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We study a specific texture of the neutrino mass matrix, namely the models with one 2� 2

subdeterminant equal to zero. We carry out a complete phenomenological analysis with all possible

relevant correlations. Every pattern of the six possible ones is found able to accommodate the experi-

mental data, with three cases allowing also for noninvertible mass matrices. We present symmetry

realizations for all the models.
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I. INTRODUCTION

Massive neutrinos and flavor mixing are the common
ingredients in the interpretation of the Super-Kamiokande
[1] experiment on the solar and atmospheric neutrinos. In
the flavor basis which identifies the flavor eigenstates of the
charged leptons with their mass eigenstates, the (effective)
neutrino mass matrix M� has nine free parameters: three
masses (m1, m2, and m3), three mixing angles (�x, �y, and

�z) and three phases (two Majorana-type �, � and one
Dirac-type �). The values of the masses and the mixing
angles are, somehow, constrained by data [2–5], whereas
the phases are completely unrestricted by current data.

Many viable zero textures were studied. No three inde-
pendent zeros texture can accommodate the data, whereas
nine patterns of two independent zeros texture, out of 15
possible, can do this [6,7]. A specific model realizing any
of the possible six patterns of one zero texture is con-
structed in [8], however, it led always to noninvertible
mass matrices, some of which are compatible with current
data.

The seesaw mechanism relatesM� to the Dirac neutrino
mass matrix MD and the Majorana mass matrix of the
right-handed singlet neutrinos MR through

M� ¼ MDM
�1
R MT

D; (1)

A zero in the inverted mass matrix M�1
� , when it exists, is

related to a zero in MR, when MD is diagonal. In this
respect, symmetry realizations of zeros in MR [9] leading
to zero textures in M�1

� were studied in [10], and seven
patterns of two zeros texture in M�1

� were shown to be
viable. However, these textures do not apply in the case of
noninvertibleM� where the zeros inMR reflect themselves
only as zero minors of M�. For this, the class of two
independent zero minors textures in M�, irrespective of

being invertible or not, were investigated in [11]. Seven
patterns could accommodate the data, with some viable
textures allowing for singular mass matrix with m3 and �z
equal to zero.
One can generalize the zero textures in M� in other

ways. For instance, textures of vanishing two subtraces
were tackled in [12] and eight patterns were acceptable
phenomenologically. In this paper, we apply the phenome-
nological analysis of [11–13] to study the textures of one
vanishing minor in M�, without presupposing the inverti-
bility of M� nor assuming any specific model, albeit we
showed possible theoretical realizations of the patterns.
With the vanishing constraint (two real conditions) and

the input of �m2
sol fixed to its experimental central value,

one still needs to know six parameters in order to determine
the mass matrix. We take the mixing and phase angles to be
these parameters, and so we vary the values of the mixing
angles �x, �y, and �z over their allowed experimental

ranges whereas the unconstrained phase angles �, �, and
� span their whole ranges. In this manner, one can obtain
in the parameter space of �x, �y, �z, �, �, and � the regions

that are consistent with all other experimental constraints.
Moreover, one can study the correlations between any two
physical neutrino parameters x and y by plotting all the
points ðx; yÞ corresponding to acceptable points in the
parameter space. We found that all six patterns, with three
among them allowing for zerom3, could accommodate the
data. Furthermore, four patterns exhibit all sorts of neutrino
mass hierarchies, whereas one pattern allows solely for an
inverted hierarchy in contrast to another pattern showing
only normal and degenerate hierarchies.
The plan of the paper is as follows: in Sec. II, we review

the standard notation for the neutrino mass matrix and its
relation to the experimental constraints. In Sec. III, we
present the texture of one vanishing minor in M� and
find the corresponding expressions of the two neutrino
mass ratios. In Sec. IV, we classify all the patterns and
present the results and the phenomenological analysis of
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each case. We present symmetry realizations of all models
in Sec. V and end up with conclusions in Sec. VI.

II. STANDARD NOTATION

In the flavor basis, which diagonalizes the charged lep-
ton mass matrix, the symmetric neutrino mass matrix M�

can be diagonalized by a unitary transformation,

VyM�V
� ¼

m1 0 0
0 m2 0
0 0 m3

0
@

1
A; (2)

withmi (for i ¼ 1; 2; 3) real and positive. We introduce the
mixing angles ð�x; �y; �zÞ and the phases ð�; �; �Þ such that
[7]

V ¼ UP (3)

P ¼ diagðei�; ei�; 1Þ (4)

U¼
cxcz sxcz sz

�cxsysz � sxcye
�i� �sxsysz þ cxcye

�i� sycz
�cxcysz þ sxsye

�i� �sxcysz � cxsye
�i� cycz

0
B@

1
CA

(5)

(with sx � sin�x . . . ). We then have

M� ¼ U
�1 0 0
0 �2 0
0 0 �3

0
@

1
AUT (6)

with

�1 ¼ m1e
2i�; �2 ¼ m2e

2i�; �3 ¼ m3: (7)

In this parametrization, the mass matrix elements are
given by

M�11 ¼ m1c
2
xc

2
ze

2i� þm2s
2
xc

2
ze

2i� þm3s
2
z ;

M�12 ¼ m1ð�czszc
2
xsye

2i� � czcxsxcye
ið2���ÞÞ þm2ð�czszs

2
xsye

2i� þ czcxsxcye
ið2���ÞÞ þm3czszsy;

M�13 ¼ m1ð�czszc
2
xsye

2i� þ czcxsxsye
ið2���ÞÞ þm2ð�czszs

2
xcye

2i� � czcxsxsye
ið2���ÞÞ þm3czszcy;

M�22 ¼ m1ðcxszsyei� þ cysxe
ið���ÞÞ2 þm2ðsxszsyei� � cycxe

ið���ÞÞ2 þm3c
2
zs

2
y;

M�33 ¼ m1ðcxszcyei� � sysxe
ið���ÞÞ2 þm2ðsxszcyei� þ sycxe

ið���ÞÞ2 þm3c
2
zc

2
y;

M�23 ¼ m1ðc2xcysys2ze2i� þ szcxsxðc2y � s2yÞeið2���Þ � cysys
2
xe

2ið���ÞÞ þm2ðs2xcysys2ze2i� þ szcxsxðs2y � c2yÞeið2���Þ

� cysyc
2
xe

2ið���ÞÞ þm3sycyc
2
z :

(8)

We see here that under the transformation given by

T1: �y ! �

2
� �y and � ! �� �; (9)

the mass matrix elements are transformed among them-
selves such that the indices 2 and 3 are swapped under T1

whereas the index 1 remains invariant:

M�11 $ M�11; M�12 $ M�13

M�22 $ M�33; M�23 $ M�23:
(10)

There is another symmetry given by

T2: � ! �� �; � ! �� �; � ! 2�� �;

(11)

which changes the mass matrix into its complex conjugate,
i.e.,

M�ijðT2ð�; �; �ÞÞ ¼ M�
�ijðð�; �; �ÞÞ: (12)

The above two symmetries T1;2 are very useful in clas-

sifying the models and in connecting the phenomenologi-
cal analysis of patterns related by these symmetries.

A remarkable merit of this parametrization is that its
mixing angles ð�x; �y; �zÞ are directly related to the mixing

angles of solar, atmospheric, and CHOOZ reactor neutrino
oscillations:

�x � �sol; �y � �atm; �z � �chz: (13)

Also, we have

�m2
sol ¼ �m2

12 ¼ m2
2 �m2

1;

�m2
atm ¼ j�m2

23j ¼ jm2
3 �m2

2j;
(14)

and the hierarchy of solar and atmospheric neutrino mass-
squared differences is characterized by the parameter:

R� �
��������
m2

2 �m2
1

m2
3 �m2

2

��������� �m2
sol

�m2
atm

� 1: (15)

Reactor nuclear experiments on beta-decay kinematics and
neutrinoless double-beta decay put constraints on the neu-
trino mass scales characterized by the effective electron-
neutrino mass:
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hmie ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX3
i¼1

ðjVeij2m2
i Þ

vuut ; (16)

and the effective Majorana mass term hmiee:
hmiee ¼ jm1V

2
e1 þm2V

2
e2 þm3V

2
e3j ¼ jM�11j2: (17)

The Jarlskog rephasing invariant quantity [14] that mea-
sures CP violation in neutrino oscillation is given by

J ¼ sxcxsycyszc
2
z sin�: (18)

Also, cosmological observations put an upper bound on
the ‘‘sum’’ parameter �:

� ¼ X3
i¼1

mi: (19)

There are no experimental bounds on the phase angles,
and we take the principal value range for �, 2�, and 2� to
be ½0; 2��. As to the other oscillation parameters, the
experimental constraints give the following values with
1, 2, and 3� � errors [13,15]:

�m2
atm ¼ 2:6þ0:2;0:4;0:6

�0:2;0:4;0:6 � 10�3 eV2;

�m2
sol ¼ 7:9þ0:3;0:6;1:0

�0:3;0:6;0:8 � 10�5 eV2;
(20)

sin 2�atm ¼ ð0:5þ0:05;0:13;0:18
�0:05;0:12;0:16Þ $ �y

¼ ð45þ3:44;7:54;10:55
�2:87;6:95;9:34 Þ degree;

sin2�sol ¼ ð0:3þ0:02;0:06;0:10
�0:02;0:04;0:06Þ $ �x

¼ ð33:21þ1:24;3:66;6:02
�1:27;2:56;3:88Þ degree;

sin2�chz < 0:012; 0:025; 0:040

$ �z < ð6:29; 9:10; 11:54Þ degree:

(21)

The most stringent condition on any model required to fit
the data is the bound on the R� parameter:

R� ¼ ð0:0304þ0:0038;0:0082;0:0141
�0:0033;0:0061;0:0082Þ: (22)

Concerning the nonoscillation parameters hmie, �, and
hmiee, we adopt the 2� � bounds for both hmie and � as
reported in [15]:

hmie < 1:8 eV; �< 1:4 eV: (23)

Due, in large part, to the debate about the claimed obser-
vation of neutrinoless double beta decay, we left in our
phenomenological analysis the effective Majorana mass
term hmiee unconstrained.

III. NEUTRINO MASS MATRICES WITH ONE
VANISHING MINOR

We denote by Cij the minor corresponding to the ijth

element (i.e. the determinant of the submatrix obtained by
deleting the ith row and the jth column ofM�). We have six

possibilities of having one minor vanishing. The vanishing
minor condition is written as

M�abM�cd �M�ijM�mn ¼ 0; (24)

then we have

X3
l;k¼1

ðUalUblUckUdk �UilUjlUmkUnkÞ�l�k ¼ 0: (25)

This leads to

m1

m3
¼ReðA2e

�2i�ÞImðA1e
�2i�Þ�ReðA1e

�2i�ÞImðA2e
�2i�Þ

ReðA3ÞImðA2e
�2i�Þ�ReðA2e

�2i�ÞImðA3Þ
(26)

m2

m3
¼ReðA2e

�2i�ÞImðA1e
�2i�Þ�ReðA1e

�2i�ÞImðA2e
�2i�Þ

ReðA1e
�2i�ÞImðA3Þ�ReðA3ÞImðA1e

�2i�Þ ;

(27)

where

Ah ¼ ðUalUblUckUdk �UilUjlUmkUnkÞ þ ðl $ kÞ; (28)

where ðh; l; kÞ are a cyclic permutation of (1, 2, 3).
One can compute the analytical expressions, in terms of

(�x, �y, �z, �, �, and �), of all the quantities measured

experimentally. In order to explore the parameter space of
these six parameters, we have spanned the mixing angles
�x, �y, and �z over their experimentally allowed ranges

given in Eq. (21), while the phases �, �, and � were varied
in their full ranges. With �msol equal to its central value,
we determined in the parameter space the acceptable re-
gions compatible with the other experimental constraints
given by Eqs. (20), (22), and (23). One can then illustrate
graphically all the possible correlations, in the three levels
of � error, between any two physical neutrino parameters.
We chose to plot for each pattern and for each type of
hierarchy 26 correlations at the 2� error level involving the
parameters ðm1; m2; m3; �x; �y; �z; �; �; �; J; meeÞ and the

lowest neutrino mass (LNM). Moreover, for each parame-
ter, one can determine the extremum values it can take
according to the considered precision level, and we listed
in the tables these predictions for all the patterns and for the
three �-error levels.
We found that the resulting mass patterns could be

classified into three categories:
(i) Normal hierarchy: characterized by m1 <m2 <m3

and is denoted by N. For this type of hierarchy, we
imposed numerically the bound:

m1

m3
<

m2

m3

< 0:7: (29)

(ii) Inverted hierarchy: characterized by m3 <m1 <m2

and is denoted by I. We imposed the corresponding
bound:
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m2

m3
>

m1

m3

> 1:3: (30)

(iii) Degenerate hierarchy: characterized by m1 � m2 �
m3 and is denoted by D. The corresponding numeric
bound was taken to be

0:7<
m1

m3

<
m2

m3

< 1:3: (31)

Also, one should investigate the possibility, for each pat-
tern, to have singular (noninvertible) mass matrix. The
viable singular mass matrix is characterized by one of
the masses (m1, m2, and m3) being equal to zero, as
compatibility with the data prevents the simultaneous van-
ishing of two masses and even vanishing of m2 alone:

	 The vanishing ofm1 implies that A1 ¼ 0 and the mass

spectrum of m2 and m3 takes the values
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

sol

q
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�m2
sol þ �m2

atm

q
, respectively.

	 The vanishing ofm3 implies that A3 ¼ 0 and the mass

spectrum of m2 and m1 takes the values
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

atm

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�m2
atm ��m2

sol

q
, respectively.

The symmetry T1 introduced in Eqs. (9) and (10) in-
duces equivalence between different patterns of vanishing
one minor as C33 $ C22, and C31 $ C21. One should,
however, keep in mind that this equivalence for �y is a

reflection about the first bisectrix, i.e. it maps the �y from

the first octant to the second octant and vice versa.
Similarly, the image points of the map differ in � from
their original points by a shift equal to �. This means that
the accepted points for a pattern imply for the equivalent
pattern the same accepted points but after changing the �y
and � correspondingly.

Thus, it suffices now to present four possible cases,
instead of six, corresponding to one vanishing minor in
M�. Since the analytical expressions in terms of (�x, �y, �z,

�, �, and�) are quite complicated, we state, simple writing
permitting, only the leading terms of the expansions in
powers of sz.

IV. RESULTS OF TEXTURES WITH ONE
VANISHING MINOR

In this section, we shall present the results of our nu-
merical analysis for the four possible independent models
based upon the approach described in the previous section.
The coefficients A0s [Eq. (28)] defining each model are
presented. In order to get some interpretation of the nu-
merical results, we present also the analytical expressions
of the mass ratios up to leading order in sz, except in the
last pattern C11 where we give the full, relatively simple,
analytical expressions of the mass ratios and other experi-
mental parameters.

We organized the large number of correlation figures in
plots, at the 2�-error level, by dividing, where applicable,
each figure into left and right panels denoted accordingly
by the letters L and R. Additional labels (D, N, and I) are
attached to the plots to indicate the type of hierarchy
(Degenerate, Normal and Inverted, respectively). Any
missing label D, N, or I on the figures of certain model
would mean the absence of the corresponding hierarchy
type in this model.
We listed in Tables I and II, for the three types of

hierarchy and the three precision levels, the extremum
values that the different parameters can take. The corre-
sponding ranges should get larger with higher-� precision
levels. However, these bounds were evaluated by spanning
the parameter space with some given number [of order
(108–109)] of points chosen randomly in the parameter
space. We found this way of random spanning more effi-
cient than a regular meshing with nested loops. For a
regular meshing with a fixed step of ‘‘modest’’ order of
1
, we need around 1010 points to cover the experimentally
allowed space. However, in order to be efficient, the span-
ning needs a ‘‘dynamic’’ step for a finer meshing in the
regions full of accepted points compensated by less span-
ning in the disallowed regions. With the random spanning
we do not have this problem. Moreover, the randomness of
our spanning allowed us to check the stability of our results
for different randomly chosen points when we ran the
programs several times. Thus, the values in the tables are
meant to give only a strong qualitative indication. In par-
ticular, an attainable zero value for �z at one level implies
this value is attainable for all higher � levels, even though
the corresponding values in the tables might be slightly
larger than zero.

A. Pattern of vanishing minor C33; M�11M�22 �
M�12M�12 ¼ 0

In this model, the relevant expressions for A1, A2, and A3

are

A1 ¼ ðsxsy � szcxcye
�i�Þ2;

A2 ¼ ðcxsy þ szsxcye
�i�Þ2;

A3 ¼ c2zc
2
ye

�2i�;

(32)

leading to

m1

m3
� s2xt

2
ys2��2�

s2��2�

þOðszÞ (33)

m2

m3
� c2xt

2
ys2��2�

s2��2�

þOðszÞ: (34)

In the left panel of Fig. 1, we present the correlations of
the angle � against the mixing angles ð�x; �y; �zÞ, the CP

phases ð�;�Þ, and the Jarlskog invariant quantity J,
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TABLE I. The various predictions for the models of one-vanishing minor C33, C22, and C31. The minor corresponding to the index ðijÞ is the determinant of the submatrix
obtained by deleting the ith line and the jth column. All the angles (masses) are evaluated in degrees (eV). The mark� indicates that the corresponding pattern with the specified
hierarchy type cannot accommodate the experimental data at the given � precision level.

Model C33: M�11M�22 �M�12M�12 ¼ 0

Quantity �x �y �z m1 m2 m3 � � � hmie hmiee J

Degenerate hierarchy

1� 31.94–34.45 42.13–48.44 0.0003–6.28 0.0489–0.4029 0.0497–0.4030 0.0659–0.3997 0.0780–179.83 0.1143–179.69 0.1978–359.83 0.0493–0.4029 0.0222–0.3754 �0:0251–0:0246

2� 30.65–36.86 39.65–52.54 0.0004–9.1 0.0471–0.4027 0.0479–0.4028 0.0567–0.3996 0.2870–179.88 0.0715–179.93 0.0554–359.90 0.0475–0.4027 0.0165–0.3309 �0:0348–0:0356

3� 29.34–39.23 38.95–55.55 0.0008–11.53 0.0449–0.4046 0.0458–0.4047 0.0543–0.4072 0.0008–180 0.1194–180 0.3829–359.57 0.0453–0.4047 0.0097–0.2884 �0:0459–0:0455

Normal hierarchy

1� 31.94–34.45 42.13–48.44 0.0000–6.29 0.0019–0.0491 0.0091–0.0499 0.0499–0.0721 0.0056–179.98 0.0493–179.97 0.0307–359.87 0.0056–0.0494 0.0000–0.0422 �0:0249–0:0247

2� 30.65–36.87 38.05–52.54 0.0025–9.1 0.0013–0.0510 0.0090–0.0518 0.0478–0.0742 0.1356–179.95 0.0515–179.99 0.1023–359.99 0.0052–0.0513 0.0000–0.0467 �0:0365–0:0359

3� 29.33–39.23 35.66–55.55 0.0022–11.53 0.0008–0.0514 0.0089–0.0522 0.0456–0.0756 0.0465–180 0.0091–179.99 0.1535–359.99 0.0050–0.0523 0.0000–0.0449 �0:0453–0:0460

Inverted hierarchy

1� � � � � � � � � � � � �
2� 30.65–36.87 48.41–52.54 0.0137–9.095 0.0575–0.0839 0.0582–0.0844 0.0339–0.0645 0.0734–179.88 0.0687–179.61 0.0338–359.66 0.0573–0.0840 0.0444–0.0831 �0:0357–0:0352

3� 29.33–39.23 48.04–55.55 0.0003–11.54 0.0499–0.0865 0.0506–0.0870 0.0229–0.0662 0.0213–179.97 0.0095–179.96 0.1354–359.83 0.0495–0.0866 0.0300–0.0853 �0:0442–0:0442

Model C22: M�11M�33 �M�13M�31 ¼ 0

Quantity �x �y �z m1 m2 m3 � � � hmie hmiee J

Degenerate hierarchy

1� 31.94–34.45 42.13–48.44 0.0023–6.2858 0.0489–0.4563 0.0497–0.4563 0.0699–0.4593 0.0784–179.98 0.0779–179.91 0.2430–359.93 0.0494–0.4563 0.0223–0.3911 �0:0248–0:0247

2� 30.65–36.87 38.05–50.27 0.0013–9.1 0.0469–0.4206 0.0477–0.4207 0.0575–0.4178 0.0508–179.98 0.0325–179.90 0.0793–359.81 0.0473–0.4206 0.0159–0.3269 �0:0359–0:0361

3� 29.33–39.23 35.66–50.96 0.0007–11.53 0.0451–0.4527 0.0459–0.4528 0.0552–0.4559 0.0273–179.93 0.0474–179.95 0.2755–359.85 0.0454–0.4527 0.0109–0.3794 �0:0450–0:0456

Normal hierarchy

1� 31.94–34.45 42.13–48.44 0.0024–6.28 0.0017–0.0487 0.0091–0.0495 0.0499–0.0720 0.1438–179.97 0.0954–179.95 0.0441–359.73 0.0055–0.0491 0.0000–0.0397 �0:0248–0:0242

2� 30.65–36.87 38.06–52.54 0.0004–9.1 0.0013–0.0519 0.0090–0.0527 0.0478–0.0759 0.0287–179.97 0.0578–179.97 0.0066–359.99 0.0052–0.0523 0.0000–0.0374 �0:0355–0:0359

3� 29.33–39.23 35.66–55.55 0.0002–11.53 0.0006–0.0514 0.0089–0.0521 0.0456–0.0748 0.0168–179.97 0.0071–180 0.0304–359.98 0.0050–0.0525 0.0000–0.0454 �0:0457–0:0451

Inverted hierarchy

1� � � � � � � � � � � � �
2� 30.65–36.87 38.05–41.50 0.0006–9.1 0.0582–0.0842 0.0589–0.0847 0.0352–0.0648 0.0156–179.89 0.0305–179.93 0.0713–359.80 0.0580–0.0842 0.0457–0.0826 �0:0353–0:0348

3� 29.33–39.23 35.66–41.77 0.0021–11.53 0.0514–0.0865 0.0522–0.0869 0.0265–0.0664 0.0254–179.96 0.0049–179.87 0.1171–360 0.0510–0.0865 0.0320–0.0854 �0:0436–0:0447

Model C31: M�12M�23 �M�13M�22 ¼ 0

Quantity �x �y �z m1 m2 m3 � � � hmie hmiee J

Degenerate hierarchy

1� 31.94–34.45 42.14–48.44 0.0542–6.29 0.0493–0.2988 0.0501–0.2989 0.0593–0.2946 0.0050–179.98 0.0040–1780 0.3220–359.93 0.0495–0.2989 0.0489–0.2988 �0:0246–0:0245

2� 30.65–36.87 38.055–52.53 0.0715–9.01 0.0473–0.4431 0.0481–0.4432 0.0569–0.4399 0.0017–179.99 0.0161–179.97 0.0778–359.83 0.0476–0.4431 0.0458–0.4368 �0:0352–0:0360

3� 29.33–39.23 35.66–55.54 0.0705–11.54 0.0450–0.4217 0.0459–0.4217 0.0543–0.4184 0.0200–179.99 0.0040–179.99 0.0673–359.84 0.0455–0.4216 0.0395–0.4216 �0:0442–0:0453

Normal hierarchy

1� 31.94–34.45 42.13–48.44 0.3175–6.29 0.0092–0.0504 0.0128–0.0511 0.0509–0.0732 0.0229–179.96 0.0043–179.94 0–123 [ 242–360 0.0117–0.0507 0.0096–0.0506 �0:0249–� 0:0251

2� 30.65–36.87 38.06–52.54 0.3599–9.09 0.0061–0.0521 0.0108–0.0529 0.0483–0.0760 0.0486–179.97 0.0251–179.85 0–123 [ 242–360 0.0105–0.0528 0.0062–0.0524 �0:0356–0:0363

3� 29.33–39.23 35.67–55.55 0.2618–11.54 0.0047–0.0543 0.0101–0.0550 0.0462–0.0787 0.0018–179.98 0.0258–179.99 0–123 [ 242–360 0.0101–0.0551 0.0047–0.0538 �0:0450–0:0456

Inverted hierarchy

1� 31.94–34.45 42.13–48.44 0.0009–6.29 0.0482–0.0804 0.0490–0.0809 0.0000–0.0615 0.0428–180 0.0583–179.97 0.0081–359.89 0.0484–0.0804 0.0183–0.0789 �0:0246–0:0249

2� 30.65–36.87 38.06–52.54 0.0000–9.01 0.0461–0.0809 0.0469–0.0814 0.0000–0.0620 0.0224–179.95 0.0362–179.95 0.0358–359.97 0.0463–0.0809 0.0141–0.0806 �0:0357–0:0360

3� 29.33–39.23 35.66–55.55 0.0009–11.54 0.0439–0.0858 0.0447–0.0862 0.0000–0.0654 0.0020–179.99 0.0127–179.99 0.0026–359.94 0.0441–0.0857 0.0101–0.0848 �0:0459–0:0456
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TABLE II. The various prediction for the models of one-vanishing minor C32, C21, and C11. The minor corresponding to the index ðijÞ is the determinant of the submatrix
obtained by deleting the ith line and the jth column. All the angles (masses) are evaluated in degrees (eV). The mark� indicates that the corresponding pattern with the specified
hierarchy type cannot accommodate the experimental data at the given � precision level.

Model C32: M�11M�23 �M�21M�13 ¼ 0

Quantity �x �y �z m1 m2 m3 � � � hmie hmiee J

Degenerate hierarchy

1� 31.94–34.45 42.13–48.44 0.0007–6.29 0.0489–0.3459 0.0497–0.3460 0.0699–0.3495 0.0296–179.94 0.1237–180 0.0125–359.98 0.0493–0.3459 0.0336–0.3419 �0:0250–0:0248

2� 30.66–36.87 38.05–52.54 0.0029–9.09 0.0470–0.3870 0.0478–0.3871 0.0670–0.3902 0.0101–179.83 0.0444–179.92 0.1492–359.99 0.0475–0.3870 0.0293–0.3810 �0:0362–0:0348

3� 29.34–39.23 35.67–55.54 0.0006–11.53 0.0449–0.3765 0.0458–0.3766 0.0641–0.3738 0.0774–179.87 0.0061–180 0.0510–359.93 0.0453–0.3764 0.0232–0.3396 �0:0453–0:0459

Normal hierarchy

1� 31.94–34.45 42.13–48.44 0.0001–6.29 0.0029–0.0504 0.0093–0.0512 0.0499–0.0733 0.0083–179.92 0.0003–179.97 0.1523–359.99 0.0056–0.0508 0.0001–0.0352 �0:0245–0:0251

2� 30.65–36.87 38.05–52.54 0.0019–9.1 0.0023–0.0501 0.0092–0.0509 0.0479–0.0734 0.0047–179.97 0.0596–179.99 0.0083–359.97 0.0053–0.0507 0.0000–0.0346 �0:0356–0:0366

3� 29.33–39.23 35.66–55.55 0.0021–11.54 0.0019–0.0525 0.0091–0.0532 0.0457–0.0776 0.0185–179.99 0.0077–179.96 0.0224–360 0.0050–0.0530 0.0000–0.0365 �0:0455–0:0444

Inverted hierarchy

1� � � � � � � � � � � � �
2� � � � � � � � � � � � �
3� � � � � � � � � � � � �
Model C21: M�21M�33 �M�31M�23 ¼ 0

Quantity �x �y �z m1 m2 m3 � � � hmie hmiee J

Degenerate hierarchy

1� 31.94–34.45 42.13–48.43 0.0386–6.29 0.0492–0.4521 0.0500–0.4521 0.0593–0.4549 0.0026–180 0.0098–179.99 0.1274–359.11 0.0494–0.4521 0.0487–0.4521 �0:0245–0:0248

2� 30.65–36.87 38.05–52.54 0.0524–9.1 0.0470–0.4365 0.0478–0.4366 0.0568–0.4335 0.0014–180 0.0018–179.98 0.2779–359.63 0.0473–0.4365 0.0456–0.4365 �0:0362–0:0361

3� 29.33–39.23 35.68–55.55 0.0185–11.53 0.0451–0.3307 0.0460–0.3308 0.0542–0.3272 0.0118–180 0.0003–179.98 0.5547–359.84 0.0456–0.3306 0.0402–0.3306 �0:0455–0:0455

Normal hierarchy

1� 31.94–34.45 42.13–48.44 0.2922–6.29 0.0096–0.0505 0.0131–0.0513 0.0508–0.0734 0.0543–179.99 0.0623–179.98 59.58–304.26 0.0120–0.0509 0.0099–0.0506 �0:0249–0:0248

2� 30.65–36.87 38.06–52.54 0.3368–9.1 0.0062–0.0519 0.0108–0.0526 0.0483–0.0753 0.0083–179.99 0.1329–179.99 57.51–296.59 0.0108–0.0527 0.0066–0.0525 �0:0363–0:0359

3� 29.33–39.23 35.66–55.55 0.4979–11.54 0.0050–0.0527 0.0102–0.0535 0.0460–0.0778 0.0292–179.92 0.0199–180 59.53–302.99 0.0099–0.0533 0.0048–0.0530 �0:0452–0:0457

Inverted hierarchy

1� 31.94–34.45 42.13–48.44 0.0000–6.29 0.0482–0.0806 0.0490–0.0810 0.0000–0.0619 0.0079–179.95 0.0857–179.96 0.1136–359.99 0.0484–0.0807 0.0180–0.0804 �0:0243–0:0246

2� 30.65–36.87 38.05–52.54 0.0026–9.09 0.0461–0.0825 0.0469–0.0830 0.0000–0.0626 0.0076–179.96 0.0068–179.99 0.0672–359.94 0.0463–0.0824 0.0143–0.0811 �0:0356–0:0352

3� 29.33–39.23 35.66–55.55 0.0012–11.52 0.0438–0.0849 0.0447–0.0853 0.0000–0.0650 0.0115–179.97 0.0079–179.96 0.3136–359.94 0.0440–0.0849 0.0094–0.0849 �0:0457–0:0443

Model C11: M�22M�33 �M�32M�23 ¼ 0

Quantity �x �y �z m1 m2 m3 � � � hmie hmiee J

Degenerate hierarchy

1� � � � � � � � � � � � �
2� � � � � � � � � � � � �
3� � � � � � � � � � � � �
Normal hierarchy

1� � � � � � � � � � � � �
2� � � � � � � � � � � � �
3� � � � � � � � � � � � �
Inverted hierarchy

1� 31.94–34.45 42.13–48.44 0.0006–6.29 0.0482–0.0522 0.0490–0.0529 0.0000–0.0015 76.21–103.81 0.6212–178.88 0.0156–359.88 0.0482–0.0524 0.0177–0.0519 �0:0246–0:0248

2� 30.65–36.87 38.05–52.54 0.0019–9.1 0.0461–0.0541 0.0469–0.0548 0.0000–0.0043 73.23–106.74 1.1273–179.71 0.0851–359.9438 0.0458–0.0543 0.0128–0.0534 �0:0357–0:0358

3� 29.33–39.23 35.66–55.54 0.0026–11.53 0.0438–0.0562 0.0447–0.0569 0.0000–0.0088 69.51–110.52 0.6325–178.33 0.0559–359.89 0.0434–0.0560 0.0093–0.0543 �0:0452–0:0465
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whereas in the right panel we show the correlations of �z
against ð�y;�;�;J;hmieeÞ, and the correlation of � versus�.

The left panel of Fig. 2 presents five correlations of
hmiee against (�y, �, �, �, and J) and the correlation of

m23 ¼ m2

m3
versus �y. As to the right panel of this figure, it

presents the correlations of ð�;�Þ against �y and J, and

those of LNM versus ð�; JÞ.
As to Fig. 3, and in a similar way, it presents two

correlations of m3 against m2

m3
and against m2

m1
for the three

types of hierarchy. In all we have 26 types of correlations
for each hierarchy type.

We see in Fig. 1 (plots: a-L ! c-L, a-R ! c-R) that all
the experimentally allowed ranges of mixing angles, at 2�
error levels, can be covered in this pattern except for
inverted hierarchy type where �y is restricted to be greater

than 48
. This restriction on �y distinguishes the inverted

hierarchy type in this model. However, no obvious clear
correlation can be revealed in these plots. The plots (d-L, e-
L) show that the phases are not constrained at all. However,
in the case of degenerate and inverted hierarchy, there is a
strong linear correlation of � versus � and �, whereas this
correlation almost disappears in the normal hierarchy case.
There is also (plot f-R) a linear correlation between the
Majorana phases which is clearly apparent in the normal
and inverted hierarchy types while a bit blurred in the
degenerate case.

The correlations ðJ; �Þ and ðJ; �zÞ have each a specific
geometrical shape which is hierarchy-type independent as
it is clear from Fig. 1 (plots: f-L, e-R). This behavior can be
understood from the formula of J given in Eq. (18). In fact,

the correlation ðJ; �Þ can be seen as the superposition of
many sinusoidal graphs in � whose ‘‘positive’’ amplitudes
are determined by the acceptable mixing angles, whereas
the ðJ; �zÞ correlation is formed by the superposition of
straight lines in sz � z, for small z, whose slopes can be
positive or negative depending on the sign of s�.
The correlations of hmiee against ð�x; �y; �; �; �; JÞ, as

inferred from plot (d-R) of Fig. 1 and from the left panel of
Fig. 2 (plots: a-L ! e-L), show that a lower bound for

hmiee would generally constrain the allowed parameter
space. There is also a general tendency of decreasing
hmiee with increasing �y in the case of inverted hierarchy

(plot aI-L). Another important point concerning hmiee is
that it can attain the zero limit in the normal hierarchy case,
as is evident from the graphs or explicitly from the corre-
sponding covered range in Table I. This limit essentially
corresponds to the case of vanishing M�11 [Eq. (17)]
which, when combined with vanishing C33 condition, im-
plies vanishing M�12. This means that in the limit of zero
mee we recover a corresponding two-zero texture. It should
be noted that this pattern of two-zero-entries texture is
equivalent to the model of vanishing two minors C33 and
C32 [11]. For the correlation ofm2=m3 versus �y (plot f-L),

we see that if the angle �y is in the first octant then m2 is

less than m3.
The right panel of Fig. 2 does not show clear correlation

for �y against ð�;�Þ (plots: a-R, b-R), whereas it indicates
a correlation of J versus ð�;�Þ (plots: c-R, d-R) which is a
direct consequence of the correlations of � against ð�;�Þ.
The two correlations concerning the LNM (plots: e-R, f-R)

FIG. 1. Pattern C33: The left panel presents correlations of � against mixing angles, CP phases, and J, while the right panel shows
the correlations of �z against �y, �, �, mee, and J, and also the correlation of � versus �.
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FIG. 2. Pattern C33: The left panel presents correlations of mee against �y, �, �, �, and J. It also shows the correlation between
m2=m3 and �y. The right panel shows correlations of ð�;�Þ against �y and J and those of the lowest neutrino mass (LNM) versus � and

J.
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generally reveal that as the LNM increases the parameter
space becomes more restricted, and this seems to be a
general trend with increasing neutrino mass scale.

For the mass spectrum, as illustrated in Fig. 3, we see
that the normal and inverted hierarchy are of moderate type
in that the ratios do not reach extremely high, nor low,
values. The degenerate and inverted hierarchy types are
characterized by nearly equal values ofm1 andm2. We also
see that ifm3 is large enough then only the degenerate case
with m1 �m2 can be compatible with data. We checked
that there was no singular texture which can accommodate
the data, although the limit �z ¼ 0 can be reached. This can
be seen from the coverable ranges of masses m1 and m3 in
Table I. This table also shows that no inverted hierarchy
type of this pattern could be obtained at the 1� precision
level.

B. Pattern of vanishing minor C22; M�11M�33 �
M�13M�13 ¼ 0

In this model, the relevant expressions for A1, A2, and A3

are

A1 ¼ ðsxcy þ szcxsye
�i�Þ2;

A2 ¼ ðcxcy � szsxsye
�i�Þ2;

A3 ¼ c2zs
2
ye

�2i�:

(35)

We get

m1

m3
� s2xs2��2�

t2ys2��2�

þOðszÞ (36)

m2

m3
� c2xs2��2�

t2ys2��2�

þOðszÞ: (37)

Again, there is no singular such texture which can
accommodate the data. As for the plots, and since this
pattern is related by T2 symmetry to the pattern C33, they
can be deduced from those of the latter pattern but after
changing �y and � accordingly.

C. Pattern of vanishing minor C31; M�12M�23 �
M�13M�22 ¼ 0

The relevant expressions for A1, A2, and A3 for this
model are

A1 ¼ czcxðsysx � szcxcye
�i�Þe�i�

A2 ¼ �czsxðsycx þ szsxcye
�i�Þe�i�;

A3 ¼ szczcye
�2i�:

(38)

We obtain

m1

m3
� tycxsxs2��2�

s2���sz
þOðszÞ (39)

m2

m3
� tycxsxs2��2�

s��2�sz
þOðszÞ: (40)

We have also

R� ¼ c2�c2�þ2� � c2�c2��2�

c2� � c2�c2��2�

þOðszÞ: (41)

We plot the correlations in Figs. 4–6 with the same con-
ventions as in the case of the C33 pattern. Compared to the
latter case, we see that the mixing angles ð�x; �y; �zÞ can
cover all their allowable regions (Fig. 4, plots: a-L ! c-L,
a-R ! c-R) and in all hierarchy types. The linear correla-
tions of � versus � and � disappear in the inverted case,
whereas they are replaced by Lissajous-like patterns in the
degenerate case (Fig. 4, plots: d-L, e-L). However, there is
an acute linear correlation between � and � (Fig. 4, plot: f-
R) in the degenerate and normal cases. The special ‘‘sinu-
soidal’’ and ‘‘isosceles’’ shapes of J versus � and �z remain
(Fig. 4, plots: f-L, e-R), but we note that in the normal case
the sinusoidal shape is concentrated for � in the first and
fourth quarters, which would single out a disallowed region
for � ranging from 123
 to 242
 approximately. Again no
clear correlation involvesmee (Fig. 4 plot d-R, Fig. 5 plots:
a-L ! e-L). However, setting a lower bound on this pa-
rameter would constrain the parameter space only in the
degenerate case. Apart from the usual correlations of J
versus � and � (Fig. 5 plots: c-R, d-R), originating from
the correlation of � with � and �, the other plots doe not
show clear correlations. We see from Table I that the limit
mee ¼ 0 is not attainable in this pattern.
For the mass spectrum, the plot b-I in Fig. 6 tells us that

the experimental data can be accommodated in the inverted
hierarchy type only when the two masses m1 and m2 are
approximately equal. However, the mass ratio parameter
m2=m3 (plot a-I) indicates a strong hierarchy. This is to be
contrasted with the normal type hierarchy case (plots a-N
and b-N) where the hierarchy is mild and the mass ratios
are of orderOð1Þ. We see also that in contrast to the pattern
C33, the limit m3 ¼ 0 can be reached. In fact, there is a
noninvertible such texture which can accommodate the
current data, and this happens only when �z ¼ 0 leading
to m3 ¼ 0.

D. Pattern of vanishing minor C32; M�11M�23 �
M�21M�13 ¼ 0

The relevant expressions for A1, A2, and A3 for this
model are

A1 ¼ �ðszcxcye�i� � sxsyÞðsxcy þ szcxsye
�i�Þ;

A2 ¼ �ðcyszsxe�i� þ sycxÞðsyszsxe�i� � cycxÞ;
A3 ¼ �c2zsycye

�2i�:

(42)

We get

ONE VANISHING MINOR IN THE NEUTRINO MASS MATRIX PHYSICAL REVIEW D 80, 093004 (2009)
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m1

m3
� s2xs2��2�

s2��2�

þOðszÞ (43)

m2

m3
� c2xs2��2�

s2��2�

þOðszÞ: (44)

Upon spanning the parameter space, we checked that no
inverted hierarchy could accommodate the data. We pro-
duce the correlation plots in Figs. 7–9. We see that the
mixing angles and phase angles can cover their experimen-
tally allowed regions. Linear correlations between � and
ð�;�Þ are apparent in the degenerate case, whereas the

FIG. 5. Pattern C31: The left panel presents correlations of mee against �y, �, �, �, and J. It also shows the correlation between
m2=m3 and �y. The right panel shows correlations of ð�;�Þ against �y and J and those of the lowest neutrino mass (LNM) versus � and

J.

FIG. 4. Pattern C31: The left panel presents correlations of � against mixing angles, CP phases, and J, while the right panel shows
the correlations of �z against �y, �, �, mee, and J, and also the correlation of � versus �.
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FIG. 6. Pattern C31: correlations of mass ratios m2

m3
and m2
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against m3.

FIG. 7. Pattern C32: The left panel presents correlations of � against mixing angles, CP phases, and J, while the right panel shows
the correlations of �z against �y, �, �, mee, and J, and also the correlation of � versus �.
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FIG. 9. Pattern C32: correlations of mass ratios m2

m3
and m2

m1
against m3.

FIG. 8. Pattern C32: The left panel presents correlations of mee against �y, �, �, �, and J. It also shows the correlation between
m2=m3 and �y. The right panel shows correlations of ð�;�Þ against �y and J and those of the lowest neutrino mass (LNM) versus � and

J.
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linear correlation of � versus � is also apparent in the
normal case. The sinusoidal and isosceles shapes of the
ðJ; �Þ and ðJ; �zÞ correlations are uniformly covered.
Again, the correlations of mee show that a lower bound
on this parameter restricts enormously the parameter
space. These correlation plots, or alternatively Table II,
show that the limit mee ¼ 0 can be met in the normal
hierarchy case. Moreover, the pattern in this limit is a
two-zero entries texture withM�11 ¼ M�12 ¼ 0 orM�11 ¼
M�13 ¼ 0. The equivalent models for two vanishing mi-
nors texture [11] are the T1-symmetry related models:
(vanishing C33 and C32) and (vanishing C22 and C32).
Again, no clear correlation between ðm23; �yÞ, nor between
�y and ð�;�Þ. One can find a mild correlation of J versus �

and �, originating from the linear correlation of � with
ð�;�Þ, especially in the degenerate case. As to the LNM
correlations, the trend is to favor a lower value for this
parameter in that increasing its value would cut short the
parameter space. Numerically, the lower bounds on �z ¼ 0
reached very tiny values in this pattern (look at Table II).

For the mass spectrum, the normal hierarchy is not
acute, in that the ratio m2=m3 has a lower bound of order
0.2 (plot a-N in Fig. 9). We note also that no mass can
approach too closely to zero. We see this in the normal
hierarchy either by looking at (Fig. 9, plot b-N) and noting
that m2

m1
is not reaching very large values corresponding to

very minutem1, or by checking the coverable mass regions
in Table II.

There is no noninvertible such texture which can accom-
modate the current data.

E. Pattern of vanishing minor C21; M�21M�33 �
M�31M�23 ¼ 0

The relevant expressions for A1, A2, and A3 for this
model are

A1 ¼ czcxðcysx þ szcxsye
�i�Þe�i�

A2 ¼ �czsxðcycx � szsxsye
�i�Þe�i�;

A3 ¼ szczcye
�2i�:

(45)

We get

m1

m3
� cxsxs2��2�

s2���szty
þOð1Þ (46)

m2

m3
� cxsxs2��2�

s���szty
þOð1Þ (47)

with

R� ¼ c2�c2��2� � c2�c2��2�

c2�c2��2� � c2�
þOðszÞ: (48)

The phenomenological analysis of this pattern can be
deduced from that of C31 which is equivalent under the
symmetry T1.

Also, and as in the pattern C31, there is a noninvertible
such texture which can accommodate the current data, and
this happens only when �z ¼ 0 leading to m3 ¼ 0.

F. Pattern of vanishing minor C11; M�22M�33 �
M�32M�23 ¼ 0

The quantities A1, A2, and A3, corresponding to the
model, are

A1 ¼ c2zs
2
xe

�2i�; A2 ¼ c2zs
2
xe

�2i�; A3 ¼ s2ze
�2i�:

(49)

The analytical expressions for all relevant computed pa-
rameters are simple and independent of �. The mass ratios
take the forms

m1

m3
¼ c2xs2��2�

t2zs2�
(50)

m2

m3
¼ s2xs2��2�

t2zs2�
: (51)

Fixing the �m2
sol at its central value [Eq. (20)], one can

compute m3:

m3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�m2

sol

q
t2z

js2��2�j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jð s4x
s2
2�

� c4x
s2
2�

Þj
r : (52)

We thus can get the corresponding expression of �m2
atm as

�m2
atm ¼ m2

3

��������1�
s4xs

2
2��2�

t4zs
2
2�

��������: (53)

The nonoscillation parameters hmie, hmiee, and � are
given as

hmie ¼m3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
c2z
t4z
s22��2�

�
c6x
s22�

þ s6x
s22�

�
þ s2z

�vuut ;

hmiee ¼m3

��������
c2x
t2z

s2��2�

s2�
c2xc

2
ze

2i�þ s2x
t2z

s2��2�

s2�
s2xc

2
ze

2i�þ s2z

��������;

�¼m3

��������
c2x
t2z

s2��2�

s2�
þ s2x

t2z

s2��2�

s2�
þ1

��������; (54)

wherem3 is given in Eq. (52). Finally the parameter R� has
the form

R� ¼
s22��2�ð s

4
x

s22�
� c4x

s22�
Þ

1� s4xs
2
2��2�

t4z s
2
2�

: (55)

This pattern shows only inverted-type hierarchy, and the
corresponding plots are shown in Figs. 10 and 11. We see
in Fig. 10 that the mixing angles ð�x; �y; �zÞ and the Dirac

phase angle � cover all their allowable regions (plots:
a-L ! c-L, g-L ! i-L). However, the region around � ¼
�
2 or � ¼ �

2 tends to be excluded (look also at the two plots:
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FIG. 10. Pattern C11: The left panel presents, in the first column, correlations of � against mixing angles, CP phases, and J. It also
shows, in the second column, correlations of �z against �y, �, �, mee, and J, and the correlation of � versus �. The right panel shows,

in the third column, correlations ofmee against �y, �, �, �, and J, and also the correlation betweenm2=m3 and �y. It presents in the last

column correlations of ð�;�Þ against �y and J and those of the lowest neutrino mass (LNM) versus � and J.

0.5 1 1.5 2 2.5 3 3.5 4

x 10−3

10
2

10
3

10
4

10
5

10
6

10
7

10
8

m
3
  (a−I)

m
2/m

3

0.5 1 1.5 2 2.5 3 3.5 4

x 10−3

1.0135

1.014

1.0145

1.015

1.0155

1.016

1.0165

1.017

1.0175

1.018

m
3
 (b−I)

m
2/m

1

FIG. 11. Pattern C11: correlations of mass ratios m2

m3
and m2

m1
against m3.

E. I. LASHIN AND N. CHAMOUN PHYSICAL REVIEW D 80, 093004 (2009)

093004-14



g-R, h-R), in accordance with the analytic formulas, say
[Eq. (51)] where these limits would equate the denomina-
tors to zero. Moreover, the analytic expressions [e.g.
Eq. (52)] would exclude the region of �� � equal to a
multiple of �

2 . Furthermore, setting the ratio m2=m1 to be

larger than 1 and taking into account that tx is less than one,
for the experimentally accepted �x, would force the ratio
j s2�s2�

j to be larger than 1. This, with the fact that the

difference �� � should not vanish, would put a lower
bound on �, as one can see in Table II. In this Table we see
also a restricted region for � due to the �2

atm formula
barring small values of �. Plots (d-L, e-L) show no strong
correlation between ð�; �Þ nor between ð�;�Þ, whence no
clear correlation between J versus �, or between J versus�
(plots: i-R, j-R). There is a strong sinusoidal correlation
between � against � (plot: l-L) showing that � being in the
first quarter forces � to be in the second quarter, and vice
versa. The correlations of mee have a clear shape only
versus � and �. These shapes can be deduced from the
analytical formula [Eq. (54)]. The LNM correlation with �
(plot k-R) again excludes the region around � ¼ �

2 ,

whereas its correlation with J favors, for very small values
of LNM, a vanishing J with no CP violation effects.

The mass spectrum in Fig. 11 shows a quite strong
inverted hierarchy (plot a-I) with m1 �m2 (plot b-I), and
that we can approach the limit m3 ¼ 0. In fact, there is a
viable singular such texture when �z ¼ 0 and m3 ¼ 0.

From the two tables we see that the value m3 ¼ 0 is
attained in the inverted hierarchy for the patterns (C11) and
ðC31; C21Þ, the latter two being related by T1 symmetry.

V. SINGULAR MODELS

The viable singular models obtained in cases C31 � C21

and C11 are found only for vanishing m3, albeit with zero
�z. A vanishing �z is still consistent with experimental data
as shown in Eq. (21). These models can accommodate the
experimental data for the mixing angles for any choice of
the phase angles. It is interesting to notice that the models
C31 � C21 and C11 have quite distinct mass spectra but, in
the singular limit (m3 ¼ 0 and �z ¼ 0), the models become
exactly identical leaving no room for any kind of
distinguishability.

In fact, this model is identical to the singular model
studied in [11] for the vanishing two-minors textures. For
the sake of completeness we restate here the expressions
for the mass parameters,

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

atm � �m2
sol

q
; m2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�m2

atm

q
;

hmie ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1c
2
x þm2

2s
2
x

q (56)

hmiee ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jm2

1c
4
x þm2

2s
4
x þ 2m1m2c

2
xs

2
xc2��2�j

q
; (57)

and the mass matrix elements,

M�11 ¼ ðm1c
2
xe

2i� þm2s
2
xe

2i�Þ;
M�12 ¼ sxcxcye

�i�ð�m1e
2i� þm2e

2i�Þ;
M�13 ¼ sxcxsye

�i�ðm1e
2i� �m2e

2i�Þ;
M�22 ¼ c2ye

�2i�ðm1s
2
xe

2i� þm2c
2
xe

2i�Þ;
M�23 ¼ �cysye

�2i�ðm1s
2
xe

2i� þm2c
2
xe

2i�Þ;
M�33 ¼ s2ye

�2i�ðm1s
2
xe

2i� þm2c
2
xe

2i�Þ:

(58)

VI. SYMMETRY REALIZATION

All textures with one zero minor can be realized in a
simple way in models based on seesaw mechanism with a
flavor Abelian symmetry. As mentioned earlier, if the
Dirac neutrino mass matrix MD is diagonal then a zero in
the right-handed Majorana mass matrixMR leads to a zero
minor in the effective neutrino mass matrix M�.
We need three right-handed neutrinos �Rj, three right-

handed charged leptons lRj, and three left-handed lepton

doublets DLj ¼ ð�Lj; lLjÞT , where j is the family index.

Also we need the standard model (SM) Higgs, plus other
scalar singlets. We follow [10] and assume a Z8 underlying
symmetry. For the sake of illustration, let us take the case
of C33. Under the action of Z8, the leptons (the right
singlets and the components of the left doublets) of the
first, second, and third families are multiplied by
ð1;�1; ! ¼ expði�4 ÞÞ respectively, while the SM Higgs

remains invariant. This generates diagonal Dirac mass
matrices for both charged leptons and neutrinos.
The bilinears �Ri�Rj, relevant for the Majorana neutrino

mass matrix MR, transform under Z8 as

1 !4 !
!4 1 !5

! !5 !2

0
B@

1
CA: (59)

The (1, 1) and (2, 2) matrix elements of MR are Z8

invariant, hence their corresponding mass terms are di-
rectly present in the Lagrangian. We require a Yukawa
coupling to a real scalar singlet (�12) which changes sign
under Z8 to generate the (1, 2) matrix element inMR, when
acquiring a vev at the seesaw scale. The (2, 3) matrix
element is equally generated by the Yukawa coupling to
a complex scalar singlet (�23) with a multiplicative number
!3 under Z8, while the (1, 3) matrix element requires a
Yukawa coupling to a complex scalar singlet (�13) which
gets multiplied by!7 under Z8. The resulting right-handed
Majorna mass matrix can be cast in the form

MR ¼
� � �
� � �
� � 0

0
@

1
A; (60)

which is of the required form.
For the other patterns, they can be generated in a similar

way summarized in Table III.
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The models C31, C21, and C11 in the limit of vanishing
m3 and �z together give a singular mass matrixM�. In fact,
one symmetry realization of such a singular model was
stated in [11].

VII. DISCUSSION AND CONCLUSIONS

We studied all the possible patterns of Majorana neu-
trino mass matrices with one vanishing minor. All six
possible cases allow one to accommodate the current
data without need to tune the input parameters. None of
the patterns appears as a ‘‘one-zero’’ texture and, for the
chosen acceptable parameter points, all the matrices are
complex displaying CP violation effects.

Noninvertible mass matrices with one vanishing minor
occur only in the cases (C31, C21, and C11) with �z ¼ 0
leading to m3 ¼ 0. These latter three cases coincide in the
limit (�z ! 0) with the model of two vanishing minors in a
singular M� which was studied in [11], making the dis-
tinction between them difficult.

The model C32 cannot produce inverted-type hierarchy,
whereas the model C11 has only this type of hierarchy. For
all six patterns, the mixing and phase angles cover their
experimentally allowed regions. Exceptions here are the
pattern C33 (the T1-symmetry related patternC22) where �y
is bound in the inverted hierarchy type to be larger than 48

(smaller than 42
), the pattern C31 (the T1-symmetry re-
lated pattern C21) in the normal hierarchy case where the
Dirac angle � lies outside the interval ½123
; 242
� (ap-
proximately inside the interval ½60
; 300
�), and the pat-
tern C11 where the phases � and � tend to be far from �=2.

In all patterns, except C11, there is a linear correlation in
the inverted and degenerate cases between � and � or �,
whence a sharp correlation of J against these two latter
phases. Also, a linear correlation exists between � and � in
all cases even though it ceases to be linear in the pattern
C11.

The limit �z ¼ 0 can be attained in all patterns. In
models (C31, C21, and C11), this limit corresponds to the
singular inverted-hierarchy model with m3 ¼ 0. As to the
parameter mee, it can reach the value 0, for the case of

normal hierarchy, in the patterns C33, C22, and C32,
whereas this zero limit cannot be achieved in the other
patterns.
These features can help in distinguishing between the

four independent models (let us take them as C33, C31, C32,
C11). If the measured values of the mass ratios indicate an
inverted hierarchy type then there are only two acceptable
models, out of the three models C33, C31, C11 allowing for
this type of hierarchy, depending on the intensity of this
inverted hierarchy. If the intensity is strong (m2=m3 > 10)
then the correct pattern would be either C31 or C11. A
subsequent measurement of the phase angles ð�;�Þ can
exclude the pattern C11 if it lies outside the ‘‘narrow’’
dotted region in plot l-I, L in Fig. 10. Now, if the intensity
is mild (m2=m3 < 10) then the choice would be between
the patterns C31 or C33. In this case, a measurement of �y
smaller than 48
 would exclude the C33 pattern, whereas,
in case �y > 48
, a measurement of the phase angles �, �

helps to decide which pattern can accommodate the data by
comparing, say, to the narrow bands of plot e-I, L in Fig. 1.
Table IV summarizes these ‘‘experimental signatures’’ in
the case of inverted hierarchy.
If the mass measurements give a normal type of hier-

archy, then the accepted patterns would be (C32, C33, and
C13). One indication here is when � lies inside
½123
; 242
� which would exclude C31. The narrow band
of the linear correlation between � and � in plot f-N, R in
Fig. 4 can help to exclude C31 when � lies outside the
above interval. However, this measurement of � and � can
not distinguish between C32 and C33 (look at the similar
plots of f-N, R in Figs. 1 and 7), and it would be difficult to
distinguish between these two patterns. For the degenerate

TABLE III. The Z8 symmetry realization for six patterns of single vanishing minors. The
index 1F indicates the lepton first family and so on. The �kj denotes a scalar singlet which

produces the entry ðk; jÞ of the right-handed Majorana mass matrix when acquiring vacuum
expectation at the seesaw scale. The transformation properties, under the specified group, are
listed below each family and needed scalar singlet for each model. ! denotes expði�4 Þ, while
i ¼ ffiffiffiffiffiffiffi�1

p
.

Model 1F 2F 3F �11 �12 �13 �22 �23 �33

C33 1 �1 ! Absent �1 !7 Absent !2 Absent

C22 1 ! �1 Absent !7 �1 Absent !3 Absent

C13 1 ! �1 Absent !7 Absent !6 !3 Absent

C32 1 ! �1 Absent !7 �1 !6 Absent Absent

C12 1 ! �1 Absent absent �1 !6 !3 Absent

C11 ! �1 1 Absent !3 !7 Absent �1 Absent

TABLE IV. The inverted-hierarchy ‘‘experimental’’ signatures
distinguishing the different patterns.

Intensity Mild Strong

Acceptable patterns C33 and C13 C11 and C13

Signature �y < 48
 ) C13

Decisive phase angles �, � �, �
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type, the possible patterns would also be C32, C33, and C13.
Although we do not have a ‘‘signature’’ coming from the �
alone here, however the knowledge of all the phase angles
together can distinguish between the patterns. This comes
because the narrow ‘‘bands’’ corresponding to the linear
correlations of ð�;�Þ are different in plots f-D, R of Fig. 4
and Fig. 7 which would help to exclude the cases C31 and
C32. Also, the different ‘‘band’’ structures of the linear
correlations ð�;�Þ in plots e-D, L of Fig. 1 and 7 would
help to distinguish between the patterns C33 and C32.

Finally, all the models can be realized in the framework
of flavor Abelian discrete symmetry, with at most three
additional SM-singlet scalar fields transforming appropri-
ately, implemented in seesaw schemes.
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