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We extend the lightcone worldsheet lattice approach to string theory, proposed in 1977 by Giles and me,

to allow for coincident D-branes. We find a convenient lattice representation of Dirichlet boundary

conditions, which the open string coordinates transverse to the D-branes satisfy. We then represent the

sum over all planar open string multiloop diagrams by introducing an Ising spin system on the worldsheet

lattice to keep track of the presence or absence of fluctuating boundaries. Finally we discuss a simple

mean field treatment of the resulting coupled Ising/coordinate worldsheet system. The interplay between

Neumann and Dirichlet boundary conditions leads to a richer phase structure, within this mean field

approximation, than that found by Orland for the original system with only Neumann conditions.
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I. INTRODUCTION

The problem of summing planar diagrams is central to
many issues in theoretical physics, from the large N ap-
proximation to QCD [1] to the relationship of string theory
to quantum field theory as exemplified by the AdS/CFT
correspondence [2]. In the absence of an analytic solution
to this problem, it would be nice to have an approach
amenable to numerical simulations. Over 30 years ago,
Giles and I proposed a way to digitize interacting bosonic
string theory, in its first quantized version, as a sum over
histories on a lightcone worldsheet lattice [3] (GT).
Although inspired by perturbation theory, the resulting
formalism provides a fully nonperturbative dynamics
which reproduces the formal1 perturbation theory when
expanded in powers of the string coupling g. The restric-
tion of this sum over histories to planar open string loops
should be manageable on a computer.

In recent years, my colleagues and I have constructed an
explicit lightcone worldsheet representation of the planar
diagrams of a wide range of matrix field theories [6]. These
constructions rely on fermionic worldsheet ghosts to can-
cel the bulk degrees of freedom of each worldsheet coor-
dinate—the worldsheet systems that reproduce field theory
diagrams are essentially topological. The ensuing negative
signs in the path integrands spell serious difficulties for
numerical simulations of such worldsheet path integrals.
This problem can be avoided by replacing each field quan-
tum with a finite tension open string, bringing us back to
the original GT formalism. Thus we propose that numeri-

cal simulations of planar diagram sums be performed in the
GT formalism at finite string tension, after which conclu-
sions about field theory can be drawn by study of the
infinite tension limit.
All open string coordinates in [3] satisfy free end

(Neumann) boundary conditions. It has long been clear
that D-branes [7] provide the key for arranging that the
infinite tension limit of critical string theory (in 26 or 10
space-time dimensions) yield a quantum field theory in
lower dimensional space-time. D-branes are subspaces on
which open strings end, meaning that the open string
coordinates describing motion perpendicular to the D-
branes satisfy Dirichlet boundary conditions. The purpose
of this article is to explain how such conditions can be
introduced in the GT worldsheet lattice formalism, and to
begin to assess, in the context of a simple mean field
approximation, their impact on the physics of planar dia-
gram summation.
In addition to bringing in Dirichlet boundaries, the GT

lattice formalism also needs to be extended to include
Grassmann coordinates in order to describe the Neveu-
Schwarz (NS) boson model [8,9], Ramond fermions
[10,11], or the superstring [12]. In particular, we have
suggested that the even G-parity Neveu-Schwarz open
string model with SUðNÞ Chan-Paton factors (NSþ ),
which is free of open string tachyons, could be used to
establish a string representation of large N QCD [13,14].
Since the lightcone worldsheet lattice is tailor made for
summing planar diagrams, its extension to cover the NSþ
open string model would provide a promising way to sum
planar diagrams on a computer. Then study of the T0 ! 1
limit should yield new information about large N QCD.
We conclude this introduction with a brief review of the

original GT lattice formalism for bosonic string theory [3].
It starts with a lattice worldsheet path integral for the
lightcone quantized free open string [15],

*thorn@phys.ufl.edu
1Technically Lorentz covariance in the continuum limit re-

quires counterterms to cancel lattice artifacts that arise from
boundary terms in the integration over moduli (see e.g. [4,5]).
Bulk and boundary terms already included in [3] can account for
some (perhaps all) of the necessary counterterms.
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where for simplicity we have taken the discrete unit of � to
be T0a (Pþ ¼ MaT0), with a the discrete unit of � (T ¼
ðN þ 1Þa). Then a drops out of the formulas and the
continuum limit is simply M, N ! 1 with N=M ¼
T0T=P

þ fixed. In the above expression, x0
k � xi

k and

xNþ1
k � xf

k are fixed by the initial and final states.

We have written the potential term VN of the lattice
action appropriate to the open string, with Neumann
boundary conditions which are automatic consequences
of the absence of a ‘‘bond’’ joining the sites ð1; jÞ to the
respective sites ðM; jÞ. The closed string action would be
obtained by simply restoring those bonds.
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More generally, by rearranging the bond patterns in the
potential energy term V of the worldsheet action S, we can
describe any number of closed and open strings. Then
interactions among strings can be achieved by summing
over histories in which the bond patterns change from time
to time [3]. Each appearance or disappearance of a bond is
accompanied by a factor of g, and each bond interchange
by a factor of g2.

This general sum over histories would involve wildly
nonlocal interactions on the world sheet, which would
surely defeat any attempt at numerical evaluation.
However, the numerical prospects are much brighter for
the sum over histories corresponding to planar open string
multiloop diagrams.2 In this case the only changes in bond
patterns would be the appearance or disappearance of
bonds between nearest neighbor sites. Since these changes
are all local on the world sheet, techniques of condensed
matter physics and quantum field theory should apply. For
instance, Orland [16] has applied the technique of mean

field theory to study the physics of this planar diagram

summation.3 He introduced an Ising spin variable sji ¼ �1
to represent the two states ‘‘on’’ (s ¼ þ1) or ‘‘off’’ (s ¼
�1) of each planar bond. Putting Pj

i ¼ ð1þ sji Þ=2, we then
have

hxfje�TP�jxiiPlanar !
Y
i;j

X
Pj
i¼0;1

Z YN
j¼1

YM
i¼1

dxj
i expf�Sðx;PÞg

(5)

Sðx; PÞ ¼ XN
j¼0

XM
i¼1

�
T0

2
ðxjþ1

i � xj
i Þ2 þ

T0

2
Pj
i ðxj

iþ1 � xj
i Þ2

þ �þ �ð1� Pj
i Þ � ðPjþ1

i � Pj
i Þ2 lng

�
: (6)

The terms on the last line account for the coupling constant
g and the bulk (�) and boundary (�) worldsheet counter-
terms. Since we have included a fluctuating bond between
i ¼ 1 and i ¼ M, this expression describes the planar
evolution of a closed string. For the corresponding evolu-
tion of an open string, one simply imposes the constraint

Pj
M ¼ 0.
Although (6) is completely well defined and finite for

fixedM, N, it allows for only the two natural counterterms
that were introduced in [3], and shown to be necessary at
the level of free strings (g ¼ 0). Indeed, the lattice evalu-
ation predicts that the closed and open free bosonic string
ground state energies have the M ! 1 behavior
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where G ¼ P1
n¼0ð�Þn=ð2nþ 1Þ2 � 0:915 965 6 is

Catalan’s constant. In [3] we observed that the divergent
(and non-Lorentz invariant) terms can be absorbed in �
and �. Choosing

� ¼ � 2GðD� 2Þ
�

þOðg2Þ;

� ¼ D� 2

2
lnð1þ ffiffiffi

2
p Þ þOðg2Þ

(9)

gives finite, Lorentz covariant, and correct values for the
free string energy spectrum. Although it was not clearly
stated in [3], we must expect that both of these counterterm
parameters will receive corrections for nonzero coupling
g � 0 in order to maintain Lorentz covariance forD ¼ 26.
Indeed, the one loop corrections in bosonic string theory do

2Incorporating an SUðNÞ ‘‘color’’ symmetry via Chan-Paton
factors, these planar diagrams are singled out by ’t Hooft’s large
N limit [1]. With a canonically normalized gauge coupling gs the
limit holds g2sN fixed. To simplify writing we will absorb a factor
of

ffiffiffiffi
N

p
in our coupling: g ¼ gs

ffiffiffiffi
N

p 3See [17] for a recent alternative treatment of mean field
theory in this context.
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contribute to them. An important open problem, not ad-
dressed in this article, is to resolve whether these two
counterterms suffice to render the loop expansion cova-
riant. If not, any further counterterms must be identified
and incorporated into the formalism.

The rest of the article is organized as follows. In Sec. II
we present our prescription for handling Dirichlet bound-
ary conditions on the lattice. In Sec. III, we represent the
sum over planar diagrams, in which some open string
coordinates satisfy Neumann boundary conditions and
others satisfy Dirichlet boundary conditions, as a sum
over Ising spin configurations, where the Ising spin keeps
track of the fluctuating boundaries. Then in Sec. IV, we
give our implementation of the mean field approximation
to the Ising spin dynamics. Section V concludes the article
with a discussion of our results and problems for the future.

II. DIRICHLET CONDITIONS ON THE
WORLDSHEET LATTICE

For notational clarity we shall use x to describe the
string coordinates satisfying Neumann conditions, and
we shall use y for the string coordinates satisfying
Dirichlet conditions. We first consider a single free string

with Dirichlet conditions yj0 ¼ yjM ¼ 0. The simplest way

to discretize this string is to use the action:
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2
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�
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Note that S0 involves only M� 1 integration variables for
each time slice j. Now consider how to obtain this action
from the closed string action, which involves M integra-
tions for each j, as would be necessary in the sum over
histories. Then, the replacement

ðyj1 � yjMÞ2 þ ðyjM � yjM�1Þ2 ! ðyj1Þ2 þ ðyjM�1Þ2; (11)

encounters the problem that the coordinate yM describes a
spurious zero frequency mode. An easy fix for this is to

include an extra term T0

PN
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Then, since the frequency of this added mode is Oð1Þ in
lattice units, the mode described by yjM is irrelevant in the
continuum limit. But retaining it allows an efficient de-
scription of the creation and destruction of Dirichlet

boundaries without changes in the number of degrees of
freedom.
Before turning to that, we give the explicit evaluation of

the path history sum for the propagation of a free Dirichlet
string. Define

�n � 4sin2
n�

2ðN þ 1Þ ; n ¼ 1; 2; . . . ; N (13)

�m � 4sin2
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2M
; m ¼ 0; 1; . . . ;M� 1; (14)

which are the respective eigenvalues of the kinetic and
potential bilinear forms occurring in SN. The eigenvalues
of the potential bilinear form appearing in SD are the �m,
m ¼ 1; . . . ;M� 1, plus the eigenvalue 2 for the extra

coordinate yjM. For economy of writing it is convenient to
put �M � 2 and to define the frequencies
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Then the path integral for a Dirichlet string propagating in
d dimensions over time T ¼ ðN þ 1Þa from yi ¼ 0 to yf ¼
0 using (12) is
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(17)

The first two terms, one linear inM and the other indepen-
dent of M, contribute divergent terms to the continuum
P� ¼ EM=a and violate Lorentz invariance. But they can
be canceled by the bulk and boundary counterterms re-
spectively. Here we see explicitly that the effect of the yM
mode we added is simply to modify the coefficient � of the
boundary counterterm. Taking the case ofD� 2 Neumann
and 26�D Dirichlet open string coordinates, we see that
we should have
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For D ¼ 4 this is � ¼ �3:91þOðg2Þ. Curiously, at g ¼
0, � stays negative for D< 10 and is positive for D � 10.
For D ¼ 10, � � 0:041þOðg2Þ.

III. SUMMING PLANAR DIAGRAMS

We turn now to the problem of representing the sum of
planar diagrams by introducing the same system of Ising

spins sji ¼ �1 or equivalently Pj
i ¼ ð1þ sji Þ=2 ¼ 0, 1

used in the case of Neumann conditions [16]. Associate

each coordinate yji with the corresponding P
j
i and let P

j
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0 when the Dirichlet condition applies to yji . Then we
should write the potential term as
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Then the lightcone worldsheet action that sums the planar
diagrams of Dirichlet open strings would be
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Notice that this implementation of Dirichlet conditions has

the feature that if every site is Dirichlet, i.e. Pj
i ¼ 0 for all i,

j, then the system is just M independent oscillators with
frequency ofOð1Þ, and the continuum limit would show no
interesting physics.

In order to describe D ¼ 4 dimensional physics with a
critical string theory in 26 (bosonic) or 10 (Neveu-
Schwarz) space-time dimensions, one can, as in the devel-
opment of the AdS/CFT correspondence [2], introduce a
stack of N coincident D3-branes, which are 3þ 1 dimen-
sional subspaces on which open strings end. Let us call the
4 coordinates parallel to the D3-branes x� and the coor-
dinates perpendicular to the D3-branes yI. For the bosonic
string I takes 22 values and for the Neveu-Schwarz string it
takes on 6 values. The coordinates xð�; �Þ for an open
string satisfy Neumann boundary conditions @x=@� ¼ 0
whereas the coordinates y satisfy Dirichlet boundary con-
ditions yI ¼ 0. Then a possible worldsheet lattice setup
would be
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The sum over planar diagrams is accomplished by sum-

ming over all spin configurations Pj
i ¼ 0, 1. It is worth

pointing out the physical situations represented by the

extreme spin configurations. If all Pj
i ¼ 1 The x’s and y’s

appear on an equal footing and represent a single closed
string moving in 25 spatial dimensions (for the bosonic

string). In the opposite extreme, with all Pj
i ¼ 0, the x’s see

no potential and represent M free Newtonian particles
moving in 2 spatial dimensions, and the y’s represent M
such particles bound by a harmonic oscillator potential to
the point y ¼ 0.
The parameters � and � characterize the bulk and

boundary counterterms, respectively. They will depend
on g in a way that we do not know a priori. It may well
be that counterterms beyond these will be required to
ensure Lorentz invariance, though there remains a slender
hope that these will suffice. A study of multiloop correc-
tions in perturbation theory will be needed to resolve this
issue. As a working hypothesis we shall assume in this
article that only these counterterms play a role.

IV. MEAN FIELD THEORY

Mean field theory provides a simple method to under-
stand the physics of large systems, although it can be
misleading especially near critical points. A convenient
framework for applying mean field theory to our spin

system begins with the addition of a source term
P

ij�
i
jP

j
i

to the action S. Then, writing the path integral in the

presence of � as Zð�Þ � e�F ð�Þ, the expectations and
correlators of the P’s can be obtained as derivatives of F
with respect to the �’s. Defining

�j
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@F
@�i

j

; (23)
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@A

@�j
i

¼ ��i
j: (24)

Thus the possible values of � are stationary points of the
effective action A in the absence of sources.
Up to this point no approximations have been made. The

mean field approximation consists in replacing the coef-
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ficients of the coordinate terms in the action by their
expectation values:
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To do this systematically, one can write S � S0ð�Þ þ
�Sð�Þ and treat �Sð�Þ as a perturbation. Dropping �S
is tantamount to the mean field approximation. From this
point of view � could be chosen to be anything, but it
should be chosen to make the perturbative corrections as
small as possible. Dropping �S decouples the coordinate
path integral from the spin sum, so that the whole path
integral factors into three parts Z ¼ ZxZyZs, or F ¼
F x þF y þF s with
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Specializing to static sources �j ¼ �, the last sum can be

thought of as the Nth power of the 2� 2 matrix
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The contribution of each eigenstate of T to zs is weighted
by tN�, and since N ! 1 in the continuum limit, the þ
eigenstate will dominate:Y
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Since the coordinate integrations are decoupled from the
spin sums at zeroth order in the mean field approximation,
it follows (for static sources) that

hPj
i i0 ¼ � @

@�i lntþð�iÞ

¼ 1

2

�
1� sinhð�i � �Þ=2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh2ð�i � �Þ=2þ g2
p �

(32)

hPj
iP

j
iþ1i0 ¼ ðhPj

i i0Þ2: (33)
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We have added the subscript 0 to � on the right of the last
equation to emphasize that the relation between � and �,
which we shall use to eliminate � in favor of � in the spin
part of the effective action, holds only at zeroth order and
neglects the back-reaction of the coordinate fields—the
essence of the mean field approximation. The remaining
two terms in F are determined at zeroth order by
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Here we restrict attention to the planar (with respect to
open string loops) evolution of the closed string, so that
periodic boundary conditions are appropriate. Then by
worldsheet translational invariance we can expect that the
mean field in the system ground state is uniform over the

world sheet �j
i ¼ �. It is then sufficient to take a uniform

source: �i
j ¼ �. We are also interested in the continuum

limit M, N ! 1, so the dominant contribution to the
effective action, A ¼ F �MðN þ 1Þ��, will be the
bulk term MðN þ 1ÞV proportional to the area. The
mean field will be determined by minimizing this term,
i.e. by minimizing the effective potential V ð�Þ ¼ V s þ
V x þV y. We next list the three contributions toV in the

mean field approximation, including the ��� �
��0ð�Þ� term in the spin contribution.4

4The technical details of their derivation can be gleaned from
the appendices of [18,19]. Note that the condition �0ð�Þ ¼ 0
determines a stationary point of V s not V . By minimizing the
total V we take the back-reaction due to coordinate fluctuations
into account in an average way.
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V s ¼ F sð�0ð�ÞÞ
MðN þ 1Þ � �0ð�Þ� ! � lntþ � �0ð�Þ�

¼ �ð1��Þ þ ð1� 2�Þ ln
�
gð1� 2�Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2ð1� 2�Þ2

4�ð1��Þ

s �
� ln

�
g

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ð1��Þp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ g2ð1� 2�Þ2

4�ð1��Þ

s �
(37)

V x ¼ F x

MðN þ 1Þ ! ðD� 2Þ
Z 1

0
dxsinh�1ð ffiffiffiffi

�
p

sin�xÞ

¼ 2ðD� 2Þ
�

X1
n¼0

ð�Þn�nþ1=2

ð2nþ 1Þ2 (38)

V y ¼
F y

MðN þ 1Þ

! ð26�DÞ
Z 1

0
dxsinh�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2
ð1��2Þ þ�2sin2�x

s
:

(39)

Note that all of the dependence on the coupling g and the
counterterm parameter � is carried by V s. As an illustra-
tion of this dependence we show a plot of V s for g ¼ 1
and three different values for � in Fig. 1 and for � ¼ 0 and
three different values for g in Fig. 2. Plots of V x and V y

are shown separately in Fig. 3, and combined (for the case

D ¼ 4) in Fig. 4. The nonmonotonic behavior of this last
graph is a direct consequence of the opposite monotonic
behavior for Dirichlet and Neumann coordinates evident in
Fig. 3. These curves will be the same for all values of g and
�. Of course the combined plot Fig. 4 will depend on D
which controls the relative weight of the coordinates with
Neumann and Dirichlet boundary conditions. Finally in
Figs. 5 and 6, we plot the total effective potential V ¼
V x þV y þV s for the same values of � and g used in

Figs. 1 and 2.
In the mean field approximation, the value of � controls

the effective tension of the string. To see how, we write the
effective action in the continuum limit:

Aeff ! 1

2

Z
d�d�

�
_x2 þ _y2 þ T2

0ð�x02 þ�2y02Þ

þ 2

a2
ð1��2Þy2

�
: (40)

For oscillations parallel to the D-branes (in the x direc-
tions) we have Teff

k ¼ T0

ffiffiffiffi
�

p
, and for oscillations perpen-

dicular to the D-branes we have Teff
? ¼ T0�. The

oscillations perpendicular to the brane also have an effec-

tive mass meff ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1��2Þp

=a. For generic �< 1 this
mass is divergent in the continuum limit and would have
the effect of suppressing oscillations perpendicular to the
D-branes. For these oscillations to cost finite energy, would
require � ¼ 1þOða2Þ as a ! 0.

–1

–0.5

0

0.5
V_s

0.2 0.4 0.6 0.8 1
phi

FIG. 1. The spin contribution to the effective potential V s ¼
Vs versus � (phi), showing the case of g ¼ 1 and � ¼ �1
(lowest curve) � ¼ 0 (middle curve) and � ¼ 1 (highest curve).

–2

–1.5

–1

–0.5

0

V_s

0.2 0.4 0.6 0.8 1
Phi

FIG. 2. The spin contribution to the effective potential V s ¼
Vs versus � (phi), showing the case of � ¼ 0 and g ¼ 0:1
(highest curve) g ¼ 1 (middle curve) and g ¼ 10 (lowest curve).
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The plots of the effective potential in Figs. 5 and 6 all
show that both endpoints � ¼ 0, 1 are local minima. The
reason can be seen analytically from the endpoint behavior

ofV . In the� ! 0 limit,V x approaches zero with infinite
positive slope, V y approaches its limiting value with zero

slope, and V s approaches 0 with a negative infinite slope.

V 0
x �D� 2

�
ffiffiffiffi
�

p ; V 0
y � 0;

V 0
s �� ln

1

�
; for � ! 0:

(41)

Clearly,V 0
x dominates as long as D> 2, soV ð�Þ rapidly

increases as � increases from 0. At the other endpoint,
� ¼ 1, V x approaches its value at finite slope, V y ap-

proaches its value at negative infinite slope, and V s ap-
proaches its value at positive infinite slope.

V 0
x �D� 2

4
; V 0

y �� 26�D

2�
ln

1

1��
;

V 0
s � ln

1

1��
; for � ! 1:

(42)

Here V y, V s are comparable and we conclude that

V 0 � � 26�D� 2�

2�
ln

1

1��
; for � ! 1; (43)

and V will increase from its value as � decreases from 1
as long as D< 26� 2�. It follows that, for small to
moderate coupling, only the endpoints � ¼ 0, 1 are can-
didate minima of the effective potential. Which one is
actually lower in energy is controlled by the value of �,

0.1

0.2

0.3

0.4

0.5

V_x

0 0.2 0.4 0.6 0.8 1
phi

0.59

0.6

0.61

0.62

0.63

0.64

0.65

V_y

0 0.2 0.4 0.6 0.8 1
phi

FIG. 3. The coordinate contributions to the effective potentialV x ¼ ðD� 2ÞVx,V y ¼ ð26�DÞVy versus � (phi); Neumann is on
the left and Dirichlet is on the right.

14.2

14.4

14.6

14.8

15

15.2

V_xy

0 0.2 0.4 0.6 0.8 1
phi

FIG. 4. The total coordinate contribution to the effective po-
tential V x þV y ¼ Vxy versus � (phi), combined according to

the case D ¼ 4.
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which is not known a priori for general g. From the free
open string calculation we know that � � �3:91þOðg2Þ
forD ¼ 4. For a value of � this negative,� ¼ 0 is favored
over � ¼ 1 by a very wide margin for small to moderate
couplings. Keeping� fixed at this value, one would have to
go to g > 7 for a minimum with 0<�< 1 to develop.
Since the ‘‘bare’’ one loop correction comes entirely from
second order perturbation theory, it should lower the zero
coupling energy and hence require the Oðg2Þ contribution
to � to be positive, making it a little less negative. In any
case, we can safely say that mean field theory predicts that
the effective string tension will vanish in the system ground
state at very weak coupling g 
 1.

For g sufficiently large at fixed �, a local minimum in
the effective potential develops at some �0 between 0 and
1. However, at the critical coupling where V 00ð�0Þ van-
ishes, this local minimum has higher energy than one or
both of the two endpoint minima, so this minimum initially
describes a metastable phase. Near the critical point this
metastable phase would support finite energy spin waves,
signifying the emergence of a new Liouville-like degree of
freedom on the world sheet. But eventually for larger
coupling, this new minimum could become a global mini-
mum and the system ground state would support a finite
string tension. However, since we do not know � for g ¼
Oð1Þ, we cannot rule out the possibility that � becomes
more and more negative as g grows. If this happens the
local minimum just described may never become a global

one. Thus even in the mean field approximation, the jury is
still out on the question of whether our lattice model of the
bosonic string will actually support a finite string tension.

V. DISCUSSION AND CONCLUSIONS

In this article we have shown how to extend the lattice
worldsheet formalism for the bosonic string to allow for D-
branes, and we have applied a mean field approximation to
the resulting lattice model. Although the mean field analy-
sis allowed us to map out the possible phases of the system,
our a priori ignorance of the value of �ðgÞ leaves us
uncertain about which phase is actually realized when g �
Oð1Þ. However, the mean field analysis is unequivocal
about the weak coupling phase: in it the mean field � ¼
0 and the string tension is quenched to zero.
There are many levels at which our results must be

regarded as provisional. First is the question: does the
lattice formalism accurately represent the bosonic string
perturbation theory? The answer is yes only if the bulk and
boundary counterterms we have allowed for are sufficient
to absorb all Lorentz covariance violating artifacts due to
the lattice cutoff. The evidence for this is so far very
meager. These counterterms suffice to render the spectrum
and tree scattering amplitudes Lorentz covariant. At one

13

13.5

14

14.5

15

A

0 0.2 0.4 0.6 0.8 1

phi

FIG. 6. The effective potential V ¼ A versus � (phi), show-
ing the case of � ¼ 0 and g ¼ 0:1 (highest curve) g ¼ 1 (middle
curve) and g ¼ 10 (lowest curve).

14

14.5

15

15.5

A

0 0.2 0.4 0.6 0.8 1
phi

FIG. 5. The effective potential V ¼ A versus � (phi), show-
ing the case of g ¼ 1 and � ¼ �1 (lowest curve) � ¼ 0 (middle
curve) and � ¼ 1 (highest curve).
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loop, we have analyzed the open string propagator and
shown that for this specific one loop process the counter-
terms suffice. It should not be too difficult to check this
conclusion for higher point one loop amplitudes, but this
has not yet been done. We have no information on this
issue at two loops and beyond. Clearly more investigation
of this question is called for.

Even if the worldsheet lattice system is not Lorentz
covariant because of the need for more complicated
counter-terms, it remains a well-defined two dimensional
system of scalar fields interacting with an Ising spin sys-
tem. The physics of this system can be analyzed in its own
right. In this article we have begun this analysis within the
mean field approximation. The analysis suggests that the
system exhibits three distinct phases: a phase with zero
effective string tension (� ¼ 0), a phase with maximal
effective tension T0 (� ¼ 1) and a disordered spin phase,
only stable at sufficiently large coupling, with reduced
effective tension T0

ffiffiffiffi
�

p
(0<�< 1). This intermediate

phase could potentially support a meaningful infinite ten-
sion limit in which the effective tension stays finite. In such
a limit the planar string diagrams would go over into planar
quantum field theory diagrams, and one might gain insight
into the large N limit of certain matrix field theories. All of
these conclusions depend on the validity of the mean field
approximation, which by its very nature is somewhat du-
bious. But there are other approaches to analyzing this
system. In particular, Monte Carlo methods seem particu-
larly apt, since the path integrand is positive definite and
local. Such an analysis to test the mean field conclusions
would be very welcome.

Finally, we have to recognize that the tachyon in the
bosonic open string theory obscures the meaning of the
open string loop expansion our model is meant to repre-
sent. By itself the tachyon could simply mean that the
system is being studied in an unstable vacuum, and it might
disappear once a stable vacuum is found. Since our lattice
model is a perfectly well-defined physical system, its
physics could provide information about the correct stable
ground state. Indeed, the indication, from the mean field
approximation at weak coupling, that the string tension is
quenched to zero could be the ultimate fate of the tachyon
instability: the bosonic open string would then be unstable
to decaying into an infinite number of string bits [20]. If
this is the case, the open bosonic string theory would not be
a good starting point for understanding large N gauge
theory. However, the even G-parity sector of the Neveu-
Schwarz model is free of open string tachyons and pro-
vides a more promising approach to large N QCD [13,14].
This possibility makes the extension of the lightcone lattice
worldsheet formalism to include Grassmann variables a
particularly desirable next step.
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