
Baryon magnetic moments in large-Nc chiral perturbation theory

Rubén Flores-Mendieta
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The baryon magnetic and transition magnetic moments are computed in heavy baryon chiral perturba-

tion theory in the large-Nc limit, where Nc is the number of colors. One-loop nonanalytic corrections of

orders m1=2
q and mq lnmq are incorporated into the analysis, where contributions of both intermediate octet

and decuplet baryon states are explicitly included. Expressions are obtained in the limit of vanishing

baryon mass differences and compared with the current experimental data. Furthermore, a comparison

with conventional heavy baryon chiral perturbation theory is carried out for three light quarks flavors and

at the physical value Nc ¼ 3.
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I. INTRODUCTION

From the theoretical point of view, the study of the
magnetic moments of baryons presents an opportunity to
shed light on an accurate test of QCD in the same way the
magnetic moments of the electron and muon provided an
accurate test of QED in the past. There are an important
number of works focused on the analysis of baryon mag-
netic moments; the approaches include, among others, the
quark model (and its variants) [1–7], QCD sum rules [8–
11], the 1=Nc expansion, where Nc is the number of colors
[12–15], chiral perturbation theory [16–26], and lattice
gauge theory [27], to name but a few. The 1=Nc expansion
and chiral perturbation theory, on general grounds, have
had a major impact on the extraction of the low-energy
consequences of QCD.

On the one hand, the generalization of QCD from Nc ¼
3 to Nc � 3 colors, referred to as the large-Nc limit,
provides a framework for studying the nonperturbative
QCD dynamics of hadrons. Specifically, in the large-Nc

limit, the baryon sector of QCD possesses an exact con-
tracted SUð2NfÞ spin-flavor symmetry, where Nf is the

number of light quark flavors [28,29]. The spin-flavor
structure for baryons for finite Nc is thus given by analyz-
ing 1=Nc corrections to the large-Nc limit [28,29]. Apart
from the calculation of baryon magnetic moments, the
1=Nc expansion has also been successfully used in the
calculation of other static properties of baryons such as
masses [28–31] and vector and axial-vector couplings
[13,28,29,32,33]. Most calculations include corrections
of relative order 1=N2

c , and even of relative order 1=N3
c in

the case of baryon masses, for two and three light quark
flavors. The impact of the 1=Nc expansion in the calcula-
tion of baryon static properties can be assessed by compar-
ing its predictions with experiment, which are in overall
good agreement.

On the other hand, heavy baryon chiral perturbation
theory [34,35] is another formalism that has been imple-
mented to systematically compute the properties of bary-
ons. In this formalism, the expansion of the baryon chiral

Lagrangian is in powers of mq and 1=MB, whereMB is the

baryon mass (for a recent review on chiral perturbation
theory see, for instance, Ref. [36]). The effective
Lagrangian thus obtained can be used to compute chiral
logarithms in the effective theory, yielding to a remarkable
computational simplicity because there are no gamma
matrices left. One of the earliest applications of heavy
baryon chiral perturbation theory can be found in the
computation of one-loop corrections to the leading axial-
vector couplings in baryon semileptonic decays [34,35].
An important result derived from this analysis was the
observation of large cancellations in the loop corrections
between graphs with intermediate spin-1=2 octet and
spin-3=2 decuplet baryon states. These cancellations occur
as a consequence of the spin-flavor symmetry which is
present in the large-Nc limit, and have already been proven
both phenomenologically and analytically [13,29,37,38].
A further theoretical improvement has been achieved

through a combined expansion in 1=Nc and chiral correc-
tions [39–41], which can constrain the low-energy inter-
actions of baryons with the meson nonet more effectively
than either approach alone. In particular, in Ref. [41] a
1=Nc expansion of the chiral Lagrangian for baryons was
proposed and applied to the calculation of the flavor 27
nonanalytic meson-loop corrections to the baryon masses.
A more recent application of this formalism can be found
in the renormalization of the baryon axial-vector current
[37].
The earliest attempts of computing corrections to

baryon magnetic moments beyond tree level in chiral
perturbation theory can be traced back to the works of
Caldi and Pagels [16], Gasser, Sainio, and Svarc [17],
and Krause [18]. Relatively more recent analyses can be
found in Refs. [19,21–26].
The one-loop corrections to baryon magnetic moments

have leading nonanalytic dependences on the quark masses

and fall into two classes, namely, m1=2
q and mq lnmq. Caldi

and Pagels [16] focused on calculating what were supposed

to be the leading corrections, namely, those of order m1=2
s ,

PHYSICAL REVIEW D 80, 094014 (2009)

1550-7998=2009=80(9)=094014(34) 094014-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.094014


and concluded that, in general, the corrections turned out to
be at least as large as the zeroth-order contribution so that
the perturbation expansion would break down. In turn,
Gasser et al. [17] reanalyzed these corrections whereas
Krause [18] dealt with the logarithmic term, namely,
ms lnms. Afterwards, Jenkins et al. [19] reexamined the
problem in the framework of heavy baryon chiral pertur-
bation theory, including explicitly contributions of both
intermediate octet and decuplet baryon states. Contrary
to expectations, it was found that the inclusion of the
decuplet did not produce appreciably better agreement
with the data than the case when only the octet was
included. In other words, the large cancellations observed
in the one-loop corrections to the baryon axial-vector
current when both octet and decuplet intermediate baryon
states are included would not occur in the magnetic mo-
ments. It was argued that there could be some evidence that
chiral perturbation theory overestimated the size of the
kaon loops so it was proposed compensating such an effect
by using the one-loop corrected axial-vector couplings
rather than the tree-level ones.

Meissner and Steininger [21] also tackled the problem in
the context of heavy baryon chiral perturbation theory but
included all the terms up to order Oðq4Þ. They thus took
into account 1=MB corrections and contributions of certain
double derivative operators which occur to this order. They
however did not include the decuplet explicitly in the
analysis; rather, its effects were considered by computing
its contributions to some low-energy constants. Durand and
Ha [22], in turn, performed the calculation in the same
context of Ref. [19], emphasizing the role of the decuplet-
octet mass difference; they found that there was not clear
evidence of the convergence of the chiral series. Puglia and
Ramsey-Musolf [23] performed an analysis similar to the
one of Ref. [21], but included the decuplet explicitly and
retained only nonanalytic one-loop corrections. Finally,
Geng et al. [25,26], using covariant perturbation theory,
found small loop corrections leading to an improvement
over the SU(3) description.

All in all, the analyses performed over the past decade
and a half about baryon magnetic moments have yielded a
number of interesting conclusions, some of them in contra-
diction with the others. We would like to highlight, how-
ever, the role the decuplet plays as an intermediate state in
the one-loop graphs.

In the present paper, we will confine our attention to the
calculation of baryon magnetic moments in a simultaneous
expansion in mq and 1=Nc at one-loop order. The starting

point will be the fact that, in the large-Nc limit, the baryon
magnetic moment and the baryon axial-vector current
share the same kinematical properties so that they can be
described in terms of the same operators. Thus, for the
main aim of the analysis we will use the formalism intro-
duced in Ref. [41] and follow a close parallelism with the
analysis of Ref. [37]. In this latter reference, the axial-

vector form factor gA, which enters into play in baryon
semileptonic decays, was computed at one-loop order and
compared, for Nf ¼ 3 and at the physical value Nc ¼ 3,

with the corresponding one obtained in the framework of
conventional heavy baryon chiral perturbation theory, i.e.,
the effective field theory with no 1=Nc expansion. The
agreement observed, order by order, was remarkable.
We need to point out that, in Ref. [40], a similar analysis

within the combined expansion has already been per-
formed, based on the formulation implemented in
Ref. [39], so we will pin down the similarities and/or
differences of this approach with ours.
We have organized this paper as follows. In Sec. II we

provide in broad terms an overview of the formalism on
large-Nc baryons in order to bring out the essential features
of it. Our notation and conventions will be introduced
accordingly. In Sec. III we construct the 1=Nc expansion
of the baryon magnetic moment operator and then use it to
obtain the tree-level values of the magnetic moments of the
octet and decuplet baryons and the allowed octet-octet and
decuplet-octet transitions. A total of 27 magnetic moments
are obtained at this level. In Sec. IV we turn to the compu-

tation of one-loop nonanalytic corrections of the typesm1=2
q

and mq lnmq, to relative order Oð1=N3
cÞ. In Sec. V we

compare the results obtained in the combined expansion
with the ones obtained in the framework of heavy baryon
chiral perturbation theory. The comparison is carried out
by establishing the relations existing between the parame-
ters of the 1=Nc expansion and the invariant couplings of
the chiral expansion. We devote Sec. VI to performing a
detailed numerical comparison of our expressions with the
available experimental data [42] by means of a least-
squares fit. The best-fit parameters are then used to make
some predictions of the unmeasured magnetic moments.
Finally, in Sec. VII we present a summary as well as the
main conclusions of the study. We complement the paper
with two appendices which contain the reduction of all the
baryon operators that appear to relative orderOð1=N3

cÞ, for
Nf and Nc arbitrary.

II. OVERVIEW ON LARGE-Nc BARYONS

For a detailed outline of the formalism on large-Nc

baryons and all the mathematical groundwork, which con-
tains a formidable amount of group theory, we refer to the
original works [28,29,41], while we restrict us here to a
short description of the method and to introduce our nota-
tion and conventions.
First of all, the static baryon matrix elements of a QCD

operator have a 1=Nc expansion of the form [29]

O QCD ¼ Nc

X
n

dn
1

Nn
c

On; (1)

where the various On’s are independent operators which
transform according to the same spin � flavor representa-
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tions asOQCD. For finite Nc, the sum on n in Eq. (1) is over

0 � n � Nc so that a given On is termed an n-body
operator, which can be written as a monomial of degree
n in the baryon spin-flavor generators. On the other hand,
each unknown operator coefficient dnð1=NcÞ has an expan-
sion in 1=Nc beginning at order unity. The factor 1=Nn

c is
required since each spin-flavor generator in an nth-order
operator product On comes along with a factor of 1=Nc.
Additionally, the overall factor ofNc arises because a QCD
1-body operator has matrix elements that are at most of
orderOðNcÞ when inserted on all quark lines on the baryon
[29].

Specifically, for Nf ¼ 3, the large-Nc spin-flavor sym-

metry for baryons is generated by the baryon spin, flavor,
and spin-flavor operators Jk, Tc, and Gkc, respectively,
which can be written for large but finite Nc as 1-body
quark operators acting on the Nc-quark baryon states [29]
as

Jk ¼ X
�

qy�
�
�k

2
� 1

�
q�; Tc ¼ X

�

qy�
�
1 � �c

2

�
q�;

Gkc ¼ X
�

qy�
�
�k

2
� �c

2

�
q�; (2)

where qy� and q� are operators that create and annihilate
states in the fundamental representation of SU(6) and the
index � sums over the Nc quarks. In addition, �k and �c

are the Pauli spin and Gell-Mann flavor matrices, respec-
tively, where the spin index k runs from one to three and the
flavor index c runs from one to eight. Throughout this
paper, unless explicitly noticed otherwise, the square of
the spin operator is given by J2 � JrJr, where the ordinary
convention of summing over repeated indices is adopted.
No confusion is expected to arise from this. Without loss of
generality, the baryon matrix elements of the spin-flavor
generators (2) can be taken as the values in the nonrelativ-
istic quark model, so this convention is usually referred to
as the quark representation in the literature [29].

Analyzing the Nc dependence of operator products ap-
pearing in the 1=Nc expansion (1) is not an easy matter due
to the fact that the operator matrix elements have a differ-
ent Nc dependence in different parts of the flavor weight
diagrams [29]. TheNc dependence of the operator products
is ultimately obtained by analyzing the Nc dependence of
the matrix elements of the baryon spin-flavor generators
Jk, Tc, and Gkc in the weight diagrams for the SU(3) flavor
representations of the spin-1=2 and spin-3=2 baryons. In
Ref. [38], a naive 1=Nc counting rule was implemented.
However, on a more detailed level, baryons with spins of
order unity have matrix elements of the flavor generators
Tc that are Oð1Þ, Oð ffiffiffiffiffiffi

Nc

p Þ, and OðNcÞ for c ¼ 1, 2, 3, c ¼
4, 5, 6, 7, and c ¼ 8, respectively, and matrix elements of
the spin-flavor generators Gkc that are Oð1Þ, Oð ffiffiffiffiffiffi

Nc

p Þ, and
OðNcÞ for c ¼ 1, 2, 3, c ¼ 4, 5, 6, 7, and c ¼ 8, respec-
tively. Thus, factors of Tc=Nc and Gkc=Nc are of order 1

somewhere in the weight diagram, whereas factors of
Jk=Nc are of order 1=Nc everywhere [29].
As an illustrative example of the 1=Nc expansion for a

baryon operator, let us consider the baryon axial-vector
current Akc, which is a spin-1 object, an octet under SU(3),
and odd under time reversal. The 1=Nc expansion of Akc

can thus be written as [29]

Akc ¼ a1G
kc þ XNc

n¼2;3

bn
1

Nn�1
c

Dkc
n þ XNc

n¼3;5

cn
1

Nn�1
c

Okc
n ;

(3)

where a1, bn, and cn are unknown coefficients. The Dkc
n

are diagonal operators with nonvanishing matrix elements
only between states with the same spin, and the Okc

n are
purely off-diagonal operators with nonvanishing matrix
elements only between states with different spin. The first
few terms in expansion (3) read

D kc
2 ¼ JkTc; (4)

O kc
2 ¼ �ijkfJi; Gjcg ¼ i½J2; Gkc�; (5)

D kc
3 ¼ fJk; fJr; Grcgg; (6)

O kc
3 ¼ fJ2; Gkcg � 1

2
fJk; fJr; Grcgg; (7)

whereas successive higher order operators are obtained as
Dkc

n ¼ fJ2;Dkc
n�2g and Okc

n ¼ fJ2;Okc
n�2g for n � 4. The

operators Okc
m , for m even, are forbidden in expansion (3)

because they are even under time reversal. At the physical
value Nc ¼ 3 the series can be truncated as

Akc ¼ a1G
kc þ b2

1

Nc

Dkc
2 þ b3

1

N2
c

Dkc
3 þ c3

1

N2
c

Okc
3 :

(8)

The matrix elements of the space components of Akc

between SU(6) baryon symmetric states yield the actual
values of the axial-vector couplings. For octet baryons, the
axial-vector couplings are gA as usually defined in baryon
semileptonic decay experiments. After renormalization,
gA � 1:27 [37] for neutron �-decay.

III. BARYON MAGNETIC MOMENTS AT TREE
LEVEL

The static properties of baryons can be determined from
their couplings to the weak and electromagnetic currents.
In particular, in this work, we will describe the magnetic
moments in the context of large-Nc chiral perturbation
theory.
In the large-Nc limit, the baryon magnetic moments

possess the same kinematical properties as the baryon
axial-vector couplings; as a result, the operators used to
describe these quantities are practically identical [13]. The

BARYON MAGNETIC MOMENTS IN LARGE-Nc CHIRAL . . . PHYSICAL REVIEW D 80, 094014 (2009)

094014-3



baryon magnetic moment operator, likewise the baryon
axial-vector current operator Akc, is a spin-1 object and
an octet under SU(3). We will thus follow a close parallel-
ism with the analysis of the renormalization of Akc per-
formed in Ref. [37] in order to achieve our goal.

For definiteness, in analogy with Eq. (8), we construct
the 1=Nc expansion of the operator which yields the baryon
magnetic moment as follows

Mkc ¼ m1G
kc þm2

1

Nc

Dkc
2 þm3

1

N2
c

Dkc
3 þm4

1

N2
c

Okc
3 ;

(9)

where we have truncated the series at the physical value
Nc ¼ 3. If we assume SU(3) symmetry, the unknown co-
efficients mi are independent of k so they are unrelated to
the ones of expansion (8) in this limit. The magnetic mo-
ments are proportional to the quark charge matrix Q ¼
diagð2=3;�1=3;�1=3Þ, so they can be separated into iso-
vector and isoscalar components, Mk3 and Mk8, respec-
tively. Accordingly, from Eq. (9), we define the baryon
magnetic moment operator as

Mk ¼ MkQ � Mk3 þ 1ffiffiffi
3

p Mk8: (10)

Hereafter, when computing matrix elements, the spin index
k of Mk will be set to 3 whereas the flavor index Q will

stand forQ ¼ 3þ ð1= ffiffiffi
3

p Þ8 so any operator of the form XQ

should be understood as X3 þ ð1= ffiffiffi
3

p ÞX8.
In actual calculations, the one-body operators Tc and

Gic, c ¼ 3, 8, appear quite often; these operators can be
rewritten in terms of quark number and spin operators as
[29]

T3 ¼ 1

2
ðNu � NdÞ; (11)

T8 ¼ 1

2
ffiffiffi
3

p ðNc � 3NsÞ; (12)

Gi3 ¼ 1

2
ðJiu � JidÞ; (13)

Gi8 ¼ 1

2
ffiffiffi
3

p ðJi � 3JisÞ; (14)

where Nc ¼ Nu þ Nd þ Ns and Ji ¼ Jiu þ Jid þ Jis. The
Nc dependence of the operators involved in relations (11)–
(14) is now manifest.

Let us now turn to evaluate the matrix elements of Mk

for octet (B) and decuplet baryons (T) and the allowed
octet-octet and decuplet-octet transition magnetic
moments.

A. Magnetic moments of octet baryons at tree level

The magnetic moments at tree level of the octet baryons
and the transition �0� can easily be obtained by comput-

ing the matrix elements of Mk between SU(6) symmetric
states.1 We would like to remark that an analysis of baryon
magnetic moments in the 1=Nc expansion alone is pre-
sented in Ref. [15]. The operator basis used in this refer-
ence is somewhat different from ours since operators up to
relative orderOð1=N2

cÞ are retained in the 1=Nc expansion.
We thus have performed an independent computation of
the matrix elements of our operator basis and cross-
checked those in common with the ones of Ref. [15] at
Nc ¼ 3. All matrix elements agree, except for a change of
sign of those corresponding to the transitions �0� and
�	0�. This difference might come from a different choice
of the phases of the baryon states and should not affect the
calculations. At any rate, the matrix elements of the op-
erators involved in Eq. (10) for octet baryons are listed in
Table I for the sake of completeness.
The tree-level value of the magnetic moment of baryon

B is defined here as �ð0Þ
B � hBjM3jBi, where the super-

script attached to �B denotes the tree-level value and M3

refers to the third component ofMk. For Nf ¼ Nc ¼ 3, the

various �ð0Þ
B read

�ð0Þ
n ¼ � 1

3
m1 � 1

9
m3; (15a)

�ð0Þ
p ¼ 1

2
m1 þ 1

6
m2 þ 1

6
m3; (15b)

�ð0Þ
� ¼ � 1

6
m1 � 1

18
m3; (15c)

�ð0Þ
�0 ¼ 1

6
m1 þ 1

18
m3; (15d)

�ð0Þ
�þ ¼ 1

2
m1 þ 1

6
m2 þ 1

6
m3; (15e)

�ð0Þ
�� ¼ � 1

6
m1 � 1

6
m2 � 1

18
m3; (15f)

�ð0Þ
�0 ¼ � 1

3
m1 � 1

9
m3; (15g)

�ð0Þ
�� ¼ � 1

6
m1 � 1

6
m2 � 1

18
m3; (15h)

�ð0Þ
��0 ¼

ffiffiffi
3

p
6

m1 þ
ffiffiffi
3

p
18

m3: (15i)

Let us observe that, for baryon octet states, the matrix

elements of the operators OkQ
n vanish whereas the matrix

elements of the operators DkQ
n , with n � 3, are directly

proportional to the matrix elements of GkQ and DkQ
2 for n

odd and even, respectively. Accordingly, we can define
m0

1 � m1 þm3=3 in Eqs. (15) in such a way that we are
left with only two parameters, m0

1 and m2, to parametrize
the tree-level values, in complete agreement with the
analysis performed in the framework of heavy baryon

1Without further specification, all magnetic moments are given
in units of nuclear magnetons, �N .
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chiral perturbation theory [19], which does so in terms of
the two couplings �D and �F. We will deal with this issue
in subsequent sections, but at any rate, we purposely keep
for completeness the four parameters mi as they are intro-
duced in Eq. (9).

From Eqs. (15), we readily verify that the Coleman-
Glashow relations [43], valid in the SU(3) limit, are ful-
filled, namely,

�ð0Þ
�þ ¼ �ð0Þ

p ; �ð0Þ
�� þ�ð0Þ

n ¼ ��ð0Þ
p ;

2�ð0Þ
� ¼ �ð0Þ

n ; �ð0Þ
�� ¼ �ð0Þ

�� ;

�ð0Þ
�0 ¼ �ð0Þ

n ; 2�ð0Þ
��0 ¼ � ffiffiffi

3
p

�ð0Þ
n ;

(16)

along with the isospin relation

�ð0Þ
�þ � 2�ð0Þ

�0 þ�ð0Þ
�� ¼ 0: (17)

It is important to remark that relations (16) and (17) are
valid to all orders in the 1=Nc expansion. Indeed, this must
be the case since these relations were derived using SU(3)
symmetry only.

Besides, let us also notice that the SU(6) prediction [44],

3�SUð6Þ
n þ 2�SUð6Þ

p ¼ 0, in our approach is written as

3�ð0Þ
n þ 2�ð0Þ

p ¼ m2

Nc

; (18)

i.e., it picks up a correction of relative order Oð1=NcÞ, but
stills holds at leading order in the 1=Nc expansion.

2

B. Magnetic moments of decuplet baryons at tree level

The magnetic moments of the decuplet baryons at tree

level, �ð0Þ
T ¼ hTjM3jTi, are given by using the matrix

elements of the corresponding operators listed in
Table II. For Nf ¼ Nc ¼ 3 they read

�ð0Þ
�þþ ¼ m1 þm2 þ 5

3
m3; (19a)

�ð0Þ
�þ ¼ 1

2
m1 þ 1

2
m2 þ 5

6
m3; (19b)

�ð0Þ
�0 ¼ 0; (19c)

�ð0Þ
�� ¼ � 1

2
m1 � 1

2
m2 � 5

6
m3; (19d)

�ð0Þ
�	þ ¼ 1

2
m1 þ 1

2
m2 þ 5

6
m3; (19e)

�ð0Þ
�	� ¼ � 1

2
m1 � 1

2
m2 � 5

6
m3; (19f)

�ð0Þ
�	0 ¼ 0; (19g)

�ð0Þ
�	0 ¼ 0; (19h)

�ð0Þ
�	� ¼ � 1

2
m1 � 1

2
m2 � 5

6
m3; (19i)

�ð0Þ
�� ¼ � 1

2
m1 � 1

2
m2 � 5

6
m3: (19j)

A quick glance at Eqs. (19) allows us to anticipate that
the values listed are consistent with the ones obtained in the
framework of heavy baryon chiral perturbation theory [19],
where they are given in terms of a single invariant�C, with
a normalization such that the magnetic moment of the ith
decuplet baryon of electric charge qi is qi�C nuclear
magnetons.
At this point we can verify that the isotensor combina-

tions of magnetic moments with I ¼ 2 and I ¼ 3, intro-
duced in Ref. [15], hold at tree level. For I ¼ 2 one has

�ð0Þ
�þþ ��ð0Þ

�þ ��ð0Þ
�0 þ�ð0Þ

�� ¼ 0; (20)

and

TABLE I. Nontrivial matrix elements of the operators involved in the magnetic moments of
octet baryons at tree level.

n p �� �0 �þ �� �0 � ��0

hG33i � 5
12

5
12 � 1

3 0 1
3

1
12 � 1

12 0 1
2
ffiffi
3

p

hD33
2 i � 1

4
1
4 � 1

2 0 1
2 � 1

4
1
4 0 0

hD33
3 i � 5

4
5
4 �1 0 1 1

4 � 1
4 0

ffiffi
3

p
2

hD33
4 i � 3

8
3
8 � 3

4 0 3
4 � 3

8
3
8 0 0

hD33
5 i � 15

8
15
8 � 3

2 0 3
2

3
8 � 3

8 0 3
ffiffi
3

p
4

hG38i 1
4
ffiffi
3

p 1
4
ffiffi
3

p 1
2
ffiffi
3

p 1
2
ffiffi
3

p 1
2
ffiffi
3

p �
ffiffi
3

p
4 �

ffiffi
3

p
4 � 1

2
ffiffi
3

p 0

hD38
2 i

ffiffi
3

p
4

ffiffi
3

p
4 0 0 0 �

ffiffi
3

p
4 �

ffiffi
3

p
4 0 0

hD38
3 i

ffiffi
3

p
4

ffiffi
3

p
4

ffiffi
3

p
2

ffiffi
3

p
2

ffiffi
3

p
2 � 3

ffiffi
3

p
4 � 3

ffiffi
3

p
4 �

ffiffi
3

p
2 0

hD38
4 i 3

ffiffi
3

p
8

3
ffiffi
3

p
8 0 0 0 � 3

ffiffi
3

p
8 � 3

ffiffi
3

p
8 0 0

hD38
5 i 3

ffiffi
3

p
8

3
ffiffi
3

p
8

3
ffiffi
3

p
4

3
ffiffi
3

p
4

3
ffiffi
3

p
4 � 9

ffiffi
3

p
8 � 9

ffiffi
3

p
8 � 3

ffiffi
3

p
4 0

2This should hold since the matrix elements of J, T, and G
contain both leading and subleading contributions in Nc. See the
discussion on these issues in Sec. II.
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�ð0Þ
�	þ � 2�ð0Þ

�	0 þ�ð0Þ
�	� ¼ 0; (21)

whereas for I ¼ 3

�ð0Þ
�þþ � 3�ð0Þ

�þ þ 3�ð0Þ
�0 ��ð0Þ

�� ¼ 0: (22)

Finally, the SU(6) prediction �SUð6Þ
�� þ�SUð6Þ

p ¼ 0 [44]

becomes

�ð0Þ
�� þ�ð0Þ

p ¼ �m2

Nc

� 6m3

N2
c

; (23)

which remains valid to leading order but not to subleading
orders in the 1=Nc expansion.

C. Baryon decuplet to octet transition magnetic mo-
ments at tree level

Expression (10) can also be used to obtain the tree-level
values of the baryon decuplet to octet transition magnetic
moments by reading off the matrix elements of the perti-
nent operators displayed in Table III. These values, de-

noted here by �ð0Þ
TB � hTjM3jBi, can be expressed as

�ð0Þ
�þp ¼

ffiffiffi
2

p
3

�
m1 þ 1

2
m4

�
; (24a)

�ð0Þ
�0n

¼
ffiffiffi
2

p
3

�
m1 þ 1

2
m4

�
; (24b)

�ð0Þ
�	0� ¼ � 1ffiffiffi

6
p

�
m1 þ 1

2
m4

�
; (24c)

�ð0Þ
�	0�0 ¼ 1

3
ffiffiffi
2

p
�
m1 þ 1

2
m4

�
; (24d)

�ð0Þ
�	þ�þ ¼

ffiffiffi
2

p
3

�
m1 þ 1

2
m4

�
; (24e)

�ð0Þ
�	��� ¼ 0; (24f)

�ð0Þ
�	0�0 ¼

ffiffiffi
2

p
3

�
m1 þ 1

2
m4

�
; (24g)

�ð0Þ
�	��� ¼ 0: (24h)

Notice that Eqs. (24) can be reexpressed in terms of a
single invariant �T [19], in agreement with heavy baryon
chiral perturbation theory results.

On the other hand, let us notice that �ð0Þ
�	� ¼ �ð0Þ

�	�,

which follows from U-spin symmetry at this order.

TABLE III. Nontrivial matrix elements of the operators involved in the decuplet to octet
transition magnetic moments at tree level.

�þp �0n �	0� �	0�0 �	þ�þ �	��� �	0�0 �	���

hG33i
ffiffi
2

p
3

ffiffi
2

p
3 � 1ffiffi

6
p 0 1

3
ffiffi
2

p � 1
3
ffiffi
2

p 1
3
ffiffi
2

p � 1
3
ffiffi
2

p

hO33
3 i 3ffiffi

2
p 3ffiffi

2
p � 3

2

ffiffi
3
2

q
0 3

2
ffiffi
2

p � 3
2
ffiffi
2

p 3
2
ffiffi
2

p � 3
2
ffiffi
2

p

hO33
5 i 27

2
ffiffi
2

p 27
2
ffiffi
2

p � 27
4

ffiffi
3
2

q
0 27

4
ffiffi
2

p � 27
4
ffiffi
2

p 27
4
ffiffi
2

p � 27
4
ffiffi
2

p

hG38i 0 0 0 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p 1ffiffi
6

p � 1
3
ffiffi
2

p

hO38
3 i 0 0 0 3

2

ffiffi
3
2

q
3
2

ffiffi
3
2

q
3
2

ffiffi
3
2

q
3
2

ffiffi
3
2

q
� 3

2
ffiffi
2

p

hO38
5 i 0 0 0 27

4

ffiffi
3
2

q
27
4

ffiffi
3
2

q
27
4

ffiffi
3
2

q
27
4

ffiffi
3
2

q
� 27

4
ffiffi
2

p

TABLE II. Nontrivial matrix elements of the operators involved in the magnetic moments of
decuplet baryons at tree level.

�þþ �þ �0 �� �	þ �	0 �	� �	0 �	� ��

hG33i 3
4

1
4 � 1

4 � 3
4

1
2 0 � 1

2
1
4 � 1

4 0

hD33
2 i 9

4
3
4 � 3

4 � 9
4

3
2 0 � 3

2
3
4 � 3

4 0

hD33
3 i 45

4
15
4 � 15

4 � 45
4

15
2 0 � 15

2
15
4 � 15

4 0

hD33
4 i 135

8
45
8 � 45

8 � 135
8

45
4 0 � 45

4
45
8 � 45

8 0

hD33
5 i 675

8
225
8 � 225

8 � 675
8

225
4 0 � 225

4
225
8 � 225

8 0

hG38i
ffiffi
3

p
4

ffiffi
3

p
4

ffiffi
3

p
4

ffiffi
3

p
4 0 0 0 �

ffiffi
3

p
4 �

ffiffi
3

p
4 �

ffiffi
3

p
2

hD38
2 i 3

ffiffi
3

p
4

3
ffiffi
3

p
4

3
ffiffi
3

p
4

3
ffiffi
3

p
4 0 0 0 � 3

ffiffi
3

p
4 � 3

ffiffi
3

p
4 � 3

ffiffi
3

p
2

hD38
3 i 15

ffiffi
3

p
4

15
ffiffi
3

p
4

15
ffiffi
3

p
4

15
ffiffi
3

p
4 0 0 0 � 15

ffiffi
3

p
4 � 15

ffiffi
3

p
4 � 15

ffiffi
3

p
2

hD38
4 i 45

ffiffi
3

p
8

45
ffiffi
3

p
8

45
ffiffi
3

p
8

45
ffiffi
3

p
8 0 0 0 � 45

ffiffi
3

p
8 � 45

ffiffi
3

p
8 � 45

ffiffi
3

p
4

hD38
5 i 225

ffiffi
3

p
8

225
ffiffi
3

p
8

225
ffiffi
3

p
8

225
ffiffi
3

p
8 0 0 0 � 225

ffiffi
3

p
8 � 225

ffiffi
3

p
8 � 225

ffiffi
3

p
4

RUBÉN FLORES-MENDIETA PHYSICAL REVIEW D 80, 094014 (2009)

094014-6



Following Ref. [15], the isotensor combinations of tran-
sition magnetic moments for I ¼ 2 read

�ð0Þ
�þp ��ð0Þ

�0n
¼ 0; (25)

and

�ð0Þ
�	þ�þ � 2�ð0Þ

�	0�0 þ�ð0Þ
�	��� ¼ 0: (26)

IV. ONE-LOOP CORRECTIONS TO BARYON
MAGNETIC MOMENTS

Having acquired the necessary physical motivation and
mathematical tools, we are now ready to deal with baryon
magnetic moments beyond tree level. The aim of this
section is to provide a complete analysis of corrections to
these observables at one-loop order in the framework of
heavy baryon chiral perturbation theory in the large-Nc

limit. These corrections arise from the Feynman diagrams
depicted in Figs. 1 and 2. The computation of the baryon
operator structures involved in each diagram for finite Nc

(specifically for Nc ¼ 3) is presented in detail in this
section. Computations at larger Nc are less interesting
physically and are by far more complicated to extrapolate
to Nc ¼ 3 due to the participation of unphysical baryons as
intermediate states in the loops [45]. We need, however, to
emphasize that the approach we implement here has been
simplified by working in the degeneracy limit � � MT �
MB ! 0, whereMT andMB are the SU(3) invariant masses

of the decuplet and octet baryon multiplets, respectively. In
the large-Nc limit, although the mass of each baryon is
order OðNcÞ, � is order Oð1=NcÞ, so our assumption is a
reasonable one. We now proceed to analyze each diagram
separately.

A. Nonanalytic corrections of order m1=2
q

The Feynman diagrams depicted in Fig. 1 contribute to

order Oðm1=2
q Þ to baryon magnetic moments. Previous

works [13,40] have pointed out that this contribution
should be the dominant source of SU(3) breaking. This
diagram involves � and K emission and reabsorption only
(the � meson does not contribute). For degenerate heavy
baryons interacting with mesons, the diagram depends on a
function Iðm�Þ of the meson mass m�, which is obtained
by performing the Feynman loop integration. Thus, in the
� ! 0 limit, this diagram can be written as3

(b)

(c) (d)

(e)

(a)

(f)

FIG. 1. Feynman diagrams which yield nonanalytic m1=2
q cor-

rections to baryon magnetic moments. Dashed lines denote
mesons and single and double solid lines denote octet and
decuplet baryons, respectively.

(c)

(a) (b)

(d)

(e)

FIG. 2. Feynman diagrams which yield nonanalytic mq lnmq

corrections to the magnetic moments of octet baryons. Dashed
lines denote mesons, and single and double solid lines denote
octet and decuplet baryons, respectively. Although the wave
function renormalization graphs are omitted in the figure for
simplicity, they are nevertheless taken into account in the analy-
sis. For decuplet baryons and decuplet-octet transitions the
diagrams are similar.

3Hereafter, the label ‘‘loop n’’ attached to a given quantity will
identify the loop graph n that originates it.
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Mk
loop 1 ¼ �ijkAiaAjb�ab; (27)

where we have used Aia and Ajb of Eq. (8) at the meson-
baryon vertices. Here �ab is an antisymmetric tensor which
contains the integrals over the loops and has been discussed
in detail in Ref. [13]; therefore, we briefly give an account
of its main mathematical properties.4 i�ab can be repre-
sented by a Hermitian matrix which is diagonal in a basis
corresponding to particles of definite quantum numbers.
This matrix has eight eigenvalues: four of them are zero
and correspond to the four neutral mesons, two of them are
equal and opposite eigenvalues 
IðmKÞ corresponding to
K
, respectively, and the remaining two are equal and
opposite eigenvalues 
Iðm�Þ corresponding to �
, re-
spectively. Thus, �ab can be decomposed as [13]

�ab ¼ A0�
ab
0 þ A1�

ab
1 þ A2�

ab
2 ; (28)

where the coefficients Ai are linear combinations of the
functions Iðm�Þ and IðmKÞ and read

A0 ¼ 1

3
½Iðm�Þ þ 2IðmKÞ�; (29a)

A1 ¼ 1

3
½Iðm�Þ � IðmKÞ�; (29b)

A2 ¼ 1ffiffiffi
3

p ½Iðm�Þ � IðmKÞ�; (29c)

and the tensors �ab
i are written as

�ab
0 ¼ fabQ; (30a)

�ab
1 ¼ fab

�Q; (30b)

�ab
2 ¼ faeQdbe8 � fbeQdae8 � fabedeQ8: (30c)

Let us stress that, although �ab
0 and �ab

1 are both SU(3)

octets, they have quite different physical interpretations.
The former transforms as the electric charge whereas the
latter also transforms as the electric charge but rotated by�
in isospin space [13]. This can be better seen by consider-
ing

TQ ¼ T3 þ 1ffiffiffi
3

p T8 ¼
2=3 0 0
0 �1=3 0
0 0 �1=3

0
@

1
A;

T
�Q ¼ T3 � 1ffiffiffi

3
p T8 ¼

1=3 0 0
0 �2=3 0
0 0 1=3

0
@

1
A:

(31)

In what follows any operator of the form X
�Q should be

understood as X3 � ð1= ffiffiffi
3

p ÞX8. One also should keep in

mind than XQ and X
�Q fall into different octet representa-

tions. On the other hand, �ab
2 breaks SU(3) as 10þ 10 [13].

In the degeneracy limit � ! 0 and retaining only the
nonanalytic pieces in mq, the integral over the loop, which

comprises the proper factors to give the correct dimen-
sions, can be expressed as [19]

Iðm�Þ ¼ 1

8�f2
MNm�; (32)

where f� 93 MeV is the pion decay constant andMN and
m� denote the nucleon and the meson masses, respec-
tively. When � is not neglected, the resulting function
can be found in Eq. (28) of Ref. [19] and will not be
repeated here.
Thus, the one-loop correction arising from Fig. 1 can be

decomposed into the pieces emerging from the 8 and 10þ
10 representations as follows,

Mk
loop 1 ¼ A0M

kQ
8;loop 1 þ A1M

k �Q
8;loop 1 þ A2M

kQ

10þ10;loop 1
;

(33)

where the different contributions read

Mkc
8;loop 1 ¼ �ijkfabcAiaAjb; (34)

and

Mkc
10þ10;loop 1

¼ �ijkðfaecdbe8 � fbecdae8

� fabedec8ÞAiaAjb: (35)

For computational purposes, a free flavor index c has been

left in Eqs. (34) and (35). This free index can be set toQ ¼
3þ ð1= ffiffiffi

3
p Þ8 [or �Q ¼ 3� ð1= ffiffiffi

3
p Þ8 as the case may be]

once the operator reductions on the right-hand sides of
such equations have been performed.
Now, in the product operators such as �ijkfabcAiaAjb,

�ijkfabedec8AiaAjb and so on found in Eqs. (34) and (35),
there will appear up to six-body operators if we truncate the
1=Nc expansion of Akc at the physical value Nc ¼ 3. The
leading order in 1=Nc is contained in the product
�ijkfabcGiaGjb and similar terms with twoG’s; these terms
are proportional to the square of a1, which is the leading
parameter introduced in Eq. (8). The analysis of Ref. [40]
is given to this order. In the present work wewill proceed to
compute not only leading but also subleading order terms.
Because of the fact that the operator basis is complete [29],
the reduction is always possible. We, however, consider
pertinent to work out terms up to relative order Oð1=N3

cÞ,
which implies evaluating products up to five-body opera-
tors in Eqs. (34) and (35). The contributions ignored will be
proportional to b23, c

2
3, and b3c3, which we consider small

compared to the ones retained.
The reduction of the operator products contained inMkc

8

and Mkc
10þ10

to the order considered here are listed in

Appendix A. Gathering together partial results we find:

4For convenience, we denote such an antisymmetric tensor by
�ab rather than Iab, which is the one actually introduced in
Eq. (4.2) of Ref. [13].
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(1) Flavor octet contribution

Mkc
8;loop 1 ¼

�
�Nc þ 3

2
a21 �

3

Nc

a1b2 � 2ðNc þ 3Þ
N2

c

a1b3

�
Gkc þ 1

2

�
a21 �

1

N2
c

ð2a1b3 � 9a1c3 þ 3b22Þ
�
Dkc

2

� 1

N2
c

�
Nc þ 3

2
a1c3 þ 3

Nc

b2b3

�
Dkc

3 � 1

N2
c

�
Nca1b2 þ ðNc þ 3Þa1b3 þ Nc þ 3

2
a1c3 þ 3

Nc

b2c3

�
Okc

3

þ 1

N2
c

a1c3Dkc
4 � 1

N3
c

b2c3Okc
5 þOðD3D3Þ: (36)

(2) Flavor 10þ 10 contribution

Mkc
10þ10;loop 1

¼
�
1

2
a21 þ

2

N2
c

a1b3

�
ðfTc; Gk8g � fGkc; T8gÞ � 1

Nc

a1b2ðfGkc; fJr; Gr8gg � fGk8; fJr; GrcggÞ

� 1

2N2
c

ð2a1b3 � a1c3ÞðfDkc
2 ; fJr; Gr8gg � fDk8

2 ; fJr; GrcggÞ � 1

2N2
c

ð2a1b3 þ a1c3ÞðfJ2; fGkc; T8gg

� fJ2; fGk8; TcggÞ � 3

8N3
c

b2c3ðfJ2; ½Gkc; fJr; Gr8g�g � fJ2; ½Gk8; fJr; Grcg�gÞ

� 3

8N3
c

b2c3ðf½J2; Gkc�; fJr; Gr8gg � f½J2; Gk8�; fJr; GrcggÞ þ 3

8N3
c

b2c3fJk; ½fJm;Gmcg; fJr; Gr8g�g

þ 1

N3
c

b2c3ðfJ2; fGk8; fJr; Grcggg � fJ2; fGkc; fJr; Gr8gggÞ þOðD3D3Þ; (37)

where the free flavor index c will be set to Q ¼
3þ ð1= ffiffiffi

3
p Þ8 or �Q ¼ 3� ð1= ffiffiffi

3
p Þ8 as required in

Eq. (33). The symbol OðD3D3Þ in Eqs. (36) and (37)
means that, in the structures such as �ijkfabcAiaAjb,
�ijkfaecdbe8AiaAjb and so on we have included all terms
up to five-body operators, such as D2D3, but have ne-
glected contributions which are six-body operators—like
D3D3—or higher.

Equations (36) and (37) have been rearranged to exhibit
explicitly leading and subleading terms in 1=Nc. It is now
evident that both expressions yield matrix elements at most
of order OðN2

cÞ, according to the Nc dependence of matrix
elements of baryon operators discussed in Sec. II. In addi-

tion, f andMN , which appear in the loop-integral (32), are
Oð ffiffiffiffiffiffi

Nc

p Þ and OðNcÞ, respectively, so the one-loop contri-
bution Mk

loop 1, Eq. (33), is order OðNcÞ. In the limit of

smallms, the symmetry breaking part ofMk
loop 1 isOðm1=2

s Þ
so the overall contribution of Eq. (33) to baryon magnetic

moments is Oðm1=2
s NcÞ.

In order to proceed further, we still need to evaluate the
matrix elements of the operators in Eqs. (36) and (37). To
relative order Oð1=N3

cÞ, we have identified 24 linearly
independent spin-1 operators which fall into the 8 and

10þ 10 flavor representations. These basic operators are

Ykc
1 ¼ dc8eGke; Ykc

2 ¼ 	c8Jk; Ykc
3 ¼ dc8eDke

2 ; Ykc
4 ¼ fGkc; T8g; Ykc

5 ¼ fTc; Gk8g; Ykc
6 ¼ dc8eDke

3 ;

Ykc
7 ¼ dc8eOke

3 ; Ykc
8 ¼ fGkc; fJr; Gr8gg; Ykc

9 ¼ fGk8; fJr; Grcgg; Ykc
10 ¼ fJk; fTc; T8gg;

Ykc
11 ¼ fJk; fGrc;Gr8gg; Ykc

12 ¼ 	c8fJ2; Jkg; Ykc
13 ¼ dc8eDke

4 ; Ykc
14 ¼ fDkc

2 ; fJr; Gr8gg;
Ykc
15 ¼ fJ2; fGkc; T8gg; Ykc

16 ¼ fJ2; fTc; Gk8gg; Ykc
17 ¼ fDk8

2 ; fJr; Grcgg; Ykc
18 ¼ fJ2; ½Gkc; fJr; Gr8g�g;

Ykc
19 ¼ fJ2; ½Gk8; fJr; Grcg�g; Ykc

20 ¼ f½J2; Gk8�; fJr; Grcgg; Ykc
21 ¼ f½J2; Gkc�; fJr; Gr8gg;

Ykc
22 ¼ fJk; ½fJm;Gmcg; fJr; Gr8g�g; Ykc

23 ¼ fJ2; fGkc; fJr; Gr8ggg; Ykc
24 ¼ fJ2; fGk8; fJr; Grcggg;

whose matrix elements are displayed in Tables IV, V, and
VI for the sake of completeness. In these tables we have
kept only nontrivial contributions. For instance, Ykc

7 ¼
dc8eOke

3 is an off-diagonal operator with nonzero matrix
elements only for decuplet to octet transitions, and will
vanish otherwise.

At this point we are able to compute the one-loop con-
tribution of Fig. 1 and provide analytical expressions. Such
a contribution is given by

�ðloop 1Þ
B ¼ hBjM3

loop 1jBi; (38)
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where B stands for either an octet or a decuplet baryon.
In the former case the correction arises from Fig. 1(a) and
1(b) whereas for the latter comes from Fig. 1(c) and 1(d).

Furthermore, the contribution to the decuplet to octet
transition magnetic moment, Fig. 1(e) and 1(f), can be
obtained as

TABLE IV. Nontrivial matrix elements of the operators involved in the magnetic moments of
octet baryons: Flavor 8 and 10þ 10 representations. The entries correspond to 48

ffiffiffi
3

p hY33
m i and

48hY38
m i.

n p �� �0 �þ �� �0 � ��0

hY33
1 i �20 20 �16 0 16 4 �4 0 8

ffiffiffi
3

p
hY33

2 i 0 0 0 0 0 0 0 0 0

hY33
3 i �12 12 �24 0 24 �12 12 0 0

hY33
4 i �60 60 0 0 0 �12 12 0 0

hY33
5 i �12 12 �48 0 48 36 �36 0 0

hY33
6 i �60 60 �48 0 48 12 �12 0 24

ffiffiffi
3

p
hY33

8 i �30 30 �48 0 48 �18 18 0 0

hY33
9 i �30 30 �48 0 48 �18 18 0 0

hY33
10 i �72 72 0 0 0 72 �72 0 0

hY33
11 i �30 30 �96 0 96 �66 66 0 �24

ffiffiffi
3

p
hY33

12 i 0 0 0 0 0 0 0 0 0

hY33
13 i �18 18 �36 0 36 �18 18 0 0

hY33
14 i �18 18 �72 0 72 54 �54 0 0

hY33
15 i �90 90 0 0 0 �18 18 0 0

hY33
16 i �18 18 �72 0 72 54 �54 0 0

hY33
17 i �90 90 0 0 0 �18 18 0 0

hY33
18 i 0 0 0 0 0 0 0 0 36

ffiffiffi
3

p
hY33

19 i 0 0 0 0 0 0 0 0 �36
ffiffiffi
3

p
hY33

22 i 0 0 0 0 0 0 0 0 72
ffiffiffi
3

p
hY33

23 i �45 45 �72 0 72 �27 27 0 0

hY33
24 i �45 45 �72 0 72 �27 27 0 0

hY38
1 i �4 �4 �8 �8 �8 12 12 8 0

hY38
2 i 24 24 24 24 24 24 24 24 0

hY38
3 i �12 �12 0 0 0 12 12 0 0

hY38
4 i 12 12 0 0 0 36 36 0 0

hY38
5 i 12 12 0 0 0 36 36 0 0

hY38
6 i �12 �12 �24 �24 �24 36 36 24 0

hY38
8 i 6 6 24 24 24 54 54 24 0

hY38
9 i 6 6 24 24 24 54 54 24 0

hY38
10 i 72 72 0 0 0 72 72 0 0

hY38
11 i 6 6 72 72 72 102 102 24 0

hY38
12 i 36 36 36 36 36 36 36 36 0

hY38
13 i �18 �18 0 0 0 18 18 0 0

hY38
14 i 18 18 0 0 0 54 54 0 0

hY38
15 i 18 18 0 0 0 54 54 0 0

hY38
16 i 18 18 0 0 0 54 54 0 0

hY38
17 i 18 18 0 0 0 54 54 0 0

hY38
18 i 0 0 0 0 0 0 0 0 0

hY38
19 i 0 0 0 0 0 0 0 0 0

hY38
22 i 0 0 0 0 0 0 0 0 0

hY38
23 i 9 9 36 36 36 81 81 36 0

hY38
24 i 9 9 36 36 36 81 81 36 0
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�ðloop 1Þ
TB ¼ hTjM3

loop 1jBi: (39)

Analytical expressions can be readily found by reading
off the matrix elements of the pertinent operators from
Table I. We just show the one corresponding to the neutron
as a case example because the others can be obtained
analogously. We thus have,

�
ðloop 1Þ
n ¼

�
a21 þ

1

3
a1b2 þ 4

9
a1b3 þ 1

9
b2b3 þ 1

3
a1c3

�
A0

þ
�
5

4
a21 þ

1

2
a1b2 þ 1

12
b22 þ

13

18
a1b3 þ 1

6
b2b3

þ 1

6
a1c3

�
A1 þ 1ffiffiffi

3
p

�
1

2
a21 þ

2

9
a1b3 þ 1

6
a1c3

�
A2;

(40)

TABLE V. Nontrivial matrix elements of the operators involved in the magnetic moments of
decuplet baryons: Flavor 8 and 10þ 10 representations. The entries correspond to 16

ffiffiffi
3

p hY33
m i

and 16hY38
m i.
�þþ �þ �0 �� �	þ �	0 �	� �	0 �	� ��

hY33
1 i 12 4 �4 �12 8 0 �8 4 �4 0

hY33
2 i 0 0 0 0 0 0 0 0 0 0

hY33
3 i 36 12 �12 �36 24 0 �24 12 �12 0

hY33
4 i 36 12 �12 �36 0 0 0 �12 12 0

hY33
5 i 36 12 �12 �36 0 0 0 �12 12 0

hY33
6 i 180 60 �60 �180 120 0 �120 60 �60 0

hY33
8 i 90 30 �30 �90 0 0 0 �30 30 0

hY33
9 i 90 30 �30 �90 0 0 0 �30 30 0

hY33
10 i 216 72 �72 �216 0 0 0 �72 72 0

hY33
11 i 90 30 �30 �90 24 0 �24 �6 6 0

hY33
12 i 0 0 0 0 0 0 0 0 0 0

hY33
13 i 270 90 �90 �270 180 0 �180 90 �90 0

hY33
14 i 270 90 �90 �270 0 0 0 �90 90 0

hY33
15 i 270 90 �90 �270 0 0 0 �90 90 0

hY33
16 i 270 90 �90 �270 0 0 0 �90 90 0

hY33
17 i 270 90 �90 �270 0 0 0 �90 90 0

hY33
23 i 675 225 �225 �675 0 0 0 �225 225 0

hY33
24 i 675 225 �225 �675 0 0 0 �225 225 0

hY38
1 i �4 �4 �4 �4 0 0 0 4 4 8

hY38
2 i 24 24 24 24 24 24 24 24 24 24

hY38
3 i �12 �12 �12 �12 0 0 0 12 12 24

hY38
4 i 12 12 12 12 0 0 0 12 12 48

hY38
5 i 12 12 12 12 0 0 0 12 12 48

hY38
6 i �60 �60 �60 �60 0 0 0 60 60 120

hY38
8 i 30 30 30 30 0 0 0 30 30 120

hY38
9 i 30 30 30 30 0 0 0 30 30 120

hY38
10 i 72 72 72 72 0 0 0 72 72 288

hY38
11 i 30 30 30 30 24 24 24 54 54 120

hY38
12 i 180 180 180 180 180 180 180 180 180 180

hY38
13 i �90 �90 �90 �90 0 0 0 90 90 180

hY38
14 i 90 90 90 90 0 0 0 90 90 360

hY38
15 i 90 90 90 90 0 0 0 90 90 360

hY38
16 i 90 90 90 90 0 0 0 90 90 360

hY38
17 i 90 90 90 90 0 0 0 90 90 360

hY38
23 i 225 225 225 225 0 0 0 225 225 900

hY38
24 i 225 225 225 225 0 0 0 225 225 900
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where the different coefficients Ai, which contain the in-
tegrals over the loops, are given in Eq. (29).

Corrections of order Oðm1=2
q NcÞ have some important

effects on the relations among the magnetic moments
referred to in Sec. III. First, the term that comes along

with A0, M
kQ
8;loop 1 in Eq. (33), yields baryon magnetic mo-

ments that satisfy the Coleman-Glashow relations (16)
whereas violations to them are due to the terms that ac-

company to A1 and A2, which areM
k �Q
8;loop 1 andM

kQ

10þ10;loop 1
.

Hence, for the Coleman-Glashow relations one gets the
generic expressions

�ðloop 1Þ
L ��ðloop 1Þ

R ¼ DðL;RÞ½IðmKÞ � Iðm�Þ�; (41)

where �
ðloop 1Þ
L [�

ðloop 1Þ
R ] represents the left-hand [right-

hand] side of the corresponding relation in Eq. (16) and
DðL;RÞ is a quadratic function of the unknown coefficients

of the 1=Nc expansion of Akc. For instance, for the first

relation one has

�
ðloop 1Þ
�þ ��

ðloop 1Þ
p ¼ Dð�þ;pÞ½IðmKÞ � Iðm�Þ�; (42)

where, for Nc ¼ 3,

Dð�þ;pÞ ¼ � 1

180
ð63a21 þ 6a1b2 þ 22a1b3 þ 30a1c3

� 3b22 þ 2b2b3Þ: (43)

Analogous results are obtained for the remaining relations
and will not be listed here.
Caldi and Pagels [16] first evaluated these corrections

and found a dependence on the meson mass difference
mK �m�. This dependence is already contained in the
expression IðmKÞ � Iðm�Þ in our results. These authors
also derived some sum rules, which in this approach we
can check they are fulfilled, i.e.,

TABLE VI. Nontrivial matrix elements of the operators involved in the decuplet to octet
transition magnetic moments: Flavor 8 and 10þ 10 representations. The entries correspond to
12

ffiffiffi
6

p hY33
m i and 12

ffiffiffi
2

p hY38
m i.

�þp �0n �	0� �	0�0 �	þ�þ �	��� �	0�0 �	���

hY33
1 i 8 8 �4

ffiffiffi
3

p
0 4 �4 4 �4

hY33
4 i 24 24 0 0 0 0 �12 12

hY33
5 i 0 0 0 0 24 �24 12 �12

hY33
7 i 36 36 �18

ffiffiffi
3

p
0 18 �18 18 �18

hY33
8 i 36 36 6

ffiffiffi
3

p
0 6 �6 �24 24

hY33
9 i 0 0 6

ffiffiffi
3

p
0 42 �42 12 �12

hY33
15 i 108 108 0 0 0 0 �54 54

hY33
16 i 0 0 0 0 108 �108 54 �54

hY33
18 i �108 �108 0 0 27 �27 27 �27

hY33
19 i 0 0 0 0 �81 81 �81 81

hY33
20 i 0 0 0 0 126 �126 36 �36

hY33
21 i 108 108 0 0 18 �18 �72 72

hY33
23 i 162 162 27

ffiffiffi
3

p
0 27 �27 �108 108

hY33
24 i 0 0 27

ffiffiffi
3

p
0 189 �189 54 �54

hY38
1 i 0 0 0 �4 �4 �4 �4 �4

hY38
4 i 0 0 0 0 0 0 �12 �12

hY38
5 i 0 0 0 0 0 0 �12 �12

hY38
7 i 0 0 0 �18 �18 �18 �18 �18

hY38
8 i 0 0 0 6 6 6 �24 �24

hY38
9 i 0 0 0 6 6 6 �24 �24

hY38
15 i 0 0 0 0 0 0 �54 �54

hY38
16 i 0 0 0 0 0 0 �54 �54

hY38
18 i 0 0 0 27 27 27 27 27

hY38
19 i 0 0 0 27 27 27 27 27

hY38
20 i 0 0 0 18 18 18 �72 �72

hY38
21 i 0 0 0 18 18 18 �72 �72

hY38
23 i 0 0 0 27 27 27 �108 �108

hY38
24 i 0 0 0 27 27 27 �108 �108
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�ðloop 1Þ
�þ þ 2�ðloop 1Þ

� þ�ðloop 1Þ
�� ¼ 0; (44)

�
ðloop 1Þ
�0 þ�

ðloop 1Þ
�� þ�

ðloop 1Þ
n � 2�

ðloop 1Þ
� þ 2�

ðloop 1Þ
p ¼ 0;

(45)

and

�ðloop 1Þ
� � ffiffiffi

3
p

�ðloop 1Þ
��0 ��ðloop 1Þ

�0 ��ðloop 1Þ
n ¼ 0: (46)

In turn, the relation

�
ðloop 1Þ
�þ � 2�

ðloop 1Þ
�0 þ�

ðloop 1Þ
�� ¼ 0 (47)

also holds to this order.
On the other hand, for decuplet baryons, the analogs of

Eqs. (20)–(22) are

�ðloop 1Þ
�þþ ��ðloop 1Þ

�þ ��ðloop 1Þ
�0 þ�ðloop 1Þ

�� ¼ 0; (48)

�
ðloop 1Þ
�	þ � 2�

ðloop 1Þ
�	0 þ�

ðloop 1Þ
�	� ¼ 0; (49)

and

�
ðloop 1Þ
�þþ � 3�

ðloop 1Þ
�þ þ 3�

ðloop 1Þ
�0 ��

ðloop 1Þ
�� ¼ 0; (50)

whereas for transition magnetic moments, the analogs of
Eqs. (25) and (26) read

�ðloop 1Þ
�þp ��ðloop 1Þ

�0n
¼ 0; (51)

and

�
ðloop 1Þ
�	þ�þ � 2�

ðloop 1Þ
�	0�0 þ�

ðloop 1Þ
�	��� ¼ 0: (52)

In Ref. [20], Eq. (36), some other relations among
magnetic moments of the decuplet baryons are presented
which are satisfied at this order. We have explicitly
checked that these relations are also satisfied within our
approach.

B. Nonanalytic corrections of order mq lnmq

The one-loop corrections to baryon magnetic moments
arising from the Feynman diagrams of Fig. 2 have a non-
analytic dependence on the quark mass of the form
mq lnmq. Compared to the case discussed previously, the

computation of these diagrams requires a rather formidable
effort when performing the algebraic reduction of the
operator products involved. A great deal of computational
ease is gained by noticing that this contribution has the
same operator structure as the one found in the renormal-
ized baryon axial-vector current Akc þ 	Akc computed in
Ref. [37] so that some modifications and/or new partial
computations are required. Algebraic manipulations of the
equivalent diagrams 2(a)–2(e) for the axial-vector current
show that they can be combined in the double commutator
structures given in Eqs. (31) and (40), respectively, of

Ref. [38]. Explicit computations of these double commu-
tators are given in Ref. [37] to relative order Oð1=N3

cÞ.
In our case, we then follow a close parallelism to the

analyses referred to above. Accordingly, we will discuss
separately diagrams 2(a)–2(e), as they involve rather dif-
ferent computational complication.

1. Contribution of diagrams 2(a)–2(d)

The first set of diagrams, Fig. 2(a)–2(d), taking into
account the wave function renormalization graphs, con-
tribute to the baryon magnetic moment operator as

Mk
loop 2ða–dÞ ¼ ½Aja; ½Ajb;Mk���ab: (53)

Here, �ab is a symmetric tensor which contains meson-
loop integrals with the exchange of a single meson: A
meson of flavor a is emitted and a meson of flavor b is
reabsorbed. �ab decomposes into flavor singlet, flavor 8,
and flavor 27 representations as [41]

�ab ¼ F1	
ab þ F8d

ab8

þ F27

�
	a8	b8 � 1

8
	ab � 3

5
dab8d888

�
; (54)

where

F1 ¼ 1

8
½3Fðm�;�Þ þ 4FðmK;�Þ þ Fðm�;�Þ�; (55)

F8 ¼ 2
ffiffiffi
3

p
5

�
3

2
Fðm�;�Þ � FðmK;�Þ � 1

2
Fðm�;�Þ

�
;

(56)

and

F27 ¼ 1

3
Fðm�;�Þ � 4

3
FðmK;�Þ þ Fðm�;�Þ: (57)

Equations (55)–(57) are linear combinations of Fðm�;�Þ,
FðmK;�Þ, and Fðm�;�Þ, where Fðm�; �Þ contains the

result of performing the loop integral. In the degeneracy
limit � ! 0, this function reduces to [19]

Fðm�; �Þ ¼ m2
�

32�2f2
ln
m2

�

�2
; (58)

where� is the scale of dimensional regularization and only
nonanalytic terms in mq have been kept.

Now, in the operator reduction of the structure (53) some
subtleties arise. The appearance of the new parameters mi

makes unfeasible the direct application of Eqs. (30)–(32)
of Ref. [37] to obtain the corresponding loop contribution
Mk

loop 2ða–dÞ. Indeed, new terms need be calculated. We

remark that, because the operator basis is complete, the
reduction is doable. In Appendix B we present the indi-
vidual contributions of the double commutator in (53) to
the order implemented here. After a long but otherwise
standard calculation, we can gather together partial results
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to get

Mk
loop 2ða–dÞ ¼ F1M

kQ
1;loop 2ða–dÞ þ F8M

kQ
8;loop 2ða–dÞ þ F27M

kQ
27;loop 2ða–dÞ; (59)

where the group structures of the double commutator read as follows:
(1) Flavor singlet contribution

Mkc
1;loop 2ða–dÞ ¼

�
23

12
a21m1 � Nc þ 3

3Nc

ð�a1b2m1 þ 3a21m2Þ � N2
c þ 6Nc þ 4

N2
c

a21m3 � N2
c þ 6Nc � 3

N2
c

a21m4

þ N2
c þ 6Nc � 18

6N2
c

b22m1 þ 2

N2
c

ða1b3m1 � 3a1b2m2Þ � 4ðNc þ 3Þ
N3

c

ðb2b3m1 þ a1b3m2 þ a1b2m3Þ
�
Gkc

þ 1

Nc

�
5

2
a1b2m1 þ 71

12
a21m2 þ Nc þ 3

6Nc

ð6a1b3m1 � 9a1c3m1 þ 8a1b2m2 � 24a21m3 þ 6a21m4Þ

þ N2
c þ 6Nc þ 6

N2
c

a1b3m2 � 3ðN2
c þ 6Nc � 12Þ

2N2
c

a1c3m2 þ N2
c þ 6Nc � 18

6N2
c

b22m2

þ 1

N2
c

ð�2b2b3m1 þ 9b2c3m1 � 2a1b2m3 þ 9a1b2m4Þ
�
Dkc

2 þ 1

N2
c

�
11

6
a1b3m1 þ 2a1c3m1 þ 5

4
b22m1

þ 3

2
a1b2m2 þ 131

12
a21m3 þ Nc þ 3

6Nc

ð14b2b3m1 � 6b2c3m1 þ 6a1b3m2 � 15a1c3m2

þ 14a1b2m3 � 6a1b2m4Þ
�
Dkc

3 þ 1

N2
c

�
7

3
a1b3m1 þ 3a1c3m1 þ 7

2
b22m1 � 2a1b2m2 þ 131

12
a21m4

þ Nc þ 3

3Nc

ð22b2b3m1 � 3b2c3m1 � 6a1b3m2 � 3a1c3m2 � 6a1b2m3 þ 4a1b2m4Þ
�
Okc

3

þ 1

6N3
c

ð6b2b3m1 þ 12b2c3m1 þ 10a1b3m2 þ 90a1c3m2 þ 15b22m2 þ 6a1b2m3 þ 12a1b2m4ÞDkc
4

þOðGD3D3Þ: (60)

(2) Flavor octet Contribution

Mkc
8;loop 2ða–dÞ ¼

�
11

24
a21m1 � Nc þ 3

6Nc

ða1b2m1 þ 3a21m2Þ � 1

2N2
c

ð3b22m1 þ 2a1b3m1 þ 6a1b2m2 þ 8a21m3 � 3a21m4Þ

� 2ðNc þ 3Þ
N3

c

ðb2b3m1 þ a1b3m2 þ a1b2m3Þ
�
dc8eGke þ

�
5

18
a21m1 þ Nc þ 3

9Nc

a1b2m1

� Nc þ 6

12Nc

ð3a1c3m1 � 2a21m4Þ þ N2
c þ 6Nc þ 4

6N2
c

a1b3m1 � 2ðN2
c þ 6Nc � 1Þ

3N2
c

a21m3

�
	c8Jk

þ 1

Nc

�
5

4
a1b2m1 þ 13

8
a21m2 þ Nc þ 3

4Nc

ð2a1b3m1 � 3a1c3m1 � 8a21m3 þ 2a21m4Þ

þ 1

2N2
c

ð�2b2b3m1 þ 9b2c3m1 � 3b22m2 � 2a1b3m2 þ 18a1c3m2 � 2a1b2m3 þ 9a1b2m4Þ
�
dc8eDke

2

þ 1

Nc

�
1

2
a1b2m1 þ 4

3
a21m2 þ Nc þ 3

3Nc

a1b2m2 þ 2

N2
c

ðb2b3m1 þ 2a1b3m2 þ a1b2m3Þ
�
fTc;Gk8g

� 1

Nc

�
1

6
a1b2m1 þ 1

2
a21m2 þ Nc þ 3

6Nc

ðb22m1 þ 6a21m3 þ 6a21m4Þ þ 2

N2
c

ðb2b3m1 þ a1b3m2 þ a1b2m3Þ
�

� fGkc; T8g þ 1

N2
c

�
3

8
b22m1 þ 7

12
a1b3m1 þ 2

3
a1c3m1 þ 3

4
a1b2m2 þ 17

8
a21m3 � 1

3
a21m4

þ Nc þ 3

12Nc

ð6b2b3m1 � 4b2c3m1 þ 6a1b3m2 � 15a1c3m2 þ 6a1b2m3 � 4a1b2m4Þ
�
dc8eDke

3
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þ 1

N2
c

�
� 5

6
a1b3m1 þ 7

6
a1c3m1 þ 5

4
b22m1 � a1b2m2 � 2

3
a21m3 þ 43

24
a21m4

þ Nc þ 3

6Nc

ð8b2b3m1 � 2b2c3m1 � 6a1b3m2 � 3a1c3m2 � 4a1b2m3 þ a1b2m4Þ
�
dc8eOke

3

þ 1

N2
c

�
1

4
a1b3m1 � 3

8
a1c3m1 þ 1

6
a1b2m2 � a21m3 þ 1

4
a21m4 � Nc þ 3

12Nc

ð�6a1b3m2 þ 9a1c3m2 þ b22m2Þ
�

� fJk; fTc; T8gg þ 1

N2
c

�
�a1b3m1 þ 7

6
a1c3m1 þ 5a21m3 � 11

6
a21m4 � Nc þ 3

3Nc

ðb2c3m1 þ a1b2m4Þ
�
fJk; fGrc;Gr8gg

þ 1

N2
c

�
�a1b3m1 þ 1

3
a1c3m1 þ 3

2
b22m1 � a1b2m2 þ 2

3
a21m3 þ 14

3
a21m4

� Nc þ 3

6Nc

ð�6b2b3m1 þ b2c3m1 þ 2a1b2m3 � a1b2m4Þ
�
fGkc; fJr; Gr8gg

þ 1

N2
c

�
5

3
a1b3m1 � 1

3
a1c3m1 � 1

2
b22m1 þ a1b2m2 þ 3a21m3 � 13

6
a21m4

þ Nc þ 3

6Nc

ð�2b2b3m1 þ b2c3m1 þ 6a1b2m3 � a1b2m4Þ
�
fGk8; fJr; Grcgg

þ 1

N2
c

�
� 1

9
a1b3m1 þ 17

18
a1c3m1 þ 5

3
a21m3 � 2

9
a21m4 þ Nc þ 3

9Nc

ðb2c3m1 þ a1b2m4Þ
�
	c8fJ2; Jkg

þ 1

N3
c

�
1

2
b2b3m1 þ b2c3m1 þ 1

2
a1b3m2 þ 4a1c3m2 þ 3

4
b22m2 þ 1

2
a1b2m3 þ a1b2m4

�
dc8eDke

4

þ 1

N3
c

�
�b2b3m1 þ 1

2
b2c3m1 þ 10

3
a1b3m2 þ 4

3
a1c3m2 þ a1b2m3

�
fJ2; fTc; Gk8gg

þ 1

N3
c

�
7

3
b2b3m1 � 1

2
b2c3m1 � a1b3m2 � 1

2
a1c3m2 � a1b2m3 þ 1

3
a1b2m4

�
fJ2; fGkc; T8gg

þ 1

N3
c

�
1

2
b2c3m1 � 5a1b3m2 þ 31

6
a1c3m2 þ b22m2 � 2a1b2m3 þ a1b2m4

�
fDkc

2 ; fJr; Gr8gg

þ 1

N3
c

�
� 2

3
b2b3m1 � 1

2
b2c3m1 þ 2a1b3m2 � 2a1c3m2 þ 8

3
a1b2m3 � 4

3
a1b2m4

�
fDk8

2 ; fJr; Grcgg

þ 1

N3
c

�
5

32
b2b3m1 � 13

64
b2c3m1 � 15

64
a1b2m3 � 45

128
a1b2m4

�
ðfJ2; ½Gkc; fJr; Gr8g�g � fJ2; ½Gk8; fJr; Grcg�g

� fJk; ½fJm;Gmcg; fJr; Gr8g�gÞ þOðGD3D3Þ: (61)
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(3) Flavor 27 contribution

Mkc
27;loop 2ða–dÞ ¼

1

6
a21m1ð3dc8ed8egGkg þ 2	c8Gk8 þ dc88JkÞ þ 2

3Nc

a1b2m1	
c8Dk8

2 þ 1

3Nc

a21m2	
88Dkc

2

þ 1

Nc

a1b2m1d
c8efGke; T8g þ 1

2Nc

a21m2d
88efGke; Tcg þ 1

2N2
c

ða1c3m1 þ a21m3Þdc8ed8egDkg
3

þ 1

2N2
c

ð2a1b3m1 þ a1c3m1 þ a21m4Þdc8ed8egOkg
3 þ 1

3N2
c

ð2a1b3m1 � a21m3 þ a21m4Þ	c8Dk8
3

þ 1

3N2
c

ð2a1c3m1 þ 3a21m4Þ	c8Ok8
3 þ 2

3N2
c

a21m3	
88Dkc

3 þ 2

3N2
c

a21m4	
88Okc

3

þ 1

3N2
c

ða1c3m1 þ a21m3Þdc88fJ2; Jkg þ 1

N2
c

a1b2m2fGk8; fTc; T8gg þ 1

2N2
c

b22m1fGkc; fT8; T8gg

� 1

N2
c

ð2a21m3 þ a21m4ÞfGkc; fGr8; Gr8gg þ 1

N2
c

ð2a21m3 � a21m4ÞfGk8; fGrc; Gr8gg

� 1

2N2
c

ð2a1c3m1 þ 6a21m3 � a21m4Þdc8efJk; fGre; Gr8gg þ 1

2N2
c

ð2a21m3 � a21m4Þd88efJk; fGrc; Gregg

þ 1

N2
c

a21m4d
88efGkc; fJr; Gregg þ 1

2N2
c

ð6a1b3m1 � a1c3m1 þ 2a21m3 � a21m4Þdc8efGke; fJr; Gr8gg

þ 1

2N2
c

ð2a21m3 � a21m4Þd88efGke; fJr; Grcgg þ 1

2N2
c

ð�2a1b3m1 þ a1c3m1 þ 2a21m4Þdc8efGk8; fJr; Gregg

þ 1

2N3
c

ð2b2b3m1 þ b2c3m1 þ 2a1b2m3 þ a1b2m4Þdc8efJ2; fGke; T8gg

þ 1

2N3
c

ð2a1b3m2 þ a1c3m2Þd88efJ2; fGke; Tcgg þ 2

3N3
c

ðb2c3m1 þ a1b2m4Þ	c8Dk8
4 þ 2

3N3
c

a1c3m2	
88Dkc

4

þ 1

2N3
c

b22m2fDkc
2 ; fT8; T8gg � 2

N3
c

a1c3m2fDkc
2 ; fGr8; Gr8gg

� 1

2N3
c

ð2a1b3m2 � a1c3m2Þd88efDkc
2 ; fJr; Gregg � 2

N3
c

ðb2c3m1 þ a1b2m4ÞfDk8
2 ; fGrc; Gr8gg

þ 1

2N3
c

ð�2b2b3m1 þ b2c3m1 � 2a1b2m3 þ a1b2m4Þdc8efDk8
2 ; fJr; Gregg

þ 1

2N3
c

ð�2b2b3m1 þ b2c3m1 þ 6a1b2m3 � a1b2m4ÞffJr; Grcg; fGk8; T8gg

þ 1

2N3
c

ð6b2b3m1 � b2c3m1 � 2a1b2m3 þ a1b2m4ÞffJr; Gr8g; fGkc; T8gg

þ 2

N3
c

a1b3m2ffJr; Gr8g; fGk8; Tcgg þOðGD3D3Þ: (62)

Notice that, in order for Mkc
27;loop 2ða–dÞ to be a truly 27

contribution, singlet and octet pieces must be subtracted
off.

In Eqs. (60)–(62) the symbol OðGD3D3Þ refers to the
fact that in the double commutator structure
½Aja; ½Ajb;Mkc�� we have included all the terms up to six-

body operators, such as ½Gja; ½Djb
2 ;Okc

3 ��, but have ne-

glected contributions which are seven-body operators or
higher. We have done this because the commutator of an
m-body operator with an n-body operator is an
(mþ n� 1)-operator. On the other hand, we have also
rearranged these expressions to display leading and sub-

leading terms in 1=Nc explicitly. The resulting formulas
are rather lengthy but also illuminating. We can check that
large-Nc cancellations occur (as expected) in the double
commutator structure in such a way that it is at most of
order OðNcÞ. Besides, the factor f2 in the denominator of
the loop integral introduces an extra suppression of 1=Nc in
such a way that the net contribution of Mk

loop 2ða–dÞ to the

magnetic moments isOð1Þ, or equivalently, 1=Nc times the
tree-level value which is order OðNcÞ. Thus, in principle,
the dominant source of SU(3) symmetry breaking should
come from the contribution Mk

loop 1 rather than Mk
loop 2ða–dÞ.

We think that this statement is pointless unless we perform
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a numerical comparison of the theoretical expressions with
the available experimental data. This analysis is postponed
to Sec. VI. We now turn to evaluate the diagram corre-
sponding to Fig. 2(e).

2. Contribution of diagram 2(e)

The contribution to the magnetic moments of the
Feynman diagram displayed in Fig. 2(e) possesses the
structure

Mk
loop 2e ¼ ½Ta; ½Tb;Mk���ab; (63)

where �ab is the symmetric tensor introduced in Eq. (54).
In a similar way to Eq. (59), Eq. (63) can be separated into
flavor singlet, flavor octet, and flavor 27 pieces as

Mk
loop 2e ¼ F1M

kQ
1;loop 2e þ F8M

kQ
8;loop 2e þ F27M

kQ
27;loop 2e;

(64)

where this time the group structures of the double commu-
tator, for Nf ¼ 3, read as follows:

(1) Flavor singlet contribution

Mkc
1;loop 2e ¼ ½Ta; ½Ta;Mkc�� ¼ 3Mkc: (65)

(2) Flavor octet contribution

Mkc
8;loop 2e ¼ dab8½Ta; ½Tb;Mkc�� ¼ 3

2
dc8eMke: (66)

(3) Flavor 27 contribution

Mkc
27;loop 2e ¼ ½T8; ½T8;Mkc�� ¼ fc8ef8egMkg: (67)

Let us notice that, in order forMkc
27;loop 2e to be a truly 27

contribution, singlet and octet pieces must be subtracted
off. In the above equations, the free flavor index c will be

set to Q ¼ 3þ ð1= ffiffiffi
3

p Þ8. By doing this, expression (67) as
it stands, will vanish.
As before, in order to proceed further, we need to

compute the matrix elements of operators that fall into
the flavor 27 representation. To relative order Oð1=N3

cÞ,
this time we have identified 36 spin-1 operators in such a
representation. They read

Zkc
1 ¼ dc8ed8egGkg; Zkc

2 ¼ 	c8Gk8; Zkc
3 ¼ dc88Jk; Zkc

4 ¼ 	c8Dk8
2 ; Zkc

5 ¼ 	88Dkc
2 ;

Zkc
6 ¼ dc8efGke; T8g; Zkc

7 ¼ d88efGke; Tcg; Zkc
8 ¼ dc8ed8egDkg

3 ; Zkc
9 ¼ dc8ed8egOkg

3 ; Zkc
10 ¼ 	c8Dk8

3 ;

Zkc
11 ¼ 	c8Ok8

3 ; Zkc
12 ¼ 	88Dkc

3 ; Zkc
13 ¼ 	88Okc

3 ; Zkc
14 ¼ dc88fJ2; Jkg; Zkc

15 ¼ fGkc; fT8; T8gg;
Zkc
16 ¼ fGk8; fTc; T8gg; Zkc

17 ¼ fGkc; fGr8; Gr8gg; Zkc
18 ¼ fGk8; fGrc;Gr8gg; Zkc

19 ¼ dc8efJk; fGre; Gr8gg;
Zkc
20 ¼ d88efJk; fGrc; Gregg; Zkc

21 ¼ dc8efGk8; fJr; Gregg; Zkc
22 ¼ d88efGkc; fJr; Gregg;

Zkc
23 ¼ dc8efGke; fJr; Gr8gg; Zkc

24 ¼ d88efGke; fJr; Grcgg; Zkc
25 ¼ 	c8Dk8

4 ; Zkc
26 ¼ 	88Dkc

4 ;

Zkc
27 ¼ fDkc

2 ; fT8; T8gg; Zkc
28 ¼ fDkc

2 ; fGr8; Gr8gg; Zkc
29 ¼ fDk8

2 ; fGrc; Gr8gg; Zkc
30 ¼ dc8efDk8

2 ; fJr; Gregg;
Zkc
31 ¼ d88efDkc

2 ; fJr; Gregg; Zkc
32 ¼ dc8efJ2; fGke; T8gg; Zkc

33 ¼ d88efJ2; fGke; Tcgg;
Zkc
34 ¼ ffJr; Grcg; fGk8; T8gg; Zkc

35 ¼ ffJr; Gr8g; fGkc; T8gg; Zkc
36 ¼ ffJr; Gr8g; fGk8; Tcgg:

Their corresponding matrix elements are listed in
Tables VII, VIII, IX, X, and XI for baryon octet, decuplet,
and decuplet-octet transitions.

3. Total contribution of Fig. 2

The total correction arising from Fig. 2 is then given by

Mk
loop 2 ¼ Mk

loop 2ða–dÞ þMk
loop 2e; (68)

where the first and second summands on the right-
hand side of the above expression are given by Eqs. (59)
and (64), respectively.

Corrections to the baryon magnetic moments are then
obtained by computing the matrix elements of operator
Mk

loop 2 between SU(6) baryon states, namely,

�ðloop 2Þ
B ¼ hBjM3

loop 2jBi; (69)

where B stands for either an octet or a decuplet baryon. For
decuplet to octet transition magnetic moments, we also
have

�ðloop 2Þ
TB ¼ hTjM3

loop 2jBi: (70)

The singlet piece of Mk
loop 2 yields magnetic moments

that satisfy the Coleman-Glashow relations (16) whereas
violations to them are due to the 8 and 27 pieces. Their
effects can be better seen in the sum rules (44)–(46), which
are no longer satisfied at this order. We shall not write
down the resulting expressions because they can be ob-
tained without trouble by reading off the matrix elements
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of the corresponding operators displayed in Tables I, II, III,
IV, V, VI, VII, VIII, IX, X, and XI.

We also notice that, for decuplet baryons, the analogs of
Eqs. (20)–(22) read

�
ðloop 2Þ
�þþ ��

ðloop 2Þ
�þ ��

ðloop 2Þ
�0 þ�

ðloop 2Þ
�� ¼ 0; (71)

�
ðloop 2Þ
�	þ � 2�

ðloop 2Þ
�	0 þ�

ðloop 2Þ
�	� ¼ 0; (72)

and

�
ðloop 2Þ
�þþ � 3�

ðloop 2Þ
�þ þ 3�

ðloop 2Þ
�0 ��

ðloop 2Þ
�� ¼ 0; (73)

whereas for transition magnetic moments, the analogs of
Eqs. (25) and (26) are

�ðloop 2Þ
�þp ��ðloop 2Þ

�0n
¼ 0; (74)

and

�
ðloop 2Þ
�	þ�þ � 2�

ðloop 2Þ
�	0�0 þ�

ðloop 2Þ
�	��� ¼ 0: (75)

TABLE VII. Nontrivial matrix elements of the operators involved in the magnetic moments of
octet baryons: flavor 27 representation. The entries correspond to 144hZ33

m i.
n p �� �0 �þ �� �0 � ��0

hZ33
1 i �20 20 �16 0 16 4 �4 0 8

ffiffiffi
3

p
hZ33

2 i 0 0 0 0 0 0 0 0 0

hZ33
3 i 0 0 0 0 0 0 0 0 0

hZ33
4 i 0 0 0 0 0 0 0 0 0

hZ33
5 i �36 36 �72 0 72 �36 36 0 0

hZ33
6 i �60 60 0 0 0 �12 12 0 0

hZ33
7 i 12 �12 48 0 �48 �36 36 0 0

hZ33
8 i �60 60 �48 0 48 12 �12 0 24

ffiffiffi
3

p
hZ33

10i 0 0 0 0 0 0 0 0 0

hZ33
12i �180 180 �144 0 144 36 �36 0 72

ffiffiffi
3

p
hZ33

14i 0 0 0 0 0 0 0 0 0

hZ33
15i �180 180 0 0 0 36 �36 0 0

hZ33
16i �36 36 0 0 0 �108 108 0 0

hZ33
17i �15 15 �144 0 144 51 �51 0 48

ffiffiffi
3

p
hZ33

18i �15 15 �96 0 96 99 �99 0 0

hZ33
19i �30 30 �96 0 96 �66 66 0 �24

ffiffiffi
3

p
hZ33

20i 30 �30 96 0 �96 66 �66 0 24
ffiffiffi
3

p
hZ33

21i �30 30 �48 0 48 �18 18 0 0

hZ33
22i 30 �30 48 0 �48 18 �18 0 0

hZ33
23i �30 30 �48 0 48 �18 18 0 0

hZ33
24i 30 �30 48 0 �48 18 �18 0 0

hZ33
25i 0 0 0 0 0 0 0 0 0

hZ33
26i �54 54 �108 0 108 �54 54 0 0

hZ33
27i �108 108 0 0 0 �108 108 0 0

hZ33
28i �9 9 �216 0 216 �153 153 0 0

hZ33
29i �45 45 0 0 0 99 �99 0 0

hZ33
30i �90 90 0 0 0 �18 18 0 0

hZ33
31i 18 �18 72 0 �72 �54 54 0 0

hZ33
32i �90 90 0 0 0 �18 18 0 0

hZ33
33i 18 �18 72 0 �72 �54 54 0 0

hZ33
34i �90 90 0 0 0 54 �54 0 0

hZ33
35i �90 90 0 0 0 54 �54 0 0

hZ33
36i �18 18 �144 0 144 �162 162 0 0
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On the other hand, to this order, sum rules (36) of
Ref. [20] are no longer satisfied.

In passing, let us mention that the flavor 27 piece of
hBjM3

loop 2ða–dÞjBi is responsible for the small difference

observed in the relation amongst magnetic moments of
octet baryons given in Eq. (21) of Ref. [19], namely,

ð6�� þ��� � 4
ffiffiffi
3

p
���0Þ � ð4�n ���þ þ 4��0Þ

¼ F27fða1; . . . ; c3; m1; . . . ; m4Þ; (76)

where F27 is the flavor 27 combination of the integrals over

the loops given in Eq. (57) and fða1; . . . ; c3; m1; . . . ; m4Þ is
a function which depends quadratically on a1; . . . ; c3 but
linearly on m1; . . . ; m4. The function F27 is highly sup-
pressed with respect to the flavor singlet and octet combi-
nations, which explains such a small discrepancy.

C. Total one-loop corrections to baryon magnetic
moments

At this point, we can summarize our findings and pro-
vide analytic results. Thus, the final expression of the
magnetic moment of baryon B up to one-loop order can

TABLE VIII. Nontrivial matrix elements of the operators involved in the magnetic moments
of octet baryons: flavor 27 representation. The entries correspond to 144

ffiffiffi
3

p hZ38
m i.

n p �� �0 �þ �� �0 � ��0

hZ38
1 i 12 12 24 24 24 �36 �36 �24 0

hZ38
2 i 36 36 72 72 72 �108 �108 �72 0

hZ38
3 i �72 �72 �72 �72 �72 �72 �72 �72 0

hZ38
4 i 108 108 0 0 0 �108 �108 0 0

hZ38
5 i 108 108 0 0 0 �108 �108 0 0

hZ38
6 i �36 �36 0 0 0 �108 �108 0 0

hZ38
7 i �36 �36 0 0 0 �108 �108 0 0

hZ38
8 i 36 36 72 72 72 �108 �108 �72 0

hZ38
10i 108 108 216 216 216 �324 �324 �216 0

hZ38
12i 108 108 216 216 216 �324 �324 �216 0

hZ38
14i �108 �108 �108 �108 �108 �108 �108 �108 0

hZ38
15i 108 108 0 0 0 �324 �324 0 0

hZ38
16i 108 108 0 0 0 �324 �324 0 0

hZ38
17i 9 9 216 216 216 �459 �459 �72 0

hZ38
18i 9 9 216 216 216 �459 �459 �72 0

hZ38
19i �18 �18 �216 �216 �216 �306 �306 �72 0

hZ38
20i �18 �18 �216 �216 �216 �306 �306 �72 0

hZ38
21i �18 �18 �72 �72 �72 �162 �162 �72 0

hZ38
22i �18 �18 �72 �72 �72 �162 �162 �72 0

hZ38
23i �18 �18 �72 �72 �72 �162 �162 �72 0

hZ38
24i �18 �18 �72 �72 �72 �162 �162 �72 0

hZ38
25i 162 162 0 0 0 �162 �162 0 0

hZ38
26i 162 162 0 0 0 �162 �162 0 0

hZ38
27i 324 324 0 0 0 �324 �324 0 0

hZ38
28i 27 27 0 0 0 �459 �459 0 0

hZ38
29i 27 27 0 0 0 �459 �459 0 0

hZ38
30i �54 �54 0 0 0 �162 �162 0 0

hZ38
31i �54 �54 0 0 0 �162 �162 0 0

hZ38
32i �54 �54 0 0 0 �162 �162 0 0

hZ38
33i �54 �54 0 0 0 �162 �162 0 0

hZ38
34i 54 54 0 0 0 �486 �486 0 0

hZ38
35i 54 54 0 0 0 �486 �486 0 0

hZ38
36i 54 54 0 0 0 �486 �486 0 0
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be organized succinctly as

�B ¼ �ð0Þ
B þ�ðloop 1Þ

B þ�ðloop 2Þ
B : (77)

Applications of this expression will be given in subsequent
sections.

1. Neutron magnetic moment as a case example

Here we present the full expression at one-loop order for
the magnetic moment of neutron just as an example.
Although the form of the operators which originate it might
look breathtaking, the final result gets simplified to a great
extent. Thus one has

TABLE IX. Nontrivial matrix elements of the operators involved in the magnetic moments of
decuplet baryons: flavor 27 representation. The entries correspond to 48hZ33

m i.
�þþ �þ �0 �� �	þ �	0 �	� �	0 �	� ��

hZ33
1 i 12 4 �4 �12 8 0 �8 4 �4 0

hZ33
2 i 0 0 0 0 0 0 0 0 0 0

hZ33
3 i 0 0 0 0 0 0 0 0 0 0

hZ33
4 i 0 0 0 0 0 0 0 0 0 0

hZ33
5 i 108 36 �36 �108 72 0 �72 36 �36 0

hZ33
6 i 36 12 �12 �36 0 0 0 �12 12 0

hZ33
7 i �36 �12 12 36 0 0 0 12 �12 0

hZ33
8 i 180 60 �60 �180 120 0 �120 60 �60 0

hZ33
10i 0 0 0 0 0 0 0 0 0 0

hZ33
12i 540 180 �180 �540 360 0 �360 180 �180 0

hZ33
14i 0 0 0 0 0 0 0 0 0 0

hZ33
15i 108 36 �36 �108 0 0 0 36 �36 0

hZ33
16i 108 36 �36 �108 0 0 0 36 �36 0

hZ33
17i 45 15 �15 �45 24 0 �24 27 �27 0

hZ33
18i 45 15 �15 �45 0 0 0 3 �3 0

hZ33
19i 90 30 �30 �90 24 0 �24 �6 6 0

hZ33
20i �90 �30 30 90 �24 0 24 6 �6 0

hZ33
21i 90 30 �30 �90 0 0 0 �30 30 0

hZ33
22i �90 �30 30 90 0 0 0 30 �30 0

hZ33
23i 90 30 �30 �90 0 0 0 �30 30 0

hZ33
24i �90 �30 30 90 0 0 0 30 �30 0

hZ33
25i 0 0 0 0 0 0 0 0 0 0

hZ33
26i 810 270 �270 �810 540 0 �540 270 �270 0

hZ33
27i 324 108 �108 �324 0 0 0 108 �108 0

hZ33
28i 135 45 �45 �135 72 0 �72 81 �81 0

hZ33
29i 135 45 �45 �135 0 0 0 9 �9 0

hZ33
30i 270 90 �90 �270 0 0 0 �90 90 0

hZ33
31i �270 �90 90 270 0 0 0 90 �90 0

hZ33
32i 270 90 �90 �270 0 0 0 �90 90 0

hZ33
33i �270 �90 90 270 0 0 0 90 �90 0

hZ33
34i 270 90 �90 �270 0 0 0 90 �90 0

hZ33
35i 270 90 �90 �270 0 0 0 90 �90 0

hZ33
36i 270 90 �90 �270 0 0 0 90 �90 0
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TABLE X. Nontrivial matrix elements of the operators involved in the magnetic moments of
decuplet baryons: flavor 27 representation. The entries correspond to 48

ffiffiffi
3

p hZ38
m i.

�þþ �þ �0 �� �	þ �	0 �	� �	0 �	� ��

hZ38
1 i 12 12 12 12 0 0 0 �12 �12 �24

hZ38
2 i 36 36 36 36 0 0 0 �36 �36 �72

hZ38
3 i �72 �72 �72 �72 �72 �72 �72 �72 �72 �72

hZ38
4 i 108 108 108 108 0 0 0 �108 �108 �216

hZ38
5 i 108 108 108 108 0 0 0 �108 �108 �216

hZ38
6 i �36 �36 �36 �36 0 0 0 �36 �36 �144

hZ38
7 i �36 �36 �36 �36 0 0 0 �36 �36 �144

hZ38
8 i 180 180 180 180 0 0 0 �180 �180 �360

hZ38
10i 540 540 540 540 0 0 0 �540 �540 �1080

hZ38
12i 540 540 540 540 0 0 0 �540 �540 �1080

hZ38
14i �540 �540 �540 �540 �540 �540 �540 �540 �540 �540

hZ38
15i 108 108 108 108 0 0 0 �108 �108 �864

hZ38
16i 108 108 108 108 0 0 0 �108 �108 �864

hZ38
17i 45 45 45 45 0 0 0 �81 �81 �360

hZ38
18i 45 45 45 45 0 0 0 �81 �81 �360

hZ38
19i �90 �90 �90 �90 �72 �72 �72 �162 �162 �360

hZ38
20i �90 �90 �90 �90 �72 �72 �72 �162 �162 �360

hZ38
21i �90 �90 �90 �90 0 0 0 �90 �90 �360

hZ38
22i �90 �90 �90 �90 0 0 0 �90 �90 �360

hZ38
23i �90 �90 �90 �90 0 0 0 �90 �90 �360

hZ38
24i �90 �90 �90 �90 0 0 0 �90 �90 �360

hZ38
25i 810 810 810 810 0 0 0 �810 �810 �1620

hZ38
26i 810 810 810 810 0 0 0 �810 �810 �1620

hZ38
27i 324 324 324 324 0 0 0 �324 �324 �2592

hZ38
28i 135 135 135 135 0 0 0 �243 �243 �1080

hZ38
29i 135 135 135 135 0 0 0 �243 �243 �1080

hZ38
30i �270 �270 �270 �270 0 0 0 �270 �270 �1080

hZ38
31i �270 �270 �270 �270 0 0 0 �270 �270 �1080

hZ38
32i �270 �270 �270 �270 0 0 0 �270 �270 �1080

hZ38
33i �270 �270 �270 �270 0 0 0 �270 �270 �1080

hZ38
34i 270 270 270 270 0 0 0 �270 �270 �2160

hZ38
35i 270 270 270 270 0 0 0 �270 �270 �2160

hZ38
36i 270 270 270 270 0 0 0 �270 �270 �2160
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TABLE XI. Nontrivial matrix elements of the operators involved in the decuplet to octet
transition magnetic moments: flavor 27 representation. The entries correspond to 36

ffiffiffi
2

p hZ33
m i and

36
ffiffiffi
6

p hZ38
m i.
�þp �0n �	0� �	0�0 �	þ�þ �	��� �	0�0 �	���

hZ33
1 i 8 8 �4

ffiffiffi
3

p
0 4 �4 4 �4

hZ33
2 i 0 0 0 0 0 0 0 0

hZ33
6 i 24 24 0 0 0 0 �12 12

hZ33
7 i 0 0 0 0 �24 24 �12 12

hZ33
9 i 36 36 �18

ffiffiffi
3

p
0 18 �18 18 �18

hZ33
11i 0 0 0 0 0 0 0 0

hZ33
13i 108 108 �54

ffiffiffi
3

p
0 54 �54 54 �54

hZ33
15i 72 72 0 0 0 0 36 �36

hZ33
16i 0 0 0 0 0 0 �36 36

hZ33
17i 18 18 �12

ffiffiffi
3

p
0 24 �24 39 �39

hZ33
18i 0 0 0 0 30 �30 15 �15

hZ33
21i 0 0 6

ffiffiffi
3

p
0 42 �42 12 �12

hZ33
22i �36 �36 �6

ffiffiffi
3

p
0 �6 6 24 �24

hZ33
23i 36 36 6

ffiffiffi
3

p
0 6 �6 �24 24

hZ33
24i 0 0 �6

ffiffiffi
3

p
0 �42 42 �12 12

hZ33
32i 108 108 0 0 0 0 �54 54

hZ33
33i 0 0 0 0 �108 108 �54 54

hZ33
34i 0 0 0 0 0 0 �36 36

hZ33
35i 108 108 0 0 0 0 72 �72

hZ33
36i 0 0 0 0 36 �36 �72 72

hZ38
1 i 0 0 0 12 12 12 12 12

hZ38
2 i 0 0 0 36 36 36 36 36

hZ38
6 i 0 0 0 0 0 0 36 36

hZ38
7 i 0 0 0 0 0 0 36 36

hZ38
9 i 0 0 0 54 54 54 54 54

hZ38
11i 0 0 0 162 162 162 162 162

hZ38
13i 0 0 0 162 162 162 162 162

hZ38
15i 0 0 0 0 0 0 108 108

hZ38
16i 0 0 0 0 0 0 108 108

hZ38
17i 0 0 0 72 72 72 117 117

hZ38
18i 0 0 0 72 72 72 117 117

hZ38
21i 0 0 0 �18 �18 �18 72 72

hZ38
22i 0 0 0 �18 �18 �18 72 72

hZ38
23i 0 0 0 �18 �18 �18 72 72

hZ38
24i 0 0 0 �18 �18 �18 72 72

hZ38
32i 0 0 0 0 0 0 162 162

hZ38
33i 0 0 0 0 0 0 162 162

hZ38
34i 0 0 0 0 0 0 216 216

hZ38
35i 0 0 0 0 0 0 216 216

hZ38
36i 0 0 0 0 0 0 216 216
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�n ¼ �m1

3
�m3

9
þ Iðm�Þ

�
13

12
a21 þ

1

3
a1b2 þ 1

36
b22 þ

29

54
a1b3 þ 1

9
b2b3 þ 5

18
a1c3

�

þ IðmKÞ
�
5

12
a21 þ

1

6
a1b2 � 1

36
b22 þ

7

54
a1b3 þ 1

18
b2b3 þ 2

9
a1c3

�
þ Fðm�Þ

�
� 5

6
m1 �m2

6
� 5

18
m3 � 7

24
a21m1

� 1

36
a1b2m1 � 7

216
b22m1 � 5

108
a1b3m1 � 35

324
b2b3m1 � 2

9
a1c3m1 þ 4

27
b2c3m1 þ 35

72
a21m2 þ 5

108
a1b2m2

þ 1

216
b22m2 þ 25

324
a1b3m2 þ 10

27
a1c3m2 � 7

72
a21m3 � 35

324
a1b2m3 þ 20

27
a21m4 þ 4

27
a1b2m4

�

þ FðmKÞ
�
�m1

6
þm2

6
�m3

18
� 7

24
a21m1 � 1

12
a1b2m1 � 23

216
b22m1 � 7

36
a1b3m1 � 25

324
b2b3m1 þ 2

27
b2c3m1

þ 13

72
a21m2 þ 1

108
a1b2m2 � 1

216
b22m2 � 1

324
a1b3m2 þ 5

27
a1c3m2 þ 11

216
a21m3 � 25

324
a1b2m3 þ 4

27
a21m4

þ 2

27
a1b2m4

�
þ Fðm�Þ

�
� 1

18
a21m1 � 1

9
a1b2m1 � 1

18
b22m1 � 1

27
a1b3m1 � 1

27
b2b3m1 � 1

54
a21m3 � 1

27
a1b2m3

�
:

(78)

Expression (78) along with the additional 26 remaining
are the ones actually used in the comparison with other
analytic results and the experiment. Let us carry on with
the analysis and perform such comparisons for the sake of
completeness.

V. COMPARISON WITH CONVENTIONAL HEAVY
BARYON CHIRAL PERTURBATION THEORY

It is instructive to compare our computation of baryon
magnetic moments at the physical value Nc ¼ 3 with the
one obtained in the framework of conventional heavy
baryon chiral perturbation theory, i.e., the effective field
theory with no 1=Nc expansion. In Ref. [41] it has been
shown that there is a one-to-one correspondence between
the parameters of the 1=Nc baryon chiral Lagrangian at
Nc ¼ 3 and the octet and decuplet chiral Lagrangian. The
baryon-pion couplings are related to the coefficients of the
1=Nc expansion of Aia, Eq. (8), at Nc ¼ 3 by [41]

D ¼ 1

2
a1 þ 1

6
b3; (79a)

F ¼ 1

3
a1 þ 1

6
b2 þ 1

9
b3; (79b)

C ¼ �a1 � 1

2
c3; (79c)

H ¼ � 3

2
a1 � 3

2
b2 � 5

2
b3: (79d)

On the other hand, the magnetic moments in conven-
tional heavy baryon chiral perturbation theory are parame-
trized by four SU(3) invariants �D, �F, �C, and �T [19]
while in the present analysis they are parametrized in terms
of mi, with i ¼ 1; . . . ; 4, introduced in Eq. (9). We recall
that Eqs. (15), (19), and (24) suggest a close connection
between these two sets of parameters. This is indeed the
case and, at Nc ¼ 3, they are related by

�D ¼ 1

2
m1 þ 1

6
m3; (80a)

�F ¼ 1

3
m1 þ 1

6
m2 þ 1

9
m3; (80b)

�C ¼ 1

2
m1 þ 1

2
m2 þ 5

6
m3; (80c)

�T ¼ �2m1 �m4: (80d)

In the literature, there are some analyses of baryon
magnetic moments within heavy baryon chiral perturba-
tion theory which allow us to carry out a comparison of our
respective results in the limit � ! 0, where � is the
decuplet-octet mass difference. The work by Jenkins
et al. [19] about octet baryons allows a full comparison
between one-loop corrections whereas the papers by Geng
et al. [26] for decuplet baryons, and Arndt and Tiburzi [24]
for decuplet-octet transitions only allow partial compari-
sons of contributions emerging from loop graphs of Fig. 1.
For octet baryons, we obtain a remarkable agreement

with the theoretical expressions displayed in Eq. (16) of
Ref. [19] when using relations (79) and (80), except for the
global factor �5=2 missing in the loop contributions of
Fig. 2(c) of this reference (which corresponds to Fig. 2(b)
in the present paper). When fixing this omission, the agree-
ment is achieved for all nine observables.
As for decuplet baryons, starting from Eq. (17) of

Ref. [26] and working in the limit� ! 0, we find a perfect
agreement between their results and ours, once we take into
account their conventions for the couplings C and H .
Finally, Arndt and Tiburzi [24] present the calculation of

baryon decuplet to octet electromagnetic transition form
factors in quenched and partially quenched chiral pertur-
bation theory, and provide the corresponding SU(3) coef-
ficients emerging from these schemes. They also present
the counterparts of such coefficients that appear in chiral
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perturbation theory. These are precisely the coefficients we
need to compare with. We find that, except for transitions
�	þ�þ and �	0�0, the theoretical expressions differ by a
global sign.

We would like to close this section by stating that, to the
order of approximation implemented here, both ap-
proaches lead to the same results. This fact causes no
surprise. Previous works have shown this matching for
baryon masses [41,46] and axial-vector couplings [37] in
a systematic way.

We now examine another aspect of the suggested com-
parisons, this time with experimental data.

VI. NUMERICAL ANALYSIS

At this point we are able to perform a detailed numerical
comparison of the expressions obtained in our analysis
with the available experimental data [42] through a least-
squares fit. The data consists of seven out of the eight
possible magnetic moments of the baryon octet (��0 has
not been measured yet), together with ��� , ���0 , and
��þp. Another piece of information which can also be

incorporated is ��þþ ¼ 6:14
 0:51�N , value obtained
through a study of radiative �þp scattering within a dy-
namical model in Ref. [47]. All this information is sum-
marized in the second column (from left to right) of
Table XII. All in all, we have 11 observables at our disposal
to perform the fit.

The analytic expressions used are written in terms of two
sets of parameters: the first one is constituted by a1, b2, b3,
and c3 arising from the 1=Nc expansion of A

kc, Eq. (8), and
the latter is formed by m1; . . . ; m4 arising from the 1=Nc

expansion ofMkc, Eq. (9). According to the naive large-Nc

counting, these parameters should be of order OðN0
cÞ.

Previous works [13,37,38] have found that this is indeed
the case for the first set of parameters. However, in order to
ensure that this also occurs for mi, we can follow Ref. [15]
and introduce an appropriate scale �0 ¼ 2�

exp
p which

multiplies mi. The reasoning for doing so is that �p, being

the best measured magnetic moment, to leading order in
the 1=Nc expansion reduces tom1=2 [see Eq. (15b)]. Thus,
the natural choice for such a scale is the one pointed out
above. Notice that we should exercise some caution at this
point because the parameters mi enter linearly at tree level
and one-loop order only in contributions of Fig. 2, whereas
contributions of Fig. 1 do not depend on them at all.
Therefore, the actual theoretical expressions we use in
the fit take on the form

�B ¼ �0ð�ð0Þ
B þ�

ðloop 2Þ
B Þ þ�

ðloop 1Þ
B : (81)

We can proceed with the numerical comparison in sev-
eral ways. For instance, the first set of parameters can be
borrowed from the analyses on baryon semileptonic decays
in the form of either the invariant couplings D, F, C, and
H [34,35] or the parameters of the 1=Nc expansion them-
selves [37], both at tree-level and one-loop corrected val-

ues. We however found that none of these options lead to a
reasonable fit because the corresponding 
2 was so high
that the expansion would break down.
We shall follow a more pragmatic approach by allowing

all eight unknown variables to enter into the fit as free
parameters. The available experimental data and the total
number of free parameters allow this issue. Now, in order
to get a meaningful 
2, we add a roughly estimated theo-
retical error of 0:05�N to each magnetic moment, guessing
that the higher order effects in symmetry breaking are at a
few percent level. This procedure will also avoid a bias
towards the best measured quantities.
Thus, after a standard procedure, we find that the best-fit

parameters are

a1 ¼ 1:06
 0:12; m1 ¼ 1:29
 0:04;

b2 ¼ �1:05
 0:19; m2 ¼ 0:34
 0:16;

b3 ¼ �1:11
 0:19; m3 ¼ �0:14
 0:10;

c3 ¼ �0:91
 0:16; m4 ¼ 0:07
 0:24;

(82)

with 
2 ¼ 7:53 for 3 degrees of freedom and the quoted
errors come from the fit only. The higher contributions to

2 come from �n (�
2 ¼ 1:55), �� (�
2 ¼ 1:15) and
��þþ (�
2 ¼ 2:14). We should remark that this relatively
high 
2 is a consequence of our working assumptions.
From relations (79), we find numerically that F ¼ 0:05,
D ¼ 0:34, C ¼ 0:60, and H ¼ �2:76, values that differ
from their counterparts extracted from baryon semilep-
tonic decays [34,35]. Thus, the extraction of these parame-
ters from baryon magnetic moments will have to await for
both new and better measurements. In a similar fashion, we
also find �F ¼ 2:63, �D ¼ 3:47, �C ¼ 3:88, and �H ¼
�14:83, which also differ from other determinations [19].
Nevertheless, the best-fit parameters obtained are quite

interesting and agree with expectations. We notice that the
first set of parameters are order Oð1Þ, as expected. As for
the second set, with the introduction of the scale �0, the
values are in quite good agreement with the 1=Nc predic-
tions: The leading order parameter m1 is order Oð1Þ,
whereas m2, and m3 and m4 are roughly suppressed by
1=Nc and 1=N2

c , respectively, relative to the leading order
parameter.
In Table XII, the third column (from left to right) dis-

plays the predicted magnetic moments within the com-
bined expansion in mq and 1=Nc. The remaining columns

display the contributions to these predicted values arising
from tree-level and loop graphs from Fig. 1 and 2(a)–2(e).
The predicted magnetic moments are in good agreement
with the existing experimental ones. We are able to also
provide some predictions of the unmeasured magnetic mo-
ments. They are in good agreement with some other pre-
dictions presented in the literature [15,26] and will not be
reproduced here. We only mention that, for instance,
��	0 ¼ 0 at tree level and up to corrections of order
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Oðm1=2
q Þ, but a nonvanishing contribution is picked up due

to terms of orderOðmq lnmqÞ. We also note in passing that,

for the transitions ��0, �	0�, �	���, and �	���,
although their predicted magnetic moments are in magni-
tude comparable to the ones reported in Ref. [15], they
carry the opposite sign.

VII. SUMMARYAND CONCLUSIONS

In this paper we evaluated the magnetic moments of
baryons up to one-loop order within heavy baryon chiral
perturbation theory in the large-Nc limit, considering cor-

rections of the types m1=2
q and mq lnmq. As a starting point,

we used the fact that in the large-Nc limit both the baryon
axial-vector couplings and the baryon magnetic moments
share the same kinematical properties so they can be
analyzed in terms of the same operators. Hence, in
Sec. III, we constructed the 1=Nc expansion of the baryon
magnetic moment operator Mk based on the expansion
deduced for the axial-vector current operator. At this level,
the matrix elements of Mk yield the tree-level values of
magnetic moments. As a byproduct, the Coleman-Glashow

relations could be straightforwardly derived. In Sec. IV we
turned to compute one-loop corrections to the tree-level
values, analyzing separately the corresponding Feynman
diagrams of the two kinds of loops as they involve rather
different mathematical complication. We should stress that
one of the most important assumptions was carrying out
the study in the degeneracy limit � � MT �MB ! 0,
where MT and MB are the SU(3) invariant masses of the
decuplet and octet baryon multiplets, respectively. This
assumption is not a withdrawal of the analysis due to the
fact that in the large-Nc limit, � is order Oð1=NcÞ so this
limit constitutes a very good first approximation.
The final analytic expression could be cast into Eq. (77).

This expression was cross-checked with other calculations
and with experiment. Existing analytic results in conven-
tional heavy baryon chiral perturbation theory comprise
complete one-loop corrections only for octet baryons
[19,22,23], whereas for decuplet baryons and decuplet-

octet transitions only corrections of the type m1=2
q are

available [24,26]. Barring a few exceptions (global multi-
plicative factors and/or opposite signs), the comparison
with existing analytic results has been a successful one.

TABLE XII. Numerical values of baryon magnetic moments found in this work and compari-
son with the available experimental data. The entries are given in nuclear magnetons.

Baryon Experimental data Total Tree level Loop 1 Loop 2(a–d) Loop 2(e)

n �1:913
 0:000 �1:975 �2:315 �0:075 0.136 0.278

p 2:793
 0:000 2.759 3.785 �0:106 �0:086 �0:833
�� �1:160
 0:025 �1:179 �1:470 0.146 0.104 0.041

�0 0.625 1.157 �0:037 �0:058 �0:437
�þ 2:458
 0:010 2.428 3.785 �0:220 �0:220 �0:916
�� �0:651
 0:003 �0:691 �1:470 0.085 0.056 0.638

�0 �1:250
 0:014 �1:301 �2:315 0.169 0.053 0.792

� �0:613
 0:004 �0:559 �1:157 0.037 0.124 0.437

��0 1:61
 0:08 1.594 2.005 �0:033 �0:013 �0:365
�þþ 6:14
 0:51a 5.390 7.752 �0:185 �0:386 �1:791
�þ 2.383 3.876 �0:110 �0:299 �1:085
�0 �0:625 0.000 �0:034 �0:211 �0:379
�� �3:632 �3:876 0.041 �0:123 0.327

�	þ 2.519 3.876 �0:075 �0:576 �0:706
�	0 �0:303 0.000 0.000 �0:303 0.000

�	� �3:126 �3:876 0.075 �0:031 0.706

�	0 0.149 0.000 0.034 �0:265 0.379

�	� �2:596 �3:876 0.110 0.085 1.085

�� �2:02
 0:05 �2:042 �3:876 0.144 0.226 1.465

�þp 3:51
 0:09 3.481 3.496 1.887 �1:266 �0:637
�0n 3.481 3.496 1.887 �1:266 �0:637
�	0� �2:863 �3:027 �2:163 1.776 0.551

�	0�0 1.924 1.748 2.393 �1:556 �0:660
�	þ�þ 3.639 3.496 4.252 �3:130 �0:979
�	��� 0.210 0.000 0.534 0.018 �0:342
�	0�0 3.464 3.496 4.252 �3:304 �0:979
�	��� 0.110 0.000 0.534 �0:082 �0:342

aValue reported in Ref. [47].
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The advantage of our approach is that one only needs to
construct a universal operator Mk þ 	Mk, where 	Mk

stands for one-loop corrections, evaluate the matrix ele-
ments of this operator between SU(6) baryon states, and
compute the integrals over the loops. Here we have per-
formed the analysis to relative order Oð1=N3

cÞ. It is now
clear that if we had involved ourselves in evaluating higher
order contributions, we would have faced a much more
complicated computation, perhaps not yet needed.

On the other hand, the comparison with the available
experimental data has been performed through a least-
squares fit to evaluate the unknown parameters in the
theory (eight in total). This analysis was indeed illuminat-
ing. Like Ref. [19], we also found evidence that the invari-
ant couplings F,D, C, andH [related to the parameters of
the 1=Nc expansion of the axial current by Eq. (79)],
neither at tree level nor one-loop corrected, produce physi-
cally admissible fits. We had no other choice but to let all
eight parameters enter as free ones in the analysis. The
best-fit parameters agree very well with expectations.
These parameters are then used to provide numerical val-
ues of magnetic moments from the theoretical standpoint;
all this information is displayed in Table XII. The available
experimental magnetic moments are fairly well reproduced
by their theoretical counterparts. In a general fashion, our
results can also be compared with other numerical evalu-
ations [15,26] and the agreement is acceptable. It is evident
that, in order to be definitive, it should be interesting to
redo the analysis for � � 0. This, however, requires a
rather formidable effort which goes beyond the scope of
the present paper.

Returning to the main discussion about the comparison
of this approach with conventional heavy baryon chiral
perturbation theory, it should be emphasized that these
two formulations yield to identical results. Nonetheless,
in a given context, one or the other might be more inviting
for computational ease.
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APPENDIX A: REDUCTION OF BARYON
OPERATORS: STRUCTURE OF DIAGRAMS OF

FIG. 1

In this appendix we turn to explicitly present the com-
putation of the product operator �ijkAiaAjb�ab introduced
in Eq. (27). Here �ab contains two pieces which transforms

as flavor 8 and flavor 10þ 10, respectively. We have
performed the calculation by keeping Nc and Nf arbitrary,

although the physical values Nf ¼ 3 and Nc ¼ 3 are used

in the numerical evaluations.
For the flavor 8 piece we explicitly have

�ijkfabcGiaGjb ¼ � 1

2
ðNc þ NfÞGkc þ 1

2
Dkc

2 ; (A1)

�ijkfabcðGiaDjb
2 þDia

2 G
jbÞ ¼ �NfG

kc �Okc
3 ; (A2)

�ijkfabcDia
2 D

jb
2 ¼ � 1

2
NfDkc

2 ; (A3)

�ijkfabcðGiaDjb
3 þDia

3 G
jbÞ

¼ �2ðNc þ NfÞGkc � ðNf � 2ÞDkc
2 � ðNc þ NfÞOkc

3 ;

(A4)

�ijkfabcðGiaOjb
3 þOia

3 G
jbÞ

¼ 3

2
NfDkc

2 � 1

2
ðNc þ NfÞDkc

3 � 1

2
ðNc þ NfÞOkc

3 þDkc
4 ;

(A5)

�ijkfabcðDia
2 D

jb
3 þDia

3 D
jb
2 Þ ¼ �NfDkc

3 ; (A6)

�ijkfabcðDia
2 O

jb
3 þOia

3 D
jb
2 Þ ¼ �NfOkc

3 �Okc
5 : (A7)

For the flavor 10þ 10 contribution we have

�ijkðfaecdbe8 � fbecdae8 � fabedec8ÞGiaGjb

¼ 1

2
fTc; Gk8g � 1

2
fGkc; T8g þ 1

Nf

½J2; ½T8; Gkc��; (A8)

�ijkðfaecdbe8 � fbecdae8 � fabedec8ÞðGiaDjb
2 þDia

2 G
jbÞ

¼ �fGkc; fJr; Gr8gg þ fGk8; fJr; Grcgg
þ Nc þ Nf

Nf

½J2; ½T8; Gkc��; (A9)

�ijkðfaecdbe8 � fbecdae8 � fabedec8ÞDia
2 D

jb
2 ¼ 0;

(A10)

�ijkðfaecdbe8 � fbecdae8 � fabedec8ÞðGiaDjb
3 þDia

3 G
jbÞ

¼ 2fTc; Gk8g � 2fGkc; T8g þ 4

Nf

½J2; ½T8; Gkc��

þ fJ2; fTc; Gk8gg � fJ2; fGkc; T8gg � fDkc
2 ; fJr; Gr8gg

þ fDk8
2 ; fJr; Grcgg þ 2

Nf

fJ2; ½J2; ½T8; Gkc��g; (A11)
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�ijkðfaecdbe8 � fbecdae8 � fabedec8ÞðGiaOjb
3 þOia

3 G
jbÞ

¼ 1

2
fJ2; fTc; Gk8gg � 1

2
fJ2; fGkc; T8gg

þ 1

2
fDkc

2 ; fJr; Gr8gg � 1

2
fDk8

2 ; fJr; Grcgg

þ 1

Nf

fJ2; ½J2; ½T8; Gkc��g; (A12)

�ijkðfaecdbe8 � fbecdae8 � fabedec8ÞðDia
2 D

jb
3 þDia

3 D
jb
2 Þ

¼ 0; (A13)

�ijkðfaecdbe8 � fbecdae8 � fabedec8ÞðDia
2 O

jb
3 þOia

3 D
jb
2 Þ

¼ � 3

8
fJ2; ½Gkc; fJr; Gr8g�g þ 3

8
fJ2; ½Gk8; fJr; Grcg�g

þ 3

8
fJk; ½fJm;Gmcg; fJr; Gr8g�g

þ Nc þ Nf

Nf

fJ2; ½J2; ½T8; Gkc��g

� 3

8
f½J2; Gkc�; fJr; Gr8gg þ 3

8
f½J2; Gk8�; fJr; Grcgg

� fJ2; fGkc; fJr; Gr8ggg þ fJ2; fGk8; fJr; Grcggg: (A14)

We notice that the product operator AiaAjb is at most of
orderOðN2

cÞ, so no large-Nc cancellations were expected in
the reduction of this operator in terms of the operator basis.

APPENDIX B: REDUCTION OF BARYON
OPERATORS: STRUCTURE OF DIAGRAMS OF

FIG. 2

In this appendix we now present the reduction of the
product operator ½Aia; ½Aib; Akc���ab introduced in
Eq. (53). Here �ab decomposes into flavor singlet, flavor
8 and flavor 27 representations, according to Eq. (54). To
the order in 1=Nc implemented in this work, the results can
be organized as follows:

Flavor singlet contribution:

½Gia; ½Gia; Gkc�� ¼ 3N2
f � 4

4Nf

Gkc; (B1)

½Gia; ½Dia
2 ; G

kc�� þ ½Dia
2 ; ½Gia; Gkc��

¼ ðNc þ NfÞðNf � 2Þ
Nf

Gkc þ Nf þ 2

2
Dkc

2 ; (B2)

½Gia; ½Gia;Dkc
2 �� ¼ �ðNc þ NfÞGkc

þ 7N2
f þ 4Nf � 4

4Nf

Dkc
2 ; (B3)

½Gia; ½Dia
2 ;D

kc
2 �� þ ½Dia

2 ; ½Gia;Dkc
2 ��

¼ �2NfG
kc þ 2ðNc þ NfÞðNf � 1Þ

Nf

Dkc
2 þ Nf

2
Dkc

3

� 2Okc
3 ; (B4)

½Dia
2 ; ½Dia

2 ; G
kc�� ¼ NcðNc þ 2NfÞðNf � 2Þ � 2N2

f

2Nf

Gkc

þ Nf þ 2

4
Dkc

3 þ Nf þ 4

2
Okc

3 ; (B5)

½Gia; ½Dia
3 ; G

kc�� þ ½Dia
3 ; ½Gia; Gkc��

¼ 2ðNf � 2ÞGkc þ ðNc þ NfÞDkc
2

þ N2
f þ 2Nf � 4

2Nf

Dkc
3 þ N2

f þ 2Nf � 8

Nf

Okc
3 ; (B6)

½Gia; ½Gia;Dkc
3 �� ¼ �½NcðNc þ 2NfÞ þ 4�Gkc

� 4ðNc þ NfÞDkc
2

þ 11N2
f þ 12Nf � 4

4Nf

Dkc
3 ; (B7)

½Gia; ½Oia
3 ; G

kc�� þ ½Oia
3 ; ½Gia; Gkc��

¼ � 3

2
ðNc þ NfÞDkc

2 þ Nf þ 1

2
Dkc

3 þ NfOkc
3 ; (B8)

½Gia; ½Gia;Okc
3 �� ¼ ½�NcðNc þ 2NfÞ þ Nf�Gkc

þ ðNc þ NfÞDkc
2

þ 11N2
f þ 12Nf � 4

4Nf

Okc
3 ; (B9)

½Dia
2 ; ½Dia

2 ;D
kc
2 �� ¼ NcðNc þ 2NfÞðNf � 2Þ � 2N2

f

2Nf

Dkc
2

þ Nf þ 2

2
Dkc

4 ; (B10)
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½Dia
2 ; ½Dia

3 ; G
kc�� þ ½Dia

3 ; ½Dia
2 ; G

kc��
¼ �4ðNc þ NfÞGkc � 2ðNf � 2ÞDkc

2

þ ðNc þ NfÞð3Nf � 2Þ
Nf

Dkc
3

þ 2ðNc þ NfÞð5Nf � 4Þ
Nf

Okc
3 þ ðNf � 2ÞDkc

4 ; (B11)

½Gia; ½Dia
3 ;D

kc
2 �� þ ½Dia

3 ; ½Gia;Dkc
2 ��

¼ �4ðNc þ NfÞGkc þ ½NcðNc þ 2NfÞ þ 2Nf�Dkc
2

þ ðNc þ NfÞDkc
3 � 2ðNc þ NfÞOkc

3 þ N2
f � 4

Nf

Dkc
4 ;

(B12)

½Gia; ½Dia
2 ;D

kc
3 �� þ ½Dia

2 ; ½Gia;Dkc
3 ��

¼ �4ðNc þ NfÞGkc � 2ðNf � 2ÞDkc
2

þ ðNc þ NfÞð3Nf � 2Þ
Nf

Dkc
3 � 2ðNc þ NfÞOkc

3

þ ðNf � 2ÞDkc
4 ; (B13)

½Dia
2 ; ½Oia

3 ; G
kc�� þ ½Oia

3 ; ½Dia
2 ; G

kc��
¼ 3NfDkc

2 � ðNc þ NfÞDkc
3 � ðNc þ NfÞOkc

3 þ 2Dkc
4 ;

(B14)

½Gia; ½Oia
3 ;D

kc
2 �� þ ½Oia

3 ; ½Gia;Dkc
2 ��

¼ � 3

2
½NcðNc þ 2NfÞ � 4Nf�Dkc

2 � 5

2
ðNc þ NfÞDkc

3

� ðNc þ NfÞOkc
3 þ 3ðNf þ 2ÞDkc

4 ; (B15)

½Gia; ½Dia
2 ;O

kc
3 �� þ ½Dia

2 ; ½Gia;Okc
3 ��

¼ 3NfDkc
2 � ðNc þ NfÞDkc

3

þ 2ðNc þ NfÞðNf � 1Þ
Nf

Okc
3 þ 2Dkc

4 : (B16)

Flavor 8 contribution:

dab8½Gia; ½Gib; Gkc�� ¼ 3N2
f � 16

8Nf

dc8eGke

þ N2
f � 4

2N2
f

	c8Jk; (B17)

dab8ð½Gia; ½Dib
2 ; G

kc�� þ ½Dia
2 ; ½Gib; Gkc��Þ ¼ ðNc þ NfÞðNf � 4Þ

2Nf

dc8eGke þ ðNc þ NfÞðNf � 2Þ
N2

f

	c8Jk þ Nf þ 2

4
dc8eDke

2

þ 1

2
fTc; Gk8g þ Nf � 4

2Nf

fGkc; T8g þ N2
f þ 2Nf � 4

4Nf

½J2; ½T8; Gkc��; (B18)

dab8½Gia; ½Gib;Dkc
2 �� ¼ �Nc þ Nf

2
dc8eGke þ 3Nf þ 4

8
dc8eDke

2 þ N2
f þ Nf � 4

2Nf

fTc; Gk8g � 1

2
fGkc; T8g

þ 1

Nf

½J2; ½T8; Gkc��; (B19)

dab8ð½Gia; ½Dib
2 ;D

kc
2 �� þ ½Dia

2 ; ½Gib;Dkc
2 ��Þ ¼ �Nfd

c8eGke þ ðNc þ NfÞðNf � 2Þ
Nf

fTc; Gk8g þ Nc þ Nf

Nf

½J2; ½T8; Gkc��

þ Nf

4
dc8eDke

3 � dc8eOke
3 þ Nf � 2

2Nf

fJk; fTc; T8gg � fGkc; fJr; Gr8gg

þ fGk8; fJr; Grcgg; (B20)

dab8½Dia
2 ; ½Dib

2 ; G
kc�� ¼ �Nf

2
dc8eGke þ ðNc þ NfÞðNf � 4Þ

2Nf

fGkc; T8g þ ðNc þ NfÞðNf � 4Þ
4Nf

½J2; ½T8; Gkc��

þ Nf

8
dc8eDke

3 þ Nf þ 2

4
dc8eOke

3 þ 3

2
fGkc; fJr; Gr8gg � 1

2
fGk8; fJr; Grcgg; (B21)

RUBÉN FLORES-MENDIETA PHYSICAL REVIEW D 80, 094014 (2009)

094014-28



dab8ð½Gia; ½Dib
3 ; G

kc�� þ ½Dia
3 ; ½Gib; Gkc��Þ ¼ ðNf � 4Þdc8eGke þ NcðNc þ 2NfÞ þ 4Nf � 8

2Nf

	c8Jk þ Nc þ Nf

2
dc8eDke

2

þ ðNc þ NfÞ½J2; ½T8; Gkc�� þ N2
f þ 2Nf � 8

4Nf

dc8eDke
3

þ N2
f þ 2Nf � 20

2Nf

dc8eOke
3 þ 1

4
fJk; fTc; T8gg � fJk; fGrc; Gr8gg

þ Nf � 6

Nf

fGkc; fJr; Gr8gg þ Nf þ 2

Nf

fGk8; fJr; Grcgg þ Nf � 4

N2
f

	c8fJ2; Jkg;

(B22)

dab8½Gia; ½Gib;Dkc
3 �� ¼ �4dc8eGke � 2½NcðNc þ 2NfÞ � Nf þ 2�

Nf

	c8Jk � 2ðNc þ NfÞdc8eDke
2 � ðNc þ NfÞfGkc; T8g

þ 1

2
ðNc þ NfÞ½J2; ½T8; Gkc�� þ 3Nf þ 8

8
dc8eDke

3 � 2

Nf

dc8eOke
3 � fJk; fTc; T8gg

þ ðNf þ 2ÞfJk; fGrc; Gr8gg þ 2

Nf

fGkc; fJr; Gr8gg þ N2
f þ 2Nf � 6

Nf

fGk8; fJr; Grcgg

þ Nf þ 2

Nf

	c8fJ2; Jkg; (B23)

dab8ð½Gia; ½Oib
3 ; G

kc�� þ ½Oia
3 ; ½Gib; Gkc��Þ ¼ � 3NcðNc þ 2NfÞ

4Nf

	c8Jk � 3

4
ðNc þ NfÞdc8eDke

2

� 1

4
ðNc þ NfÞ½J2; ½T8; Gkc�� þ N2

f þ Nf � 4

4Nf

dc8eDke
3 þ N2

f � 2

2Nf

dc8eOke
3

� 3

8
fJk; fTc; T8gg þ Nf þ 4

2Nf

fJk; fGrc; Gr8gg þ 1

Nf

fGkc; fJr; Gr8gg

� 1

Nf

fGk8; fJr; Grcgg þ 2N2
f þ Nf � 4

2N2
f

	c8fJ2; Jkg; (B24)

dab8½Gia; ½Gib;Okc
3 �� ¼ Nf

2
dc8eGke þ NcðNc þ 2NfÞ

2Nf

	c8Jk þ Nc þ Nf

2
dc8eDke

2 � ðNc þ NfÞfGkc; T8g

� 3

4
ðNc þ NfÞ½J2; ½T8; Gkc�� � 1

Nf

dc8eDke
3 þ 3N2

f þ 8Nf � 8

8Nf

dc8eOke
3 þ 1

4
fJk; fTc; T8gg

� N2
f þ 2Nf � 4

2Nf

fJk; fGrc; Gr8gg þ N2
f þ 2Nf � 1

Nf

fGkc; fJr; Gr8gg

� N2
f þ 2Nf � 2

2Nf

fGk8; fJr; Grcgg � 2

N2
f

	c8fJ2; Jkg; (B25)

dab8½Dia
2 ; ½Dib

2 ;D
kc
2 �� ¼ �Nf

2
dc8eDke

2 þ ðNc þ NfÞðNf � 4Þ
4Nf

fJk; fTc; T8gg þ Nf

4
dc8eDke

4 þ fDkc
2 ; fJr; Gr8gg; (B26)
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dab8ð½Dia
2 ; ½Dib

3 ; G
kc�� þ ½Dia

3 ; ½Dib
2 ; G

kc��Þ ¼ �2ðNc þ NfÞdc8eGke � ðNf � 2Þdc8eDke
2 � 2fGkc; T8g þ 2fTc; Gk8g

� N2
f � 2Nf � 4

Nf

½J2; ½T8; Gkc�� þ Nc þ Nf

2
dc8eDke

3

þ 2ðNc þ NfÞðNf � 1Þ
Nf

dc8eOke
3 þ 3ðNc þ NfÞðNf � 2Þ

Nf

fGkc; fJr; Gr8gg

� ðNc þ NfÞðNf � 2Þ
Nf

fGk8; fJr; Grcgg þ Nf � 2

2
dc8eDke

4 � fJ2; fTc; Gk8gg

þ 5Nf � 8

Nf

fJ2; fGkc; T8gg � 2ðNf � 2Þ
Nf

fDk8
2 ; fJr; Grcgg

þ 5

32
fJ2; ½Gkc; fJr; Gr8g�g � 5

32
fJ2; ½Gk8; fJr; Grcg�g

þ 5

32
f½J2; Gkc�; fJr; Gr8gg � 5

32
f½J2; Gk8�; fJr; Grcgg

� 5

32
fJk; ½fJm;Gmcg; fJr; Gr8g�g þ N2

f þ 2Nf � 12

2Nf

fJ2; ½J2; ½T8; Gkc��g;

(B27)

dab8ð½Gia; ½Dib
3 ;D

kc
2 �� þ ½Dia

3 ; ½Gib;Dkc
2 ��Þ ¼ �2ðNc þ NfÞdc8eGke � ðNf � 2Þdc8eDke

2 � 2fGkc; T8g
þ 2ðNf � 1ÞfTc; Gk8g þ 4

Nf

½J2; ½T8; Gkc�� þ Nc þ Nf

2
dc8eDke

3

� ðNc þ NfÞdc8eOke
3 þ Nc þ Nf

2
fJk; fTc; T8gg þ Nf � 2

2
dc8eDke

4

þ N2
f þ 3Nf � 8

Nf

fJ2; fTc; Gk8gg � fJ2; fGkc; T8gg

� ðNf þ 2ÞfDkc
2 ; fJr; Gr8gg þ 2fDk8

2 ; fJr; Grcgg þ 2

Nf

fJ2; ½J2; ½T8; Gkc��g;

(B28)

dab8ð½Gia; ½Dib
2 ;D

kc
3 �� þ ½Dia

2 ; ½Gib;Dkc
3 ��Þ ¼ �2ðNc þ NfÞdc8eGke � ðNf � 2Þdc8eDke

2 � 2fGkc; T8g þ 2fTc; Gk8g

þ 2ðNf � 1Þ½J2; ½T8; Gkc�� þ 1

2
ðNc þ NfÞdc8eDke

3 � 2ðNc þ NfÞ
Nf

dc8eOke
3

� ðNc þ NfÞðNf � 2Þ
Nf

fGkc; fJr; Gr8gg

þ 3ðNc þ NfÞðNf � 2Þ
Nf

fGk8; fJr; Grcgg þ 1

2
ðNf � 2Þdc8eDke

4

þ fJ2; fTc;Gk8gg � fJ2; fGkc; T8gg � 2fDkc
2 ; fJr; Gr8gg

þ 4ðNf � 1Þ
Nf

fDk8
2 ; fJr; Grcgg � 15

64
fJ2; ½Gkc; fJr; Gr8g�g

þ 15

64
fJ2; ½Gk8; fJr; Grcg�g � 15

64
f½J2; Gkc�; fJr; Gr8gg

þ 15

64
f½J2; Gk8�; fJr; Grcgg þ 15

64
fJk; ½fJm;Gmcg; fJr; Gr8g�g

þ fJ2; ½J2; ½T8; Gkc��g; (B29)

RUBÉN FLORES-MENDIETA PHYSICAL REVIEW D 80, 094014 (2009)

094014-30



dab8ð½Dia
2 ; ½Oib

3 ; G
kc�� þ ½Oia

3 ; ½Dib
2 ; G

kc��Þ ¼ 3

2
Nfd

c8eDke
2 þ Nf � 2

2
½J2; ½T8; Gkc�� � Nc þ Nf

Nf

dc8eDke
3

� Nc þ Nf

Nf

dc8eOke
3 � ðNc þ NfÞðNf � 2Þ

Nf

fJk; fGrc; Gr8gg

� ðNc þ NfÞðNf � 2Þ
2Nf

fGkc; fJr; Gr8gg þ ðNc þ NfÞðNf � 2Þ
2Nf

fGk8; fJr; Grcgg

þ ðNc þ NfÞðNf � 2Þ
N2

f

	c8fJ2; Jkg þ dc8eDke
4 � 1

2
fJ2; fGkc; T8gg

þ 1

2
fJ2; fGk8; Tcgg þ 1

2
fDkc

2 ; fJr; Gr8gg � 1

2
fDk8

2 ; fJr; Grcgg

� 13

64
fJ2; ½Gkc; fJr; Gr8g�g þ 13

64
fJ2; ½Gk8; fJr; Grcg�g

� 13

64
f½J2; Gkc�; fJr; Gr8gg þ 13

64
f½J2; Gk8�; fJr; Grcgg

þ 13

64
fJk; ½fJm;Gmcg; fJr; Gr8g�g þ 1

2
fJ2; ½J2; ½T8; Gkc��g; (B30)

dab8ð½Gia; ½Oib
3 ;D

kc
2 �� þ ½Oia

3 ; ½Gib;Dkc
2 ��Þ ¼ 3Nfd

c8eDke
2 � 5

4
ðNc þ NfÞdc8eDke

3 � 1

2
ðNc þ NfÞdc8eOke

3

� 3

4
ðNc þ NfÞfJk; fTc; T8gg þ Nf þ 5

2
dc8eDke

4 � 1

2
fJ2; fGkc; T8gg

þ N2
f þ Nf � 4

2Nf

fJ2; fGk8; Tcgg þ N2
f þ 6Nf þ 4

2Nf

fDkc
2 ; fJr; Gr8gg

� 2fDk8
2 ; fJr; Grcgg þ 1

Nf

fJ2; ½J2; ½T8; Gkc��g; (B31)

dab8ð½Gia; ½Dib
2 ;O

kc
3 �� þ ½Dia

2 ; ½Gib;Okc
3 ��Þ ¼ 3

2
Nfd

c8eDke
2 � 1

2
ðNf � 2Þ½J2; ½T8; Gkc�� � Nc þ Nf

Nf

dc8eDke
3

þ ðNc þ NfÞðNf � 2Þ
2Nf

dc8eOke
3 � ðNc þ NfÞðNf � 2Þ

Nf

fJk; fGrc; Gr8gg

þ ðNc þ NfÞðNf � 2Þ
2Nf

fGkc; fJr; Gr8gg � ðNc þ NfÞðNf � 2Þ
2Nf

fGk8; fJr; Grcgg

þ fDkc
2 ; fJr; Gr8gg þ ðNc þ NfÞðNf � 2Þ

N2
f

	c8fJ2; Jkg þ dc8eDke
4

þ Nf � 2

Nf

fJ2; fGkc; T8gg � 2ðNf � 1Þ
Nf

fDk8
2 ; fJr; Grcgg

� 45

128
fJ2; ½Gkc; fJr; Gr8g�g þ 45

128
fJ2; ½Gk8; fJr; Grcg�g

� 45

128
f½J2; Gkc�; fJr; Gr8gg þ 45

128
f½J2; Gk8�; fJr; Grcgg

þ 45

128
fJk; ½fJm;Gmcg; fJr; Gr8g�g þ N2

f � 4

4Nf

fJ2; ½J2; ½T8; Gkc��g: (B32)

Flavor 27 contribution:
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½Gi8; ½Gi8; Gkc�� ¼ 1

4
ð2dc8ed8eg þ fc8ef8egÞGkg þ 1

Nf

	c8Gk8 þ 1

2Nf

dc88Jk; (B33)

½Gi8; ½Di8
2 ; G

kc�� þ ½Di8
2 ; ½Gi8; Gkc�� ¼ 1

2
fc8ef8egDkg

2 þ 2

Nf

	c8Dk8
2 þ dc8efGke; T8g þ i

2
fc8e½Gk8; fJr; Greg�

þ i

2
fc8e½Gke; fJr; Gr8g�; (B34)

½Gi8; ½Gi8;Dkc
2 �� ¼ 5

4
fc8ef8egDkg

2 þ 1

Nf

	88Dkc
2 þ 1

2
d88efGke; Tcg þ i

2
fc8e½Gk8; fJr; Greg� � i

2
fc8e½Gke; fJr; Gr8g�;

(B35)

½Gi8; ½Di8
2 ;D

kc
2 �� þ ½Di8

2 ; ½Gi8;Dkc
2 �� ¼ �fc8ef8egGkg þ 1

2
fc8ef8egDkg

3 þ fGk8; fTc; T8gg � 1

2
�kimfc8efTe; fJi; Gm8gg

þ 1

2
�kimfc8efT8; fJi; Gmegg; (B36)

½Di8
2 ; ½Di8

2 ; G
kc�� ¼ �fc8ef8egGkg þ 1

4
fc8ef8egDkg

3 þ 1

2
fc8ef8egOkg

3 þ 1

2
fGkc; fT8; T8gg � 1

2
�kimfc8efT8; fJi; Gmegg;

(B37)

½Gi8; ½Di8
3 ; G

kc�� þ ½Di8
3 ; ½Gi8; Gkc�� ¼ 1

2
fc8ef8egDkg

3 þ 2

Nf

	c8Dk8
3 þ dc8ed8egOkg

3 þ 3dc8efGke; fJr; Gr8gg

� dc8efGk8; fJr; Gregg; (B38)

½Gi8; ½Gi8;Dkc
3 �� ¼ � 3

2
fc8ef8egGkg þ 1

2
dc8ed8egDkg

3 þ 1

4
fc8ef8egDkg

3 � 1

Nf

	c8Dk8
3 þ 2

Nf

	88Dkc
3 þ 1

Nf

dc88fJ2; Jkg

� 2fGkc; fGr8; Gr8gg þ 2fGk8; fGrc; Gr8gg � 3dc8efJk; fGre;Gr8gg þ d88efJk; fGrc; Gregg
þ dc8efGke; fJr; Gr8gg þ d88efGke; fJr; Grcgg � 1

2
�kimfc8efTe; fJi; Gm8gg; (B39)

½Gi8; ½Oi8
3 ; G

kc�� þ ½Oi8
3 ; ½Gi8; Gkc�� ¼ 1

2
dc8ed8egDkg

3 þ 1

2
dc8ed8egOkg

3 þ 1

2
fc8ef8egOkg

3 þ 2

Nf

	c8Ok8
3 þ 1

Nf

dc88fJ2; Jkg

� dc8efJk; fGre; Gr8gg � 1

2
dc8efGke; fJr; Gr8gg þ 1

2
dc8efGk8; fJr; Gregg; (B40)

½Gi8; ½Gi8;Okc
3 �� ¼ 3

4
fc8ef8egGkg þ 1

Nf

	c8Dk8
3 þ 1

2
dc8ed8egOkg

3 þ 1

4
fc8ef8egOkg

3 þ 3

Nf

	c8Ok8
3 þ 2

Nf

	88Okc
3

� fGkc; fGr8; Gr8gg � fGk8; fGrc; Gr8gg þ 1

2
dc8efJk; fGre; Gr8gg � 1

2
d88efJk; fGrc; Gregg

þ d88efGkc; fJr; Gregg � 1

2
dc8efGke; fJr; Gr8gg � 1

2
d88efGke; fJr; Grcgg þ dc8efGk8; fJr; Gregg

þ 3

4
�kimfc8efTe; fJi; Gm8gg; (B41)

½Di8
2 ; ½Di8

2 ;D
kc
2 �� ¼ �fc8ef8egDkg

2 þ 1

2
fDkc

2 ; fT8; T8gg þ 1

2
fc8ef8egDkg

4 ; (B42)
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½Di8
2 ; ½Di8

3 ; G
kc�� þ ½Di8

3 ; ½Di8
2 ; G

kc�� ¼ �ifc8e½Gk8; fJr; Greg� � 2ifc8e½Gke; fJr; Gr8g� þ dc8efJ2; fGke; T8gg
� dc8efDk8

2 ; fJr; Gregg � ffJr; Grcg; fGk8; T8gg þ 3ffJr; Gr8g; fGkc; T8gg
þ 2ifc8efJ2; ½Gke; fJr; Gr8g�g � ifc8effJr; Gr8g; ½J2; Gke�g; (B43)

½Gi8; ½Di8
3 ;D

kc
2 �� þ ½Di8

3 ; ½Gi8;Dkc
2 �� ¼ �2ifc8e½Gke; fJr; Gr8g� þ d88efJ2; fGke; Tcgg � d88efDkc

2 ; fJr; Gregg
þ 2ffJr; Gr8g; fGk8; Tcgg þ ifc8efJk; ½fJi; Gieg; fJr; Gr8g�g
� ifc8effJr; Greg; ½J2; Gk8�g þ ifc8effJr; Gr8g; ½J2; Gke�g; (B44)

½Gi8; ½Di8
2 ;D

kc
3 �� þ ½Di8

2 ; ½Gi8;Dkc
3 �� ¼ 5ifc8e½Gk8; fJr; Greg� þ dc8efJ2; fGke; T8gg � dc8efDk8

2 ; fJr; Gregg
þ 3ffJr; Grcg; fGk8; T8gg � ffJr; Gr8g; fGkc; T8gg þ ifc8efJk; ½fJi; Gieg; fJr; Gr8g�g
� ifc8effJr; Greg; ½J2; Gk8�g; (B45)

½Di8
2 ; ½Oi8

3 ; G
kc�� þ ½Oi8

3 ; ½Di8
2 ; G

kc�� ¼ 3

2
fc8ef8egDkg

2 þ i

2
fc8e½Gk8; fJr; Greg� þ 1

2
dc8efJ2; fGke; T8gg þ 1

2
fc8ef8egDkg

4

þ 2

Nf

	c8Dk8
4 � 2fDk8

2 ; fGrc; Gr8gg þ 1

2
dc8efDk8

2 ; fJr; Gregg

þ 1

2
ffJr; Grcg; fGk8; T8gg � 1

2
ffJr; Gr8g; fGkc; T8gg þ i

2
fc8efJ2; ½Gk8; fJr; Greg�g

� i

2
fc8efJ2; ½Gke; fJr; Gr8g�g � i

2
fc8effJr; Gr8g; ½J2; Gke�g; (B46)

½Gi8; ½Oi8
3 ;D

kc
2 �� þ ½Oi8

3 ; ½Gi8;Dkc
2 �� ¼ 6fc8ef8egDkg

2 þ 1

2
d88efJ2; fGke; Tcgg þ 7

2
fc8ef8egDkg

4 þ 2

Nf

	88Dkc
4

� 2fDkc
2 ; fGr8; Gr8gg þ 1

2
d88efDkc

2 ; fJr; Gregg þ ifc8efJ2; ½Gk8; fJr; Greg�g

� ifc8efJ2; ½Gke; fJr; Gr8g�g � 3

2
ifc8efJk; ½fJi; Gieg; fJr; Gr8g�g

þ i

2
fc8effJr; Greg; ½J2; Gk8�g � i

2
fc8effJr; Gr8g; ½J2; Gke�g; (B47)

½Gi8; ½Di8
2 ;O

kc
3 �� þ ½Di8

2 ; ½Gi8;Okc
3 �� ¼ 3

2
fc8ef8egDkg

2 � i

2
fc8e½Gk8; fJr; Greg� þ 1

2
dc8efJ2; fGke; T8gg þ 1

2
fc8ef8egDkg

4

þ 2

Nf

	c8Dk8
4 � 2fDk8

2 ; fGrc; Gr8gg þ 1

2
dc8efDk8

2 ; fJr; Gregg

� 1

2
ffJr; Grcg; fGk8; T8gg þ 1

2
ffJr; Gr8g; fGkc; T8gg þ i

2
fc8efJ2; ½Gk8; fJr; Greg�g

þ i

2
fc8efJ2; ½Gke; fJr; Gr8g�g � i

2
fc8efJk; ½fJi; Gieg; fJr; Gr8g�g

þ i

2
fc8effJr; Greg; ½J2; Gk8�g: (B48)

In this case, the operator structure ½Aia; ½Aib; Akc�� does contain manifest large-Nc cancellations in such a way that it is at
most of order OðNcÞ, and is consistent with expectations.
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