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A scenario is investigated in which the leading-twist pion distribution amplitude ’�ðxÞ is approximated

by the pion decay constant f� for all essential values of the light-cone fraction x. A model for the light-

front wave function �ðx; k?Þ is proposed that produces such a distribution amplitude and has a rapidly

decreasing (exponential for definiteness) dependence on the light-front energy combination k2?=xð1� xÞ.
It is shown that this model easily reproduces the fit of recent large-Q2 BABAR data on the photon-pion

transition form factor. Some aspects of the scenario with flat pion distribution amplitude are discussed.
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I. INTRODUCTION

The pion distribution amplitude (DA) ’�ðxÞ [1,2] is an
important function accumulating information about mo-
mentum sharing between the quarks of the pion when the
latter is in its valence �qq configuration. It is an inherent
element of perturbative QCD calculations of hard exclu-
sive reactions involving the pion. From the solution [2–4]
of the evolution equation for the pion DA it follows that
independently of its shape at low normalization point�0 &
1 GeV, at large values of the probing momentum the pion
DA acquires universal asymptotic form: ’�ðx;� ! 1Þ !
6f�xð1� xÞ [5].

However, in practical calculations, it is very important to
know what is the shape of the pion DA at moderate and low
scales�. The standard measure of the width of the pion DA
is the value h�2i of its second moment with respect to the
relative momentum fraction variable � ¼ x� ð1� xÞ.
QCD sum rule calculations [6] give large h�2i> 0:4 values
for this moment (compared to h�2i ¼ 0:2 for the asymp-
totic DA) which indicates that the pion DA is a wide
function for �2 < 1 GeV2. Recent lattice calculations
[7,8] give h�2i * 0:3 for �2 values in this region.

A direct calculation of the pion DA in the Nambu-Jona-
Lasinio model [9] produces the result that ’�ðxÞ ¼ f� for
all values of the momentum fraction x, i.e., that pion DA is
constant. The same result was obtained in the ‘‘spectral’’
quark model [10]. Nonvanishing values of the pion distri-
bution amplitude at the end points were also obtained in
nonlocal quark models [11,12]. Nonperturbative calcula-
tions on the transverse lattice for small normalization
scales �� 0:5 GeV [13] produced results that correspond
to a rather flat distribution amplitude and are very close to
results obtained if one assumes that pion DA is exactly flat
for �� 0:3 GeV and then performs QCD evolution to
higher � [14]. The photon-pion transition form factor
was investigated in Ref. [15] using a large-Nc radial
Regge model for resonances coupled to q1 and q2 photons.
The results obtained in this way may be interpreted as a
model with flat pion DA at a low normalization point.

The value of h�2i for exactly ‘‘flat’’ DA is 1=3, which is
compatible with the results of the lattice estimates, though
smaller than the result of QCD sum rules. It should be
noted that the usual procedure of reconstructing pion DA
from its moments in the Chernyak and Zhitnitsky (CZ)
approach (followed by essentially all other groups) is to
build it as a sum of the lowest (two or three) Gegenbauer
polynomials corresponding to multiplicatively renormaliz-
able components of the pion DA evolution decomposition.
Since these components have xð1� xÞ as an overall factor,
such a procedure excludes flat DAs from possible models.
However, this restriction on the pion DA model building is
just an assumption.
In the present paper, our goal is to analyze the photon-

pion transition form factor in a scenario with flat pion DA.
The curve for the form factor which we obtain is in very
good agreement with recent BABAR data [16], which is
basically the main motivation for our investigation.
The paper is organized in the following way. In Sec. II,

we give an overview of the basic facts about the pion
distribution amplitude: its definition, evolution and results
concerning its shape. Section III is devoted to the study of
the photon-pion transition form factor. We briefly describe
perturbative QCD (pQCD) results for this form factor, and
then calculate it within the light-front formalism using a
model wave function�ðx; k?Þ that reproduces flat pion DA
after integration over quark transverse momentum k? and
rapidly (exponentially) decreases for large values of the
standard light-front energy combination k2?=xð1� xÞ. The
k? width parameter � of this wave function can be easily
adjusted to produce a curve practically coinciding with the
data fitting curve given in Ref. [16]. This value of �
corresponds to the value hk2?i ¼ ð420 MeVÞ2 for the aver-
age transverse momentum squared, which has the magni-
tude that one would expect for the valence �qq Fock
component of the pion light-front wave function. We ana-
lyze the structure of the one-loop corrections for a flat DA
in pQCD, and find out that the optimal value �2 ¼ aQ2 of
the normalization scale for a flat DA is very small. We
argue that this is an evidence that the flat pion DA should
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not be evolved in our calculation of the photon-pion tran-
sition form factor. Finally, we discuss some aspects of the
flat pion DA scenario and then we summarize the paper.

II. PION DISTRIBUTION AMPLITUDE: BASICS

A. Definition and evolution

The pion distribution amplitude ’�ðxÞ may be intro-
duced [1] as a function whose xn moments

fn ¼
Z 1

0
xn’�ðxÞdx (1)

are given by reduced matrix elements of twist-2 local
operators

inþ1h0j �dð0Þ�5f��D�1
� � �D�n

guð0Þj�þ; Pi
¼ fP�P�1

� � �P�n
gfn; (2)

or [2] as the k? integral

’�ðx; �Þ ¼
ffiffiffi
6

p
ð2�Þ3

Z
k2?��2

�ðx; k?Þd2k? (3)

of the light-front wave function �ðx; k?Þ. The zeroth mo-
ment of ’�ðxÞ corresponds to the matrix element of the
axial current, and is given by the pion decay constant f�Z 1

0
’�ðxÞdx ¼ f�; (4)

which is known experimentally. In the conventions that we
use, f� � 130 MeV. Equation (4) gives an important con-
straint on the pion DA, fixing the integral under the ’�ðxÞ
curve, but it puts no restrictions on its shape. In fact, the
pion DA depends on the renormalization scale � that is
used to define matrix elements of twist-2 local operators:
’�ðxÞ ! ’�ðx;�Þ. The evolution equation for the pion
DA may be written either in matrix form [1]

�
d

d�
fnð�Þ ¼ Xn

k¼0

Znkfkð�Þ (5)

(see also [17]) or in kernel form [2]

�
d

d�
’�ðx;�Þ ¼

Z 1

0
Vðx; yÞ’�ðy;�Þdy: (6)

The solution of the evolution equation was obtained [2–4]
in the form of expansion over Gegenbauer polynomials

’�ðx; �Þ ¼ 6f�xð1� xÞ
�
1þ X1

n¼1

a2nC
3=2
2n ð2x� 1Þ

� ½lnð�2=�2Þ���2n=�0

�
; (7)

where �2n > 0 is the anomalous dimension of the compos-
ite operator with 2n derivatives, and �0 is the lowest
coefficient of the QCD � function. As a result, when the
normalization scale � tends to infinity, the pion DA ac-

quires a simple form [5]

’�ðx;� ! 1Þ ¼ 6f�xð1� xÞ; (8)

known as the ‘‘asymptotic DA.’’

B. Shape

The question, however, is what is the shape of the pion
DA at low normalization scales � & 1 GeV? Some quali-
tative (and maybe overly simplistic by today’s standards)
argumentation about a possible shape of the pion DA was
given in our 1980 papers [18,19]. Namely, in case of a
system of two equal-mass noninteracting particles, ’ðxÞ ¼
�ðx� 1=2Þ. When the interaction is switched on, the DA
broadens. The width � of ’ðxÞ may be estimated as ��
Eint=mq. Hence, for heavy mesons (e.g., for � particles),

’ðxÞ is rather narrow sincemq � M��QCD � 300 MeV,

whereM is a parameter characterizing interaction strength.
On the other hand, takingmu;d & 10 MeV for the quarks in

the pion, we conclude that’�ðxÞ is very broad. Assuming a
simple exponential model

�ðx; k?Þ � exp

�
� k2? þm2

q

M2xð1� xÞ
�

(9)

for the light-front wave function gives

’�ðx;��MÞ ffi f� exp

�
� m2

q

M2xð1� xÞ
�
: (10)

In this case, the pion DA ’�ðxÞ is close to f� everywhere
outside the regions 0 � x & m2

q=M
2 � 10�3 and 0 � 1�

x & m2
q=M

2 � 10�3. In these regions, ’�ðxÞ vanishes

rapidly.
Initially, the pion DA appeared in the perturbative QCD

expression [1]

F
asðpQCDÞ
� ðQ2Þ ¼ 8�	s

9Q2

Z 1

0
dx

Z 1

0
dy

’�ðxÞ’�ðyÞ
xyQ2

(11)

for the asymptotics of the pion form factor calculated
through a one-gluon-exchange diagram (see Fig. 1).
Here, xyQ2 is the virtuality of the exchanged gluon. If
one takes the flat pion DA ’�ðxÞ ¼ f�, both integrals in
x and y logarithmically diverge, which means that pQCD
factorization fails in this case. Evidently, the finite sizeR�
1=M of the pion should provide a cutoff for the x, y

FIG. 1 (color online). One-gluon-exchange diagram for the
pion electromagnetic form factor in perturbative QCD.
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integral, which suggests that xyQ2 should be substituted by
something like xyQ2 þOðM2Þ, with the additional term
having a meaning of the average of the squared transverse
momentum of the quarks. One may also treat OðM2Þ as an
effective gluon mass squared. Then the x, y integrals are
convergent, but the integral is dominated by the region
where the nominal gluon virtuality is OðM2Þ. This means,
first, that it is small, and what is even more important, that
it is not growing with Q2. For these reasons, the gluon-
exchange line cannot be treated as a part of a perturbative
short-distance subprocess, in which virtualities of all the
lines should be parametrically OðQ2Þ. Hence, it should be
absorbed into the nonperturbative part of the diagram, i.e.
into the soft pion wave function. The pion form factor must
be then calculated in some nonperturbative way. Such a
calculation was accomplished within the QCD sum rule
approach [20,21], with the results close to experimental
data.

The same QCD sum rule approach was used [6] to
calculate �2 and �4 moments of the pion distribution
amplitude 
�ð�Þ [which is the original DA ’�ðxÞ written
as a function of the relative variable � 
 x� ð1� xÞ and
divided by f�]. The value of h�2i is a quantitative measure
of the width of the distribution amplitude. In particular,
h�2i is zero for the infinitely narrow DA ’�ðxÞ ¼ f��ðx�
1=2Þ, it equals to 1=5 for the asymptotic DA (8) and to 1=3
for the flat’�ðxÞ ¼ f� DA. The calculation of CZ [6] gave
the result larger than 1=3, namely h�2i ¼ 0:40 for the
‘‘bare’’ value that was attributed to the normalization point
�2 ¼ 1:5 GeV2 and then renormalized to the reference
scale �2 ¼ 0:25 GeV2, which resulted in h�2i ¼ 0:46.
Without touching a subtle point whether a perturbative
evolution to such a low scale is justified, we can say that
the CZ results clearly indicate that the pion DA is a wide
function, and a generalized flat DA of
�ð�Þ ¼ aþ 3ð1�
aÞ�2 type could have been used as a model fitting the
values of h�2i and h�4i obtained from the CZ calculation.
However, the fitting model


CZ
� ð�Þ ¼ 15

4
�2ð1� �2Þ (12)

was constructed from the sum of the two first terms of the
Gegenbauer expansion (7), which has xð1� xÞ (or 1� �2)
as an overall factor, thus excluding all models with DAs
that do not linearly vanish at the end points.

An implicit assumption of the CZ calculation is that it is
sufficient to take into account only the two lowest con-
densates hGGi and 	sh �qqi2 in the operator product expan-
sion (OPE) for the relevant two-point correlator. An
alternative attitude [22] is that the quark condensate
h �qð0Þqð0Þi is just the first term in Taylor expansion of the
nonlocal condensate h �qð0ÞqðzÞi 
 h �qqifðz2Þ that explicitly
appears at the initial steps of OPE calculations. Modeling
fðz2Þ is an attempt to include the tower of higher local
condensates of h �qðD2Þnqi type. The change from purely
local approximation fðz2Þ ¼ 1 to nonlocal condensates

(NLC) with a smooth function fðz2Þ that rapidly decreases
for large z2 modifies the QCD sum rule results for the
moments of the pion DA: they become smaller. In particu-
lar, the initial NLC calculation by Mikhailov and
Radyushkin (MR) [22] gave h�2i ¼ 0:25, and the model
DA proposed in Refs. [22,23] is


MR
� ð�Þ ¼ 2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

q
; (13)

which is wider than the asymptotic DA, but narrower than
the flat DA. The NLC method was elaborated on in later
papers; see Ref. [24] for a review. The problem of the NLC
approach is that while it attempts to model the towers of
h �qðD2Þnqi condensates, the towers of h �qGnqi condensates
are neglected. Recently, Chernyak [25] gave a specific
example in which the two towers exactly cancel each other.
This means that NLC results may underestimate the value
of h�2i, and cannot exclude a possibility of large h�2i *
1=3 values for the second moment and h�4i * 1=5 values
for the fourth moment of the pion DA. On the other hand, it
is quite possible that NLC argumentation is not completely
wrong, and CZ results overestimate the values of h�2i and
h�4i. In particular, recent lattice calculations [7,8] give
h�2i � 0:29 and 0.27, respectively, at the scale �2 ¼
4 GeV2, which produces h�2i * 0:3 at scales �1 GeV2,
but definitely not h�2i * 0:4.
A general comment is that converting the obtained

values of h�2i and h�4i into models for the pion DA one
should not restrict the models by the requirement that DAs
must be given by a few first terms of the Gegenbauer
expansion. There is no a priori principle justifying such
a requirement: it is just an assumption which may or may
not be true.

III. PHOTON-PION TRANSITION FORM FACTOR

The form factor F�����0ðq21; q22Þ relating two (in general,
virtual) photons with the lightest hadron, the pion, plays a
special role in the studies of exclusive processes in quan-
tum chromodynamics. When both photons are real, the
form factor F�����0ð0; 0Þ determines the rate of the �0 !
�� decay, and its value at this point is deeply related to the
axial anomaly [26]. At large photon virtualities, this form
factor has the simplest structure analogous to that of the
form factors of deep inelastic scattering. As a result, com-
paring pQCD predictions [27–32] with experimental data,
one can get information about the shape of the pion distri-
bution amplitude ’�ðxÞ. Experimentally, F�����0ðq21; q22Þ
for small virtuality of one of the photons, q22 � 0, was
measured at eþe� colliders by CELLO [33], CLEO [34],
and recently by BABAR [16] Collaborations.

A. Perturbative QCD

The behavior of the photon-pion transition form factor at
large photon virtualities was studied [27–29] within the
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pQCD factorization approach for exclusive processes
[1,4,27,35]. Since only one hadron is involved, the
�����0 form factor has the simplest structure for pQCD
analysis, with the nonperturbative information about the
pion accumulated in the pion distribution amplitude’�ðxÞ.
Another simplification is that the short-distance amplitude
for ���� ! �0 transition is given, at leading order, just by
a single quark propagator. Theoretically, the most clean
situation is when both photon virtualities are large, but the
experimental study of F�����0ðQ2

1; Q
2
2Þ in this regime

through the ���� ! �0 process is very difficult due to a
very small cross section.

In the lowest order of perturbative QCD, the form factor
for the transition of two virtual photons with momenta q1,
q2 into a neutral pion with momentum p ¼ q1 þ q2 is
given by contribution of the handbag diagram (see Fig. 2)

FpQCD;LO
����� ðq21; q22Þ ¼ �

ffiffiffi
2

p
3

Z 1

0

’�ðxÞ
xq21 þ ð1� xÞq22

dx: (14)

Introducing the asymmetry parameter ! through q21 ¼�Q2ð1þ!Þ=2 and q22 ¼ �Q2ð1�!Þ=2 gives

FpQCD
�����ðQ2; !Þ ¼ 2

ffiffiffi
2

p
3Q2

Z 1

0

’�ðxÞ
1þ!ð2x� 1Þdx



ffiffiffi
2

p
f�

3Q2
Jð!Þ: (15)

Thus, if one would know the function Jð!Þ, one could (in
principle) obtain the pion DA ’�ðxÞ by inverting the
integral transform (15). However, as already mentioned,
this kinematics is very difficult for experimental study. If
one of the photons is real, i.e. ! ¼ 1, the leading-order
pQCD prediction is

FpQCD
���� ðQ2Þ ¼

ffiffiffi
2

p
3Q2

Z 1

0

’�ðxÞ
x

dx 

ffiffiffi
2

p
f�

3Q2
J: (16)

Information about the shape of the pion DA is now accu-
mulated in the factor J. It equals 2 for the infinitely narrow
��ðx� 1=2Þ DA, for asymptotic DA (8) we have Jas ¼ 3,
while the CZ model (12) gives JCZ ¼ 5. The intermediate
distribution (13) produces JMR ¼ 4. Thus, in addition to
h�2i, we have another measure of the width of the pion DA,

the value of J. Note, that for the DAs listed above, the
ordering in J values is the same as the ordering in h�2i
values. However, the flat DA, for which h�2i is smaller than
that for the CZ model DA, generates infinite value for J,
which is a consequence of the fact that it does not vanish at
x ¼ 0. This divergence of the integral for J formally means
that the standard perturbative QCD factorization approach
is not applicable for the flat DA case. But, since the
divergence is only logarithmic, one may hope that some
minimal fix, like a cutoff, might be sufficient. The ques-
tion, of course, is whether there is a real need to use the flat
DA to describe the data on the photon-pion transition form
factor.

B. Logarithmic model

Recent data on the ��� ! �0 form factor reported by
the BABAR Collaboration in Ref. [16] are well fitted by the
formula

Q2F����0ðQ2Þ ffi ffiffiffi
2

p
f�

�
Q2

10 GeV2

�
0:25 


ffiffiffi
2

p
f�
3

JexpðQ2Þ
(17)

for the range 4 GeV2 <Q2 < 40 GeV2. The most startling
observation is that JexpðQ2Þ does not show a tendency to
flatten to some particular value. The specific ðQ2Þ� power-
law parametrization of the growth is, of course, a matter of
choice. In this region, JexpðQ2Þ is in fact very close to the
logarithmic function

JLðQ2Þ ¼ ln

�
Q2

M2
þ 1

�
; (18)

if one takes M2 ¼ 0:6 GeV2; see Fig. 3. The two curves
practically coincide for Q2 * 15 GeV2.
It is easy to notice that JLðQ2Þ can be obtained if one

uses the flat DA ’�ðxÞ ¼ f� and changes xQ2 ! xQ2 þ
M2 in the pQCD expression for the ��� ! �0 form factor:

JLðQ2Þ ¼ Q2
Z 1

0

dx

xQ2 þM2
: (19)

FIG. 2 (color online). Handbag diagram for the photon-pion
transition form factor.

10 20 30 40

1.5
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3

3.5
4

J

FIG. 3 (color online). Comparison of the function JexpðQ2Þ
corresponding to the fit of BABAR data (blue) and the logarith-
mic model function JLðQ2Þ (red). The asymptotic pQCD pre-
diction Jas ¼ 3 is also shown (green).
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As discussed above, the idea to modify propagators
1=k2 ! 1=ðk2 þM2Þ in integrals over the light-cone mo-
mentum fractions is rather old. The parameter M in such
modifications is usually treated as the average transverse
momentum of the propagating particle. However, the im-
mediate observation is that the value M ¼ 0:77 GeV is a
little bit too large to be interpreted in such a way.
Furthermore, the 1=xQ2 ! 1=ðxQ2 þM2Þ modification
is equivalent to bringing in, before the integration over x,
a tower of ðM2=xQ2Þn power corrections, i.e., higher
twists. But it is known [36] that the handbag diagram,
because of its simple singularity structure, cannot generate
an infinite tower of power corrections. Indeed, the propa-
gator of a massless quark in the coordinate representation
is �6zðz2Þ�2. Expanding the matrix element of the bilocal
operator

h0j �c ð0Þ�56zc ðzÞjpi ¼ �2ðzpÞjz2¼0 þ z2�4ðzpÞjz2¼0

þ ðz2Þ2�6ðzpÞjz2¼0 þ � � � ; (20)

we see that twist-6 and higher terms cancel the singularity
of the propagator. Hence, there are just two terms in the
OPE for the handbag contribution: the twist-2 term that has
1=Q2 behavior and the twist-4 term (corresponding to the
�c�56zD2c operator on the light cone) that gives a 1=Q4

contribution. Operators with ðD2Þn�2 do not contribute,
and so there is no infinite tower of ð1=Q2Þn terms.

C. Light-front formalism and Gaussian model

To investigate a possible mechanism capable of gener-
ating a cutoff at small x, let us write the ����0 form factor
in the light-front formalism. The required expression was
given in the classic paper [27] of Lepage and Brodsky on
exclusive processes in QCD. Namely, the two-body (i.e.,
�qq) contribution to the ����0 form factor is given by

ð�? � q?ÞF �qq

����0ðQ2Þ ¼ 1

4�3
ffiffiffi
3

p
Z 1

0
dx

�
Z ð�? � ðxq? þ k?ÞÞ

ðxq? þ k?Þ2 � i�

��ðx; k?Þd2k?: (21)

Here, q? is a two-dimensional vector in the transverse
plane satisfying q2? ¼ Q2, �? is a vector orthogonal to

q? and also lying in the transverse plane [27], and the cross
denotes the vector product. It can be shown that for the
wave functions of �ðx; k?Þ ¼ c ðx; k2?Þ type we have [36]

F �qq

����0ðQ2Þ ¼ 1

2�2
ffiffiffi
3

p
Z 1

0

dx

xQ2

Z xQ

0
c ðx; k2?Þk?dk?:

(22)

Following [29], we take the Gaussian ansatz for the
k? dependence of the light-front wave function, which
we write in the form

�Gðx; k?Þ ¼ 4�2’�ðxÞ
x �x�

ffiffiffi
6

p exp

�
� k2?
2�x �x

�
; (23)

where � is the width parameter and ’�ðxÞ is the desired
pion distribution amplitude. The result for the form factor
is then given by

FG
����0ðQ2Þ ¼

ffiffiffi
2

p
3

Z 1

0

’�ðxÞ
xQ2

�
1� exp

�
� xQ2

2 �x�

��
dx:

(24)

It contains the 1=xQ2 pQCD contribution and a correction
term which makes the integral convergent in the region of
small x. An important observation is that the correction
term in the integrand of Eq. (24) reflects the k? dependence
of the nonperturbative pion wave function. In the Gaussian
ansatz, this integrand term has an exponentially decreasing
rather than a power behavior for largeQ2. This fact alone is
sufficient to assert that it cannot be classified as a higher-
twist term. It comes from contributions invisible in the
operator product expansion, which only sees the terms
that have a powerlike behavior in 1=Q2 before integration
over x. Representing this expression for the form factor as

FG
����0ðQ2Þ ¼

ffiffiffi
2

p
f�
3

JGðQ2; �Þ; (25)

we find that, for the flat DA ’�ðxÞ ¼ f�, the function
JGðQ2; �Þ has the following large-Q2 asymptotic behavior:

JGðQ2; �Þ ¼ ln

�
Q2

2�

�
þ �E þOð�=Q2Þ; (26)

where �E is the Euler-Mascheroni constant. Comparing
this result with the function JLðQ2;M2Þ (19) obtained
through the M2 modification of the pQCD 1=xQ2 propa-
gator, we conclude that they have the same [up toOð1=Q2Þ
terms] asymptotic behavior if

� ¼ M2

2
e�E; (27)

which gives � ¼ 0:53 GeV2 for M2 ¼ 0:6 GeV2. In fact,
plotting JLðQ2;M2 ¼ 0:6 GeV2Þ and JGðQ2; � ¼
0:53 GeV2Þ together, we observe that these two functions
practically coincide in the whole region Q2 > 1 GeV2 we
are interested in (see Fig. 4). Comparison of the model
curve with BABAR experimental data is shown in Fig. 5.
To check if the magnitude of � is in a physically

reasonable range, let us calculate the average transverse
momentum for this Gaussian model. We have

hk2?ðxÞi 

Z

d2k?k2?�ðx; k?Þ
�Z

d2k?dx�ðx; k?Þ
��1

¼ 2�xð1� xÞ; (28)

and, hence,
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hk2?i 

Z 1

0
hk2?ðxÞidx ¼ �

3
: (29)

Thus,
ffiffiffiffiffiffiffiffiffiffi
hk2?i

q
¼ 0:42 GeV, which is rather close to the

folklore value of 300 MeV. One should also take into
account that the wave function under consideration de-
scribes the valence two-quark Fock component of the
pion, which is presumably smaller than other components.

Thus, the magnitude of the M2 parameter of the loga-
rithmic model is close to 3:3hk2?i rather than to the value

hk2?i expected from a naive substitution xQ2 ! xQ2 þ k2?
in the quark propagator. As we explained, such a change
has no theoretical grounds in the case of the handbag
diagram. The justification of the ad hoc modification
xQ2 ! xQ2 þM2 used in our logarithmic model, as we
have seen, is more complicated.

D. One-loop pQCD corrections

As already discussed, distribution amplitudes in general
depend on the factorization scale �, i.e. in principle one
should always write ’ðx;�Þ. This dependence is induced
by radiative corrections. The standard procedure in pQCD

calculations involving pion DA is to start with an auxiliary
quark-antiquark state in which the quarks are on shell and
share the total momentum P in fractions xP and ð1� xÞP
according to the bare distribution amplitude ’0ðx;mqÞ.
Calculating radiative corrections for a specific process,
e.g. for the photon-pion transition form factor, one obtains
logarithms lnðQ2=m2

qÞ accompanied by factors which may

be converted into convolution of the lowest-order short-
distance amplitude T0ðxÞ with the evolution kernel Vðx; yÞ
and the bare distribution amplitude ’0ðy;mqÞ. Combining

the evolution factor with the bare DA, one obtains the
expression in which T0ðxÞ is multiplied by ‘‘evolved’’
distribution amplitude ’ðx; aQÞ, with a being some num-
ber, which is usually chosen in such a way as to minimize
the size of that part of the corrections which was not
absorbed into the renormalized (i.e. evolved) DA. One
may also start with massless on-shell quarks, and use
dimensional regularization to regularize mass singularities
that result from lnðQ2=m2

qÞ terms for mq ¼ 0. Then the

bare DA depends on the dimensional regularization scale
�, and one gets lnðQ2=�2Þ evolution logarithms calculat-
ing corrections to the amplitude of the short-distance
subprocess.
The one-loop correction for the ��� ! �0 form factor

was calculated in Refs. [30–32], with the result

Z 1

0
dx

’�ðxÞ
xQ2

!
Z 1

0
dx

’�ðx;�Þ
xQ2

�
1þ CF

	s

2�

�
1

2
ln2x

� x lnx

2ð1� xÞ �
9

2
þ

�
3

2
þ lnx

�
ln

�
Q2

�2

���


 f�
JðQ;�Þ
Q2

; (30)

where CF ¼ 4=3. As advertised, the term containing the
logarithm lnðQ2=�2Þ has the form of convolution

1

xQ2 CF

	s

2�

�
3

2
þ lnx

�
¼

Z 1

0

1

�Q2
Vð�; xÞd� (31)

of the lowest-order term T0ð�;Q2Þ ¼ 1=�Q2 and the kernel

Vð�; xÞ ¼ 	s

2�
CF

�
�

x
�ð� < xÞ

�
1þ 1

x� �

�

þ 1� �

1� x
�ð� > xÞ

�
1þ 1

�� x

��
þ

(32)

governing the evolution of the pion distribution amplitude.
The ‘‘þ’’ operation is defined by

½Fð�; xÞ�þ ¼ Fð�; xÞ � �ð�� xÞ
Z 1

0
Fð; xÞd: (33)

When the probing momentum Q is much larger than the
initial normalization scale �, one deals with large loga-
rithm lnðQ2=�2Þ. The latter can be eliminated by taking
� ¼ Q, and the expression is produced in which the
evolved DA ’�ðx; QÞ is integrated with the remaining

FIG. 5 (color online). Comparison of the model curve (solid
red line) with BABAR experimental data. The asymptotic pQCD
prediction Q2F����0 ðQ2Þ ¼ ffiffiffi

2
p

f� is also shown (dashed blue

line).
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FIG. 4 (color online). Comparison of the logarithmic model
JLðQ2;M2 ¼ 0:6 GeV2Þ (red) and the Gaussian model
JGðQ2; � ¼ 0:53 GeV2Þ (blue).
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part of the correction. It is not guaranteed, however, that
the resulting correction will be small, and the idea is to take
� ¼ aQ with a chosen in such a way as to maximally
reduce the size of the 	s correction.

In the context of the present paper, we are interested in
what happens when the bare DA is flat: ’0ðx;�Þ ¼ f�.
Since in this case all integrals in (30) simply diverge, let us
take a regularized version of the flat distribution amplitude,
namely, the function

’rðxÞ ¼ f�
�ð2þ 2rÞ
�2ð1þ rÞ x

rð1� xÞr; (34)

with r being a very small parameter, say r & 0:1. Then
Eq. (30) gives

JrðQ;�Þ ¼
�
1

r
þ 2

��
1þ 	s

3�

�
2

r2
þ �2

3
� 9þOðrÞ

�
�
2

r
� 3þ �2

3
rþOðr2Þ

�
ln

�
Q2

�2

���
: (35)

It is clear that if we take� ¼ Q, we will be left with a huge
correction �ð2	s=3�Þ=r2, i.e. �60ð	s=�Þ for r ¼ 0:1.
Since the coefficient in front of lnðQ2=�2Þ is dominated
by the 2=r term, while the �-independent piece is domi-
nated by its 2=r2 part, we can compensate the latter by
taking lnðQ2=�2Þ ¼ 1=r. This corresponds to the choice

�2 ¼ Q2e�1=r; (36)

which may be rewritten as �2 ¼ ffiffiffi
�x

p
Q2, where �x is an

effective average x, defined as

ln �x ’
Z 1

0
lnx’rðxÞdx=

�Z 1

0
’rðxÞdx

�
; (37)

for the amplitude with almost flat DA. Thus, if we take r ¼
0:1 to model the flat DA, the optimal choice for � is
something like �2 ¼ 10�4Q2. Even for the highest Q2

reached in the BABAR experiment, this gives �2 ¼
0:004 GeV2, a scale corresponding to distances much
larger than the pion size. Evidently, we cannot evolve the
pion DA down to such small momentum scales. The evo-
lution must stop at some �2

0 ��2
QCD. Thus, the flat pion

DA becomes a DA at ‘‘low normalization point’’ � ¼
�0 ��QCD, below which there is no evolution.

Moreover, as we have seen in the example above, the
radiative corrections do not induce visibleOðQ2Þ additions
to the renormalization parameter. Thus, in this ‘‘pQCD
version’’ of the scenario with the flat DA, we deal simply
with ’�ðxÞ. It does not evolve in the photon-pion transition
amplitude, so there is no need to specify at which scale it is
defined.

Furthermore, writing the square-bracketed term in
Eq. (35) as ½AðrÞ � BðrÞ lnðQ2=�2Þ�, we can fine-tune the
coefficient a by taking a ¼ exp½�AðrÞ=BðrÞ� so as to
completely eliminate the one-loop correction. Still, the
resulting �2 ¼ aQ2 will be very small, and there will be

no evolution change in the shape of flat DA. In other words,
in the pQCD version of the flat DA scenario, there is no
need to consider radiative corrections for the photon-pion
transition form factor: they are all absorbed by the pion
wave function.
When the pQCD version of the scenario with flat pion

DA is applied to the pion electromagnetic form factor, the
analysis of radiative corrections is very similar. The con-
clusion is that there is no need to consider the one-gluon-
exchange diagram: the gluon line should be absorbed into
the soft wave function. After that, only the soft contribu-
tion remains, and the form factor should be calculated
nonperturbatively.
This does not mean that the flat DA scenario excludes

the diagrams with gluon exchanges for all processes.
Consider charmonium decays into two pions, �c ! ��
(see Fig. 6). The two gluons present in the lowest-order
diagram cannot be absorbed into the pions’ wave func-
tions, so this diagram remains. In pQCD, it produces the
same integrals of 
ð�Þ=ð1� �2Þ type that diverge for flat
DA. Thus, one should write a more detailed expression
involving the k?-dependent light-front wave functions for
both pions, which is a challenging problem for future
studies. The description of charmonium decays is a well-
known success of the CZ approach: if one uses pion DAs
close to the asymptotic one, the theoretical results are well
below the experimental data. In case of unmodified propa-
gators, the flat scenario gives divergent results for these
amplitudes, while propagator modification brings them
down to finite values. It is interesting to check if the
resulting values are close to CZ ones.
One may argue that our logarithmic or Gaussian models

for the lowest-order term are more or less equivalent to a
simple cutoff of the x integral at the x ¼ M2=Q2 value,
which is essentially larger than x� exp½�1=r� values that
are responsible for the dominant 1=r, 1=r2, 1=r3 terms in
the analysis above. If one simply imposes the cutoff at x ¼
M2=Q2 in the pQCD expression (30), one would get
powers of lnðQ2=M2Þ instead of of powers of 1=r, and
since lnðQ2=M2Þ & 4 in our case, the asymptotically non-
leading terms [especially �9=2 contribution, see Eq. (30)]
are essential. But it is not clear if a simple x cutoff in the

FIG. 6 (color online). Diagram for charmonium decay into two
pions: the gluon lines cannot be absorbed into a soft pion wave
function.
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pQCD expression is a correct prescription in the one-loop
case. In particular, one may notice that the leading-order
formula (22) of the light-front formalism can be formally
written in terms of pion DA ’�ðx;�Þ taken at � ¼ xQ
[cf. Equation (3)]:

F �qq

����0ðQ2Þ ¼
ffiffiffi
2

p
3

Z 1

0

dx

xQ2
’�ðx;� ¼ xQÞ: (38)

So, if the most important values are x�M2=Q2, then one

should take ��M2=Q [which is ��Qe� lnðQ2=M2Þ, com-
pare with (36)], i.e. again a very small value for large Q.
However, to check if this reasoning extends to the one-loop
case, one needs to calculate one-loop corrections in the
light-front formalism keeping the k? dependence in the
perturbative part and then convoluting the result with
k?-dependent nonperturbative wave function(s), which is
a task going well beyond the scope of the present paper.

IV. SUMMARY

In this paper we discussed a scenario in which pion
distribution amplitude is treated as a constant for all values
of the light-cone momentum fraction x. We indicated that
several approaches, in particular, QCD sum rules and
lattice gauge calculations give the values for the second
moment h�2i of the pion distribution amplitude that are
compatible with this proposal. We emphasized that the
standard practice of building the model pion DAs as a
sum of two or three lowest terms of the Gegenbauer

expansion is just an assumption. Such an assumption,
however, excludes flat DAs from the start. We calculated
the photon-pion transition form factor using the light-front
formula of Lepage and Brodsky and incorporating a �qq
wave function that gives flat pion DA and has a rapid
(exponential, for definiteness) falloff with respect to the
light-front energy combination k2?=xð1� xÞ. We demon-

strated that the use of such a wave function is numerically
equivalent to 1=xQ2 ! 1=ðxQ2 þM2Þ modification of the
quark propagator, with the parameter M2 being more than
3 times larger compared to the average square of the
valence quark transverse momentum. The characteristic
feature of our result is logarithmic � lnðQ2=M2Þ growth
with Q2 of the combination Q2F����0ðQ2Þ. Such a growth

is indicated by recent data of the BABAR Collaboration
[16]. In this respect, it looks very important to check these
results at other facilities, such as BELLE.
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