the mass and width of scalar

glueballs in the soft wall model with an AdS-BH metric is
similar to the one found in [24] for vector mesons: by
increasing T continuously from T ¼ 0, the mass of the
various states is shifted to lower values while the width
increases, and at some critical value of T, the peaks dis-
appear from the spectral function. The broadening of the
states and their disappearance can inspire the picture of
their melting in the thermalized medium. Moreover, the
temperature at which, e.g., the first excitation disappears
from the spectral function (dissolves) is lower than the
temperature at which the lowest lying state disappears,
thus suggesting that lightest resonances persist in the me-
dium at higher temperatures also in the case of glueballs.
However, the physical temperatures at which such phe-

nomena occur are low (30–40 MeV), as the scale is deter-
mined by the dimensionful constant c in the background
dilaton field (5) and fixed at T ¼ 0 to (6). Such low

0.00 0.05 0.10 0.15 0.20
0.000

0.002

0.004

0.006

0.008

GeV

m
2

G
eV

2

FIG. 4 (color online). Difference �m2ðTÞ ¼ ðmðT ¼
0Þ �mðTÞÞ2 (GeV2) versus the width �ðTÞ (GeV) varying the
temperature T in the range T ¼ 20–45 MeV, in the case of the
lightest scalar glueball.
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FIG. 5 (color online). Imaginary part of the coefficient
Bðq20; ~q2Þ, proportional to the spectral function Im�R

Gðq20; ~q2Þ,
for the scalar glueball at T ¼ 30 MeV, for different values of the
three-momentum squared �q2 in the range �q2 ¼ 0–0:8 GeV2, in
the SW model with AdS-BH metric.
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FIG. 3 (color online). Lowest lying resonance in Fig. 1, after
subtracting from the spectral function a term representing a
continuum; several temperatures are considered.
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temperatures are inconsistent with those found, e.g., in
lattice calculations of the glueball masses, in which a
decrease of about 20% is observed for the mass of the
lightest scalar glueball in the range of temperatures
0:81Tc < T < Tc, with Tc ’ 260 MeV [29]. In the case
of vector mesons, in [24], a further assumption was
adopted: the scale fixing the temperature in this sector,
called cJ=c , is different from the scale c ¼ c� fixed from

the � vector meson spectrum, considering mesons of c �c
type in the holographic approach. The resulting melting
temperature of vectors can be compared to the deconfine-
ment temperature in QCD: since the ratio of the masses of
� and J=c is recovered for cJ=c ’ 4c�, a value cJ=c ’
1:56 GeV produces values of the J=c dissociation tem-
perature of about 230 MeV [24].

In the case of glueballs, however, it is unclear how an
analogous assumption could be adopted. There are no other
scales in terms of which the physical temperature can be
expressed, and the only possibility is c ¼ c�. Hence, the

low physical dissociation temperatures inferred from
Figs. 1–5 is not avoidable.

The problem finds a solution if one considers the stabil-
ity of the metric, i.e. the fact that at a low temperature, the
stable metric is thermal AdS, not AdS-BH. However,
before considering this issue, let us analyze another sector
of QCD, the light scalar mesons.

III. SCALAR MESONS AT T � 0: SOFT WALL
MODELWITH ADS-BH METRIC

The analysis of the scalar meson sector at T � 0 in the
AdS-BH soft wall model produces results analogous to the
case of scalar glueballs. We generalize the 5D action
studied in [19] and also considered in [24]:

Seff ¼ 1

k0
Z

d4xdze��ðzÞ ffiffiffi
g

p
Tr

�
�
jDYj2 �m2

5Y
2 � 1

4g25
ðF2

L þ F2
RÞ
�
; (19)

which includes fields dual to QCD operators defined at the
boundary z ¼ 0. There is a scalar bulk field Y of mass m2

5,

written as

Y ¼ ðY0 þ SÞe2i� (20)

in terms of a background field Y0ðzÞ, of the scalar field
Sðx; zÞ, and of the chiral field �ðx; zÞ. Y0 is dual to h �qqi (q
are light quarks) and represents the term responsible for the
chiral symmetry breaking [15,16,19]. The scalar bulk field
S includes singlet S1ðx; zÞ and octet Sa8ðx; zÞ components,

gathered into the multiplet

S ¼ SATA ¼ S1T
0 þ Sa8T

a; (21)

with T0 ¼ 1=
ffiffiffiffiffiffiffiffi
2nF

p ¼ 1=
ffiffiffi
6

p
and Ta as the generators of

SUð3ÞF [with normalization TrðTATBÞ ¼ 	AB

2 , where A ¼
0, a, and a ¼ 1; . . . ; 8]. SA is dual to the QCD operator

OA
S ðxÞ ¼ �qðxÞTAqðxÞ, therefore m2

5R
2 ¼ �3 from Eq. (3).

The action (19) also involves the fields Aa
L;Rðx; zÞ intro-

duced to gauge the chiral symmetry in the 5D space; they
are dual to the QCD operators �qL;R��T

aqL;R (defining

qL;R ¼ 1��5

2 q), with field strengths

FMN
L;R ¼ FMNa

L;R Ta ¼ @MAN
L;R � @NAM

L;R � i½AM
L;R; A

N
L;R�:
(22)

The gauge fields enter into the covariant derivative:
DMY ¼ @MY � iAM

L Y þ iYAM
R . Writing AL;R in terms of

vector V and axial-vector A fields, VM ¼ 1
2 ðAM

L þ AM
R Þ and

AM ¼ 1
2 ðAM

L � AM
R Þ, the action (19) can be written as

Seff ¼ 1

k0
Z

d4xdze��ðzÞ ffiffiffi
g

p
Tr

�
�
jDYj2 �m2

5Y
2 � 1

2g25
ðF2

V þ F2
AÞ
�

(23)

with

FMN
V ¼ @MVN � @NVM � i½VM; VN� � i½AM; AN�;

FMN
A ¼ @MAN � @NAM � i½VM; AN� � i½AM; VN�; (24)

and DMY ¼ @MY � i½VM; Y� � ifAM; Yg.
The quadratic part in the field SA of this 5D action

Sð2ÞS ¼ 1

2k0
Z

d4xdze��ðzÞ ffiffiffi
g

p ðgMN@MS
Aðx; zÞ@NSAðx; zÞ

�m2
5S

Aðx; zÞSAðx; zÞÞ (25)

has been studied at T ¼ 0 [26] and can be used to analyze
the thermal dependence of the mass of the scalar mesons.
The dilaton field is given in (5), and the AdS-BH metric is
used for all temperatures.
Also in this case, we define the bulk-to-boundary propa-

gator ~Sðq; zÞ, which satisfies the equation of motion

~S00ðq; zÞ �
2c2z2fðzÞ þ 3þ z4

z4
h

zfðzÞ
~S0ðq; zÞ þ 3

z2fðzÞ
~Sðq; zÞ

þ
�

q20
fðzÞ2 �

�q2

fðzÞ
�
~Sðq; zÞ ¼ 0 (26)

with q ¼ ðq0; �qÞ.
For ~q ¼ 0, this equation, written in terms of the variable

u ¼ z
zh
, becomes

~S00ðq20; uÞ �
2c2z2hu

2ð1� u4Þ þ 3þ u4

uð1� u4Þ
~S0ðq20; uÞ

þ 3

u2ð1� u4Þ
~Sðq20; uÞ þ

q20z
2
h

ð1� u4Þ2
~Sðq20; uÞ ¼ 0

(27)

with the primes denoting again the derivative with respect
to u. At the horizon u ! 1, the independent solutions of
(27) are the same functions as in Eq. (13):
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~S�ð!2; uÞ ¼ ð1� uÞ�i
ffiffiffiffiffiffiffiffi
!2z2

h

p
=4; (28)

so we can choose the in falling solution as a boundary
condition at the horizon, as in (14). For u ! 0, Eq. (27)
admits two independent solutions:

~S 1ð!2; uÞ ¼ uU

�
2c2 �!2

4c2
; 0; c2z2hu

2

�
;

~S2ð!2; uÞ ¼ uL

�
� 2c2 �!2

4c2
;�1; c2z2hu

2

�
;

(29)

whereU is the Tricomi confluent hypergeometric function,
and L is the generalized Laguerre function. The boundary

condition at u ! 0, ~SðuÞ � u [26], allows us to write the
solution

~Sð!2; uÞ ¼ ~S1ð!2; uÞ þ ~Bð!2Þ~S2ð!2; uÞ (30)

with ~B, a function of !2 ¼ q20, numerically determined as

in the case of the scalar glueball.
The retarded two-point Green’s function of the operator

OA
S ðxÞ can be obtained in terms of ~S, and the spectral

function Im�R
S ð!2Þ is proportional to the imaginary part

of ~Bð!2Þ. This spectral function (modulo a numerical
overall factor) is depicted in Fig. 6 for several values of
the temperature.
As in the case of scalar glueballs, the spectral function

displays peaks becoming broader when the temperature
increases. For low T, the positions of the peaks correspond
to the spectral conditionm2

S ¼ ð4nþ 6Þc2 obtained in [26],
i.e.m2

S ¼ 0:913 GeV2 andm2
S ¼ 1:521 GeV2 for the light-

est states. By increasing T, the masses are shifted toward
smaller values, and the widths become broader, as shown in
Figs. 7(a) and 7(b) for the first two states. At particular
values of the temperature, the peaks disappear from the
spectral function. At odds with the case of the scalar
glueball, the temperature dependence of the mass of the
lowest lying state is milder, while the dependence on T of
the width is visible from T ’ 30 MeV, with an abrupt
increase with the temperature. For the first excitation, the
width starts increasing at T ’ 25 MeV, and for T >
35 MeV, the peak disappears from the spectral function.
The discussion of these results follows that presented in

the previous section. The qualitative dependence of masses
and widths versus the temperature T agrees with general
expectations, since the particle masses decrease and the
widths increase with the temperature. At particular values
of T, the peaks disappear from the spectral function (melt);
the lightest state survives after the dissolution of the ex-
cited states, a behavior which seems universal in all sectors
considered so far. However, also in this case, such phe-
nomena occur at a low temperature (T ’ 40–60 MeV),
unless one once again invokes the presence of a different
scale (cscalar � c�) to fix the physical temperatures.

Without such an assumption, scalar meson dissociation
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FIG. 6 (color online). Imaginary part of the coefficient ~Bð!2Þ,
proportional to the spectral function Im�R

S ð!2Þ, for several

temperatures in the case of scalar mesons, using the AdS-BH
metric.
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FIG. 7 (color online). Squared mass (left) and width (right) of the lightest scalar meson (continuous lines) and of the first excited
state (dashed lines) as a function of the temperature T (MeV) in the SW model with AdS-BH metric. Each curve ends at the
temperature where the corresponding peak disappears from the spectral function.
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occurs in the QCD confined phase, far from the deconfine-
ment transition.

IV. MODELS WITH THE HAWKING-PAGE
TRANSITION

According to the analysis of the minimum of the free
energy, in the soft wall model, the AdS-BH metric is stable
only at high temperatures, T * 192 MeV [21]. At low
temperatures, the stable metric is thermal AdS, and the
first order Hawking-Page transition to the AdS-BH metric
is associated to the deconfinement transition in QCD
[7,21]. Following these hints, the temperature dependence
of hadron properties, such as the mass, must be evaluated,
at a low temperature, using thermal AdS metric, while for
T * THP, one should use the holographic model based on
the AdS-BH metric described in Secs. II and III.

In the case of thermal AdS metric, the equations of
motion are the same as at T ¼ 0. From the calculation of
the two-point Green’s functions and of their spectral func-
tions at T � 0, one obtains the same masses as at T ¼ 0.
Therefore, for temperature T up to THP, the scalar glueball
and scalar meson mass are given by the spectral formulae
derived in [25,26].

On the other hand, for T > THP, the results in Secs. II
and III show that in both the scalar glueball and scalar
meson sectors, no peaks appear in the spectral functions;:
dissociation has already occurred at these temperatures. At
T ¼ THP, when the black hole appears in the metric, the
masses jump from m2 � 0 to m2 ¼ 0; dissociation occurs
together with deconfinement, as it could be expected in a
discontinuous transition. This is shown in Fig. 8. As ob-
served in [21], the temperature independence of the mass
spectrum below Tc is consistent with large Nc expectations
and is supported by chiral perturbation theory analyses
[30].

The same conclusion holds for the vector mesons con-
sidered in [24]: the temperature dependence of the vector

meson mass and the broadening of the width in a meta-
stable phase, such as AdS-BH at T < THP, are different
than in the stable phase, and a model aimed at describing
QCD should take the difference into account. However, in
modifications of the soft wall model as proposed, e.g., in
[31], the possibility of the persistence of some hadron
resonances above Tc is not excluded, and needs to be
investigated by a dedicated study.

V. CONCLUSIONS

Without considering the existence of the HP critical
point, the SWmodel is able to reproduce only qualitatively
some commonly expected features of finite temperature
QCD, like in-medium mass shifts and width broadening,
but at temperatures different from those found by lattice
QCD simulations. Using the AdS-BH for all values of T
would imply that scalar glueballs and scalar mesons dis-
appear from the spectral functions (melt) at temperatures
of about 40–60 MeV. On the other hand, in a holographic
description based on SW with thermal AdS geometry
below the Hawking-Page transition temperature, and
AdS-BH geometry above this temperature, the hadronic
states are found to persist in the confined phase and melt at
deconfinement. This suggests that a more refined dual
model of finite temperature QCD could be found modify-
ing the background dilaton, so the qualitative behavior is
preserved while the temperature scale is enlarged.

ACKNOWLEDGMENTS

P. C. thanks T. N. Pham and C. Roiesnel for discussions
and for warm hospitality at the Centre de Physique
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APPENDIX: SCALARGLUEBALL AT T � 0 IN THE
HARD WALL MODEL

It is interesting to consider scalar glueballs at finite T in
the hard wall holographic model of QCD. In this model, an
AdS slice is used, up to a maximum value of z, zm, and
there is no dilatonlike background field. Therefore, it is
sufficient to put c ¼ 0 in the equations obtained in Sec. II,
imposing suitable boundary conditions. Using the AdS-BH
metric for all values of T, as done in an analysis of the
static potential in QCD [32], two cases are possible. In the
first one, the black-hole horizon is located beyond the IR
cutoff zm: zm < zh; in the second one zh < zm. In the first
case, regardless of position of the horizon, the eigenfunc-
tions can be obtained by solving the equation of motion
with boundary conditions:

Xðm2; 0Þ ¼ 0; X0ðm2; zmÞ ¼ 0;

hence determining the mass squared of the scalar glueballs.
When zm > zh, the horizon position zh becomes the only

mass scale, and the equation of motion reads

~K00ðm2
h; uÞ �

3þ u4

uð1� u4Þ
~K0ðm2

h; uÞ

þ m2
h

ð1� u4Þ2
~Kðm2

h; uÞ ¼ 0; 0< u< 1;

(A1)

where mh ¼ mzh. The masses can be obtained, imposing
that the solution of (A1) is the in falling solution into the
black hole at u ! 1 and considering the spectral function
of the retarded Green’s function. Once having obtainedm2

h,

the glueball mass is given by m2 ¼ m2
h�

2T2, hence non-

vanishing values of m linearly increase with the tempera-
ture T. However, the spectral function depicted in Fig. 9
has only one peak at m2

h ¼ 0; therefore, when zh < zm [or

T > 1=ð�zhÞ] the only value found for the scalar glueball
mass ism2 ¼ 0. The resulting plot of the squared masses at
various temperatures T is shown in Fig. 10: dissociation
occurs when zm ¼ zh. This corresponds to T ’ 103 MeV,
using the value of zm fixed from the mass of the �meson in
the HW model: zm ¼ 1

323 MeV�1 [15]. Analogous results

hold for mesons in HW at T � 0 [33].

Imposing the presence of the Hawking-Page transition,

which occurs at THP ¼ 21=4=ð�zmÞ � 122 MeV, i.e. for
zh < zm, the masses do not vary up to the critical tempera-
ture THP, at which they jump to m2 ¼ 0.
After completing this work, we noticed the preprint [34],

where an analysis of glueballs at finite temperature similar
to the one here has been carried out.
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