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CP violation in B, decays and final state strong phases
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Using the unitarity, SU(2) and C invariance of hadronic interactions, the bounds on final state phases
are derived. It is shown that values obtained for the final state phases relevant for the direct CP
asymmetries A-p(B® — K7, K°7°) are compatible with experimental values for these asymmetries.
For the decays B® — D)~ 'zr+ (D("‘)Jr 7~ ) described by two independent single amplitudes A, and A with
different weak phases (0 and vy) it is argued that the C invariance of hadronic interactions 1mphe§ the
equality of the final state phase 6, and 5’ This in turn implies that the CP asymmetry = 5= is determined
s+ S_

2

by weak phase (28 + 7y) only, whereas = 0. Assuming factorization for tree graphs, it is shown that
the B — D' form factors are in excellent agreement with the heavy quark effective theory. From the
experimental value for (S*+S )p*m» the bound sin(2B8 + y) = 0.69 is obtained and ( *+S )D g =
—(0 41 = 0.08) siny is predlcted For the decays described by the amplitudes Ay # Ay such as B —

ptm : A7 and B> p 7t A ¢ where these amplitudes are given by tree and penguin dlagrams with

different weak phases, it is shown that in the limit 6
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-2
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I. INTRODUCTION

The CP asymmetries in the hadronic decays of B and K
mesons involve strong final state phases. Thus, strong
interactions in these decays play a crucial role. The short
distance strong interactions effects at quark level are taken
care of by perturbative QCD in terms of Wilson coeffi-
cients. The Cabbibo-Kobayashi-Maskawa matrix, which
connects the weak eigenstates with mass eigenstates, is
another aspect of strong interactions at the quark level. In
the case of semileptonic decays, the long distance strong
interaction effects manifest themselves in the form factors
of final states after hadronization. Likewise, the strong
interaction final state phases are long distance effects.
These phase shifts essentially arise in terms of the S matrix,
which changes an ““in”” state into an “out” state viz.

|f>in = S|f>0ut = %% |f>0ut' (1)

In fact, the CPT invariance of v_veak interaction
Lagrangian gives for the weak decay B(B) — f(f)

Af =out <f|£w|B> = nfeszAf *. (2)

Taking out the weak phase ¢, the amplitude A, can be
written as

Af = €i¢Ff == €i¢€i5f|Ff|. (3)
Then Eq. (2) implies
Af = e_"‘ﬁez"‘sfF;i = e_i¢Ff.

It is difficult to reliably estimate the final state strong
phase shifts. It involves the hadronic dynamics. However,
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— 0, rffcoséff = cosa and

PACS numbers: 13.25.Hw, 12.15.Ji, 14.40.Nd

using isospin, C invariance of S matrix and unitarity, we
can relate these phases. In this regard, the following cases
are of interest:

Case (i) The decays B — f, f are described by two
independent single amplitudes Ay and A} with different

weak phases:
Ar = <f|‘£W|B0> = €i¢Ff' = ei(ﬁei&f'lF‘f‘l
AL = (FIL4,1B%) = i Fl. = ¢4 ¢ 1| F]|

where the states |f) and |f) are the C conjugate of each
other such as states DW= 7T (DM * 77),
DY KDY K™), D pt (D p).

For case (i), there is an added advantage that the decay
amplitudes A, and A; are given by tree graphs. Assuming
factorization for tree amplitudes, it is shown that the form
factors fEP(m2), AE~P"(m%), f5 P(m2) obtained from
the experimental branching ratios are in excellent agree-
ment with the heavy quark effective theory (HQET).
Hence, factorization assumption is experimentally on
sound footing for these decays.Case (ii) The weak ampli-
tudes A ¢ F A 7

Ap = (fI1Ly|B% = [e'® F\; + /2 F,;]
A7 = (FILWIBY) = [e91Fy; + ¢ Fyf]
as is the case for the following decays:

B’ — p~ @t (f): Ay, B — pt 7 (f): Aj

B(S) N K*_K+, Bg N K*-%—K— BO — D*_D+,

e 0 ¥ = 0 w— 1yt 0 w1y

*fayyazuddins @gmail.com B — D""D B; — D; Dy, B; — D" Dy .
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The C invariance of the S matrix gives S; = Sy, which
implies

terms of Regge trajectories are given by [3-5]

M =P+ f+A,
6f=6/7, 81f= 51]?, 52f= 82JF

c e—iwap(t)/Z "
B F sinwa,(1)/2 (s/50)
II. UNITARITY AND FINAL STATE STRONG 1+ e ime® o)

PHASES 20— 0 (s/s0)*™, (9

The time reversal invariance gives "

1 — —ima(t

Fr ={f1Ly|B) =(f| Lw|B)", “) MO = p+w=2C,————(s/50)*".
out in P smﬂ'a(t)

where L, is the weak interaction Lagrangian without the (10)

Cabbibo-Kobayashi-Maskawa factor such as V;,,V,;,. From

For linear Regge trajectories, using exchange degen-
Eq. (4), we have

eracy, we have
Fy S{ISTLyIB) = 3., o ) a, () = ay () = a,(1) = a;(1) = a® + o',
n

. S . t) = 0) + ' (1), Cr=0C,;

It is understood that the unitarity equation that follows ap(t) = a,(0) + e}, (1) ! @

from time reversal invariance holds for each amplitude Cy, = Cps C, =C, (11)

with the same weak phase. The above equation can be _ ;L o _

written in two equivalent forms: We take a, ~_12/ 2, @ = 1 GeV™2, ,(0) - L
(1) Exclusive version of unitarity [1,2] ~0.25GeV™". Using SU(3) and taking

Writing YpDtD™ = 7,01(*1( ,we getC Youta 7’;;1(*1(* =
Ypata=YpD* D 2 7()’ Yo = Yputas 7() ~172 [3]

Sup = Onp T iMyy (6) Hence, for 7D~ or m~ K™ scattering we get
we get from Eq. (5), M =MD + pm-)
1 ) . o y
ImF, = 3 ZM:an’ 7 = iCpe’(s/sy) + 27(2)16“ (In(s/so) ”T)’(s/so)l/z,
" (12)
where M, ( is the scattering amplitude for f — n and
. nf . £amp f . where b = al In(s/s).
F, is the decay amplitude for B — n. In this version, For 7°D° — 7+ D~. 79K0 — 7 K+
the sum is over all allowed exclusive channels. This ’
version is more suitable in a situation where a single Same) — i —ima(n/2 o
exclusive channel is dominant one. To get the final = EIV2M7 = *i2 C ( /2 —————(s/50)*".
result, one uses the dispersion relation. In the dis- (13)

persion relation two particle unitarity gives a domi-

nant contribution. From Eq. (7), using the two
particle unitarity, we get [1],

0
1 — ) = * —
Dise F(B— /)~ Lx, M, F(B = f)d,
€))
where t = —2p*(1 — cosf), |p| = 1./s. Equation

(8) is especially suitable to calculate rescattering
corrections to color suppressed 7" amplitude in terms
of color favored 7 amplitude as, for example, re-
scattering correction to color suppressed decay
B° — 7°D°(f) in terms of dominant decay mode
B — 7* D~ (f). Before using two particle unitarity
in this form, it is essential to consider two particle
scattering processes.

SU(3) or SU(2) and the C invariance of the S matrix
can be used to express scattering amplitudes in
terms of two amplitudes M+ and M~, which in
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From Eqgs. (8) and (13) with the use of dispersion
relation, we obtain

\/_’)/O(l—l)A(BO—>7T D7)
167 [lnﬁ—i-%’]

. [ ~(s/50)®
(mp+mp)* § — mB
— —2eA(B"— 7w D7 )e?. (14)

A(BO g 7TOD0)F ST —

We get € = 0.06, 6 = 33° by putting s = m% in
In(s/sy). Now A(B® — 7t D~) = T. Hence, with
rescattering correction [6]

\/zeTe"’

C—
i} e

A(B® — 7°D") =

§||<3§||~
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where 2b = C/T. Hence, the final state phase shift
6 for the color suppressed amplitude induced by
the final state interaction is given by

€/b sinf

tandp = — o0,
ande 1+ €/bcosh

S~ 8° (16)

with b = 0.174, which we get from

I'(B®— #*D™) _ 1

g ~ 0.55 = 0.03.
T(B* — 7 D% (I +2b)?

A7)

For B® — 79K°, the color suppressed T-amplitude
with rescattering correction is given by

1 . 1 € .
——=C + V2eTe? = ——C[l N —6’9], 18
where 2b = C/T = 0.37 [7]. Hence, 8 generated
by the final state interaction is given by

—€/b sinf

tandp = — LOSNT
anoe 1 —€/bcosh

Oc = —8°. (19)
To conclude, the scattering amplitude M (s, t) for the
two particle final state obtained in Eq. (13) is used in
the unitarity equation to generate the final state
strong phase by rescattering for the color suppressed
tree amplitude.
Inclusive version of unitarity [2]
This version is more suitable for our analysis. For
this case, we write Eq. (5) in the form

F; =S5, Fp= Y Si F,. (20)

n#f

Parametrizing the S matrix as Sy = § = ne?A [5],
0 = 1 = 1, we get after taking the absolute square
of both sides of Eq. (20)

IFPL(1 + 1%) = 21 cos2(8; — A)]
= > F,S5Fi S,y (1)

The above equation is an exact equation. In the
random phase approximation [2], we can put

Z FnS:;an’Sn’f = ZlI:nlzlSnfl2
n' .n#f n#f

=IF,PA=n). (22
We note that in a single channel description [5,8]
(Flux)iy — (Flux)gy = 1 — |22 = 1 — 2
= Absorption.

The absorption takes care of all the inelastic
channels.
Similarly for the amplitude F 7, We have
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Fy = St:Fp= 3 S, :Fa (23)
atf
The C invariance of the S matrix gives
Sa = {f1SIn) = (fIC~'CSC'Cln)
= (f1SIa) = S7. (24)

Thus, in particular, the C invariance of the S matrix
gives

Sip =Sy = mes. (25)

Hence, from Eq. (21), using Egs. (22)—(25), we get

1
g [(1 + n?) —2ncos2(8,7 — A)] = p?, p?,
(26)
where
|F,I? |F;I?
2 — n -2 __ i
= , = . 27)
iF 2 P TR

From Eq. (26), we get

1 —7n? 1 —n7/2
sin(8,7 — A) = = 47;7 [p2, P13 Z] .
(28)
The maximum value for p?, 52 is 1, and the mini-
mum value for them is };—Z Hence, we get the
following bounds:

1_—n§p2’p2§1

—_—

_I._
3
—~
[\®]
O
~

1 —
0 = sin~ ! |— 1. (30)

From now on, we will confine our self to positve
square root in Equation (28).

The strong interaction parameter A and 7 in the
above bounds can be obtained from the scattering
amplitude M(s, 1) given in Eq. (12) obtained from
the Regge pole analysis. The s-wave scattering am-
plitude f is given by

1 0
fzﬁ[_sM(S, t) (31)

For the scattering amplitude M = M* + M~ rele-

vant for 7D, w K", and w1 7, we obtain from
Eq. (31) using Eq. (12)

f=rnt+i
_ ! iip(i) IO/
167s b \sg 167 In(s/sy) — i
X (s/s0) "1/, (32)
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0.12i + (—0.08 + 0.08i)
= 0.17; + (—0.08 + 0.08{) |, (33)
0.16i + (—0.16 = 0.161)

where we have used s = m% =~ (5.27)?> GeV?. For
Cp we have used the values of Ref. [2], whereas for
Cp =Yprta Ypktk~ = Yputa YpD*D™ = %7(2) and
Cp="Yputn Yputn = V4 =72 for mD, wK and
m, respectively.

Using the relation § = ne*® = 1 + 2if, where f is
given by Eq. (33), the phase shift A, the parameter 7
and the phase angle # can be determined. One gets

7 D (m™DT): A= —-7°, 17 =0.620 = 26°
7Kt or 7K%: A= —9° 79 =05260=29°

mtaT A= =21°, 7 ~=048 0 = 31°.

(34)
Hence, we get the following bounds:
7D (mTDT): 0=5;;— A =26°
7 Kt or 7K%:0=6;,—A=29°
mtar 0= 6,— A=3l" (35)

Further we note that for these decays, the b quark is
converted into the ¢ or the u quark b — c(u) + @ +
d(s). In particular, for the tree graph, the configura-
tion is such that i and d(s) essentially go together
into a color singlet state with the third quark c(u)
recoiling; there is a significant probability that the
system will hadronize as a two body final state [9].
This physical picture has been put on the strong
theoretical basis [10,11], where in these references
the QCD factorization have been proven. For the
tree amplitude, factorization implies 6; = 0. We,
therefore take the point of view that the effective
final state phase shift is given by 6, — A. We take
the lower bound for the tree amplitude so that the
final state effective phase shift 5; = 0. Thus, for
7D (7~ D7), 5} = S’fT = 0.

The decay B — 77~ K™ is described by two ampli-
tudes [7]

ABY — 7 K%)= —[P + ¢T]
= |PI[1 = re’*2)], (36)
where
P = —|Ple ", T = |T|e"r,

|7
S._ = Op, r=-—.
+ P |P|
The decay B — 7°K° is described by the two
amplitudes [7]
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1 )
A BO — 7TOK0 = —_|P| 1+ r el(7+54uJ) (37
where
. C
C = |Cle’c, Ogp = O¢c T 6p, o™ %

For these decays, we use the lower bounds in
Eq. (35) for the tree amplitude so that the effective
final state phase 67 = 0. The phase J. is generated
by a rescattering correction, and its value is —8°.
For the direct CP asymmetries, the relevant phases
are 6,._ and &yy. For the penguin amplitude, we
assume that the effective final state phase & p has the
value near the upper bound. Thus, we have 6, _ =
290, 600 ~21°.
Now [7]

2rsiny sind ;. _

R

R=1—2rcosycosd,_ + r’_.

(38)

Acp(B* — 7 K*) =

Neglecting the terms of order 72, we have

—A B()_) *K+
tanytans, = —AcrB =KD )

1—-R
For BY — 79K°
ACP(BO g WOKO) = (RO - l)tan'y tan500

Ry = 1 + 2rgcosy cosdyy + 13
(40)
Now the experimental values of Aqp, R, and R, are
[12]
Acp(B’— 7~ K*)=—0.101£0.015
X (=0.097 =0.012)
Acp(B— 7°K%) = —0.14+0.11(—0.00 = =0.10)
R=0.899 £0.048

Ry =10.908 = 0.068,

where the numerical values in the bracket are the
latest experimental values as given in Ref. [7]. With
5._ =29°, we get from Eq. (39), y = (60 = 3)°.
However, for 6,_ =~ 20° which one gets from
Eq. (28) for p> = 0.65, y = (69 *+ 3)°. We obtain
the following values for Aqp(B® — 7°K°) from
Egs. (39) and (40):

(1 - Ro) tan500

Acp(B'—7K0) = Acp(B'— 7 K™)

(I-R)tand, _
—0.06+0.01, 8,_=29°
B Sgp=21°
|1 -0.05x0.01, 5§, =20°
Sgp=12°

We conclude that the phase shift 6, =~ (20-29)°
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for 7~ K* is compatible with the experimental value
of the direct CP asymmetry for the 7~ K" decay
mode. For wt7~, §,_ ~31° is compatible with
the value (33 = 77%)° obtained by the authors of
Ref. [7]. Finally, we note that the actual value of the
effective phase shift (6, — A) depends on one free
parameter p, factorization implies 6/{ =0,1e. 65 —
A = 0 for the tree amplitude; for the penguin am-
plitude, 5}’ depends on p. However, from the ex-
perimental values of the direct CP violation for
7~ K*t, 7w~ 7", it is near the upper bound.

Finally, we note that 7* D~ (7~ D*), w K", w~ o*
decays are s-wave decay, whereas B’ —
ptm (p~m") decays are p-wave decays. For the
p wave, the decay amplitude

f_ﬁf M(s, t)<1+ )dt

1 1
" T6ms CP[b b2 ](S/SO)
292 i[ 2 1
167 Lin(s/sg) — im s [In(s/sy) — im]?
X (s/50)712]
1 1 2%, 1

167TlePb(S/s0) 167 ln(s/so) —im

< (s/s0) 2+ o)

is to be compared with Eq. (32). Now for the B —
pr decay, only the longitudinal polarization of p is
effectively involved. Since the longitudinal p meson
emulates a pseudoscalar meson and if we assume the
same couplings as for pions, we conclude that the
final state phase for p7r should be of the order 30°;
in any case, it should not be greater than 30°. The
upper bound 6, = 30° can be used to select the
several possible solutions in Table II (Sec. IV) ob-
tained from the analysis of weak decays B —

prm(pm 7).
III. CP ASYMMETRIES AND STRONG PHASES

In this section, we discuss the experimental tests to
verify the equality (implied by the C invariance of the S
matrix) of phase shifts 6, and & for the weak decays of B
mesons mentioned in Sec. I.

It is convenient to write the time-dependent decay rates
in the form [6,13]

[T4(1) = T(n)] + [T7 — T4(1)]

= e "eosAmi[ (147> — 147 + (171> — 1441%)]
+ 2sinAmi[Im(e*PnA5A ) + Im(ezi‘/’MA:}Af)]},
(4D

PHYSICAL REVIEW D 80, 094015 (2009)
[T/() + T (0] — [T + T,(0)]
— e TifcosAmd (A + 1A;12) — (1A + 14,)]
+2 sinAmt[Im(ez"quA;ZAf) - Im(ez"d’MAl”);Af)]}.
(42)
Case (i): Egs. (41) and (42) give
[T,() — T5(0)] + [T(0) — T,(0)]
[T,() + T7(0] + [T70) + T ]
20F I

= m sinAmt Sln(Zd)M -
- f

AQ) =

¢ =)

X cos(8; — 8}), (43)

[Tp(r) + T7] = [T() + T

[Tp(r) + T7] + [T() + T

Lk 2|FIIF%|

— ¢ — ¢)sin(6; — 6}).
(44)

F@)=

cosAmt —

X sinAmt cos(2¢

The effective Lagrangians Ly, and L}, are given by
(g =d,s)

Ly =V, Vi lay*(1 — y)ulley, (1 — ys)b],  (45)

Ly = ViV lgy*(1 = y)cllay, (1 — ys)bl.  (46)
Hence, for these decays
=0 ¢'=y
and
_[-B forB°
¢M { _Bs, fOr B? (47)

— (Dt 1RO\ — iyl !
=(D*m |£W|B)—e“YFf—~
= (K*D; | Ly |BY) = Fy.

’Aﬂ = <K—D;|£W'|B§?> = eiV’F}s.

(48)

Thus, we get from Eqs. (43)—(48) for BY decays,

A = — 5 sinAmgtsin(2B8 + ) cos(6, — 5})
o
”
F@) = 2 D cosAmpt — ——5 sinAmgtcos(28 + )
"p "o
X sm( - 8}), (49)
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_2}’D . (AmB/F)
= 2B+ y)——— S, — o
A=T3 2 SINCA 4 V) A,y OO 9
(50)
where
|F"|
= 2R, L. 51
p blFfl ( )

For the decays,
BY(BY) — DY K~ (D7 K™)

PHYSICAL REVIEW D 80, 094015 (2009)

where

|F% |
= (53)
|Fy |

er =Rb

We note that for time integrated CP asymmetry,

_ [T (0) = Ty(0)]dr

_ A, = _
B%B%) — Dy K* (D} K"), SO 45(2) + Tpi(2)]dr
2r .
we get = — 1 —|—Dr% SIH(ZBS + ’y)
_ 2rp, . . , ’
A ()= — W sinAmy tsin(28; + ) cos(8, 6f}) Amyg /T cos(s, — 8L, (54)
L , T+ (Amg /T)2 00 T
-r r . )
F @)= = rg: cosAmp t — 1 _::%S sinAmp t
X cos(2B, + y)sin(8; — } ) (52) [1£he experimental results for the B decays are as follows:
|
D 7wt D 7" D p*
%: —0.046 = 0.023 —0.037 =0.012 —0.024 = 0.031 = 0.009, (55)
2% —0.022 £0.021  —0.006 = 0.016 —0.098 * 0.055 = 0.018
|
where S +S8 2r .
— T sin2B, + )
D
s (58)
2 _
S-Sy _ VD2 sin(2B + y) cos(6; — &%) S =8+ _ 0
2 1+ f (56) 2 ’
S-— S84 = _ 2"Dz cos(2B + ) sin(6f — 8. Corresponding to.the decays B! —» D; K", DY K~ de-
2 1 +rp ! scribed by the tree diagrams, we have the color suppressed

For B — D" K*, D; K", Dy K**, replace rp — rp,,
B— B, 6y — 64, B’f-, — S’f in Eq. (56).

Since for B(S), in the standard model, with three gener-
ations, gives B, = 0, so we have for the CP asymmetries
siny or cosvy instead of sin(28 + ), cos(28 + 7). Hence.
BY decays are more suitable for testing the equality of
phase shifts 6, and &’. as for this case neither r, nor

Js

cosy is suppressed as compared to the corresponding
quantities for B. To conclude, for Bg decays, the equality
of phases o and 5If‘ for BY gives

2

S.—§
= 2rpsin2B +y), - T+ =0,

(57)

whereas for BY decays, we get

decays B — D°K°, D°K?. For these decays,

S_+S 2r .
- * = 1 +Dr§ sin(2B + ) cos(8 500 — 5'Do,gg)
DK
S_ -5 2r .
T +L;I%ZK cos(2 + y)sin(dpoxy — Spogy)
- _ R IC/DOKS|
DK b ICDOKsl

and the corresponding expression for BY — D¢, D°¢.
For the color suppressed decays B — D79, D70, we
get a similar expression as for B — D~ 7%, D* 7, with
Opmts )+ - replaced by rpo,

Spop, O

DOWO’

'p = Tp7z*s

To determine the parameter rp, or rp , we assume facto-
rization for the tree amplitude [7]. Factorization gives for
the decays B = D* 7w, D** 7=, D p~, D%a;:

094015-6
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|Fj = 171
= GLf 1} — mB) 5P (m2), 2 ymy | BIAE ™
X (m2), 2 ym| pLFE2(m3), 2 o mgl Bl P (@)
(59)

|Fi| = |17
= G'[fp(my — m2)f§~™(m3), 2f p-mp| plfE~"(m3.),
2f pmpl PIAY P (m3), 2f pmpl PIAG " (m3)],  (60)

Gr Gr

—|V,allVeylay, G =—%=|V4llVl. (61

/5 uallVeplan S VeallVup (61)
The decay widths for the above channels are given in the

Table I, where we have used

G =

alV,l* =1,

f, =209 MeV,

f==131 MeV,
fa, = 229 MeV.
Using the experimental branching ratios and [12]
V.| = (383 +1.3) X 1073, (62)

we obtain the corresponding form factors given in Table 1.
In terms of variables [14,15]

w=v-v, vi=0"2 =1,
(63)
t=q>=m3 + mé(*) — 2mpmpe w,
the form factors can be put in the following form:
B—D o mpg + mp
)=—-—nh ,
P = 3 (@)
§P(0) = 2 (1 )hg(w)
0 mg +
BT Mp
: + mp-
ABD (1) = ZE 2D (1 4 w)hy, (o),
2 () 2\/@717;( ®)hy, (@) (64)
. + mpy
AFP () = 2B, ()

2,‘ /M pNtp«
AB=D" (1) = XBTDY (4 )y (o).

mpg + mpy«
HQET gives [14,15]:
hy(w) = ho(w) = hy (@) = hy (0) = hy,(0) = (o),

PHYSICAL REVIEW D 80, 094015 (2009)

where /() is the form factor, with normalization /(1) =
1. For

t=m2,mimi % =1589(1.504),1.559, 1.508.
(65)

In Ref. [16], the value quoted for /14, (@}, is

|ha, (@hae)] = 0.52 = 0.03. (66)

Since wp,,x = 1.504, the value for |, (w5,.)| obtained
in Table I is in remarkable agreement with the value given
in Eq. (66) showing that factorization assumption for B —
D™ decays is experimentally on solid footing and is in
agreement with HQET.

From Egs. (56) and (60), we obtain

|7
D b |Tf|
o[ Lo~
PLfa(my — mp) fEP(m2)’
fo 3 m(m3.) fDAoB_p(mZD):I ©7)
fﬂ'AgiD(mgr) ' fpfﬁ_D(me) ’
where
W = A’R, = (0.227)%(0.40) = 0.021.  (68)
chb ud

To determine rp, we need information for the form
factors 8 7(m3), f8=7(m3), A " (m3). For these form
factors, we use the following values [17,18]:

AJTP(0) = 0.30 = 0.03,
AP (m3) = 0.38 + 0.04

FB87(0) = f8-7(0) = 0.26 * 0.04,
f‘i‘”(mlz)*) = 0.32 £ 0.05,
f87P(m?) = 0.28 = 0.04.

Along with the values of remaining form factors given in
Table I, we obtain

rpw =1[0.018 =0.002, 0.017 = 0.003, 0.012 %= 0.002 ].
(69)

TABLE I. Form factors.
Decay Decay width (107 MeV X |V, |?) Form factor Form factors h(w®)
BY— D m (2.281)] 5 (m2) 2 0.58 = 0.05 0.51  0.03
B'— D"t (2.129)|AB=P" (m2)|? 0.61 + 0.04 0.54 + 0.03
B~ D'p (5.276)| 5P (m2)? 0.65 = 0.11 0.57 = 0.10
B°— D*ay (5.414) 5L (2, )| 0.57 + 0.31 0.50 + 0.27
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The above value for r}, gives

: ) — 2(0.017 + 0.003) sin(23 + ).
D*m
(70)

The experimental value of the CP asymmetry for B* —
D*7r decay has the least error. Hence, we obtain the
following bounds:

sin(28 + y) > 0.69, (71)
44° = (28 + y) = 90°, (72)
or 90° = (28 + y) = 136°. (73)

Selecting the second solution, and using 23 = 43°, we
get

y = (70 + 23)°. (74)

_ Further, we note that the factorization for the decay
B — D~ 7t gives

T= |Vub| |Vcs IfDT ZmBlﬁlfﬁ_W(m%)“) (75)
Using the experimental branching ratio for this decay,
we get
A2 | B m(m3.) |2
(fi) =77+ 109 (76)
fw' f+ (0)
On using
f577(0)
——— = 0.77 = 0.09, 77
FErmd,) 77
we get
fo:r =279 =79 MeV. (78)

Similar analysis for B — D; " gives

(JZ)Z m 07+ 0.64 (79)
On using
S 7O _ 34005, (80)
f6 T(mp2)
we get
fp, =201 = 47 MeV. C1Y)

Finally, from the experimental branching ratio for the
decay B? — D} 7™, we obtain

o P(0) =0.62 £ 0.18, (82)

ho(1.531) = 0.55 = 0.16. (83)
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In ending this section, we discuss the decays B? —
DK™, Di* K~ for which no experimental data are avail-
able. However, using factorization, we get

T(BY— DFK™) = (175 X 10719)|V,, f5: P (m})|> MeV,
(84)

P(BY— D} K™) = (1.57 X 107 OV, AG P (m)P MeV.
(85)

SU(3) gives

Vst 2 (m3)2 = |Vl fEP(m2)?
= (0.50 £ 0.04) X 1073
B,=Dg( 22 B—D* (2|2 (86)
|VchOS S(mK)l =~ |Vcb||A0 (mw)l
= (0.56 = 0.04) X 1073,
From the above equations, we get the following branch-
ing ratios:
(B, — D" K")

= (1.94 = 0.07) X 1074[(1.96
+0.07) X 1074]. (87)
For BY — D*tK~

- Rb[fD;‘fisK(m%j)]'

—_ (88)
fKAgS b (m)
Hence, we get
S, +S_
_ (;> — (0.41 + 0.08) sin(28, + 7)
2 DiK
= (0.41 = 0.08) siny, (89)

where we have used

fp, _ fp:
R, = 0.40, *=—=1.75 = 0.06,
’ fx  fx
B,—K 2 —
£5 75 (m2.) = 0.34 = 0.06
. . + mpy
AB D 3y = ABTP(0) = 7”213:’" 0 [g(w? = 1.453)
v B.vmuj
=0.52 +.03] = 0.58 = 0.03. (90)

IV. CP ASYMMETRIES FOR A, # A

We now discuss the decays listed in case (ii), where
Ay # Ay Subtracting and adding Egs. (41) and (42), we
get
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() —T,(@
M = CycosAmt + S;sinAmt
= (C — AC)cosAmt + (S — AS) sinAmt,

oD

T71) — T70)

——————=— = CzcosAmt + S7sinAmt
Fo0) + 150 7cosAm 7sinAm

= (C + AC)cosAmt + (S + AS) sinAm,

(92)
where
Co —(C+ AC) — Ar P = 1A P Ty, =T,
fr = (C=A0) A7 2+ A7, T;,+T;
rr ff rr rr
_ Ry (1 — AL — Ry /(1 + AGY) ©3)
I'(1 = Acp) ’
Sip = (S = AS), (94)
2 Im[e29w A% A- ]
- 2 iy (95)
L+ Ty
R [
AfCP =L AéP = -f’ (96)
Ff + Ff Ff + Ff
LTy - (@, +T)
_ RfAfCP - Rf_AJéP’ (98)
r
where
(99)

The following relations are also useful and can be easily
derived from above equations:

Ry, 1
R, +R; S =AC0) = AcpCl, (100)
Ry — Ry
R; +R; =[AC + AcpC], (101)
AL+ RAL
Rifdcp T Refice _ 104 apAC]l (102)

For these decays, the decay amplitudes can be written in
terms of tree amplitude e’#r T and the penguin amplitude
e ip P f

PHYSICAL REVIEW D 80, 094015 (2009)

A= e"‘ﬁTeiS}'ITfI[l + rpeil@rd1)gitr]

o | | (103)
Aj = ere! HTF + rfe’(@’_‘/’T)e"sf],
i _ sP _ ST
where ey 7,1 Bf’f Bf,f 8f,f'
Az= e_i‘l’TeiS;lel[l + e {(6rmd1)eid]
. ' (104)
A_f = e_iquela;'Tfl[l + r]?e—i(‘ﬁ”_‘ﬁT)ei‘sf],
For B' — p~m*:Ay; B — pt AR
(105)
dr =, bp=—pB.
For B° — D*_D+:AJ’?; B — D*+D_:A]’?;
(106)
¢T = 0) ¢P = _B
Hence, for B — p~7*, B — p* 7, we have
Ap = ITf-Ie"Ve"'S;[l — rpel@to)]
e | (107)
A; = |Tf|e’yel i1 - rfe’(cﬁ'sf)],
|Vth||th| le,fl R, IPf,fl
where rrF= VAV AT, =R— 7.1 (108)
ub ud Lr b if
and for B — D*~"D*, B> — D*" D™, we have
AR = |TP|e " [1 — rRe/ P o]
(109)

iSTD i(— D
A? _ |],jglelﬁj7 [1 _ 7‘?61( 'B+6.f)],

P7;
where 17 = R,W.
5
We now confine ourselves to B(B°)— p 7™,
pta (pt@, p~, m") decays only [19,20]. The experi-
mental results for these decays are [12] as follows:

I'=R,+R; = (228 +2.5) X 1075, (110)

Alp=—016+023, AL, =008*0.12 (I11)

C=10.01 £0.14 AC = 0.37 = 0.08, (112)

S =0.01 =0.09, AS = —0.05 = 0.10. (113)

With the above values, it is hard to draw any reliable
conclusion. Neglecting the term A-pC in Egs. (100) and
(101), we get

(114)
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Using the above value for AC, we obtain

R; = (156*1.7) X 107 R;=(7.2%0.8) X 107,

(115)

We analyze these decays by assuming factorization for
the tree graphs [10,11]. This assumption gives

Ty =Tp~2mpf,|plf(md), (116)

Ty =T~ 2mpf | plAg(m3). (117)

Using f+(m%) ~ (.26 = 0.04 and Ay(m2) = Ay(0) =
0.29 = 0.03 and |V,,] = (3.5 £0.6) X 1073, we get the
following values for the tree amplitude contribution to
the branching ratios:

F}-r.ee = (15.6 = 1.1) X 107% = |T7|?, (118)
I = (7.6 = 1.4) X 1076 = |T,]% (119)
T Ao(m?
=L T 0040100 (120)
Tp  fpf+(mp)
Now,
Ry 2
By = |Tf|2 =1-2rjcosa coséf- + % (121)
B, = ﬁ =1 —2rscosacosd; + 13 (122)
f
Hence, from Eqgs. (115) and (119), we get
By = 1.00 £ 0.12 B; =0.95*0.11. (123)

In order to take into account the contribution of penguin

diagram, we introduce the angles aé‘f{ [21], defined as
follows:

GPAL = 1A, el AL, = |A, el
(124)

With this definition, we separate out tree and penguin
contributions:

i —iBx —ialT T ialf
el’BAf,f —e l'BAf,f_ = |Af’f|e ta - |Af_’f|ela

= 2inj sina, (125)
ei(a+’8)Af-f _ e*i(aﬁB)Aff _ |Aff|€i(a&{_a)_
= (2iT; jsina)r; je'®ri
= 2iP, ; sina. (126)

From Eq. (125), we get

PHYSICAL REVIEW D 80, 094015 (2009)

|Tff|2 2sina 7 7
S G2y = - J 1,12 1./
2 R Swa = =1—941—- A cos2aiy,

7 By;
(127)
7 i Zaf’f
sin267 . = —AlS SRt (128)
£7 cp - =
1 - \/1 - Ag};z cosZaé{
J1— a2 7
cos2s7 . — V1~ Acp — cosdaiy (129)
A 7.7
1 1 — Agp™ cos2as
From Egs. (125) and (126), we get
, 1=yl = Al cosaly - 2a)
= , (130)

g = "
1-— \/1 - A{;,’jz COSZCZQ{
cosa — \/1 — ALI? cos2all — a)

rf,f*coséff = = - ,
1 - \/1 — Aé{f cos2a£§ff
(131)
rppsindsy = - (132)
1-— \/1 - A{:}? cosZaQ{
Now factorization implies [22]
6} =0= 5;. (133)
Thus, in the limit 5; — 0, we get for Eq. (129)
cos2alf = —1, ol =90°, (134)
ref coséf,jz = cosa, (135)
. —Ag; / sina
repsindp; = —— —x, (136)
72
1+ 41— AL
) 1+ \/1 - Aé}? cos2a (137)
r - =
rr Z ’
1+ 41— AL
~ cos’a + %A{l;zsinza. (138)

The solution of Eq. (135) is graphically shown in Fig. 1
for « in the range of 80° = a < 103° for T = 0.10, 015,
0.20, 0.25, 0.30. From the figure, the final state phases & Ixi
for various values of r; 7 can be read for each value of « in
the above range. A few examples are given in Table II.

Fora @ >90°, change « — 7 — a, 6; — 7 — &;. For
example, for ¢ = 103°
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1
3 J 1 7 M
/ / s ../
4 i e
2.5 ya id P R
’ 7o 17
7 47 7
PP ‘o -
2 =
{’./’.f [SAY
&#"
“© 15 .
Aff.’//
PRt
1 — T
,.. v’. -
/’/ < s
. 7/
05—2—»
/ /
ol I
14 1.5 1.6 1.7 1.8

a

FIG. 1 (color online). Plot of equation rcosd(s = cosa for
different values of r. For 80° = a = 103°. Where the solid
curve, dashed curve, dashed dotted curve, dashed double dotted,
and double dashed dotted curve correspond to r = 0.1, r = 0.15,
r=20.2, r=0.25, and r = 0.3, respectively.

re =025 &;=154°,

8f - 1380,

Alp ~—022

ry = 0.30, AL, = —0.40.

These examples have been selected keeping in view that
final state phases & 7 are not too large. For ACP, we have
used Eq. (136) neglecting the second order term. An at-

tractive option is A’éP = A’éP for each value of a; although
A’ép * A’éP is also a possibility. Aép =
rp 05 = 05.

Neglecting terms of order r

Aép implies r; =

f we have

_ 2sina(rysind; — r;sind ) _ A-ép - tZAJéP

r 1+ 7 1+2
(139)
272
C~ AL, + AL, 140
= W ALy (140)
TABLE II. Selected examples obtained from Fig 1 for §f <
70°.
a rs 8 AL, =~ —2r;sind; sina
80° 0.20 29° -0.19
0.25 46° —0.36
82° 0.15 22° —-0.11
0.20 46° —0.28
85° 0.10 29° —0.10
0.15 54° —-0.24
86° 0.10 46° -0.14
0.15 62° —-0.26
88° 0.10 70° -0.19
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B 4% cosa
(1+7)7?

Now the second term in Eq. (141) vanishes and using the
value of ¢ given in Eq. (120), we get

1—7

AC =
1+ £

(rpcosdp — rycosdy). (141)

AC = 0.34 + 0.06. (142)
Assuming A‘ép = A*éP, we obtain
_ 1= N
Acp = = Al = (034 £ 0.06)(- AL, (143)
ce—_ A, L~ —(0.88*0.14)AL, (144
(1+ t2)2

Finally, the CP asymmetries in the limit 5T -—0

2Im[e*PmA 7 Az]

J— + A =
A T T R 1 A
=,J1— C2 sm(201eff +68) = —1/1 - C}% cosd, (145)
2Im[e* ¥ A%A,]
S, =8—-—AS= S o
/ I'(1 = Acp)

= J1 = Csin@al; — 8) = {1 = Creoss.  (146)

The phase 6 is defined as

i |_.f'l X id
Aj |Af|Afe . (147)
To conclude, the final state strong phases essentially
arise in terms of the S matrix, which converts an in state
into an out state. The isospin, C invariance of hadronic
dynamics and the unitarity together with two particle scat-
tering amplitudes in terms of Regge trajectories are used to
get information about these phases. In particular, two body
unitarity is used to calculate the final state phase O,
generated by rescattering for the color suppressed decays
in terms of the color favored decays. In the inclusive
version of unitarity, the information obtained for s-wave
scattering from Regge trajectories is used to derive the
bounds on the final state phases. In particular, the value
obtained for the final state phases 6, _ = 8” = 29° — 20°
and 8y = 8¢ + 8% = 20°, 12° is found to be compatible
with the experimental values for direct CP asymmetries
Acp(B® — 7 KT, w°K°). For B® — DW=z (DWW 77),
BY— D K+ (DY K decays described by two inde-
pendent single amplitudes A, A} and A, , A}X with differ-
ent weak phases viz. 0 and vy, the equality of phases
o= 5;; implies, the time-dependent CP asymmetries

B <S+ + S_) 2rpe
2 1+ r?

sin(2B¢,) + ), (148)
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- — =0 (149)

An added advantage is that these decays are described
by tree graphs. Assuming factorization, the decay ampli-
tude A; can be determined in terms of the form factors
B P(m%) and AE~P"(m%). The parameter rp. can be
expressed in terms of the ratios of the form factors
Fof8 )/ fofEP(m2) and
o f8 ™(m2.)/ f-AE P (m%). From the experimental
branching ratios, we have obtained the form factors
fE7P(m%) and AB~P"(m2), which are in excellent agree-
ment with the prediction of HQET. We have also deter-
mined rp-. For rp- we get the value rp = 0.017 = 0.003.
Using this value we get the following bound from the
experimental value of %35 for B — D*~ 7" decay:

sin(2B + ) > 0.69.

Using SU(3), for the form factors for B?—
D" K"(Di"K™) decays, we predict

. ) — (0.41 + 0.08)sin(23 + 7)

= (0.41 = 0.08) siny

in the standard model.

In Sec. 1V, the decays B— p*@ (p~#") for which
decay amplitudes A7 and A, are given in terms of tree
and penguin diagrams are discussed. We have analyzed
these decays assuming factorization for the tree graph.

PHYSICAL REVIEW D 80, 094015 (2009)

Factorization implies 6; = 5;. In the limit 6; F 0, we
have shown that

rpjeosdyp=cosa  rj;=~cos’a + AL sin2a,

The first equation has been solved graphically, from
which the final state phases & 7 corresponding to various
values of 7, 7 can be found for a particular value of a. The
upper bound 6, 7 = 30° obtained in Sec. II, using unitarity
and strong interaction dynamics based on Regge pole
phenomonalogy can be used to select the solutions given

in Table II. Neglecting the terms of order rj% 7 we get using

factorization
AC = 0.34 = 0.06.

Finally, in the limit 5; P 0, we get

S;_s+As_ H1°G
Sy - A ‘/1“_“5]2:

With the present experimental data, it is hard to draw any
definite conclusion.

%)
%)
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