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The imbalance of dijets produced in hadronic collisions has been used to extract the average transverse

momentum of partons inside the hadrons. In this paper we discuss new contributions to the dijet imbalance

that could complicate or even hamper this extraction. They are due to polarization of initial state partons

inside unpolarized hadrons that can arise in the presence of nonzero parton transverse momentum.

Transversely polarized quarks and linearly polarized gluons produce specific azimuthal dependences of

the two jets that in principle are not suppressed. Their effects cannot be isolated just by looking at the

angular deviation from the back-to-back situation; rather they enter jet broadening observables. In this

way they directly affect the extraction of the average transverse momentum of unpolarized partons that is

thought to be extracted. We discuss appropriately weighted cross sections to isolate the additional

contributions.
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I. INTRODUCTION

Event shape observables have been widely studied for
various reasons. In eþe� annihilation, observables such as
the thrust and jet broadening have been studied primarily to
extract �sðMzÞ (cf. for instance Refs. [1–6] for theoretical
studies and Refs. [7–15] for experimental studies). In the
center-of-mass system (cms) of the eþe� collisions at
lowest order in �s, the produced quark-antiquark pair is
exactly back-to-back leading for two-jet events to a thrust
T equal to unity. Gluon radiation, i.e. order �s corrections,
gives rise to nonzero 1� T and also to nonzero jet broad-
ening. In the perturbative regime these observables can be
used to extract �s, which has been done recently at next-to-
next-to-leading order [16–18]. The results compare very
well with those obtained by other means of extraction. In
the nonperturbative regime, hadronization will also lead to
nonzero event or jet shapes. This is characterized by a
mean transverse momentum hk?i, leading in general to a
contribution suppressed by a power of the large scale, the
cms energy Q. For example, in the nonperturbative regime
1� T / hk?i=Q. It has been suggested that this contains
universal information on �s in the infrared regime. We
refer to Ref. [19] for a review on this topic.

Event and jet shapes have also been studied in hadronic
collisions. Compared to eþe� annihilation, here the addi-
tional complication of initial parton transverse momenta
arises. Another difference is that instead of the thrust axis,
it is common to use the transverse thrust axis nt, which is
the axis in the transverse plane having maximum trans-
verse energy flow. The corresponding transverse thrust is

defined as [20]

Tt ¼ max
Xn
i¼1

jpi
T � ntj
ET

; (1)

where pi
T is the transverse momentum of the outgoing

hadron i, ET ¼ P
ijpi

Tj is the total transverse energy (ne-
glecting masses), and the transverse thrust axis is the
transverse unit vector nt that maximizes Tt. Here we use
the notation of Ref. [20], where also the jet broadening
variable Qt is defined as

Qt ¼
Xn
i¼1

jpi
T � ntj: (2)

An experimental investigation of the average Qt as a
function of ET in p �p collisions has been reported in
Ref. [21]. Higher order perturbative corrections to the
transverse thrust and jet broadening are discussed in e.g.
Refs. [22,23].
Assuming collinear factorization and ignoring broaden-

ing from hadronization, Qt will be zero for 2 ! 2 partonic
subprocesses and only sensitive to 2 ! 3 processes, like
for eþe� annihilation except that there are more subpro-
cesses to consider in hadronic collisions. Extraction of �s

in hadronic collisions [24,25] is however complicated due
to the presence of parton transverse momenta and the
transverse momentum distribution of hadrons inside the
jet. The former effect one can minimize by considering
events with at least three pronounced jets, which means
considering only large values of Qt, whereas the latter
effect could be minimized by considering Qt for jets,
instead of hadrons. In fact, the quantity Qt for two-jet
events, where i now denotes the ith jet and n ¼ 2, has
been used to study and extract the average parton trans-
verse momentum. This has been done for instance in
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Refs. [26–35]. As can be seen from those results, the
average parton transverse momentum extracted from the
data increases with energy (

ffiffiffi
s

p
) and is in general much too

large to be attributable to ‘‘intrinsic’’ transverse momen-
tum. This is a consequence of soft parton radiation, similar
to what happens for the transverse momentum distribution
of vector boson production in hadronic processes [36–39]
(see also the instructive discussion in Ref. [40]).
Resummation of soft radiation effectively broadens the
transverse momentum dependence of the parton distribu-
tions, increasingly so with increasing center-of-mass
energy.

In this paper we point out that besides initial parton
transverse momentum and soft parton radiation, there are
additional contributions toQt, even for the simplest two-jet
case. These are contributions due to the transverse polar-
ization of quarks and the linear polarization of gluons
inside the initial unpolarized hadrons. These contributions
can arise for nonzero initial parton transverse momentum.
We will show how these effects contribute to Qt and
discuss that besides complicating the extraction of the
average parton transverse momentum from Qt, they may
even hamper that extraction altogether depending on their
magnitude.

In Ref. [20] collinear factorization was assumed, making
the observable hQti only sensitive to 2 ! 3 subprocesses.
In reality collinear factorization is not always applicable,
due to the partonic transverse momentum effects. In a
simple picture of a Gaussian distribution of intrinsic parton
momentum pt, the average value hpti can be extracted
from hQti, but in fact, no factorization theorem has been
established for two-jet or two-hadron production in pp or
p �p collisions for observables that are sensitive to parton
transverse momenta. To make matters worse, in the frame-
work of transverse momentum dependent parton distribu-
tion functions, nowadays commonly referred to as TMDs,
it even seems that factorization cannot be established for
this particular type of process when taking into account
nontrivial effects of gauge links [41–45]. This would cast
doubt on any conclusion drawn from hQti in hadronic
collisions, except for largeQt where collinear factorization
can be applied. But even if factorization will work out in
some as yet unknown way, the additional contributions
from spin-dependent TMDs may complicate matters con-
siderably. Schematically this can be seen as follows.

Consider the process h1h2 ! j1j2X, where ji stands for
produced jet i. In the plane transverse to the collision axis,
�� denotes the deviation of the (azimuthal) angle between
the two jets from �, i.e. �� ¼ �j1 ��j2 � �. It is some-

times referred to as the dijet imbalance. Let us consider
only 2 ! 2 subprocesses. In collinear factorization the ��
dependence of the cross section will then only receive a
contribution at �� ¼ 0. Allowing for parton transverse
momentum in the initial hadrons leads to a smearing of
the �� distribution. For the idealized case of equal jet

transverse momenta (both equal to ET=2) the differential
cross section takes the form

d�

dETd��
¼ AðQ2

t Þ þ BðQ2
t ÞQ2

t þ CðQ2
t ÞQ4

t ; (3)

where Qt ¼ ETj sinð��=2Þj is equal to the absolute value
of the transverse momentum of the two-jet system. A, B, C
are functions ofQ2

t , which do not need to vanish atQ
2
t ¼ 0.

The terms B and C appear from spin effects inside the
initial hadrons hi, for which expressions will be presented
in this paper. In general these spin-dependent contributions
are not suppressed by powers of 1=ET , also not when
arising from polarized gluons as claimed in Ref. [46]. A
result for B has recently been obtained in [46] following a
calculation similar to the one for p �p ! �jX presented in

[47]. This contribution arises from the quark TMD h?q
1

[48], which represents the distribution of transversely po-
larized quarks inside an unpolarized hadron. The new

result in this paper is the contribution from h?g
1 [49], the

distribution of linearly polarized gluons inside an unpolar-
ized hadron, which gives rise to C. Upon ignoring these
spin effects, only the term A remains, and the average Qt

value in that case will indeed be directly related to the
average transverse momentum that is thought to be ex-
tracted in Refs. [26–35]. Our results in principle cast doubt
on whether the actual value of hk2t i has been extracted in
those cases. In practice, it all depends on the magnitude of
B and C. We will present a simple Gaussian model to
illustrate the generic shape of the modification of the dijet
imbalance distribution by B and C terms.
The paper is organized as follows. First we will present

the calculation and expressions for the cross section in
Eq. (3), assuming factorization in terms of transverse
momentum dependent correlators and ignoring the pos-
sible effects from gauge links. We will actually discuss
the more general case in which the two-jet transverse
momenta are not equal, but differ by a small amount
with respect to ET . In that case the angular dependence is
more involved than given in Eq. (3), even upon expansion
in the small transverse momentum difference of the two
jets with respect to their sum.Wewill first express the cross
section in terms of the individual jet momenta through their
sum and difference [Sec. II, in particular, Eq. (16)] and
subsequently in terms of the sum and difference of the
lengths of the jet momenta in order to arrive at the dijet
imbalance distribution expressed in more standard varia-
bles [Sec. III, in particular, Eq. (51)]. In Sec. IV we discuss
angular-projected asymmetries, such as hcos��i and the
ones that can be used to extract B and C. After that we
consider the consequences of nonzero h?1 functions for the
jet broadening quantity Qt, in particular, for the averages
hQti and hQ2

t i. Finally (Sec. VI) we briefly address the open
issues of factorization (breaking) and color flow depen-
dence upon inclusion of gauge links. We end with con-
clusions and two appendixes, one on relations among
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various variables in the transverse plane and one on
photon-jet production that completes the treatment given
in Ref. [47].

II. THEORETICAL FRAMEWORK:
CALCULATION OF THE CROSS SECTION

We consider the process

h1ðP1Þ þ h2ðP2Þ ! jet ðK1Þ þ jet ðK2Þ þ X; (4)

where the four-momenta of the particles are given within
brackets, and the jet-jet pair in the final state is almost
back-to-back in the plane perpendicular to the direction of
the incoming hadrons. Along the lines of Ref. [47], we will
instead of collinear factorization consider a generalized
factorization scheme taking into account partonic trans-
verse momenta. We make a light cone decomposition of
the two incoming hadronic momenta in terms of the light-
like Sudakov vectors nþ and n�, satisfying n2þ ¼ n2� ¼ 0
and nþ � n� ¼ 1:

P�
1 ¼ Pþ

1 n
�
þ þ M2

1

2Pþ
1

n��; and P�
2 ¼ M2

2

2P�
2

n�þ þ P�
2 n

��:

(5)

The partonic momenta (p1, p2) can be expressed in terms
of the light cone momentum fractions (x1, x2) and the
intrinsic transverse momenta (p1T , p2T), as follows:

p
�
1 ¼ x1P

þ
1 n

�
þ þ p2

1 þ p2
1T

2x1P
þ
1

n�� þ p
�
1T; and

p�
2 ¼ p2

2 þ p2
2T

2x2P
�
2

n�þ þ x2P
�
2 n

�� þ p�
2T:

(6)

In general nþ and n� will define the light cone components
of every vector a as a� � a � n�, while perpendicular
vectors a? will always refer to the components of a
orthogonal to both incoming hadronic momenta, P1 and
P2. Therefore in Eq. (6), if we neglect hadron masses,
p�
1T ¼ p�

1? and p�
2T ¼ p�

2?. We denote with s the total

energy squared in the hadronic cms frame, s ¼
ðP1 þ P2Þ2 ¼ E2

cms, and with �i the pseudorapidities of
the outgoing partons, i.e. �i ¼ � lnðtanð12	iÞÞ, 	i being

the polar angles of the outgoing partons in the same frame.
Finally, we introduce the partonic Mandelstam variables

ŝ¼ ðp1 þp2Þ2; t̂¼ ðp1 �K1Þ2; û¼ ðp1 �K2Þ2;
(7)

which satisfy the relations

� t̂

ŝ
� y ¼ 1

e�1��2 þ 1
; and � û

ŝ
¼ 1� y: (8)

Following Refs. [47,50] we assume that at sufficiently
high energies the hadronic cross section factorizes in a soft
parton correlator for each observed hadron and a hard part:

d�h1h2!jet jet X ¼ 1

2s

d3K1

ð2�Þ32E1

d3K2

ð2�Þ32E2

�
Z

dx1d
2p1Tdx2d

2p2Tð2�Þ4

� �4ðp1 þ p2 � K1 � K2Þ
� X

a;b;c;d

�aðx1;p1TÞ ��bðx2;p2TÞ

� jHab!cdðp1; p2; K1; K2Þj2: (9)

This form assumes the simplest possible factorization
omitting any gauge link dependence in the correlators,
which can modify or even break the factorization (see
Sec. VI for a discussion of these open issues).
In Eq. (9) the sum runs over all the incoming and out-

going partons taking part in the reaction. The convolutions
� indicate the appropriate traces over Dirac indices and
jHj2 is the hard partonic squared amplitude. The parton
correlators are defined on the light front LF (
 � n � 0,
with n � n� for parton 1 and n � nþ for parton 2); they
describe the hadron ! parton transitions and can be pa-
rametrized in terms of TMD distribution functions. In
particular, the quark content of an unpolarized hadron is
at leading twist (omitting gauge links) described by the
correlator [48]

�qðx;pTÞ ¼
Z dð
 � PÞd2
T

ð2�Þ3 eip�
hPj �c ð0Þc ð
ÞjPicLF

¼ 1

2

�
fq1 ðx;p2

TÞP6 þ ih?q
1 ðx;p2

TÞ
½p6 T; P6 �
2M

�
; (10)

where fq1 ðx;p2
TÞ is the unpolarized quark distribution,

which integrated over pT gives the familiar light cone
momentum distribution fq1ðxÞ. The time-reversal (T) odd

function h?q
1 ðx;p2

TÞ is interpreted as the quark transverse
spin distribution in an unpolarized hadron [48].
Analogously, for an antiquark,

��qðx;pTÞ ¼
Z dð
 � PÞd2
T

ð2�Þ3 e�ip�
hPj �c ð0Þc ð
ÞjPicLF

¼ 1

2

�
f �q
1 ðx;p2

TÞP6 þ ih? �q
1 ðx;p2

TÞ
½p6 T; P6 �
2M

�
: (11)

The gluon correlator (omitting gauge links) is given by [49]

�
��
g ðx;pTÞ ¼

n�n�

ðp � nÞ2
Z dð
 � PÞd2
T

ð2�Þ3
� eip�
hPjTr½F��ð0ÞF��ð
Þ�jPicLF

¼ 1

2x

�
�g��

T fg1 ðx;p2
TÞ þ

�
p
�
T p

�
T

M2
þ g��

T

p2
T

2M2

�

� h?g
1 ðx;p2

TÞ
�
; (12)

with g��
T being a transverse tensor defined as
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g��
T ¼ g�� � n�þn�� � n��n�þ: (13)

The function fg1 ðx;p2
TÞ represents the unpolarized gluon

distribution, while the T-even function h?g
1 ðx;p2

TÞ is the

distribution of linearly polarized gluons in an unpolarized
hadron.

In order to derive an expression for the cross section in
terms of parton distributions, we insert the parametriza-
tions in Eqs. (10)–(12) of the TMD correlators into Eq. (9).
Furthermore, utilizing the decompositions of the parton
momenta in Eq. (6), the � function in Eq. (9) can be
rewritten as

�4ðp1 þ p2 � K1 � K2Þ
¼ 2

s
�

�
x1 � 1ffiffiffi

s
p ðjK1?je�1 þ jK2?je�2Þ

�

� �

�
x2 � 1ffiffiffi

s
p ðjK1?je��1 þ jK2?je��2Þ

�

� �2ðp1T þ p2T �K1? � K2?Þ; (14)

with corrections of order Oð1=sÞ. After integration over x1
and x2, from the first two � functions on the right-hand side
of Eq. (14), one obtains

x1 ¼ 1ffiffiffi
s

p ðjK1?je�1 þ jK2?je�2Þ;

x2 ¼ 1ffiffiffi
s

p ðjK1?je��1 þ jK2?je��2Þ;
(15)

which relates the partonic momentum fractions x1, x2 to
the rapidities and the transverse momenta of the jets. These
basic tree-level relations will be used in our treatment. We
will not consider several other effects that need to be
accounted for in practice such as the actually used jet
definition and higher order corrections that affect the above
relations and cause additional smearing.

The hadronic cross section can be written in the form

d�h1h2!jet jetX

d�1d�2d
2K1?d2K2?

¼ �2
s

sK2
?
½Aðq2TÞþBðq2TÞq2T

� cos2ð�T ��?Þ
þCðq2TÞq4T cos4ð�T ��?Þ�; (16)

where qT � K1? þ K2? and K? � ðK1? � K2?Þ=2. The
sum momentum qT is useful as an in principle accessible
experimental observable momentum which in our calcu-
lations via the delta function in Eq. (14) is related to
intrinsic transverse momenta, qT ¼ p1T þ p2T . We denote
with �T and �? the azimuthal angles of qT and K?,
respectively. Besides q2T , the terms A, B, and C depend
on other kinematic variables often not explicitly indicated,
namely, y, x1, x2, and contain convolutions of the various
parton distributions. These are discussed separately in the
following three subsections, where explicit expressions for
them can be found, calculated at leading order in pertur-

bative QCD. In deriving these expressions we will often
employ the approximation jqTj 	 jK1?j 
 jK2?j 
 jK?j
which is applicable in the situation in which the two jets are
almost back-to-back in the transverse plane. However, in
deriving Eq. (16) we must be particularly careful with the
angular dependence, because approximations in the angu-
lar dependence that boil down to approximating �1 

�2 þ � [such as in Eq. (21) of Ref. [47]] will of course
not give the proper dependence of the dijet imbalance
angle �� ¼ �1 ��2 þ �. In Eq. (16) the combination
�T ��? appears, which will allow isolating the terms B
and C by q2T-weighted integration over qT (cf. Sec. IV).
However, in order to arrive at the �� distribution discussed
in the introduction, it is more convenient to express the
cross section in terms of the combination �T ��j, where

�j is the average jet-direction angle, i.e. �j ¼
ð�1 þ�2 � �Þ=2 with �1 and �2 the azimuthal angles
of the two outgoing jets in the transverse plane. In the
present case where jK?j � ðjK1?j � jK2?j), it holds that
�? 
 �j allowing the two angles to be identified to good

approximation for all values of �� [cf. Eq. (A8)]. In the
limiting case when jK1?j ¼ jK2?j, the angles �? and �j

exactly coincide and the T and? directions are orthogonal,
so we have exactly cos2ð�T ��?Þ ¼ �1 [note that this
will lead to Eq. (3) with a minus sign in front of B, but that
is of course only a matter of definition] and cos4ð�T �
�?Þ ¼ 1. This implies that all angular dependence then
resides in q2T , which in that case solely depends on the off-
collinearity of the jets through the dijet imbalance angle
�� (discussed in Sec. III).

A. Angular independent part of the cross section

The term A in Eq. (16) is the angular independent part of
the cross section and is given by the sum of several con-
tributions Aab!cd coming from the partonic subprocesses
ab ! cd underlying the reaction h1h2 ! jet jetX:

Aðy; x1; x2; q2TÞ ¼
X

a;b;c;d

Aab!cdðy; x1; x2; q2TÞ; (17)

with a; . . . , d ¼ q, q0, �q, �q0, g. We denote with q and q0 two
quarks having different flavors, and similar notation holds
for the antiquarks. Furthermore, the following convolu-
tions of unpolarized parton distributions are defined

F abðx1; x2; q2TÞ �
Z

d2p1Td
2p2T�

2ðp1T þ p2T � qTÞ
� fa1 ðx1;p2

1TÞfb1 ðx2;p2
2TÞ; (18)

where a sum over all (anti)quark flavors is understood. Our
results for the terms Aab!cd in Eq. (17) are listed below,
starting from the ones corresponding to the (anti)quark
induced processes,

Aqq0!qq0 ¼ aðyÞF qq0 ðx1; x2; q2TÞ
þ að1� yÞF q0qðx1; x2; q2TÞ; (19)
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Aq �q0!q �q0 ¼ aðyÞF q �q0 ðx1; x2; q2TÞ
þ að1� yÞF �q0qðx1; x2; q2TÞ; (20)

Aqq!qq ¼ N2 � 1

2N2
yð1� yÞ

�
1þ ð1� yÞ2

y2
þ 1þ y2

ð1� yÞ2

� 2

N

1

yð1� yÞ
�
F qqðx1; x2; q2TÞ; (21)

Aq �q!q �q ¼ bðyÞF q �qðx1; x2; q2TÞ
þ bð1� yÞF �qqðx1; x2; q2TÞ; (22)

A q �q!q0 �q0 ¼ N2 � 1

2N2
yð1� yÞ½y2 þ ð1� yÞ2�

� ½F q �qðx1; x2; q2TÞ þF �qqðx1; x2; q2TÞ�;
(23)

Aq �q!gg ¼ N2 � 1

N

�
y2 þ ð1� yÞ2 � 1

N2

�
y2 þ ð1� yÞ2

2

� ½F q �qðx1; x2; q2TÞ þF �qqðx1; x2; q2TÞ�; (24)

with N being the number of colors and

aðyÞ ¼ N2 � 1

2N2
ð1� yÞ 1þ ð1� yÞ2

y
;

bðyÞ ¼ aðyÞ þ N2 � 1

2N2
yð1� yÞ

�
y2 þ ð1� yÞ2

þ 2

N

ð1� yÞ2
y

�
: (25)

Analogously, from the gluon induced processes, one has

Aqg!qg ¼ cðyÞF qgðx1; x2; q2TÞ
þ cð1� yÞF gqðx1; x2; q2TÞ; (26)

A gg!gg ¼ 4
N2

N2 � 1

ð1� yð1� yÞÞ3
yð1� yÞ F ggðx1; x2; q2TÞ;

(27)

A gg!q �q ¼ N

N2 � 1

�
y2 þ ð1� yÞ2 � 1

N2

�

� y2 þ ð1� yÞ2
2

F ggðx1; x2; q2TÞ; (28)

where

cðyÞ ¼ 1þ ð1� yÞ2
2

�
1þ ð1� yÞ2

y
� y

N2

�
: (29)

Agreement is found between the results given in the
present subsection and the explicit expressions of the
partonic cross sections published, for example, in [51–
55]. However, with respect to Ref. [46] we find agreement

with the expression for the unpolarized qq production
subprocess, but not for the q �q production subprocesses.
In particular, we find differences as compared with their
Eqs. (24) and (33).

B. The cos2ð�T ��?Þ angular distribution of the dijet

In Ref. [46] it is shown that the subprocesses qq ! qq
and q �q ! q �q contribute not only to the angular indepen-
dent part of the cross section, according to Eqs. (21) and
(22), but also to an azimuthal asymmetry of the dijet

arising from the product of two T-odd functions, h?q
1 h?q

1

or h?q
1 h? �q

1 . Such an asymmetry is similar to the one

calculated in the Drell-Yan [56] and in the photon-jet
production [47] processes. We refer to [47] for the details
of the derivation and present here only our final results. In
analogy to Eq. (17), we write

Bðy; x1; x2; q2TÞ ¼
X

a;b;c;d

Bab!cdðy; x1; x2; q2TÞ; (30)

with

B qq!qq ¼ N2 � 1

N3
yð1� yÞH qqðx1; x2; q2TÞ; (31)

Bq �q!q �q ¼ dðyÞH q �qðx1; x2; q2TÞ
þ dð1� yÞH �qqðx1; x2; q2TÞ; (32)

and

dðyÞ ¼ N2 � 1

N3
yð1� yÞ2ð1þ NyÞ: (33)

The following convolution of (transversely polarized)
quark and antiquark distributions has been introduced,

q2TH
q �qðx1; x2; q2TÞ �

1

M1M2

X
flavors

Z
d2p1Td

2p2T

� �2ðp1T þ p2T � qTÞð2ðĥ � p1TÞ
� ðĥ � p2TÞ � ðp1T � p2TÞÞ
� h?q

1 ðx1;p2
1TÞh? �q

1 ðx2;p2
2TÞ; (34)

with ĥ � qT=jqTj, and a similar definition holds for H qq

upon replacement of �q ! q in Eq. (34). The small-qT
behavior of H is regular provided the integrations over

p4
Th

?q
1 ðx;p2

TÞ converge. In addition to Eqs. (31) and (32),

we find that the subprocesses q �q ! gg and q �q ! q0 �q0, not
considered in [46], also show a cos2ð�T ��?Þ angular
dependence, leading, respectively, to

B q �q!gg ¼ N2 � 1

N

�
y2 þ ð1� yÞ2 � 1

N2

�
yð1� yÞ

� ½H q �qðx1; x2; q2TÞ þH �qqðx1; x2; q2TÞ�;
(35)

and
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B q �q!q0 �q0 ¼ N2 � 1

N2
y2ð1� yÞ2½H q �qðx1; x2; q2TÞ

þH �qqðx1; x2; q2TÞ�: (36)

Agreement is found between the results given in the
present subsection and the explicit expressions of the
polarized partonic cross sections published in
[54,55,57,58]. For the polarized qq production subprocess
we find agreement with Ref. [46], but again not for the q �q
production subprocesses [in particular, we find a difference
compared to their Eq. (26)].

C. The cos4ð�T ��?Þ angular distribution of the dijet

The cos4ð�T ��?Þ angular distribution of the dijet is
related to the presence of linearly polarized gluons in
unpolarized hadrons. This being a new result of the present
paper, its derivation will be discussed in some more detail.
The gluon-gluon induced part of the reaction under study,
to lowest order in pQCD, is described in terms of the
partonic two-to-two subprocesses

gðp1Þ þ gðp2Þ ! gðK1Þ þ gðK2Þ; and

gðp1Þ þ gðp2Þ ! qðK1Þ þ �qðK2Þ:
(37)

The corresponding cross sections are given by

d�gg!gg

d�1d�2d
2K?d2qT

¼ �2
s

sK 2?

�
Agg!ggðy;x1; x2;q2TÞ

þ
Z

d2p1Td
2p2T�

2ðp1T þp2T �qTÞ

� N2

N2� 1
yð1� yÞð1� yð1� yÞÞ

�P ggðp1T;p2T;K1?;K2?Þ
�
; (38)

and

d�gg!q �q

d�1d�2d
2K?d2qT

¼ �2
s

sK2?

�
Agg!q �qðy;x1;x2;q2TÞ

�
Z
d2p1Td

2p2T�
2ðp1Tþp2T�qTÞ

� N

N2�1

yð1�yÞ
4

�
y2þð1�yÞ2� 1

N2

�

�P ggðp1T;p2T;K1?;K2?Þ
�
; (39)

where

P ggðp1T;p2T;K1?;K2?Þ
¼

�
�p2

1Tp
2
2T þ 2

K4
?
ððK1? � K2?Þðp1T � p2TÞ

� ðK1? � p1TÞðK2? � p2TÞ
� ðK1? � p2TÞðK2? � p1TÞÞ2

�

� 1

M2
1M

2
2

h?g
1 ðx1;p2

1TÞh?g
1 ðx2;p2

2TÞ: (40)

The functions Agg!gg and Agg!q �q, given in Eqs. (27)
and (28), contain the convolution of unpolarized gluon
distribution functions F gg defined in Eq. (18). In order to
show that the two cross sections in Eqs. (38) and (39) can
be written in the same form as Eq. (16), we introduce the
functions

q4TI
ggðx1; x2; q2TÞ �

1

M2
1M

2
2

Z
d2p1Td

2p2T

� �2ðp1T þ p2T � qTÞð2ðĥ � p1TÞ
� ðĥ � p2TÞ � ðp1T � p2TÞÞ2
� h?g

1 ðx1;p2
1TÞh?g

1 ðx2;p2
2TÞ; (41)

where again ĥ � qT=jqTj, and

q4TL
ggðx1; x2; q2TÞ �

1

M2
1M

2
2

Z
d2p1Td

2p2T

� �2ðp1T þ p2T � qTÞp2
1Tp

2
2T

� h?g
1 ðx1;p2

1TÞh?g
1 ðx2;p2

2TÞ: (42)

The small-qT behavior of I andL are regular provided the

integrations over p8
Th

?g
1 ðx;p2

TÞ converge. Hence we have
Z
d2p1Td

2p2T�
2ðp1T þ p2T � qTÞP gg

¼ q4T
X2

i;j;l;m¼1

Kfi
1?K

jg
2?K

fl
1?K

mg
2?

4K4
?

�
2ð�il�jm � �ij�lm

þ �im�jlÞðLgg � IggÞ � �il�jmLgg

þ 2

�
qfiTq

jg
T

q2T
� �ij

��
qflTq

mg
T

q2T
� �lm

�
ð2Igg �LggÞ

�

¼ q4T cos2ð2�T ��1 ��2Þð2Igg �LggÞ: (43)

The difference between the angular dependence
cos2ð2�T��1��2Þ¼cos4ð�T��jÞ and cos4ð�T��?Þ
is of order q2T=K

2
? (cf. Appendix A). Substituting Eq. (43)

into Eqs. (38) and (39), and defining d�gg � d�gg!gg þ
d�gg!q �q, we finally obtain
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d�gg

d�1d�2d
2K?d2qT

¼ �2
s

sK2
?
½Aggðy;x1;x2;q2TÞ

þCggðy;x1;x2;q2TÞq4T cos4ð�T��?Þ�;
(44)

where Agg � Agg!gg þAgg!q �q, Cgg � Cgg!gg þ
Cgg!q �q, with

C gg!gg ¼ N2

N2 � 1
yð1� yÞð1� yð1� yÞÞ

� ½2Iggðx1; x2; q2TÞ �Lggðx1; x2; q2TÞ�; (45)

and

Cgg!q �q ¼ � N

N2 � 1

yð1� yÞ
4

�
y2 þ ð1� yÞ2 � 1

N2

�

� ½2Iggðx1; x2; q2TÞ �Lggðx1; x2; q2TÞ�: (46)

It turns out that the two subprocesses gg ! gg and
gg ! q �q are the only ones that determine the cos4ð�T �
�?Þ dependence of the cross section. Therefore in Eq. (16)

Cðy; x1; x2; q2TÞ ¼ Cgg ¼ Cgg!gg þ Cgg!q �q; (47)

which, together with Eqs. (41), (42), (45), and (46), leads to

C ¼ N

N2 � 1
yð1� yÞ

�
Nð1� yð1� yÞÞ

� 1

4

�
y2 þ ð1� yÞ2 � 1

N2

��

� ½2Iggðx1; x2; q2TÞ �Lggðx1; x2; q2TÞ�; (48)

showing how the azimuthal asymmetry under investigation
is related to the T-even, spin and transverse momentum

dependent parton distribution function h?g
1 ðx;p2

TÞ.

III. DIJET IMBALANCE DISTRIBUTIONS

In this section we study the cross section for the process
h1h2 ! jet jetX in terms of the total transverse energy ET

and the dijet imbalance �� � �1 ��2 � �, which are
the kinematic variables commonly used in the experiments.
The dijet imbalance angle describes the deviation of the
two jets from a back-to-back configuration (see Fig. 2 in
Appendix A).

The transverse energy is the sum of the transverse en-
ergies of the two jets, ET ¼ jK1?j þ jK2?j, and the dif-
ference is defined as �K? ¼ jK1?j � jK2?j. In our basic
expression for the cross section in Eq. (16) we have traded
K1? and K2? for qT and K?, but we can also trade the
variables (jK1?j, jK2?j) for (ET , �K?) and (�1, �2) for
(�j, ��). We find in the back-to-back approximation

q 2
T ¼ �K2

?cos
2

�
��

2

�
þ E2

Tsin
2

�
��

2

�


 �K2
? þ E2

Tsin
2

�
��

2

�
; (49)

4K2
? ¼ E2

Tcos
2

�
��

2

�
þ �K2

?sin
2

�
��

2

�

 E2

T: (50)

In the first expression we cannot drop the term proportional
to �K2

? because it is not a good approximation for �� 

0, which is most relevant. Note also that this implies q2T �
�K2

?, i.e.�K
2
? sets a lower bound on the q2T values probed,

which may be very relevant if the functions A, B, C are
steeply falling functions with increasing q2T .
The cross section in Eq. (16) rewritten yields

d�h1h2!jet jet X

d�1d�2dETd�K?d�jd��

¼ �2
s

2s
½Aðq2TÞ þ Bðq2TÞq2T cos2ð�T ��jÞ

þ Cðq2TÞq4T cos4ð�T ��jÞ�; (51)

with q2T given in the unapproximated first part of Eq. (49)
and

q 2
T cos2ð�T ��jÞ ¼ �K2

?cos
2

�
��

2

�
� E2

Tsin
2

�
��

2

�
;

(52)

q4T cos4ð�T ��jÞ ¼
�
E2
Tsin

2

�
��

2

�
� �K2

?cos
2

�
��

2

��
2

� E2
T�K

2
?sin

2ð��Þ: (53)

In this way we have arrived at an expression that is ame-
nable to phenomenological studies, approximating
jK1?j 
 jK2?j 
 ET=2 only in places where the differ-
ence is negligible for all values of ��.
For �K? ¼ 0 we obtain

d�h1h2!jet jet X

d�1d�2dETd�K?d�jd��
¼ �2

s

2s
½Aðq2TÞ � Bðq2TÞq2T

þ Cðq2TÞq4T�; (54)

with in that case exactly q2T ¼ E2
Tsin

2ð��=2Þ, and in es-
sence recovering Eq. (3) (the sign in front of B is just a
matter of definition).
To illustrate the effect of nonzero B and C terms, we will

make a Gaussian ansatz for these functions of q2T . We will
take

Aðq2TÞ ¼
R2
A

�
expð�q2TR

2
AÞ; Bðq2TÞ ¼

R4
B

c�
expð�q2TR

2
BÞ;

Cðq2TÞ ¼
R6
C

2c2�
expð�q2TR

2
CÞ; (55)

normalized such that
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Z
d2qTAðq2TÞ ¼ 1;

Z
d2qTq

2
TBðq2TÞ ¼ 1=c;

Z
d2qTq

4
TCðq2TÞ ¼ 1=c2:

(56)

Figure 1 shows a plot of the cross section in Eq. (51) as a
function of �� for the arbitrary, but perhaps realistic,
choices jK1?j ¼ 30 GeV, jK2?j ¼ 31 GeV, RA ¼
0:5 GeV�2, RB ¼ 2RA, RC ¼ 3RA, and c ¼ 3. For smaller
�K? the shoulders become more pronounced, but already
for �K? ¼ 2 GeV the shoulders are hardly distinguish-
able anymore. In general, B and C have to be significant in
size and broad enough to generate an observable effect, i.e.
for the �� distribution to deviate visibly from a Gaussian
distribution.

Although the B and C terms were not considered before
in experimental analyses of dijet imbalance measurements
in hadronic collisions, experimental data are available that
have some bearing on the size of B compared to A. They
come from the measurement of the violation of the Lam-
Tung relation in the Drell-Yan process. As shown in
Ref. [56], this violation  is given by the ratio
q2TH

q �q=F q �q [Eq. (34) divided by the angular averaged
result in Eq. (18)] but with the sums over flavors weighted
with a factor e2q, the quark charge squared. This has the

effect of emphasizing the contribution from up quarks. In
the present two-jet production case, the ratio q2TB=A in the
midrapidity region (�1 
 �2 
 0) and for large N can be
approximated by q2TH

q �q=F q �q. The size of  in Drell-Yan
may thus be expected to give some indication of the size of
q2TB=A. The violation of the Lam-Tung relation in Drell-
Yan has recently been measured in pp and pd collisions
[59]. It is consistent with no violation, but with sizeable
errors. Small violation would be in line with the expecta-
tion that h?1 for antiquarks inside a proton is considerably
smaller than for quarks. For p �p one however expects a
large violation, as observed in �p collisions [60–62]. So
the effect of a nonzero h?1 for quarks may be mostly
relevant for jet broadening studies in p �p [21].

IV. WEIGHTED CROSS SECTIONS

Apart from the fact that nonzero h?1 functions for quarks
and gluons modify the �� distribution and hence affect the
extraction of the average initial parton transverse momen-
tum from this dijet imbalance distribution, it would in
principle be of interest to extract these functions them-
selves from it. Therefore, the question arises whether one
can project out the B and C terms separately. In Ref. [46]
this is discussed for B only, but there are some problems
with the proposed method. It was suggested that hcos��i,
i.e. the cross section integrated over �� weighted with an
additional factor of cos��, projects out a contribution

from h?q
1 exclusively.1 However, our result in Eq. (51)

shows that hcos��i does not project out B nor a part of
B exclusively, not even in the idealized case when jK1?j ¼
jK2?j, as can be seen from Eq. (54). To see the appropriate
weighting, we return to the form in Eq. (16) and note that B
is projected out by

hcos2ð�T ��?Þi �
Z d�T

2�
cos2ð�T ��?Þ

� d�h1h2!jet jet X

d�1d�2d
2K?d2qT

¼ 1

2

�2
s

sK2
?
q2TBðy; x1; x2; q2TÞ: (57)

Integrating over the length of qT gives with possible in-
clusion of additional weighting with powers of q2T ,

�
Z

dq2T

�
q2T

M1M2

�
Mhcos2ð�T ��?Þi

¼
Z

d2qT

�
q2T

M1M2

�
M
cos2ð�T ��?Þ

� d�h1h2!jet jet X

d�1d�2d
2K?d2qT

; (58)

in which we get for M ¼ 1 the factorized result

�
Z

dq2T

�
q2T

M1M2

�
q2TH

qqðx1; x2; q2TÞ

¼ 8
X

flavors

h?qð1Þ
1 ðx1Þh?qð1Þ

1 ðx2Þ; (59)

in the B contributions. ForM ¼ 0, the expression does not
deconvolute. In that case usable but model dependent
expressions may be obtained by making a Gaussian ansatz
for the transverse momentum shape of hq1 . For the type of
convolution that appears in B this has been done in the
literature (see for instance Ref. [63]).

0.15 0.10 0.05 0.05 0.10 0.15

0.02

0.04

0.06

0.08

0.10

0.12

FIG. 1 (color online). An illustration of the effect of sizeable B
and C terms on the �� distribution of the cross section in
Eq. (51).

1In Ref. [46] actually hP2
?=M

2 cos��i was considered, where
P? 
 jK1?j 
 jK2?j, despite the fact that K2? was integrated
over. The factor P2

?=M
2 artificially enhances the weighted

asymmetry if not divided by hP2
?=M

2i.
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Next, we will analyze in some more detail the weighted
asymmetry that projects out C. A measurement of the
weighted cross section

hcos4ð�T ��?Þi �
Z d�T

2�
cos4ð�T ��?Þ

� d�h1h2!jet jet X

d�1d�2d
2K?d2qT

¼ 1

2

�2
s

sK2
?
q4TCðy; x1; x2; q2TÞ; (60)

with C given in Eq. (48), would give access to the linearly
polarized gluon distribution of a hadron. After integration
over the length of qT with possible inclusion of additional
weighting with q2T , we obtain

�
Z

dq2T

�
q2T

M1M2

�
Mhcos4ð�T ��?Þi

¼
Z

d2qT

�
q2T

M1M2

�
M
cos4ð�T ��?Þ

� d�h1h2!jet jet X

d�1d�2d
2K?d2qT

: (61)

In this case we get for M ¼ 2 the deconvoluted result

�
Z

dq2T

�
q2T

M1M2

�
2
q4Tð2Igg �LggÞ

¼ 96h?gð2Þ
1 ðx1Þh?gð2Þ

1 ðx2Þ; (62)

in the C contributions. In order to evaluate the integral in
Eq. (60) without weights or study the explicitly q2T depen-

dence, one can employ a Gaussian model for h?g
1 , of which

the easiest choice has a factorized x and pT dependence,
that is, neglecting the dependence on the factorization
scale,

h?g
1 ðx;p2

TÞ ¼
R2
h

�
h?g
1 ðxÞe�R2

h
p2
T ; (63)

h?gðnÞ
1 ðxÞ ¼

Z
d2pT

�
p2
T

2M2

�
n
h?g
1 ðx;p2

TÞ

¼ n!

ð2M2R2
hÞn

h?g
1 ðxÞ; (64)

where Rh is a size parameter related to the average partonic
p2
T by the relation R2

h ¼ 1=hp2
Ti. For incoming (anti)pro-

tons, Rp ¼ R �p � R, so one has

Z
d2qTq

4
Tð2Igg �LggÞ

¼ 1

M2
1M

2
2

Z
d2qTd

2p1Td
2p2T�

2ðp1T þ p2T � qTÞ

� ½2ð2ðĥ � p1TÞðĥ � p2TÞ � ðp1T � p2TÞÞ2 � p2
Tp

2
2T�

� R4

�2
h?g
1 ðx1Þh?g

1 ðx2Þe�R2ðp2
1T
þp2

2T
Þ: (65)

Using the p2T integration to eliminate the delta function in
Eq. (65) and shifting the integration variable p1T ! p0

1T ¼
p1T � 1

2 qT , one arrives at

Z
d2qTq

4
Tð2Igg �LggÞ ¼ 1

M2
1M

2
2

R4

16�

Z
d2qTdp

02
T q

4
T

� e�R2ð2p02
1Tþð1=2Þq2T Þ

� h?g
1 ðx1Þh?g

1 ðx2Þ
¼ 1

2M2
1M

2
2

1

R4
h?g
1 ðx1Þh?g

1 ðx2Þ:

(66)

Substituting Eq. (66) into Eq. (60) shows that for a
Gaussian shape one finds for the unweighted average the
final result

�
Z
dq2Thcos4ð�T ��?Þi

¼ �2
s

sK2
1?

N

N2 � 1
yð1� yÞ

�
Nð1� yð1� yÞÞ

� 1

4

�
y2 þ ð1� yÞ2 � 1

N2

��
h?gð1Þ
1 ðx1Þh?gð1Þ

1 ðx2Þ:
(67)

V. JET BROADENING

In our almost back-to-back jet situation, the jet-direction
j coincides with the transverse thrust axis, and the jet
broadening variable Qt defined in Eq. (2) is given by

Qt ¼ ET

��������sin

�
��

2

���������¼ jqTjj sinð�T ��jÞj


 jqTjj sinð�T ��?Þj; (68)

for which we refer to Eq. (A6) in Appendix A and one
needs to use Eqs. (A7) and (A8) to check the validity of the
approximation. Using this expression we can now turn to
the evaluation of the average jet broadening hQti as a
function of jK?j,

hQti /
Z d�?

2�
d2qTQtðjqTj; �T;�?Þ d�

h1h2!jet jet X

d2K?d2qT
:

(69)

The differential cross section in the integrand is obtained
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from Eq. (16) and contains, besides the well-known, angu-
lar independent term A, also the terms B (due to the
transverse polarization of quarks and antiquarks in the
colliding hadrons) and C (related to the linear polarization
of gluons). The following integrals,

Z 2�

0
d�Tj sinð�T ��?Þj ¼ 4; (70)

Z 2�

0
d�Tj sinð�T ��?Þj cos2ð�T ��?Þ ¼ � 4

3
; (71)

Z 2�

0
d�Tj sinð�T ��?Þj cos4ð�T ��?Þ ¼ � 4

15
;

(72)

are all different from zero, meaning that the A, B, and C
terms contribute to hQti:

hQti /
Z

d2qTjqTj
�
Aðq2TÞ �

1

3
Bðq2TÞq2T � 1

15
Cðq2TÞq4T

�
:

(73)

In order to calculate hQ2
t i, one needs to evaluate the

integrals

Z 2�

0
d�Tsin

2ð�T ��?Þ ¼ �; (74)

Z 2�

0
d�Tsin

2ð�T ��?Þ cos2ð�T ��?Þ ¼ ��

2
; (75)

Z 2�

0
d�Tsin

2ð�T ��?Þ cos4ð�T ��?Þ ¼ 0; (76)

which show that only the terms A and B enter in the
estimate of hQ2

t i:

hQ2
t i /

Z
d2qTq

2
T

�
Aðq2TÞ �

1

2
Bðq2TÞq2T

�
: (77)

VI. COLOR FLOW DEPENDENCE AND
FACTORIZATION

In our treatment in this paper we have simply convoluted
the quark and gluon correlators with the hard partonic cross
sections, without worrying about possible nontrivial effects
arising from the gauge link structure in these correlators.
The proper gauge invariant definitions of TMDs as well as
collinear correlators involve nonlocal operators containing
path-ordered exponentials, the gauge links. The gauge link
is the result of resumming all gluons with polarizations
along the momentum of a particular hadron into the soft
parts. In the case of TMDs the path of the gauge links
generally depends on the process. The path dependence
disappears after integration over transverse momenta. In
the collinear correlators, one can usually choose a gauge
that makes the gauge link unity, but the same procedure for

TMDs can leave transverse pieces that are situated at light
cone infinity. These links can have physical effects, for
instance in single transverse spin asymmetries that arise
from the Sivers effect, which is described by a T-odd
TMD. The Sivers asymmetries in semi-inclusive deep
inelastic scattering and the Drell-Yan process are predicted
to differ by a sign as a consequence of the gauge links [64].

In the more complicated processes h"1h2 ! �=jetþ
jetþ X the single spin asymmetries involving the Sivers
function [50,65,66] come from correlators with more com-
plex paths in the gauge links. This causes deviations that
are more involved than a simple sign change with respect
to e.g. semi-inclusive deep inelastic scattering. But also in
this case, calculable process-dependent ‘‘color flow’’ fac-
tors can be obtained which may be different for each hard
partonic subprocess. In this way they allow for the calcu-
lation of particular weighted cross sections in dijet produc-
tion, resulting in a small asymmetry [66–68], as also shown
by the data [69]. However, claims of possible factorization
breaking have been put forward for this process [43,44]
and this remains an open question.
For observables involving a product of two T-odd

TMDs, such as the one discussed in the present paper,
the situation is less clear. For cos2� asymmetries in
Drell-Yan [56] and h1h2 ! � jetX the effects of nontrivial
gauge links were included in Ref. [47] following the meth-
ods outlined in Refs. [41,42,55,70]. In both cases the color
flow factor obtained was þ1. However, since the methods
used were developed for observables involving a single
noncontracted transverse momentum pT for a T-odd TMD
for one of the hadrons in the process, the extension to cases
in which noncontracted transverse momenta of partons in
two different hadrons are involved certainly needs careful
study. The pT dependence for h?1 in the correlators for
gluons, moreover, has a rank two tensor structure in the
noncontracted transverse momentum, although it is T even.
For the present case of dijet production (for which non-
trivial color flow factors were presented in Ref. [46]),
which is necessarily more complicated and for which
doubts about factorization have been put forward, at this
stage we do not include any color flow factors. Since we
have presented the expressions for each partonic subpro-
cess separately, it is possible to include the correct factors
at a later stage, once they have been firmly established. If
factorization cannot be proven for the process of interest,
however, this implies not only that the functions h?1 cannot
be extracted but neither can in that case hp2

Ti be obtained.

VII. SUMMARYAND CONCLUSIONS

In this paper we study the effects of transverse momenta
of the initial state hadrons in hadronic dijet production. The
transverse momentum produces an imbalance in the dijets
in the transverse plane. In the usual treatments the effects
are attributed to gluon radiation and to the transverse
momentum dependence of the unpolarized quark distribu-
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tions. We look at the effects of two additional TMD
functions that enter in the scattering of unpolarized had-
rons, the distribution of transversely polarized quarks

(h?q
1 ) and the distribution of linearly polarized gluons

(h?g
1 ). They produce specific azimuthal dependences of

the two jets, which are not suppressed a priori. The effects
cannot be isolated by only looking at the angular deviation
from the back-to-back situation, but depend on the jet
transverse energy and the contributions to it of the two
jets. We have discussed appropriate weighting to isolate the
specific additional contributions. We also pointed out their
effect on the jet broadening quantities hQti and hQ2

t i, which
we considered for the simplest two-jet case, but the con-
clusion that h?1 functions contribute to them also affects the
more general cases containing a sum over hadrons. This in
principle complicates the extraction of the average initial
parton transverse momentum from the jet broadening, but
possibly even hampers it altogether if factorization of the
(sufficiently sizeable) spin-dependent contributions indeed
turns out to be broken.
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APPENDIX A: TRANSVERSE PLANE VARIABLES

In the transverse plane we have the two-jet momenta
K1? and K2? defining azimuthal angles �1 and �2. From
them one can construct the sum and difference angles,

�j ¼ ð�1 þ�2 � �Þ=2; (A1)

�� ¼ �1 ��2 � �: (A2)

The sum and difference of the transverse energies of the
two jets, jK1?j and jK1?j, define

ET ¼ jK1?j þ jK2?j; (A3)

�K? ¼ jK1?j � jK2?j: (A4)

One can use d2K1?d2K2? ¼ 1
8ðE2

T ��K2
?ÞdET�

d�K?d�jd�� for the phase space or go to the sum and

difference momenta and their angles as shown in Fig. 2. In
that case one has d2K1?d2K2? ¼ d2K?d2qT ¼
jqTjjK?jdjqTjdjK?jd�Td�?. We have the following ex-
act relations:

jqTj cosð�T ��jÞ ¼ �K? cosð��=2Þ; (A5)

jqTj sinð�T ��jÞ ¼ ET sinð��=2Þ; (A6)

2jK?j cosð�? ��jÞ ¼ ET cosð��=2Þ; (A7)

2jK?j sinð�? ��jÞ ¼ �K? sinð��=2Þ; (A8)

q 2
T ¼ �K2

?cos
2ð��=2Þ þ E2

Tsin
2ð��=2Þ

¼ �K2
? þ ðE2

T � �K2
?Þsin2ð��=2Þ; (A9)

4K2
? ¼ E2

Tcos
2ð��=2Þ þ �K2

?sin
2ð��=2Þ

¼ E2
T � ðE2

T � �K2
?Þsin2ð��=2Þ; (A10)

2jqTjjK?j cosð�T ��?Þ ¼ ET�K?; (A11)

2jqTjjK?j sinð�T ��?Þ ¼ ðE2
T ��K2

?Þ=2 sinð��Þ:
(A12)

We note that the order of the momenta is jqTj  �K? M
(hadronic scale) while ET  2jK?j 

ffiffiffi
s

p
, so we see from

Eq. (A6) that ��M=
ffiffiffi
s

p
and from Eq. (A8) that �? �

�j M2=s. Further useful relations are

jqTj2 cos2ð�T ��?Þ 
 jqTj2 cos2ð�T ��jÞ
¼ �K2

?cos
2ð��=2Þ

� E2
Tsin

2ð��=2Þ; (A13)

jqTj2 sin2ð�T ��?Þ 
 jqTj2 sin2ð�T ��jÞ
¼ ET�K? sinð��Þ; (A14)

jqTj4 cos4ð�T ��?Þ 
 jqTj4 cos4ð�T ��jÞ

 �K4

? þ E4
Tsin

4ð��=2Þ
� 6E2

T�K
2
?sin

2ð��=2Þ: (A15)

APPENDIX B: PHOTON-JET PRODUCTION

In this appendix we include expressions for the terms A
and B for the photon-jet production case, because in
Ref. [47] we only considered approximate angular depen-
dence. Similarly to Eq. (16), one can write

φΤ

Κ⊥

Κ1⊥
Κ2⊥

qΤ

δφ/2δφ/2
j

FIG. 2. The transverse plane is defined as orthogonal with
respect to the two incoming hadrons. The jet direction (j) is
defined as �j ¼ ð�1 þ�2 � �Þ=2. The momenta qT ¼ K1? þ
K2? and K? ¼ ðK1? � K2?Þ=2 define the azimuthal angles �T

and �?.
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d�h1h2!�jet X

d��d�jd
2K�?d2Kj?

¼ ��s

sK2
?
½Aðq2TÞ þ Bðq2TÞq2T

� cos2ð�T ��?Þ�; (B1)

with

Aðy; x1; x2; q2TÞ ¼ Aqg!�q þAq �q!�g;

Bðy; x1; x2; q2TÞ ¼ Bq �q!�g:
(B2)

By comparison with Eqs. (15), (16), and (19) in Ref. [47],
we find the following expressions:

Aqg!�q ¼ X
q

e2q½hðyÞF qgðx1; x2; q2TÞ

þ hð1� yÞF gqðx1; x2; q2TÞ�; (B3)

with

hðyÞ ¼ 1

N
ð1� yÞð1þ y2Þ; (B4)

Aq �q!�g ¼ N2 � 1

N2
ðy2 þ ð1� yÞ2ÞX

q

e2q½F q �qðx1; x2; q2TÞ

þF �qqðx1; x2; q2TÞ�; (B5)

and

Bq �q!�g ¼ 2
N2 � 1

N2
yð1� yÞX

q

e2q½H q �qðx1; x2; q2TÞ

þH �qqðx1; x2; q2TÞ�; (B6)

in agreement with the results in Refs. [54,57,58].
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