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In this work we calculate the branching ratios of semileptonic and nonleptonic decays of �b into light

baryons (p and�), as well as the measurable asymmetries which appear in the processes, in the light-front

quark model. In the calculation, we adopt the diquark picture and discuss the justifiability of applying the

picture in our case. Our result on the branching ratio of �b ! �þ J=c is in good agreement with the

data. More predictions are made in the same model and the results will be tested in the future experiments

which will be conducted at the Large Hadron Collider beauty and even the International Linear Collider.
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I. INTRODUCTION

As is well known, the �b weak decay gives us abundant
information about Cabibbo-Kobayashi-Maskawa (CKM)
elements, so that it stands as a complementary field to
the meson decays. These processes are also good probes
for the factorization hypothesis which has been extensively
explored for dealing with hadronic transitions [1,2].
Recently many semileptonic and nonleptonic decays of
�b are observed and measured [3,4]. Moreover the
LHCb is expected to accumulate a large data sample of
b hadrons to offer a unique opportunity for studying �b;
thus we would like to investigate the �b weak decay more
systematically. As for the �b decays the key is how to
evaluate the form factors which parametrize the hadronic
matrix elements. There are many approaches advocated to
this aspect [5]. In our previous paper [6] we studied �b to
�c weak decay in the light-front quark model (LFQM) [7]
and the results seem to be quite reasonable.

The light-front quark model is a relativistic quark model
based on the light-front QCD [7]. The basic ingredient is
the hadron light-front wave function which is explicitly
Lorentz invariant. The hadron spin is constructed using the
Melosh rotation. The light-front approach has been widely
applied to calculate various decay constants and form
factors for the meson cases [8–12].

In our earlier work, we adopted the diquark picture for
baryons [6] which is especially well explored and proved to
be a good approximation for such processes where the
diquarks are not broken during the transition. Indeed, it
has been known for a long time that two quarks in a color-
antitriplet state attract each other and may form a corre-
lated diquark [13]. The diquark picture of baryons is
considered to be appropriate for low momentum-transfer
processes [14–17]. Concretely, under the diquark approxi-
mation, �b and �c are of the one-heavy-quark–one-light-

diquark(ud) structure which is analogous to the meson
case.
In this paper we will apply these methods to �b decay-

ing into light hadrons such as proton or� which is made of
three light quarks. These hadrons may also be regarded
possessing quark-diquark structure [14].
Some authors [18–21] calculated the form factors of �b

decaying into light baryons and the corresponding decay
rates. Reference [20] explored �b ! pl �� by using the
method of perturbative QCD (PQCD) and they concluded
the perturbative analysis is reliable only for �ð�
2p �p0=M2

�b
Þ>0:8. In Ref. [21] the branching ratio of

�b!J=�� in PQCD was evaluated [ð1:7–5:3Þ � 10�4]
[18]; instead, Cheng used the nonrelativistic quark model
to obtain this branching ratio as 1:1� 10�4 which is lower
than the experimental value [ð4:7� 2:8Þ � 10�4]. In a
recent study, the authors of [22] used the light-cone sum
rules to calculate the �b ! pð�Þ transition form factors.
In this work, we study the form factors of �b ! p and

�b ! � in the light-front model with the diquark picture,
and then we calculate the rates of�b ! p�,�b ! J=��,
as well as several other nonleptonic decays of �b.
When �b decays into light baryons, the energy of the

light baryon in the �b rest frame is E ¼ ðM2
�b

þm2 �
q2Þ=ð2M�b

Þ which is much larger than its mass m and the

hadronic scale �QCD. One important feature of this region

is that the light hadrons move nearly along the light cone. It
is argued in [23] that the active quark created from the b
quark by weak interaction carries most of the energy of the
final light baryon. Under the large-energy limit (LEET
[24]) and heavy quark limit (HQET [25]), we can obtain
the relations between f3, g3 and f2, g2, which may help to
achieve the orders of f3, g3. We write up these relations in
Sec. II, and then derive the form factors (f1, f2, g1, and g2)
of �b ! p and �b ! � in Sec. III. We carry out the
numerical computations in Sec. IV. Finally, Sec. V is
devoted to discussions from which we draw our
conclusion.
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II. FORMULATION

A. The form factors in the large-energy limit

The form factors for the weak transition�b ! H, where
H represents a light baryon (refers to p, � in this study),
are defined in the standard way as

M� ¼ hHðP0; S0; S0zÞ j �q��ð1� �5Þb j �bðP; S; SzÞi
¼ �uHðP0; S0zÞ

�
��f1ðq2Þ þ i���

q�

M�b

f2ðq2Þ

þ q�

M�b

f3ðq2Þ
�
u�b

ðP; SzÞ � �uHðP0; S0zÞ

�
�
��g1ðq2Þ þ i���

q�

M�b

g2ðq2Þ þ
q�

M�b

g3ðq2Þ
�

� �5u�b
ðP; SzÞ; (1)

where q � P� P0, Q and Q0 denote the heavy quark and
the light quark, and H stands for the light baryon, respec-
tively. The above formulation is the most general expres-
sion with only constraints of enforcing the Lorentz
invariance and parity conservation for strong interaction.
There are six form factors fi, gi (i ¼ 1, 2, 3) in total for the
vector and axial-vector current �q��ð1� �5Þb, where the

light quark q denotes u for p and s for �. All the infor-
mation about the strong interaction is involved in those
form factors. Since S ¼ S0 ¼ 1=2, we will be able to write
j �bðP; S; SzÞi as j �bðP; SzÞi and similarly for �uHðP0; S0zÞ
in the following formulations.

Another parametrization in terms of the four-velocities
is widely used and is found to be convenient for the heavy-
to-heavy transitions, such as �b ! �c. But for the heavy-
to-light transitions at the large recoil region where the
energy of the final light baryon H is much larger than its
mass, it is more convenient to use the following formula-
tion. Analogous to heavy quark symmetry in the heavy-to-
heavy case, there is a large-energy symmetry relation for
the heavy-to-light at large-energy recoil [23]. For the
heavy-to-light baryon transition, the symmetry has not
been searched until the present. In this section, we explore
the large-energy symmetry and show that they lead to a
simplification of the form factors: the six form factors are
reduced to three independent ones.

Let us introduce the velocity v of initial �b and a light-
front unit vector n by

v ¼ P

M�b

; n ¼ P0

E
; (2)

where E is the energy of H. Using these vectors, the
amplitude of the weak transition �b ! H is parametrized
by

M� ¼ hHðn; S0zÞ j �q��ð1� �5Þb j �Qðv; SzÞi
¼ �uHðn; S0zÞ½F1ðEÞ�� þ F2ðEÞv� þ F3ðEÞn��u�b

� ðv; SzÞ � �uHðn; S0zÞ½G1ðEÞ�� þG2ðEÞv�

þG3ðEÞn���5u�b
ðv; SzÞ: (3)

Up to leading order in 1=M�b
the relation between the two

parametrization schemes is

f1 ¼ F1 þ 1

2

�
F2

M�b

þ F3

E

�
M�b

;

g1 ¼ G1 � 1

2

�
G2

M�b

þG3

E

�
M�b

;

f2 ¼ 1

2

�
F2

M�b

þ F3

E

�
M�b

; g2 ¼ 1

2

�
G2

M�b

þG3

E

�
M�b

;

f3 ¼ 1

2

�
F2

M�b

� F3

E

�
M�b

; g3 ¼ 1

2

�
G2

M�b

�G3

E

�
M�b

;

(4)

whereM�b
is the mass of �b. We have neglected the mass

of the final light baryon compared to M�b
.

Under the large-energy limit, the light energetic quark q

is described by the two-component spinor � ¼ n6 6n�
4 q, where

�n ¼ 2� n is another light-front unit vector and the heavy
quark is replaced by

hv ¼ eimbv�x ð1þ v6 Þ
2

b:

The weak current �q�b in the full QCD is matched onto the
current ���hv in the effective theory at tree level. For an
arbitrary matrix �, ���hv has only three independent Dirac
structures. One convenient choice is discussed in [26]: ��hv,
���5hv, and ���

�
?hv. Thus, we have

�q��b ¼ ����
?hv þ n� ��hv;

�q���5b ¼ i�
��
? ����

?hv � n� ���5hv;
(5)

where �
��
? ¼ ���	
v	n
.

The three independent form factors are defined by

hHðP0; S0zÞ j ��hv j �bðP; SzÞi
¼ �uHðn; SzÞu�b

ðv; SzÞ�0ðEÞ;
hHðP0; S0zÞ j ���5hv j �bðP; SzÞi

¼ �uHðn; SzÞ�5u�b
ðv; SzÞ�5ðEÞ;

hHðP0; S0zÞ j ���?�hv j �bðP; SzÞi
¼ �uHðn; SzÞ�?�u�b

ðv; SzÞ�?ðEÞ: (6)

Then, we find

F1 ¼ G1 ¼ �?ðEÞ; F2 ¼ G2 ¼ 0;

F3 ¼ �0ðEÞ � �?ðEÞ; G3 ¼ �?ðEÞ � �5ðEÞ:
(7)
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From the above equation, we obtain the relations among
the form factors:

f1 þ f2 ¼ g1 � g2; f2 ¼ �f3; g2 ¼ �g3: (8)

This is one major result of this work. The f3 and g3 are not
independent, but related to f2 and g2.

B. Vertex function in the light-front approach

In the diquark picture, the heavy baryon�b is composed
of one heavy quark b and a light diquark [ud]. In order to
form a color singlet hadron, the diquark [ud] is in a color
antitriplet. Because�b is at the ground state, the diquark is
a 0þ scalar (s ¼ 0, l ¼ 0) and the orbital angular momen-
tum between the diquark and the heavy quark is also zero,
i.e. L ¼ l ¼ 0. However the situation is complicated for a
light baryon even thought it is in the ground state. The
diquark in the light baryon may be a 0þ scalar or a 1�
vector. Fortunately the diquark is a spectator in the con-
cerned transition and its spin is not affected so that only the
scalar diquark can transit into the final baryon and one only
needs to consider the scalar diquark structure of the light
baryon.

In the light-front approach, the heavy baryon �Q com-

posed of only a scalar diquark with total momentum P and
spin S ¼ 1=2 can be written as

j�QðP; S; SzÞi ¼
Z
fd3p1gfd3p2g2ð2�Þ3�3ð ~P� ~p1 � ~p2Þ

�X

1

�SSzð~p1; ~p2; 
1ÞC	
�F
bc

� jQ	ðp1; 
1Þ½q
b q�c �ðp2Þi; (9)

and the light baryon (total momentum P, spin J ¼ 1=2,
composed of 0þ scalar diquark and orbital angular mo-
mentum L ¼ 0) has the similar form,

jHðP; S; SzÞi ¼
Z

d3p1d
3p22ð2�Þ3�3ð ~P� ~p1 � ~p2Þ

�X

1

�SSzð~p1; ~p2; 
1ÞC	;
;�F
a;b;c
L

� jq	a ðp1; 
1Þ½q
b q�c �ðp2Þi; (10)

whereQ, ½qbqc� represent the heavy quark and the diquark,
respectively, and 
 denotes the helicity, where 	, 
, � and
a, b, c are the color and flavor indices, and p1, p2 are the
on-mass-shell light-front momenta defined by

~p ¼ ðpþ; p?Þ; p? ¼ ðp1; p2Þ; p� ¼ m2 þ p2
?

pþ ;

(11)

and

fd3pg � dpþd2p?
2ð2�Þ3 ;

�3ð~pÞ ¼ �ðpþÞ�2ðp?Þ;
j Qðp1; 
1Þ½q1q2�ðp2Þi ¼ by
1

ðp1Þayðp2Þj0i;
½aðp0Þ; ayðpÞ� ¼ 2ð2�Þ3�3ð~p0 � ~pÞ;

fd
0 ðp0Þ; dy
ðpÞg ¼ 2ð2�Þ3�3ð~p0 � ~pÞ�
0
:

(12)

The coefficient C	
� is a normalized color factor and

FbcðFabcÞ is a normalized flavor coefficient,

C	
�F
bcC	0
0�0Fb0c0

� hQ	0 ðp0
1;


0
1Þ½q


0
b0 q

�0
c0 �ðp0

2ÞjQ	ðp1;
1Þ½q
b q�c �ðp2Þi
¼ 22ð2�Þ6�3ð~p0

1� ~p1Þ�3ð~p0
2� ~p2Þ�
0

1
1
;

C	
�F
abcC	0
0�0Fa0b0c0

� hq	0
a0 ðp0

1;

0
1Þ½q


0
b0 q

�0
c0 �ðp0

2Þjq	a ðp1;
1Þ½q
b q�c �ðp2Þi
¼ 22ð2�Þ6�3ð~p0

1� ~p1Þ�3ð~p0
2� ~p2Þ�
0

1
1
: (13)

In order to describe the motion of the constituents, one
needs to introduce intrinsic variables ðxi; ki?Þ with i ¼ 1, 2
through

pþ
1 ¼ x1P

þ; pþ
2 ¼ x2P

þ; x1 þ x2 ¼ 1;

p1? ¼ x1P? þ k1?; p2? ¼ x2P? þ k2?;

k? ¼ �k1? ¼ k2?;

(14)

where xi’s are the light-front momentum fractions satisfy-
ing 0< x1, x2 < 1. The variables ðxi; ki?Þ are independent
of the total momentum of the hadron and thus are Lorentz
invariant. The invariant mass square M2

0 is defined as

M2
0 ¼

k21? þm2
1

x1
þ k22? þm2

2

x2
: (15)

The invariant mass M0 is in general different from the
hadron mass M which satisfies the physical mass-shell
condition M2 ¼ P2. This is due to the fact that in the
baryon, the heavy quark and the diquark cannot be on their
mass shells simultaneously. We define the internal mo-
menta as

ki ¼ ðk�i ; kþi ; ki?Þ ¼ ðei � kiz; ei þ kiz; ki?Þ

¼
�
m2

i þ k2i?
xiM0

; xiM0; ki?
�
: (16)

It is easy to obtain

M0 ¼ e1 þ e2;

ei ¼ xiM0

2
þm2

i þ k2i?
2xiM0

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ k2i? þ k2iz

q
;

kiz ¼ xiM0

2
�m2

i þ k2i?
2xiM0

;

(17)
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where ei denotes the energy of the ith constituent. The

momenta ki? and kiz constitute a momentum vector ~ki ¼
ðki?; kizÞ and correspond to the components in the trans-
verse and z directions, respectively.

In the momentum space, the function �SSz appearing in
Eq. (9) is expressed as

�SSzð~p1; ~p2; 
1Þ ¼ h
1jRy
Mðx1; k1?; m1Þjs1i

� h00; 12s1j12Szi�ðx; k?Þ; (18)

where �ðx; k?Þ is the light-front wave function which
describes the momentum distribution of the constituents
in the bound state with x ¼ x2, k? ¼ k2?; h00; 12 s1j 12Szi is
the corresponding Clebsch-Gordan coefficient with total
spin of the scalar diquark s ¼ sz ¼ 0; and

h
1jRy
Mðx1; k1?; m1Þjs1i is the well-known Melosh trans-

formation matrix element which transforms the conven-
tional spin states in the instant form into the light-front
helicity eigenstates,

h
1jRy
Mðx1; k1?; m1Þjs1i

¼ �uðk1; 
1ÞuDðk1; s1Þ
2m1

¼ ðm1 þ x1M0Þ�
1s1 þ i ~�
1s1 � ~k1? � ~nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm1 þ x1M0Þ2 þ k21?

q ; (19)

where uðDÞ denotes a Dirac spinor in the light-front (in-

stant) form and ~n ¼ ð0; 0; 1Þ is a unit vector in the z
direction. In practice, it is more convenient to use the
covariant form for the Melosh transform matrix [8,11]

h
1jRy
Mðx1; k1?; m1Þjs1i

�
00;

1

2
s1

��������12 Sz
�

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp1 � �Pþm1M0Þ

p �uðp1; 
1Þ�uð �P; SzÞ; (20)

where

� ¼ 1; �P ¼ p1 þ p2; (21)

for the scalar diquark. If the diquark is a vector which is
usually supposed to be the case for the �cðbÞ baryon, the
Melosh transform matrix should be modified (since it is
irrelevant to our present work, we omit the corresponding
expressions).

The baryon state is normalized as

h�ðP0; S0; S0zÞj�ðP; S; SzÞi
¼ 2ð2�Þ3Pþ�3ð ~P0 � ~PÞ�S0S�S0zSz ; (22)

and the same for HðP; S; SzÞ.
Thus, the light-front wave function obeys the constraint

Z dxd2k?
2ð2�3Þ j�ðx; k?Þj2 ¼ 1: (23)

In principle, the wave functions can be obtained by
solving the light-front bound state equations. However, it
is too hard to calculate them based on the first principle, so
that instead, we would like to adopt a phenomenological
function, and obviously, a Gaussian form is most prefer-
able,

�ðx; k?Þ ¼ N

ffiffiffiffiffiffiffiffiffi
@k2z
@x2

s
exp

�� ~k2

2
2

�
; (24)

with

N ¼ 4

�
�


2

�
3=4

;
@k2z
@x2

¼ e1e2
x1x2M0

; (25)

where 
 determines the confinement scale. The phenome-
nological parameters in the light-front quark model are
quark masses and the hadron wave function parameter 

which should be prior determined before numerical com-
putations can be carried out, and we will do the job in the
later sections.

C. �Q ! H weak transitions

Equipped with the light-front quark model description of
j �QðP; SzÞ> and j HðP; SzÞ> , we can calculate the weak

transition matrix elements

h�QðP0; S0zÞ j �q��ð1� �5ÞQ j HðP; SzÞi
¼ NIF

Z
fd3p2g

� �0�
Hðx0; k0?Þ��Q

ðx; k?Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pþ
1 p

0þ
1 ðp1 � �Pþm1M0Þðp0

1 � �P0 þm0
1M

0
0Þ

q
� �uð �P0; S0zÞ ��0ðp6 0

1 þm0
1Þ��ð1� �5Þðp6 1 þm1Þ

� �Lmuð �P; SzÞ; (26)

where NIF is a flavor-spin factor of I (initial particle)
decaying into F (final particle). Following [14], the
flavor-spin functions of �b, proton and � take the forms
in the diquark picture

��b

S ¼ bS½u;d�; �p
S ¼ uS½u;d�;

�p
V ¼ ½uV½u;d� �

ffiffiffi
2

p
dV½u;u��=

ffiffiffi
3

p
��
S

¼ ½uS½d;s� � dS½u;s� � 2sS½u;d��=
ffiffiffi
6

p
;

��
V ¼ ½uV½d;s� � dV½u;s��=

ffiffiffi
2

p
;

(27)

where S and V denote the scalar and the axial-vector
diquark. We can get N�bp ¼ 1ffiffi

2
p , N�b� ¼ 1ffiffi

3
p , which are

consistent with [18], and

�� 0 ¼ �0��0 ¼ � ¼ 1; m1 ¼ mb;

m0
1 ¼ mq; m2 ¼ m½ud�;

(28)

with P and P0 denoting the momenta of initial and final
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baryons, and p1, p
0
1 are the momenta of b and c quarks,

respectively. Because the diquark is a scalar, one does not
need to deal with the spinors which make computations
more complex. In this framework, at each effective vertex,
only the three-momentum rather than the four-momentum
is conserved; hence ~p1 � ~p0

1 ¼ ~q and ~p2 ¼ ~p0
2. From ~p2 ¼

~p0
2, we have

x0 ¼ Pþ

P0þ x; k0? ¼ k? þ x2q?; (29)

with x ¼ x2, x
0 ¼ x02. Thus, Eq. (26) is rewritten as

hHðP0; S0zÞ j �q��ð1� �5ÞQ j �QðP; SzÞi ¼ NIF

Z dxd2k?
2ð2�Þ3

�Hðx0; k0?Þ��Q
ðx; k?Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x

0
1ðp1 � �Pþm1M0Þðp0

1 � �P0 þm0
1M

0
0Þ

q
� �uð �P0; S0zÞðp6 0

1 þm0
1Þ��ð1� �5Þðp6 1 þm1Þuð �P; SzÞ: (30)

Following [6,27], we get the final expressions for the �Q ! H weak transition form factors

f1ðq2Þ ¼ NIF

Z dxd2k?
2ð2�Þ3

�Hðx0; k0?Þ��Q
ðx; k?Þ½k2? � k02? þ ðx1M0 þm1Þðx01M0

0 þm0
1Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðm1 þ x1M0Þ2 þ k22?�½ðm0
1 þ x1M

0
0Þ2 þ k022?�

q ;

g1ðq2Þ ¼ NIF

Z dxd2k?
2ð2�Þ3

�Hðx0; k0?Þ��Q
ðx; k?Þ½�k2? � k02? þ ðx1M0 þm1Þðx01M0

0 þm0
1Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðm1 þ x1M0Þ2 þ k22?�½ðm0
1 þ x1M

0
0Þ2 þ k022?�

q ;

f2ðq2Þ
M�Q

¼ NIF

qi?

Z dxd2k?
2ð2�Þ3

�Hðx0; k0?Þ��Q
ðx; k?Þ½ðm1 þ x1M0Þk0i1? � ðm0

1 þ x01M
0
0Þki1?�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðm1 þ x1M0Þ2 þ k22?�½ðm0
1 þ x1M

0
0Þ2 þ k022?�

q ;

g2ðq2Þ
M�Q

¼ NIF

qi?

Z dxd2k?
2ð2�Þ3

�Hðx0; k0?Þ��Q
ðx; k?Þ½ðm1 þ x1M0Þk0i1? þ ðm0

1 þ x01M0
0Þki1?�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðm1 þ x1M0Þ2 þ k22?�½ðm0
1 þ x1M

0
0Þ2 þ k022?�

q :

(31)

It is noted that the form factors f3 and g3 cannot be
extracted in our method because we have imposed the
condition qþ ¼ 0. The fact that the calculated f2 and g2
at q2 ¼ 0 are small compared to f1 and g1 and the large-
energy limit relations f3 ¼ �f2 and g3 ¼ �g2 show that
using the large-energy limit relations for f3 and g3 does not
produce substantial theoretical errors.

III. SEMILEPTONIC AND NONLEPTONIC
DECAYSOF TRANSITION�b ! LIGHTHADRONS

In this section, we obtain formulations for the rates of
semileptonic and nonleptonic processes. In this work, we
are concerned with only the exclusive decay modes.

A. Semileptonic decays of �b ! pl ��l

Generally the polarization effects may be important for
testifying different theoretical models, so that we should
pay more attention to the physical consequences brought
up by them. The transition amplitude of �b ! p contains
several independent helicity components. According to the
definitions of the form factors for�b ! p given in Eq. (1),
the helicity amplitudesHV

i;j are related to these form factors

through the following expressions [28]:

HV
1=2;0 ¼

ffiffiffiffiffiffiffiffi
Q�

p
ffiffiffiffiffi
q2

p �
ðM�b

þM�c
Þf1 � q2

M�b

f2

�
;

HV
1=2;1 ¼

ffiffiffiffiffiffiffiffiffiffi
2Q�

p �
�f1 þ

M�b
þM�c

M�b

f2

�
;

HA
1=2;0 ¼

ffiffiffiffiffiffiffiffi
Qþ

p
ffiffiffiffiffi
q2

p �
ðM�b

�M�c
Þg1 þ q2

M�b

g2

�
;

HA
1=2;1 ¼

ffiffiffiffiffiffiffiffiffiffi
2Qþ

p �
�g1 �

M�b
�M�c

M�b

g2

�
;

(32)

where Q� ¼ 2ðP � P0 �M�b
MpÞ ¼ 2M�b

Mpð!� 1Þ.
The helicities of the W boson 
W can be either 0 or 1,

corresponding to the longitudinal and transverse polariza-
tions. Following the definitions in literature, we decompose
the decay width into a sum of the longitudinal and trans-
verse parts according to the helicity states of the virtual
W boson. The differential decay rate of �b ! pl ��l is

d�

d!
¼ d�L

d!
þ d�T

d!
; (33)

and the longitudinally (L) and transversely (T) polarized
rates are, respectively [28],
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d�L

d!
¼ G2

FjVubj2
ð2�Þ3

q2pcMp

12M�b

½jH1=2;0j2 þ jH�ð1=2Þ;0j2�;

d�T

d!
¼ G2

FjVubj2
ð2�Þ3

q2pcMp

12M�b

½jH1=2;1j2 þ jH�ð1=2Þ;�1j2�;
(34)

where pc ¼ Mp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 � 1

p
is the momentum of the proton in

the rest frame of �b. The relations between Hi;j and HV
i;j

can be found in [28]. Integrating over the solid angle, we
obtain the decay rate as

� ¼
Z !max

1
d!

d�

d!
; (35)

where the upper bound of the integration

!max ¼ 1

2

�
M�b

Mp

þ Mp

M�b

�

corresponds to the maximal recoil. In order to compare our

results with those in the literature, we use the variable ! in
the expression for the differential decay rate.
The polarization of the cascade decay �b ! pþWð!

l�Þ is expressed by various asymmetry parameters [28,29].
Among them, the integrated longitudinal and transverse
asymmetries are defined by

aL ¼
R!max

1 d!q2pc½jH1=2;0j2 � jH�1=2;0j2�R!max

1 d!q2pc½jH1=2;0j2 þ jH�1=2;0j2�
;

aT ¼
R!max

1 d!q2pc½jH1=2;1j2 � jH�1=2;�1j2�R!max

1 d!q2pc½jH1=2;1j2 þ jH�1=2;�1j2�
:

(36)

The ratio of the longitudinal to transverse decay rates R is
defined by

R ¼ �L

�T

¼
R!max

1 d!q2pc½jH1=2;0j2 þ jH�1=2;0j2�R!max

1 d!q2pc½jH1=2;1j2 þ jH�1=2;�1j2�
; (37)

and the longitudinal proton polarization asymmetry PL is
given as

PL ¼
R!max

1 d!q2pc½jH1=2;0j2 � jH�ð1=2Þ;0j2 þ jH1=2;1j2 � jH�1=2;�1j2�R!max

1 d!q2pc½jH1=2;0j2 þ jH�ð1=2Þ;0j2 þ jH1=2;1j2 þ jH�1=2;�1j2�
¼ aT þ RaL

1þ R
: (38)

B. Nonleptonic decay of �b ! pþM

From the theoretical aspects, the nonleptonic decays are
much more complicated than the semileptonic ones be-
cause of the strong interaction. Generally, the present
theoretical framework is based on the factorization as-
sumption, where the hadronic matrix element is factorized
into a product of two matrix elements of single currents.
One can be written as a decay constant while the other is
expressed in terms of a few form factors according to the
Lorentz structure of the current. For the weak decays of
mesons, such a factorization approach is verified to work
very well for the color-allowed processes and the non-
factorizable contributions are negligible.

For the nonleptonic decays �0
b ! pþM, the effective

interaction at the quark level is b ! u �q1q2. The relevant
Hamiltonian is

H W ¼ GFffiffiffi
2

p VubV
�
q1q2ðc1O1 þ c2O2Þ;

O1 ¼ ð �ubÞV�Að �q2q1ÞV�A;

O2 ¼ ð �q2bÞV�Að �uq1ÞV�A;

(39)

where ci denotes the short-distance Wilson coefficient,
VubðVq1q2Þ is the CKM matrix elements, q1 stands for u,

and q2 for d in the context. Then one needs to evaluate the
hadronic matrix elements

hpMjHW j�bi ¼ GFffiffiffi
2

p VubV
�
q1q2

X
i¼1;2

cihpMjOij�bi: (40)

Under the factorization approximation, the hadronic ma-
trix element is reduced to

hpMjOij�bi ¼ hpjJ�j�bihMjJ0�j0i; (41)

where JðJ0Þ is the V � A weak current. The first factor
hpjJ�j�bi is parametrized by six form factors as was done

in Eq. (1). The second factor defines the decay constants as
follows:

hPðPÞjA�j0i¼ fPP�; hSðPÞjV�j0i¼ fSP�;

hVðP;�ÞjV�j0i¼ fVMV�
�
�; hAðP;�ÞjA�j0i¼ fVMA�

�
�;

(42)

where PðVÞ denotes a pseudoscalar (vector) meson, and
SðAÞ denotes a scalar (axial-vector) meson. In the defini-
tions, we omit a factor ð�iÞ for the pseudoscalar meson
decay constant.
In general, the transition amplitude of �b ! p�� can

be written as

Mð�b ! pPÞ ¼ �upðAþ B�5Þu�b
;

Mð�b ! pVÞ ¼ �up�
��½A1���5 þ A2ðp�c

Þ��5 þ B1��

þ B2ðp�c
Þ��u�b

; (43)

where �� is the polarization vector of the final vector or
axial-vector mesons. Including the effective Wilson coef-
ficient a1 ¼ c1 þ c2=Nc, the decay amplitudes under the
factorization approximation are [30,31]
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A ¼ 
fPðM�b
�M�c

Þf1ðM2Þ;
B ¼ 
fPðM�b

þM�c
Þg1ðM2Þ;

A1 ¼ �
fVM

�
g1ðM2Þ þ g2ðM2ÞM�b

�M�c

M�b

�
;

A2 ¼ �2
fVM
g2ðM2Þ
M�b

;

B1 ¼ 
fVM

�
f1ðM2Þ � f2ðM2ÞM�b

þM�c

M�b

�
;

B2 ¼ 2
fVM
f2ðM2Þ
M�b

;

(44)

where 
 ¼ GFffiffi
2

p VubV
�
q1q2a1 and M is the � mass. Replacing

P, V by S and A in the above expressions, one can easily
obtain similar expressions for scalar and axial-vector
mesons.

The decay rates of �b ! p�� and up-down asymme-
tries are [31]

� ¼ pc

8�

�ðM�b
þMpÞ2 �M2

M2
�b

jAj2

þ ðM�b
�MpÞ2 �M2

M2
�b

jBj2
�
;

	 ¼ � 2�ReðA�BÞ
jAj2 þ �2jBj2 ;

(45)

where pc is the proton momentum in the rest frame of �b

and � ¼ pc=ðEp þMpÞ. For �b ! �cVðAÞ decays, the

decay rates and up-down asymmetries are

�¼pcðEpþMpÞ
8�M�b

�
2ðjSj2þjP2j2Þþ E2

M2
ðjSþDj2þjP1j2Þ

�
;

	¼ 4M2ReðS�P2Þþ2E2ReðSþDÞ�P1

2M2ðjSj2þjP2j2ÞþE2ðjSþDj2þjP1j2Þ
; (46)

where E is the energy of the vector (axial-vector) meson,
and

S ¼ �A1; P1 ¼ �pc

E

�
M�b

þMp

Ep þMp

B1 þ B2

�
;

P2 ¼ pc

Ep þMp

B1; D ¼ � p2
c

EðEp þMpÞ ðA1 � A2Þ:
(47)

C. Nonleptonic decay �b ! �þM

Theses decays proceed only via the internalW emission.
With the factorization assumption, the amplitude is

Að�b ! �MÞ ¼ GFffiffiffi
2

p VqbV
�
q0sa2hMj �q0��ð1� �5Þqj0i

� h�j�s��ð1� �5Þbj�bi: (48)

In general, we can use the same formula [Eqs. (42)–(47)]
to obtain the decay rates and up-down asymmetries of
�b ! �þM. Note that (1) at this time 
 is replaced by
GFffiffi
2

p VubV
�
q1q2a2, and (2) when q and �q0 are u and �u, respec-

tively, the final meson may be �0, �, or �0.
For the decay constants of �0, �, and �0, we have

h�0j �u���5uj0i ¼ fu
�0P�; h�j �u���5uj0i ¼ fu�P�;

h�0j �u���5uj0i ¼ fu�0P�; (49)

where fu
�0 ¼ f�ffiffi

2
p , fu�, and fu�0 can be gotten from [1].

IV. NUMERICAL RESULTS

In this section we perform the numerical computations
of the form factors for �b ! p and �b ! �; then using
them we estimate the rates of�b ! pþ l�,�b ! pþM,
and �b ! �þM where M stands for various mesons.
In our calculation, the quark masses of mb and ms are

taken from [27]; mu is set to be 0.3 GeV; the mass of
diquark [ud], parameters 
b;½ud�, 
s;½ud�, and 
u;½ud� are

chosen from [6,11,27]. The baryon masses M�b
¼

5:624 GeV, Mp ¼ 0:938 GeV, and � ¼ 1:116 GeV

come from [4]. The input parameters are collected in
Table I.

A. Form factor

In LFQM, the calculation of form factors is performed in
the frame qþ ¼ 0with q2 ¼ �q2? � 0, and only the values
of the form factors in the spacelike region can be obtained.
The advantage of this choice is that the so-called Z-graph
contribution arising from the nonvalence quarks vanishes.
In order to obtain the physical form factors, an extrapola-
tion from the spacelike region to the timelike region is
required. Following [27], the form factors in the spacelike
region can be parametrized in a three-parameter form as

Fðq2Þ ¼ Fð0Þ
ð1� q2

M2
�b

Þ½1� að q2

M2
�b

Þ þ bð q2

M2
�b

Þ2�
; (50)

where F represents the form factors f1;2 and g1;2. The
parameters a, b, and Fð0Þ are fixed by performing a
three-parameter fit to the form factors in the spacelike
region which were obtained in previous sections. We
then use these parameters to determine the physical form

TABLE I. Input parameters in LFQM (in units of GeV).

mb ms mu m½ud� 
u;½ud� 
b;½ud� 
s;½ud�
4.4 0.45 0.3 0.5 0.3 0.4 0.3
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factors in the timelike region. The fitted values of a, b, and
Fð0Þ for different form factors f1;2 and g1;2 are given in

Tables II and III. The q2 dependence of the form factors is
plotted in Fig. 1.

From Fig. 1, we can see that there is only a tiny differ-
ence between f1 and g1, i.e. they are close to each other. g2
is small compared to f1 and g1. This is the same as the
conclusion of [6,32]. But the difference between f2 and g2
increases as q2 increases. This will break the large-energy
limit relation f1 þ f2 ¼ g1 � g2 proposed in Sec. II A.

Our method of smooth extrapolation of form factors
from space- to timelike momentum regions is by no means
an analytical continuation in the rigorously mathematical
sense but an extension, although it is used in many phe-
nomenological analyses. In [33], the authors suggest to

write the form factor as a dispersion relation in q2 with a
lowest-lying pole plus a contribution from multiparticle
states. We follow this scheme and use a parametrization
method adopted in [34]

Fðq2Þ ¼ r1

ð1� q2

M2
fit

Þ
þ r2

ð1� ð q2
M2

fit

Þ2Þ
: (51)

The parameters r1, r2, and Mfit are fixed in the spacelike
regions for the transition of �b ! p. The results are pre-
sented in Table IV. We also plot the form factors in the new
parametrization method in Fig. 1 for comparison. From
Fig. 1, we can find there is a little difference between the
form factors fitted by the above two methods. In particular,
the f1 and g1 in the two methods are nearly the same. The
difference of f2 and g2 in the methods increases when q2

increases, but due to the smallness of their values, they will
not produce substantial errors to our predictions.

B. Semileptonic decay of �b ! pþ l ��l

With the form factors given in the previous section, we
are able to calculate the branching ratio and various asym-
metries of �b ! pl ��l decay. Table V presents our numeri-
cal predictions. The ratio of longitudinal to transverse rates
R> 1 implies that the longitudinal polarization dominates.

TABLE III. The �b ! � form factors in the three-parameter
form.

F Fð0Þ a b

f1 0.1081 1.70 1.60

f2 �0:0311 2.50 2.50

g1 0.1065 1.70 1.40

g2 �0:0064 2.70 2.70

TABLE II. The �b ! p form factors in the three-parameter
form.

F Fð0Þ a b

f1 0.1131 1.70 1.60

f2 �0:0356 2.50 2.57

g1 0.1112 1.65 1.60

g2 �0:0097 2.80 2.70

TABLE IV. The �b ! p form factors in the form of Eq. (51).

F r1 r2 Mfit

f1 �0:183 0.295 6.8

f2 �0:176 0.287 6.8

g1 0.080 �0:114 6.8

g2 0.023 �0:032 6.8

FIG. 1 (color online). (a) Form factors f1 and g1 of �b ! p. (b) Form factors f2 and g2 of �b ! p.
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Nonleptonic decays of �b ! pþM and �b ! �þM

The nonleptonic decays �b ! pð�Þ þM in the facto-
rization approach have been studied in the previous sec-
tion. Now, we present our numerical predictions on the
decay rates and relevant measurable quantities. The CKM
matrix elements take the values [4]

Vud ¼ 0:97377; Vus ¼ 0:2257;

Vcd ¼ 0:230; Vcs ¼ 0:957;

Vcb ¼ 0:0416; Vub ¼ 0:00413;

(52)

and the effective Wilson coefficient a1 ¼ 1 [27], a2 ¼
0:23 [18]. The meson decay constants are shown in
Table VI.

The predictions for �0
b ! pþM are provided in

Table VII. Table VIII demonstrates a comparison of our
result with other approaches and experimental data for
�0

b ! �J=c . In Table IX we give predictions on the rates

of �0
b ! �þ meson.

From Table VIII we can find that there are some differ-
ences among the predictions by various theoretical ap-
proaches. In our calculation, f1ðm2

J=c Þ, g1ðm2
J=c Þ are

nearly equal; however, g1ðm2
J=c Þ is bigger than f1ðm2

J=c Þ
in [18,31].

V. CONCLUSION

In this work, we carefully investigate the processes
where a heavy baryon decays into a light baryon plus a
lepton pair (semileptonic decay) or a meson (nonleptonic
decay) in terms of the LFQM. Besides the regular input
parameters such as the quark masses and well-measured
decay constants of various mesons, there is only one free
parameter to be determined, that is 
 in the light-front
wave function. In our earlier work [6], by fitting the data of
the semileptonic decays �b ! �c þ lþ ��, we obtained
the values of 
b½ud�. Similarly, we fix the values 
u;½ud� for
proton and 
s;½ud� for �.

Our numerical results are shown in corresponding tables
and some measurable quantities such as the up-down
asymmetries are also evaluated. A clear comparison of

TABLE VI. Meson decay constants f (in units of MeV)
[11,18].

Meson � � K K� D D� Ds D�
s a1 J=c

f 131 216 160 210 200 220 230 230 203 395

TABLE IX. Branching ratios and up-down asymmetries for
nonleptonic decay �0

b ! �þM with different theoretical ap-

proaches.

Branching ratios Up-down asymmetries

�0
b ! �þ �0 7:49� 10�8 �1

�0
b ! �þ � 5:46� 10�8 �1

�0
b ! �þ �0 2:29� 10�8 �1

�0
b ! �þD0 4:54� 10�5 �0:998

�0
b ! �þD0� 4:78� 10�5 �0:551

�0
b ! �þ �D0 8:76� 10�6 �0:998

�0
b ! �þ �D0� 5:08� 10�6 �0:551

TABLE V. The branching ratios and polarization asymmetries
of �b ! pl ��l.

BR aL aT R PL

2:54� 10�4 �0:99 �0:96 1.11 �0:97

TABLE VII. Branching ratios and up-down asymmetries for nonleptonic decay �0
b ! pþM.

Branching ratios Up-down asymmetries Exp.

�0
b ! pþ �� 3:15� 10�6 �1 ð3:5� 0:6ðstatÞ � 0:9ðsystÞÞ � 10�6

�0
b ! pþ � 6:12� 10�6 �0:873 � � �

�0
b ! pþ a1 4:08� 10�6 �0:741 � � �

�0
b ! pþD� 5:75� 10�7 �0:998 � � �

�0
b ! pþD�� 6:05� 10�7 �0:546 � � �

�0
b ! pþDs 1:36� 10�5 �0:997 � � �

�0
b ! pþD�

s 6:70� 10�6 �0:514 � � �
�0

b ! pþ K 2:58� 10�7 �1 ð5:8� 0:8ðstatÞ � 1:5ðsystÞÞ � 10�6

�0
b ! pþ K� 3:21� 10�7 �0:850 � � �

TABLE VIII. Branching ratio and up-down asymmetry for nonleptonic decay �0
b ! �J=c

within different theoretical approaches and data from experiment.

This work [21] [31] [35] [36] Exp. [4]

Brð�10�4Þ 3.94 1.65–5.271:65	 5:27 1.6 2.55 6.037 4:7� 2:8
	 �0:204 �0:17–� 0:14 �0:1 �0:208 �0:18 � � �
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our prediction on the decay rate of �b ! �þ J=c with
the results predicted by other models and as well as the
experimental data is also explicitly presented. One can
notice that our result for �b ! �þ J=c is 3:94� 10�4

which is in good agreement with the data. The success is
not too surprising even though the model we adopt is much
simplified. Definitely this value obtained in this work is
closer to the central value of measurement than the pre-
vious evaluations, but since there is a large uncertainty in
the data, one still cannot justify which model is more
preferable than the others because within 2 standard devia-
tions, all the numerical results achieved with all the ap-
proaches listed in the tables are consistent with data. The
asymmetry parameter which may be important for deter-
mining the applicability of the adopted model is estimated
as�0:204, which is generally consistent with that obtained
in other models and approaches. Of course, the details,
especially the branching ratios, will be further tested by
more accurate experiments in the future.

Besides the semileptonic decays, we also estimate the
branching ratios of several nonleptonic decay modes which
are listed in Table VIII. Recently the CDF Collaboration
[37] measured the branching ratios of �b ! pþ �� and
�b ! pþ K� as BRð�b ! pþ ��Þ ¼ ð3:5�
0:6ðstatÞ � 0:9ðsystÞÞ � 10�6 and BRð�b ! pþ K�Þ ¼
ð5:8� 0:8ðstatÞ � 1:5ðsystÞÞ � 10�6. Our prediction on
BRð�b ! pþ ��Þ ¼ ð3:15� 10�6Þ is consistent with
the measurement of the CDF within 1 standard deviation,
but for BRð�b ! pþ K�Þ our value is 2:58� 10�7, 1 or-
der smaller than the data of the CDF Collaboration.
Following the literature, in our calculation, we employ
the factorization scheme where the emitted pseudoscalar
meson (� or K) is factorized out and described by the
common-accepted form factor h0jA�jMi ¼ ifMp�, where

A�, fM, and p� are the corresponding axial current, decay

constant of meson M, and its four-momentum, respec-
tively. It is noticed that in the case �b ! pþ ��, at the
vertex W� �ud the Cabibbo-Kabayashi-Maskawa entry is
approximately cos�C 
 1, whereas for the case�b ! pþ
K�, the CKM entry is sin�C 
 0:22; thus comparing with
�b ! pþ ��, the amplitude of the process �b ! pþ
K� is suppressed by a factor fKf�

sin�C 	 0:27. Thus besides

a small difference between the final phase spaces of the two
reactions, one can roughly estimate that BRð�b !
pþ K�Þ=BRð�b ! pþ ��Þ 	 0:07, and this estimate is
consistent with our numerical results. Therefore the small-
ness of BRð�b ! pþ K�Þ seems reasonable. However
the data of CDF show completely different results where
BRð�b ! pþ K�Þ is anomalously larger than BRð�b !
pþ ��Þ.

In fact, in our calculations on the nonleptonic decays, we
only consider the contributions from the tree diagrams and
neglect the penguin-loop effects. For the mode of �b !
pþ ��, the penguin contribution can be safely neglected
compared to the tree level. However, for the mode of�b !

pþ K�, the tree level contribution is suppressed by the
Cabibbo-Kabayashi-Maskawa entry VubV

�
us, while for the

penguin diagram, the main contribution comes from the
loop where the top quark is the intermediate fermion. In the
case, the CKM entry would be VtbV

�
ts which is almost

2 orders larger than VubV
�
us. Thus even though there is a

loop suppression of order 	s=4�, it is compensated for by
the much larger CKM entry. This situation was discussed
in [38] where the authors used the pQCD method to carry
out the calculations. In fact, we make a rough estimation of
the contribution from the top penguin, and the result is
almost 5 times larger than the contribution from the tree
diagram given above.
However, from another aspect, when the penguin dia-

gram is taken into account, the factorization is dubious.
That is why we do not include the loop contributions in this
present work, but will make a detailed discussion in our
coming paper.
Actually, even including the penguin contribution, the

theoretically estimated branching ratio of BRð�b ! pþ
K�Þ is still below the data and obviously smaller than that
of BRð�b ! pþ ��Þ. If this measurement is valid and
approved by further experiments, it would be a new anom-
aly which may hint at an unknown mechanism which
dominates the transition or new physics beyond the stan-
dard model1 and it is also consistent with the result of [38].
The good agreement of our results on the semileptonic

decays of�b to light baryon and several nonleptonic decay
modes with data indicates the following points.
First, the diquark picture: as we know, two quarks in a

color-antitriplet attract each other and constitute a Cooper-
pairlike subject of spin 0 or 1. However, until now, many
theorists still doubted the justifiability of the diquark pic-
ture. It is true that even though the diquark structure was
raised almost as early as the birth of the quark model, its
validity or reasonability of application is still in sharp
dispute. In fact, it should be rigorously testified by experi-
ments. We have argued that for some processes, the di-
quark picture may be more applicable than in the others.
Actually, in our case, we can convince ourselves that the
picture should apply. As aforementioned, the diquark is
only a spectator in the transitions which we are concerned
with in this work; therefore its inner structure may not
affect the numerical results much. Secondly, the produced
baryon is very relativistic, i.e. very close to the light cone;
generally the details of the inner structure of the spectator
diquark may not be important. This interpretation is some-
how similar to the parton picture which was conceived by
Feynman and Bjorken a long time ago. Namely, at very
high energy collisions, the interaction among partons can
be ignored at the leading order. thus in our case the

1We thank Tonelli [37] for bringing our attention to the new
measurements of the CDF Collaboration on BRð�b ! pþ ��Þ
and BRð�b ! pþ K�Þ.
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interaction between the quark which undergoes a transition
and the spectator diquark should be weak and negligible.
Third is that the small effects caused by the inner structure
of the diquark may be partly included in the parameter
 of
the light-front wave function. The agreement with data
indicates that the diquark picture and the light-front quark
model indeed apply in the analysis of the heavy baryon
transiting into a light one.

Moreover, since we employ the factorization scheme to
deal with the nonleptonic decays, we find that to some
modes, it works well, but to some modes where loop
contributions may dominate or just are comparable to the
tree contributions, the scenario encounters serious chal-
lenges [39].

We further investigate the measurable polarization
asymmetries. Because the information on the polarization
asymmetries may be more sensitive to the model adopted
in the theoretical calculations than the decay width, accu-
rate measurements would discriminate against various
models and indicate how to improve the details of the
models.

Moreover, we also predict the rates and asymmetries of
several similar modes of �b nonleptonic decays in the

same model, and the results are listed in Tables VII and
VIII. The numbers will be tested in the future.
Fortunately, the high luminosity at LHCb can provide a

large database on �b and moreover, with great improve-
ments of the experimental facility and the detection tech-
nique, we expect that more and more accurate
measurements will be carried out in the near future and
theorists will be able to further testify, improve, or even
negate our present models. Indeed, the baryons are much
more complicated than mesons, but careful studies on the
processes where baryons are involved would be very bene-
ficial for getting better insight into the hadron structure and
underlying principles, especially the nonperturbative QCD
effects including the factorization and plausibility of the
diquark picture. The LHCb will be an ideal place to do the
job.
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