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The potential for a precise measurement of the unitarity triangle angle � in future experiments from the

decay B0 ! DK�0 is well known. It has recently been suggested that the sensitivity can be significantly

enhanced by analyzing the B0 ! DKþ�� Dalitz plot to extract amplitudes relative to those of the flavor-

specific decay B0 ! D��
2 Kþ. An extension to this method which includes the case where the neutral D

meson is reconstructed in suppressed final states is presented. The sensitivity to � is estimated using this

method and compared to that obtained using the B0 ! DK�0 decay alone. Experimental effects, such as

background contamination, are also considered. This approach appears to be a highly attractive addition to

the family of methods that can be used to determine �.
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I. INTRODUCTION

The quark flavor sector of the standard model of particle
physics, described by the Cabibbo-Kobayashi-Maskawa
(CKM) quark mixing matrix [1,2], gives a successful de-
scription of all current experimental measurements of
quark flavor-changing interactions. It also provides an
excellent laboratory to search for effects of physics beyond
the standard model (see, for example, Refs. [3–5]). A
critical element of this program is the precise measurement
of the angle � ¼ argð�VudV

�
ub=VcdV

�
cbÞ of the unitarity

triangle formed from elements of the CKM matrix.
A method to measure � with negligible theoretical un-

certainty was proposed by Gronau, London, and Wyler
(GLW) [6,7]. The original method uses B ! DK decays,
with the neutral D meson reconstructed in CP eigenstates.
The method can be extended to useDmeson decays to any
final state that is accessible to both D0 and �D0, in particu-
lar, doubly Cabibbo-suppressed decays such as Kþ��
[8,9] have been noted to provide enhanced sensitivity to
CP-violation effects.

The use of neutral B decays is particularly interesting
since the two contributing amplitudes are more similar in
magnitude, so that direct CP-violation effects may be
enhanced relative to those in charged B decays. The decay
B0 ! DK�0 is especially advantageous since the charge of
the kaon in the K�0 ! Kþ�� decay unambiguously tags
the flavor of the decaying B meson, obviating the need for
time-dependent analysis [10]. This appears to be one of the
most promising channels for LHCb to make a precise
measurement of � [11–13].

The approach that has mainly been considered until
recently is a quasi-two-body analysis of B0 ! DK�0. In
this analysis, the contributions from other resonances in the
B0 ! DKþ�� Dalitz plot that interfere with the K�0
within the selected mass window are handled by the in-
troduction of an additional hadronic parameter [14]. This
parameter, normally denoted by �, takes values between 0

and 1 where 0 implies that all sensitivity to � is lost, and
the limit of 1 is reached in the case that no amplitudes other
than DK�0 contribute. Estimates suggest that 0:9< �<
1:0 for a K�0 mass window of �50 MeV [15].
Recently it has been noted that the natural width of the

K� meson can be used to enhance the sensitivity to the
CP-violating phase � through analysis of the B0 !
DKþ�� Dalitz plots [16,17]. By comparison of the
Dalitz-plot distributions of events in the cases where the
neutral D meson is reconstructed in flavor-specific and
CP-eigenstate modes, the complex amplitudes of the
DK�0 decays can each be determined relative to the
flavor-specific D��

2 Kþ amplitude. This allows for a direct
extraction of � from the difference in amplitudes, rather
than from the rates.
In this paper we extend the method proposed in Ref. [17]

to include also the case where the neutral D meson is
reconstructed in suppressed final states. This allows us to
make a direct comparison of the sensitivity to � between
the quasi-two-body analysis and the Dalitz-plot analysis.
We also study possible systematic effects that may limit the
sensitivity of the analysis, including uncertainties on the
correct composition of the Dalitz-plot model and a brief
discussion of experimental effects.
The remainder of the paper is organized as follows: in

Sec. II we give an overview of the method; in Sec. III we
describe the Dalitz-plot model used for our study; in
Secs. IV and V we present the results we obtain in the
quasi-two-body analysis and in the Dalitz-plot analysis,
respectively; in Sec. VI we discuss how experimental
effects can be handled, before summarizing in Sec. VII.

II. METHOD

In this section we describe the various methods that can

be used to extract � from B ! DKð�Þ. We first review the
quasi-two-body approach, and then recap the recently pro-
posed Dalitz-plot technique [17], before describing the
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extension to the method used in our study. All methods
exploit the interference between the two tree-level ampli-
tudes shown in Fig. 1. Conventionally, the ratio of magni-
tudes of these two amplitudes is referred to as rB, while
their strong phase difference is labeled �B.

The GLW method [6,7] of extracting � uses the follow-

ing rates and asymmetries in B ! DKð�Þ decays:

R� ¼ �ð �B ! D� �Kð�ÞÞ þ �ðB ! D�Kð�ÞÞ
�ð �B ! Dfav

�Kð�ÞÞ þ �ðB ! DfavK
ð�ÞÞ

¼ 1þ r2B � 2rB cosð�BÞ cosð�Þ; (1)

A� ¼ �ð �B ! D� �Kð�ÞÞ � �ðB ! D�Kð�ÞÞ
�ð �B ! D� �Kð�ÞÞ þ �ðB ! D�Kð�ÞÞ

¼ �2rB sinð�BÞ sinð�Þ
R�

: (2)

Here, �B (B) is used to refer to either B� or �B0 (Bþ or B0),
while D� refers to a neutral D meson reconstructed in a
CP-even (e.g. KþK�) or CP-odd (e.g. K0

S�
0) final state,

and Dfav refers to a neutral D meson reconstructed in a
favored, quasi-flavor-specific (e.g. D0 ! K��þ) final
state. Note that experimentally it is convenient to measure
R� normalized to an equivalent double ratio from B ! D�
or B ! D� decays.

Since RþAþ þ R�A� ¼ 0, the above four observables
give three independent constraints on the three parameters
�, rB, and �B. This is sufficient to solve the system up to an
eightfold ambiguity. However, when measurements are
performed in a hadronic environment as at LHCb, the
reconstruction of the CP-odd final states becomes a sig-
nificant experimental problem. Therefore, additional ob-
servables are required.

A solution is to include doubly Cabibbo-suppressed D
meson decays, as first suggested by Atwood, Dunietz, and
Soni (ADS) [8,9]. Because of the fact that the D meson
decays to K��� are not truly flavor specific, but include a
suppressed contribution which is given by rDe

i�D

relative to the favored decay amplitude,1 enhanced
CP-violation effects can occur. The rates and asymmetries

of the B ! DKð�Þ decays to the suppressed final states are
then given by

RADS ¼ �ð �B ! Dsup
�Kð�ÞÞ þ �ðB ! DsupK

ð�ÞÞ
�ð �B ! Dfav

�Kð�ÞÞ þ �ðB ! DfavK
ð�ÞÞ

¼ r2B þ r2D þ 2rBrD cosð�B � �DÞ cosð�Þ; (3)

AADS ¼ �ð �B ! Dsup
�Kð�ÞÞ � �ðB ! DsupK

ð�ÞÞ
�ð �B ! Dsup

�Kð�ÞÞ þ �ðB ! DsupK
ð�ÞÞ

¼ 2rBrD sinð�B � �DÞ sinð�Þ
RADS

: (4)

Since the hadronic parameters of the D decay (rD and �D)
can be determined independently [18,19], these measure-
ments provide two additional linearly independent con-
straints that can be used in combination with the GLW
observables to obtain bounds on the three unknown pa-
rameters �, rB, and �B. With the decay modes D !
K���, the ADS observables are well suited to reconstruc-
tion in a hadronic environment. Consequently, one of the
most promising strategies for the tree-level determination
of � at LHCb is that from the combination of measure-
ments of Rþ, Aþ, RADS, and AADS in charged B ! DK
decays [20] or neutral B ! DK� decays [11,13].
The finite width of the K�0ð892Þ resonance leads to

additional complications in the analysis of B ! DK� de-
cays, since other contributions to the B ! DK�Dalitz plot
can affect the population within the K� mass window. This
can be handled by making the following substitutions [14]:

rB ! rS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
DP jAuj2d~xR
DP jAcj2d~x

s
; (5)

ei�B ! �ei�S ¼
R
DP jAujjAcjei�d ~xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR

DP jAuj2d~x
R
DP jAcj2d~x

q ; (6)

where Ac and Au are, respectively, the amplitudes carrying
the phase of the �b ! �cu�s [Fig. 1(left)] and of the �b ! �uc�s
[Fig. 1(right)] transitions, and � is the strong phase differ-
ence between them, all as functions of the Dalitz-plot
position ~x. The integrals are over the region of the Dalitz
plot that is defined as the K� mass window. In the limit that
DK� is the only contribution in this window, rS ! rB,
�S ! �B, and � ! 1.
With this treatment, the two hadronic parameters asso-

ciated with the DK� decay (rB and �B) are replaced with
two effective parameters (rS and �S) and a new unknown
(�) is introduced. Since the combination of (CP-even)
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0
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FIG. 1. Feynman diagrams for B0 ! DK�0, via (left) a �b ! �cu�s transition and (right) a �b ! �uc�s transition.

1Note that the sign convention for �D used in this paper is
opposite to that used in most of the literature on �
measurements.
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GLW and ADS observables provides four linearly inde-
pendent measurements, it is possible to determine � from
the data together with �, rB, and �B. Alternatively, external
input, either theoretical or experimental, could be used to
constrain � [15].

We refer to the extraction of � using the approach out-
lined above as the quasi-two-body analysis. The addition
of ADS observables helps one to resolve two of the ambi-
guities of the GLW approach [21]; however, the effective-
ness of this depends on the values of rD, �D, and �B, as
well as the statistical sensitivity. Moreover, the sensitivity
to � depends on the values of the unknown hadronic
parameters, particularly �B.

The recently proposed B ! DK� Dalitz-plot analysis
[17] exploits the presence of the B ! D�

2K contribution
that serves as a reference amplitude, since the flavor of the
neutralDmeson produced inD��

2 ! D�� is tagged by the
charge of the accompanying pion. Considering flavor-
specific D mesons, we can define the B ! DK� amplitude
relative to this reference, as illustrated in Fig. 2 (left),

AðB0 ! �D0K�0Þ
AðB0 ! D��

2 KþÞ ¼ %ei�: (7)

Note that in Eq. (7) and throughout the discussion below,
we neglect factors of AðK�0 ! Kþ��Þ and AðD��

2 !
�D0��Þ that formally should appear in the numerator and
denominator, respectively, since they eventually cancel in
the observables of interest.

Considering now CP-even D mesons, using the conven-
tion D� ¼ 1ffiffi

2
p ðD0 � �D0Þ, we find [see Fig. 2(right)]

ffiffiffi
2

p
AðB0 ! DþK�0Þffiffiffi

2
p

AðB0 ! D��
2þK

þÞ ¼ %ei�ð1þ rBe
ið�Bþ�ÞÞ; (8)

where D��
2þ denotes that the neutral D meson produced in

the decay of the D��
2 is reconstructed in a CP-even eigen-

state. Thus, we find [17]

xþ þ iyþ ¼ rBe
ið�Bþ�Þ

¼ ð ffiffiffi
2

p
AðDþK�0ÞÞ=ð ffiffiffi

2
p

AðD��
2þKþÞÞ

ðAð �D0K�0ÞÞ=ðAðD��
2 KþÞÞ � 1

¼
ffiffiffi
2

p
AðDþK�0Þ
Að �D0K�0Þ � 1; (9)

where the variables ðxþ; yþÞ are the same as those used in
the analysis of B ! DK with D ! K0

S�
þ�� decays

[22,23]. Constraints on x� þ iy� ¼ rBe
ið�B��Þ are like-

wise obtained from equivalent expressions for the
charge-conjugate �B0 decays. The extraction of � from
this Dalitz-plot analysis with only a single unresolvable
ambiguity (� ! �þ �, �B ! �B þ �) is possible using
only CP-even D decays. Consequently, we restrict our
discussion to CP-even D decays, since those are experi-
mentally accessible in a hadronic environment; however,
we note that CP-odd decays give similar expressions, but
with the right-hand side of the last two relations of Eq. (9)
multiplied by a minus sign.
The discussion above, and in Ref. [17], considers that

the D mesons used for normalization are reconstructed in
flavor-specific final states. However, as already mentioned,
the favored decay D0 ! K��þ is only approximately
flavor specific. Furthermore, since the doubly Cabibbo-
suppressed decays are used to great benefit in the quasi-
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∆
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FIG. 2 (color online). Argand diagrams illustrating the measurements of relative amplitudes and phases from analysis of the Dalitz
plots of (left) �D0Kþ�� and (right) DCPK

þ��. In these illustrative examples the following values are used: % ¼ 1:5, � ¼ 20�, � ¼
75�, �B ¼ 45�, and rB ¼ 0:4.
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two-body analysis, it is reasonable to ask if they can also be
included in the Dalitz-plot analysis. We therefore extend
the method to include the effects of the suppressed
D-decay amplitudes. We find

AðB0 ! DfavK
�0Þ

AðB0 ! D��
2 favK

þÞ ¼ %ei�ð1þ rBrDe
ið�Bþ�Dþ�ÞÞ; (10)

AðB0 ! DsupK
�0Þ

AðB0 ! D��
2 supK

þÞ ¼ %ei�
�
1þ rB

rD
eið�B��Dþ�Þ

�
; (11)

while the expression for the amplitude ratio in the Dalitz
plot with the CP-evenDmeson is unchanged from Eq. (8).
These amplitudes are illustrated in Fig. 3. As before, the
equivalent expressions for the charge-conjugate �B0 decays
are obtained with the substitution � ! ��.

As one would expect, the amplitudes obtained from the
DfavK

þ�� Dalitz plot [Fig. 3(left)] are hardly distinguish-
able from those for the idealized flavor-specific D decays.
As discussed in Ref. [17], if the suppressed amplitudes are
neglected, it will lead to only a small bias in the extraction
of �.

The amplitudes obtained from the DsupK
þ�� Dalitz

plot [Fig. 3(right)] are markedly different from those of
the other Dalitz plots, and this new information can in
principle be used to constrain �. However, in this case
the D�

2K contribution is no longer suitable as a reference
amplitude, due to its small size, and the measurement of
the relative phase between D�

2K and DK� amplitudes
would be expected to have a large uncertainty.
Nonetheless, it should be possible to obtain information

about the relative magnitude of these amplitudes, which
will provide sensitivity to �. Note that, in contrast to the
quasi-two-body analysis, it is not necessary to use external
constraints on rD and �D in the Dalitz-plot analysis.

III. B ! DK� DALITZ-PLOT MODEL

We construct a model for B ! DK� Dalitz-plot distri-
butions using the isobar formalism, in which the total
amplitude is written as the coherent sum of contributions
from resonant and nonresonant terms:

Mð ~xÞ ¼ anre
i�nr þX

r

are
i�rFB!Rbð ~xÞFR!d1d2ð ~xÞ

� BWrð ~xÞSrð ~xÞ: (12)

In Eq. (12), ~x ¼ ðm2
K�;m

2
D�Þ represents the position in the

Dalitz plot, aei� describes the complex amplitude for each
component, the F terms denote vertex form factors, BW
the resonance propagator and S the Lorentz invariant spin
factor. We use Blatt-Weisskopf barrier form factors [24],
and use relativistic Breit-Wigner line shapes to describe the
propagators. We use the Zemach formalism [25,26] for the
spin factors. We assume that the nonresonant contribution
is constant across the phase space. This is a sufficient
approximation for the study at hand, even though a more
complicated description is likely to be necessary to fit real
data. All amplitudes are evaluated using the qftþþ
package [27].
We develop a model for the B0 ! DKþ�� Dalitz-plot

distribution based on the following results from Ref. [28]:

Re

Im

-1 +1 +2

-1

+1

+2

γ Dδ+Bδ

)+K2 fav
*- D→0A(B

)*0Kfav D→0A(B

Re

Im

-1 +1 +2

-1

+1

+2

Dδ-Bδ

γ )+K2 sup
*- D→0 A(BDδ-ie

)*0Ksup D→0 A(BD
δ-ie

FIG. 3 (color online). Argand diagrams illustrating the measurements of relative amplitudes and phases from analysis of the Dalitz
plots of (left) DfavK

þ�� and (right) DsupK
þ��. Note that in the latter the amplitudes are rotated by ��D to maintain the convention

of having the D��
2 Kþ amplitude on the real axis. In these illustrative examples the following values are used: % ¼ 1:5, � ¼ 20�,

� ¼ 75�, �B ¼ 45�, rB ¼ 0:4, �D ¼ �158�, and rD ¼ 0:06.
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BðB0 ! DKþ��Þ ¼ ð88� 15� 9Þ � 10�6;

BðB0 ! DK�0ð892Þ½Kþ���Þ ¼ ð38� 6� 4Þ � 10�6;

BðB0 ! D��
2 ð2460Þ½D���KþÞ ¼ ð18:3� 4:0� 3:1Þ

� 10�6;

BðB0 ! DKþ��Þnr ¼ ð26� 8� 4Þ � 10�6:

The results for the resonant contributions were extracted
using events in the regions jMK� �MK�0 j< 150 MeV and
jMD� �MD��

2
j< 75 MeV, respectively. The strengths of

the K�ð892Þ and D��
2 ð2460Þ amplitudes in our model were

set by requiring that the fit fractions of these resonances in
these regions match the published results [28].

Since we expect the Dalitz plot to contain contributions
from other resonances not considered in Ref. [28], we add
additional contributions based on results from an analysis
of the B0 ! D�K0

S�
� Dalitz plot [29], taking isospin and

color-suppression factors into account as appropriate.
Some additional scaling of these resonance terms was
performed to provide a better match to the results pub-
lished in Ref. [28]. These experimental results provide
information about the likely magnitude of contributions
from K� and D� resonances to the Dalitz plot.

Additionally, contributions from D�
s-type resonances

can in principle contribute. Their effect could be significant
since they are mediated by b ! u transitions which pro-
vide the sensitivity to �. The D�

s2ð2573Þ and D�
s1ð2700Þ

states are known to decay to DK, and the latter has been
observed in B decays [30]. These are not included in our
nominal model, but we consider their potential effect
among the model variations discussed below in Sec. V.

Table I summarizes the parameters of the resonances
used in our analysis. Table II gives the fit fractions and
relative phases of the various intermediate states that con-
tribute to our B ! DK� Dalitz-plot model. The parame-
ters given are appropriate for the case that the neutral D
meson decays to a favored, quasi-flavor-specific final state
(namely, B0 ! DKþ��, D ! Kþ�� and charge conju-
gate). An example Dalitz-plot distribution generated from
this model is shown in Fig. 4.
We derive the Dalitz-plot distributions for otherD-decay

final states using the equations presented in Sec. II and
initially taking � ¼ 60�. We consider several different
possible values of rB and �B for theDK�0ð892Þ amplitudes,
while for the less significant contributions from other DK�
channels we simply set rB ¼ 0:4 and �B ¼ 0�. We note
that our nominal value of rB ¼ 0:4 is at the upper end of
the experimentally allowed range for this parameter (e.g.
the UTfit Collaboration gives rBðDK�0ð892ÞÞ 2
½0:081; 0:397� at 95% confidence level [32]), but it is
convenient to use this value to allow comparison with
previous studies.
We use our Dalitz-plot model to generate ensembles of

event samples corresponding to the differentDmeson final
states. The numbers of events are based on expectations for
one year of nominal luminosity at LHCb (2 fb�1) [12],
assuming that the efficiency does not vary across the Dalitz
plot. The exact numbers in each sample vary as functions
of the input values of the parameters (particularly �B and
�), but typically are around 7300 for DfavK�, 700 for
DsupK�, and 600 for DþK� (for B0 and �B0 decays

combined).

TABLE I. Parameters of resonances used in the model [31].

Resonance JP Mass (MeV) Width (MeV)

K�ð892Þ 1� 896 51

K�
0ð1430Þ 0þ 1412 294

K�
2ð1430Þ 2þ 1432 109

K�ð1680Þ 1� 1717 322

D�
0ð2400Þ 0þ 2403 283

D�
2ð2460Þ 2þ 2459 25

D�
s1ð2700Þ 1� 2690 110

TABLE II. Summary of the B ! DfavK� Dalitz-plot model.

Intermediate state Fit fraction Phase (�)

DK�0ð892Þ 0.46 0

DK�0
0 ð1430Þ 0.0001 284

DK�0
2 ð1430Þ 0.12 221

DK�0ð1680Þ 0.02 128

D��
2 ð2460ÞKþ 0.34 325

D�
0 ð2400ÞKþ 0.02 267

Nonresonant DK� 0.06 140

)2 (GeVπK
2m
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)2
 (

G
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π
D2

m

5

10

15

20

25

FIG. 4. High-statistics B ! DfavK� Dalitz-plot distribution
generated with our nominal model. Structures due to
DK�0ð892Þ, DK�0

2 ð1430Þ, and D��
2 ð2460ÞKþ, as well as the

nonresonant contribution, are clearly apparent.
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IV. RESULTS WITH THE QUASI-TWO-BODY
APPROACH

We first study the sensitivity to � in the quasi-two-body
approach. We take the six Dalitz-plot distributions
(DfavK�, DsupK�, and DþK� all for both �B0 and B0)

generated as described in the previous section, and apply
selection requirements to select theDK� dominated region.
We then perform �2 minimization to fit the yields in each
sample to determine five parameters: �, rS, �S, � and an
overall normalization. The parameters rD and �D are fixed
to their measured values (0.0616 and�158�, respectively).
For each pseudoexperiment we perform ten fits with initial
values of the parameters randomized in the ranges � 2
½0; 2�Þ, rB 2 ½0; 1Þ, �B 2 ½0; 2�Þ, � 2 ½0; 1Þ, and we take
the results of the fit with the smallest �2.

The selection requirements for the K� are an interesting
subtopic worthy of some discussion. The width of the K�
invariant-mass window around the nominal K� mass af-
fects the size of the event samples. Increasing the width
yields greater statistics so that one would naively expect a

reduction in the statistical uncertainty on �. Unfortunately,
increasing the width of theK� invariant-mass window also
leads to an increase in the dilution from the non-DK�
component of the amplitude, i.e. a decrease in �, which
tends to decrease the sensitivity to �. Hence, it is important
to optimize the K� selection requirements.
One can increase � by introducing a D�

2ð2460Þ veto (e.g.
rejecting events that satisfy jMD� �MD�

2
j< 75 MeV).

This veto has a rather minimal impact on the statistics. In
our nominal model with �B ¼ 180�, choosing to use
jMK� �MK�ð892Þj< 150 MeV yields � ¼ 0:93. Applying

the D�
2ð2460Þ veto above increases this to � ¼ 0:97.

Decreasing the K� invariant-mass window to jMK� �
MK�ð892Þj< 50 MeV yields � ¼ 0:99; however, with the

limited statistics in our pseudoexperiments, this decrease
in dilution is counterbalanced by the loss of statistics.
Experiments with higher statistics may benefit by using a
tighterK� invariant-mass window. In the results below, we
proceed using the D�

2ð2460Þ veto discussed above and

requiring the K� invariant mass to be within 150 MeV of
the nominal K� mass.
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FIG. 5 (color online). Distributions of fitted values of � in the quasi-two-body approach, with different input values of �B. These
results are obtained with � ¼ 60� and rB ¼ 0:4. The location of each of the generated solutions for � ¼ 1, i.e. �S ¼ �B, is given by a
red solid cross. The locations of each of the ambiguous solutions obtained for � ¼ 1 and rD ¼ 0 are given by the intersections of the
blue dashed lines.

TIM GERSHON AND MIKE WILLIAMS PHYSICAL REVIEW D 80, 092002 (2009)

092002-6



Results from the pseudoexperiments for various differ-
ent input values of �B are shown in Fig. 5. It is apparent that
there is a strong correlation between the fitted values of �
and �S, and moreover that there are ambiguities in the
solution that are particularly pronounced for values of �B

near 90�. The locations of each of the ambiguous solutions
for the case where rD ¼ 0 are also shown in Fig. 5. The
ambiguities in the solutions found by fitting our data are
close to these values. Since rD is small (our data were
generated with rD ¼ 0:0616), statistical fluctuations can
lead to the best �2 value being obtained near one of the
ambiguous solutions. The inability to resolve such ambi-
guities is a limitation of the quasi-two-body method.

As a consequence of these ambiguities, the distributions
of the fitted values of � are not Gaussian. Therefore, in
Table III, we report both the mean and rms of each distri-
bution as well as the corresponding values obtained by
fitting the data in the regions near the generated values of
� to Gaussian line shapes, i.e. ignoring the ambiguities in
the solution. For �B ¼ 90�, it is not possible to separate the
correct solutions from the ambiguous solution, so we have
not performed a Gaussian fit to the distributions for this
sample.

We have also considered an alternative approach to the
fits, in which the value of � is fixed. Although � can only be
measured from analysis of B ! DK� Dalitz plots (so that
if this measurement can be performed, the Dalitz-plot
analysis will most likely be feasible), it is conceivable
that � may be determined from theory, or from a different
experiment. We therefore repeat the fits with � constrained
to the values obtained directly from our model. This ap-
proach leads to an improvement in the resolution on � near
some solutions (e.g., near the true solution for �B ¼ 0�),
but does not remove the ambiguities (see Fig. 6). The
results obtained by fitting the regions near the generated
values of � to Gaussian line shapes can be found in
Table III. This provides a comparison with Ref. [12], where
the same approach was used to estimate the sensitivity to �
using the quasi-two-body approach on one nominal year’s
data from LHCb. Despite several important differences
between our toy study and the detailed sensitivity study
of Ref. [12], the results are in very good agreement (see
Table III). This provides confidence in the absolute scale of
our sensitivity estimates.
The results obtained by varying rB in our model are

given in Table IV. As is well known, the sensitivity to �
reduces as rB becomes smaller. It is also clear that the
effect of ambiguities becomes more significant, since the
discrepancy between the rms of the whole distributions and
the width of the Gaussian peak near the correct solution
increases.

TABLE III. Results for � obtained from the quasi-two-body
analysis, with different input values of �B and a comparison with
the results of Ref. [12]. These results are obtained with � ¼ 60�
and rB ¼ 0:4. See the text for details.

� (�)
� free � locked Ref. [12]

Distribution Gaussian fit Gaussian fit

Mean rms � 	 � 	 	

�B ¼ 0� 55.5 14.6 57.7 7.3 60.1 5.9 6.2

�B ¼ 45� 60.2 19.6 57.4 10.6 57.8 10.3 10.8

�B ¼ 90� 88.3 17.9 12.7

�B ¼ 135� 60.4 18.0 56.6 9.4 56.3 9.7 9.5

�B ¼ 180� 55.1 19.2 56.6 7.4 59.7 5.5 5.2
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FIG. 6. Distributions of fitted values of � in the quasi-two-body approach with � free (left) and fixed (right). These results are
obtained with � ¼ 60�, �B ¼ 90�, and rB ¼ 0:4.

TABLE IV. Results for � obtained from the quasi-two-body
analysis, with different input values of rB. These results are
obtained with � ¼ 60�, �B ¼ 0�, and � free.

� (�)
Distribution Gaussian fit

Mean rms � 	

rB ¼ 0:4 55.5 14.6 57.7 7.3

rB ¼ 0:3 57.0 21.1 56.8 9.7

rB ¼ 0:2 58.9 29.3 56.9 11.8
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V. RESULTS WITH THE AMPLITUDE ANALYSIS

To study the sensitivity to � using the Dalitz-plot analy-
sis, we perform a simultaneous maximum likelihood fit to
all six Dalitz-plot distributions. We initially fix rD and �D

to their measured values, leaving 24 free parameters (�,
four parameters—�, %, rB and �B—for each K�-type
resonance and nonresonant contribution, and two—magni-
tude and phase—for each D�-type resonance, with one
phase fixed). As before, for each pseudoexperiment we
perform multiple fits with randomized initial parameter
values, and we take the results of the fit with the smallest
negative log likelihood.

In Sec. IV, we found that the quasi-two-body approach
was, in many cases, unable to resolve ambiguities in the
solution. This was especially true for values of �B near 90

�.
Figure 7 shows the distributions of results from the pseu-
doexperiments generated with �B ¼ 90� for the amplitude
and quasi-two-body approaches. The additional informa-
tion utilized in the amplitude analysis is sufficient to
remove the ambiguities in the solution.

The distributions of the fit results for the parameters
rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ, and � obtained from the
pseudoexperiments generated with �B ¼ 0� are shown in
Fig. 8. We fit the distributions with Gaussian line shapes,
since all are consistent with this shape (this is true for all
�B values), and report the means and widths in Table V.
The resolution on � varies between 4.2�–5.8�, depending
on the value of �B, in our nominal model. Thus, unlike for
the quasi-two-body approach (Table III), the sensitivity to
� is not strongly dependent on the value of �B.
The physical values of rB and � may be different from

those used in our model. To study how this would affect our
results, we vary the values of rB and � in our model and fit
the data using the same procedure outlined above. The
results obtained considering 0:2 � rB � 0:4 are given in
Table VI. As expected, the sensitivity to � decreases as rB
decreases; however, even for rB ¼ 0:2 the distribution of fit
results is still approximately Gaussian, and the resolution
on � is still 7�. The results obtained considering 45� �
� � 75� are given in Table VII. We conclude that the

γ
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Dalitz plot
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FIG. 7. Distributions of fitted values of � in the amplitude (left) and quasi-two-body (right) approaches. These results are obtained
with � ¼ 60�, �B ¼ 90�, and rB ¼ 0:4.
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FIG. 8. Distributions of fitted values of rB (left), �B (middle), and � (right) in the amplitude analysis. These results are obtained with
� ¼ 60�, �B ¼ 0�, and rB ¼ 0:4.
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sensitivity to � does not depend strongly on the value of �
itself.

There are a number of parameters in our model which
are not well constrained by data; however, most of these
are not expected to impact significantly the sensitivity to �.
For example, the strong phase between the D��

2 ð2460ÞKþ
and �DK�0ð892Þ amplitudes, which we denote by
�½DK�0ð892Þ�, could be very different from the value

used in our model. To determine what effect the value of
this parameter has on the extracted value of �, we vary
�½DK�0ð892Þ� in our model over the physically allowed
range, ½0; 2�Þ, and refit the data. The fit results, given in
Table VIII, show that the impact on the sensitivity to � is
minimal.
None of the parameters for the DK�0

0 ð1430Þ,
DK�0

2 ð1430Þ, or DK�0ð1680Þ amplitudes is well con-

strained by data. To see what effect the presence of CP
violation in these amplitudes has on the sensitivity to �, we
set rBðDK�0

0 ð1430ÞÞ ¼ 0, rBðDK�0
2 ð1430ÞÞ ¼ 0, and

rBðDK�0ð1680ÞÞ ¼ 0 in our model and refit the data. The
results obtained for this model variation are given in
Table IX. There is no appreciable bias on the extracted
value of �, and the resolution on � decreases by only 1.2�.
This is not surprising given the relatively small contribu-
tions to the total B ! DK� amplitude from DK�0

0 ð1430Þ,
DK�0

2 ð1430Þ, and DK�0ð1680Þ (see Table II). If, however,
in real data these or any other DK�-type amplitudes do
contribute strongly to B ! DK� (and have sufficiently
largeCP violation), then the sensitivity to � could be better
than that obtained from our nominal model. To further test
how mismodeling of the Dalitz plot may affect the ex-
tracted value of �, we refit the data from our nominal
model using only the DK�ð892Þ, D�

2 ð2460ÞK, and non-
resonant amplitudes (fixing all others to zero). The results
are shown in Table X. Again, there is little impact on the
extracted values, indicating that this analysis may suffer
much less model-related uncertainties than some other
methods to extract � [22,23].
We have also tested how the addition of Ds-type reso-

nances may affect the analysis. We add to the model a
contribution from D�

s1ð2700Þ, the magnitude of which is

based on the assumption

BðB ! DsJ�Þ
BðB ! DsJDÞ 	 BðB ! Dð�Þ

s �Þ
BðB ! Dð�Þ

s DÞ : (13)

TABLE V. Results for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ, and �
from the Dalitz-plot analysis, with different input values of �B.
These results are obtained with � ¼ 60� and rB ¼ 0:4.

rB �B (�) � (�)
� 	 � 	 � 	

�B ¼ 0� 0.40 0.01 0.8 4.9 59.8 4.4

�B ¼ 45� 0.40 0.01 46.2 6.0 59.2 5.5

�B ¼ 90� 0.40 0.01 90.2 6.4 59.8 5.7

�B ¼ 135� 0.40 0.01 134.0 6.3 59.3 5.8

�B ¼ 180� 0.40 0.01 179.8 4.2 59.7 4.2

TABLE VI. Results for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ, and �
from the Dalitz-plot analysis, with different input values of rB.
These results are obtained with � ¼ 60� and �B ¼ 0�.

rB �B (�) � (�)
� 	 � 	 � 	

rB ¼ 0:4 0.40 0.01 0.8 4.9 59.8 4.4

rB ¼ 0:3 0.30 0.01 0.7 5.9 60.0 5.3

rB ¼ 0:2 0.20 0.01 0.6 7.0 59.5 7.0

TABLE VII. Results for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ, and �
from the Dalitz-plot analysis, with different input values of �.
These results are obtained with rB ¼ 0:4 and �B ¼ 0�.

rB �B (�) � (�)
� 	 � 	 � 	

� ¼ 45� 0.40 0.01 1.2 6.0 44.6 5.2

� ¼ 60� 0.40 0.01 0.8 4.9 59.8 4.4

� ¼ 75� 0.40 0.01 0.4 4.5 74.8 4.0

TABLE VIII. Results for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ, and �
from the Dalitz-plot analysis, with different input values of
�½DK�0ð892Þ�. These results are obtained with rB ¼ 0:4, �B ¼
0�, and � ¼ 60�.

�½DK�0ð892Þ� rB �B (�) � (�)
� 	 � 	 � 	

55� 0.40 0.01 0.5 4.9 59.7 4.1

145� 0.40 0.01 0.4 4.9 59.7 4.3

235� 0.40 0.01 0.0 5.0 59.5 4.0

325� 0.40 0.01 0.8 4.9 59.8 4.4

TABLE IX. Results for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ, and �
from the Dalitz-plot analysis, with rBðDK�0

0 ð1430ÞÞ ¼ 0,
rBðDK�0

2 ð1430ÞÞ ¼ 0, and rBðDK�0ð1680ÞÞ ¼ 0. These results

are obtained with rB ¼ 0:4, �B ¼ 0�, and � ¼ 60�.

rB �B (�) � (�)
� 	 � 	 � 	

0.40 0.01 0.1 5.2 59.0 5.6

TABLE X. Results for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ, and �
from the Dalitz-plot analysis, where the fit model contains only
the DK�ð892Þ, D�

2 ð2460ÞK, and nonresonant amplitudes. These

results are obtained with rB ¼ 0:4, �B ¼ 0�, and � ¼ 60�.

rB �B (�) � (�)
� 	 � 	 � 	

0.40 0.01 �1:0 4.4 60.2 4.5
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The right-hand side of this expression is found to be ð2:4�
0:6Þ � 10�3 for Ds and ð3:3� 0:9Þ � 10�3 for D�

s [31].
Using results from Ref. [30], we estimate

BðB ! D�
s1ð2700Þ�Þ �BðD�

s1ð2700Þ ! DKÞ
	 2:7� 10�3 � 11:3� 10�4 	 3� 10�6: (14)

We add a contribution from this amplitude, with an
arbitrary phase, to the model described in Table II. The
results of fits to pseudoexperiments generated with this
modified model are summarized in Table XI. There is little
or no improvement in the sensitivity to � compared to the
nominal model. This can be understood since the corner of
the Dalitz plot where the D�

s1ð2700Þ and K�ð892Þ would
interfere is excluded by kinematic constraints (see Fig. 4).
Following this reasoning, larger effects from DsJ-type
resonances would be possible if there were significant

contributions to the Dalitz plot from heavier K� and/or
heavier DsJ resonances.
In our nominal fit, we fix the values of �D and rD.

However, the value of �D is currently not precisely mea-
sured: �D ¼ ð�158� 11Þ� [18,19,33]. To study what ef-
fect this parameter can have on our results, we rerun the fits
described above (on our nominal model) starting the value
of �D randomly in the range ½0; 2�Þ. The results obtained
for �D are shown in Fig. 9. The resolution extracted for �D

is 7.5�, which is less than the uncertainty on current
measurements. Fitting with �D free has no significant
effect on our results for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ,
and � (for all model values of �B).

VI. EXPERIMENTAL EFFECTS

The study reported in the previous section neglected a
number of experimental effects which will surely impact
the sensitivity to � in any real-world experiment. The
effect most likely to have the largest impact on the resolu-
tion is the presence of background events. To study how
this might affect the sensitivity to �, we generate back-
ground events by sampling from a flat Dalitz distribution.
For real data, there will almost certainly be some features
present in the shape of the background; however, for our
purposes, a flat background model should be sufficient. We
take the expected background yields in each of the six final
states to be equivalent. This should be a reasonable ap-
proximation provided the main source of background
events is from combinatorics (a plausible assumption for
LHCb). The ratio of background to signal, B=S, is defined
here as the ratio of the number of expected background
events to the number of expected signal events for the final
state with the smallest expected signal yield. We generate
background events according to this prescription for the
ratios B=S ¼ 1, 2, 10, 50, and 100, and fit the data using
the same procedure as in the previous section.
For B=S * 10, ambiguities in the solution begin to

appear (see Fig. 10), just as they did using the quasi-two-
body approach without background. About 2% of pseu-
doexperiments with B=S ¼ 10 find their best likelihood in
an ambiguous solution. This number steadily increases as
the background increases, reaching about 25% for B=S ¼
100. This can be understood since, as the background
increases, it becomes more difficult to extract cleanly the
amplitudes with smaller contributions. The amplitude with
the strongest contribution in our model isDK�ð892Þ. Thus,
in the presence of a large background contamination, the
amplitude analysis essentially reduces to the quasi-two-
body approach. This results in the ambiguities in the
solution found in the quasi-two-body approach (without
background) appearing in the amplitude analysis if the
background yields are large.
Our studies show that the background level should be

kept to B=S & 20 in order to take full advantage of the
benefits of the amplitude analysis. This appears achievable,

TABLE XI. Results for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ, and �
obtained from the Dalitz-plot analysis, where the D�

s1ð2700Þ has
been added to our nominal model. These results are for rB ¼ 0:4,
�B ¼ 0�, and � ¼ 60�.

rB �B (�) � (�)
� 	 � 	 � 	

0.40 0.01 0.8 5.0 59.9 4.3

Dδ
-180 -160 -140

20

40

60

80
° = -157.3µ

° = 7.5σ

FIG. 9. Distribution of fitted results for �D obtained in the
amplitude analysis when fitting with �D as a free parameter. The
mean and width obtained by fitting the distribution to a Gaussian
line shape (solid line) are shown on the plot. The generated value
of �D is �158�.
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even in a hadronic environment. For B=S ¼ 20 the ambi-
guities in the solution still appear at the few percent level;
however, one can study the likelihood contours to deter-
mine whether the solution for any given experiment may
have ambiguities. The results obtained from an experiment
with such a background would need to take this into
account. Note also that these results are for a data sample
roughly equivalent to one nominal year’s data taking at
LHCb, and that effects due to ambiguities would be ex-
pected to be ameliorated with larger data samples.

The results obtained for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ,
and � are given in Table XII. The ambiguities in the
solution discussed above have been ignored in these re-
sults, i.e. the means and widths for B=S 
 10 are obtained
by fitting the region around the true solution to a Gaussian
line shape. The effects of the background on the resolution
are minimal. The resolution of � for B=S ¼ 10 is only 1�
worse than with no background. Even for B=S ¼ 100 the
resolution is only about 60% worse. Thus, the most im-
portant impact of the presence of background events is
their ability to lessen the power the amplitude analysis has
to break the ambiguities found in the quasi-two-body
analysis.

One particularly dangerous form of background can
arise from particle misidentification. Usually, if a pion is

misidentified as a kaon, or vice versa, there is a resulting
shift in any reconstructed invariant mass, allowing these
backgrounds to be identified and rejected. However, in the
B0 ! DKþ�� decay there is a possibility of double mis-
identification with the �� being misreconstructed as a K�
simultaneously with the Kþ being misreconstructed as a
�þ. In this case the invariant-mass shifts would largely
cancel, and the main difference from the distribution for
correctly reconstructed signal events would be a significant
broadening of the resolution. Such effects are expected to
be extremely rare, but since they would result in a distor-
tion of the Dalitz plot and an incorrect flavor assignment
they will require careful study in the experimental analysis.
Similar double misidentification effects can arise in the
reconstruction ofD ! K�. These have been studied in the
context of analyses of B� ! DK� with D ! K��� [34]
and charm mixing [35] at LHCb where it has been found
that a combination of appropriate particle identification
requirements and a veto on the invariant mass calculated
with the mass assignments reversed provides an effective
way to remove the background with only small loss of
signal efficiency.
Another experimental effect which must be taken into

account in a real experimental analysis is the variation of
reconstruction efficiency across the Dalitz plot. Our study
has assumed that the efficiency is flat, but in reality one
would expect the probability to reconstruct successfully a
decay to be lower at the edges of phase space near the
corners of the Dalitz plot. If the shape of the efficiency
function is known, this can be taken into account in the
analysis. However, systematic effects arise since the effi-
ciency is typically measured using Monte Carlo simula-
tions, which inevitably will not give exactly the same
behavior as the data.
It is impossible to give a quantitative estimate of how

large an effect this may be. Nonetheless, there is a strong
qualitative reason to believe that it will not be a major
problem. The key point is that the our amplitude analysis
extracts � from the difference between DK� Dalitz-plot
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FIG. 10. Distributions of fitted values of � in the Dalitz-plot approach, for B=S ¼ 10, 50, 100. These results are obtained with
� ¼ 60�, �B ¼ 0�, and rB ¼ 0:4.

TABLE XII. Results for rBðDK�ð892ÞÞ, �BðDK�ð892ÞÞ, and �
obtained from the Dalitz-plot analysis, with different levels of
background. These results are for rB ¼ 0:4, �B ¼ 0�, and � ¼
60�.

rB �B (�) � (�)
� 	 � 	 � 	

B=S ¼ 0 0.40 0.01 0.8 4.9 59.8 4.4

B=S ¼ 1 0.40 0.01 0.1 5.1 59.8 4.9

B=S ¼ 2 0.39 0.01 �0:8 5.2 61.0 5.0

B=S ¼ 10 0.40 0.01 1.2 5.2 62.1 5.4

B=S ¼ 50 0.40 0.01 �1:5 5.8 59.5 6.2

B=S ¼ 100 0.39 0.01 �1:9 6.0 58.8 7.2
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distributions with the D meson reconstructed in different
decay modes (D ! K� and D ! CP eigenstates). Data/
MC differences can be expected to cancel in the ratio of
Dalitz-plot distributions, unless there is a momentum de-
pendence in the ratio of efficiencies to reconstruct the D
meson in the different final states. Such an effect should be
possible to study using control samples.

VII. SUMMARY

We have presented a feasibility study of an extension to
the recently proposed method to extract the unitarity tri-
angle angle � from amplitude analysis of B ! DK�Dalitz
plots. The analysis includes the cases where the neutral D
meson is reconstructed inCP-even eigenstates as well as in
CKM-favored and CKM-suppressed hadronic decays.
Compared to the previously proposed quasi-two-body
analysis, the amplitude analysis provides (i) at least 50%

better sensitivity to �, (ii) resolution of ambiguous solu-
tions, (iii) much reduced dependence of the sensitivity on
the strong phase �B, and (iv) the possibility to determine
the poorly known parameter �D. The analysis appears to be
relatively robust against mismodeling of the Dalitz plot,
and performs well even when relatively large backgrounds
are present. We conclude that this method appears to be a
highly attractive addition to the family of methods that can
be used to determine �.
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