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We study correlation functions of single-cycle chiral operators in SymNT4, the symmetric product

orbifold of N supersymmetric four-tori. Correlators of twist operators are evaluated on covering surfaces,

generally of different genera, where fields are single valued. We compute some simple four-point

functions and study how the sum over inequivalent branched covering maps splits under operator product

expansions. We then discuss extremal n-point correlators, i.e. correlators of n� 1 chiral and one antichiral

operators. They obey simple recursion relations involving numbers obtained from counting branched

covering maps with particular properties. In most cases we are able to solve explicitly the recursion

relations. Remarkably, extremal correlators turn out to be equal to Hurwitz numbers.
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I. INTRODUCTION

In this paper we apply the technology developed in a
companion article [1] to study correlation functions of
single-cycle twist operators in SymNT4, the symmetric
product orbifold of N supersymmetric four-tori. We focus
on extremal correlators, which by definition are correlators
of n� 1 chiral and one antichiral operators, where the
notion of chirality is that of a (2, 2) subalgebra of the full
(4, 4) supersymmetry.

An important motivation for this work is the holographic
duality between the symmetric product of T4 and type IIB
string theory on AdS3 � S3 � T4 [2].1 The early checks of
this duality included comparison of the moduli spaces [7,8]
and the spectra of both theories [9–12]. Recently, much
progress was made in comparing correlation functions. The
structure constants of single-cycle operators in the chiral
ring of the symmetric product were computed early on in
[13] and, for a subset of these operators they were extended
in [14,15] to the full 1=2 Bogomol’nyi-Prasad-
Sommerfield (BPS) SUð2Þ multiplet. These three-point
functions were exactly reproduced in the string theory/
supergravity dual [16–19] (see also [20–22]), which also
predicts some correlators not yet computed in the symmet-
ric product [18].

This agreement between bulk and boundary correlators
was at first surprising because the computations on the
string and conformal field theory (CFT) FT sides are
performed at very different points in the moduli space
[7,8]. It can be explained by a nonrenormalization theorem
proved in [23]. The nonrenormalization theorem also holds
for extremal correlators (as first conjectured in [19]), so we

expect that they can be successfully compared on both
sides of the AdS3=CFT2 correspondence as well.
Extremal correlators play a special role in the anti-

de Sitter/conformal field theory (AdS/CFT) correspon-
dence. Not only are they not renormalized: they offer a
unique window into the bulk/boundary dictionary, as we
review at the end of this introduction. The main purpose of
this paper is to compute extremal correlators of (anti)chiral
twist fields on the CFT side of the duality. Explicit com-
putations in symmetric product orbifolds can be notori-
ously difficult (see e.g. [14,15,24]). As usual in orbifold
theories, determining a correlator involves finding
branched covering maps, with branching points fixed by
the position and type of the different twist fields. The non-
Abelian character of the permutation group implies that
starting from three-point functions several branched cover-
ings, generally of different genera, contribute to a given
correlator.
In general finding the relevant covering maps is a chal-

lenging task to pursue analytically. When the covering
surface is a sphere, which provides the leading contribution
for large N, the covering maps are quotients of polyno-
mials whose coefficients depend on the length of the cycles
in the correlator (see [1] for a thorough discussion).
However, extremal correlators are special. First, their

genus zero covering maps are among the simplest: either a
polynomial or a polynomial divided by a monomial.
Moreover, in the former case the only contribution to the
correlators comes from the sphere. Second, extremal cor-
relators have trivial spacetime dependence, and only the
overall constant needs to be determined. One of our main
results is that finding this constant does not require detailed
knowledge of the branched covering maps. What is needed
are the total number of maps and the numbers of maps
contributing to the operator product expansions (OPEs)
between two operators. As we will show, these numbers
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enter in simple recursion relations that determine all the
extremal correlators of single-cycle operators.

The problem of computing extremal correlators thus
reduces to counting branched covering maps with given
branching structure (and other additional restrictions).
These enumeration questions have a long history [25]
and are generally referred to as the ‘‘Hurwitz problem.’’
The Hurwitz problem has an equivalent reformulation in
terms of enumerating sets of elements of SN that multiply
to the identity. Symmetric product orbifolds provide a very
intuitive picture of this equivalence [1].

We are able to compute most extremal correlators of
single-cycle twist operators, by finding the solutions to the
relevant enumeration problems when the covering surface
is a sphere. The final expressions have a remarkable prop-
erty: after a certain rescaling of the (anti)chiral operators,
all correlators are equal to the relevant Hurwitz number,
i.e. to the total number of maps from the covering surface!
We conjecture that this result holds also for extremal
correlators of multicycle twist operators. We emphasize
that the simple final answer arises nontrivially after com-
bining partial results. As always, miracles of this kind call
for a deeper explanation. We suspect that a topologically
twisted version of the symmetric orbifold CFT will be the
natural framework to understand why extremal correlators
compute Hurwitz numbers. We note in this respect that a
topologically twisted version of the world sheet theory
with AdS3 � S3 target [26] computes correlators of space-
time chiral primary operators. It would be interesting to see
if the methods of [26] can be used to simplify the calcu-
lation of extremal correlators on the string theory side.

We conclude this introduction with some general re-
marks about the role of extremal correlators in the AdS/
CFT correspondence.2 It is worth recalling the situation in
the AdS5=CFT4 instance of the duality. Extremal correla-
tors in N ¼ 4 SYM (and in the dual IIB string theory on
AdS5 � S5) are also believed to obey a nonrenormalization
theorem. Evidence for their protection came first from their
calculation on the supergravity side [31], which gives a
result proportional to the free-field expression (whereas a
nontrivial dependence on the cross ratios would be a priori
expected), and it was confirmed by explicit perturbative
calculations on the field theory side [32], as well as by
formal arguments using N ¼ 2 harmonic superspace
[33,34]. See also [35–37] for related work. What makes
extremal correlators especially interesting is not just their
protection, but the fact that they are uniquely sensitive to
the color structure of operators. In N ¼ 4 super Yang-
Mills (SYM) chiral primary operators of charge k (under a
Uð1Þ � SUð4Þ subgroup the R symmetry) are linear com-
binations of the form

TrZk þ 1

N

X
‘

a‘TrZ
k�‘TrZ‘ þ 1

N2

X
‘1;‘2

a‘1‘2TrZ
k�‘1�‘2

� TrZ‘1TrZ‘2 þ . . . : (1.1)

If the coefficients a‘1...‘m are taken to be independent of N,

each term in the sum has the same large N scaling (since
each trace contributes a factor of N). However, when
computing large N correlation functions, the usual facto-
rization arguments imply that generically only the single-
trace piece of the operator contributes. Extremal correla-
tors are the exception to this rule: the multitrace admix-
tures contribute at the same order [31]. The dual statement
on the gravity side is that extremal correlators are uniquely
sensitive to boundary terms, which can instead be ne-
glected in the nonextremal cases [31].
Finding the precise dictionary between bulk states and

boundary operators requires knowing which precise ad-
mixture of single and multitrace operators map to single-
particle states in the bulk. Extremal correlators offer a
window to find this precise dictionary. It was found in
[31] by a careful evaluation of supergravity boundary terms
in extremal three-point functions in AdS5 � S5 that at
leading order in N one can match single-trace operators
of N ¼ 4 SYM to bulk single-particle states: in other
terms a‘ ¼ Oð1=NÞ. By contrast in little string theory the
holographic dictionary requires mapping single string
states with admixtures of the form (1.1) with a‘1...‘m of

order one [38].
In the symmetric product orbifold, twist operators are

classified by conjugacy classes of the symmetric group SN ,
i.e. by their cycle structure – with the single-cycle opera-
tors playing a somewhat similar role as the single-trace
operators in a gauge theory. In AdS3=CFT2, the agreement
between the string theory and the field theory calculations
of three-point functions works by postulating the naive
correspondence between single-strings and single-cycles
[16–18] (in other terms the analogue of a‘ must be as-
sumed to be zero at large N to find agreement). Most
supergravity extremal three-point correlators also match
assuming the naive dictionary [19]. The matching of some
doubly exceptional supergravity three-point correlators
(extremal three-point correlators containing states that
saturate the Breitenlohner-Freedman bound) appears in-
stead to require an order-one admixture of single and
double-cycles [19].3 We hope that the extremal n-point
correlators computed in this paper will be useful in sharp-
ening the bulk-to-boundary dictionary.

2It is also interesting to note that in the context of
Gopakumar’s approach to string duals of free-field theories
[27] extremal correlators play a (technically) preferred role
due to the relative simplicity of obtaining them [28–30].

3Alternatively, this may just indicate a subtlety in the naive
supergravity calculation, which was performed by analytic con-
tinuation away from extremality. A careful analysis of super-
gravity boundary terms is necessary to confirm the validity of the
analytic continuation procedure, indeed we would expect bound-
ary terms to be especially subtle for states sitting exactly at the
Breitenlohner-Freedman bound.
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The paper is organized as follows: In Sec. II, we review
the basic observables and interactions in the single-cycle
sector of the chiral ring. In Sec. III, we compute some
nonextremal four-point functions and extract useful les-
sons about the structure of the OPE in symmetric product
orbifolds. In Sec. IV, we compute extremal correlators of
single-cycle operators, discover that they compute Hurwitz
numbers, and present a general conjecture for arbitrary
extremal correlators. Two appendices collect technical
results used in the body of the paper.

II. SINGLE-CYCLE STATES IN THE CHIRAL RING

The symmetric product orbifold SymNT4 is obtained by
considering N copies of T4 and identifying the coordinates
under the action of the permutation group SN . Each copy of
T4 has bosonic coordinates Xi

I with real fermionic partners
�i
I, where i ¼ 1, 2, 3, 4 and I ¼ 1; . . . ; N.4 The basic

observables of a symmetric product orbifold are the twist
fields �½g�, labeled by a conjugacy class [g] of the permu-

tation group. Conjugacy classes with one nontrivial cycle
of length n will be denoted by [n]. Clearly the OPE of two
single-cycle twist-fields gives both single-cycle and mul-
ticycle operators, a fact that will play a prominent role in
the calculation of extremal correlators (see Sec. IV).

‘‘Gauge-invariant’’ twist fields �½g� can be constructed

from ‘‘gauge-non-invariant’’ ones, �g, associated to a

group element g 2 SN and not to a conjugacy class.
Single- and double-cycle group elements have the form

gsingle ¼ ð12 . . . nÞ; (2.1)

gdouble ¼ ð12 . . . n1Þðn1 þ 1 . . . n1 þ n2Þ; (2.2)

and similarly for higher-cycle operators. This representa-
tion indicates on which of the N elements the cyclical
permutations act, and in which order. We refer to the set
of values of I on which g acts as ‘‘colors’’ of an element g.
The operator �gðz; �zÞ is defined as a ‘‘defect’’ imposing the

following monodromies on the different copies of the
fields:

Xi
Iðe2�izÞ�gð0Þ ¼ Xi

gðIÞðzÞ�gð0Þ; (2.3)

and similarly for the fermionic fields. Single-cycle ‘‘gauge-
invariant’’ operators are obtained by averaging over the
group orbit,

�½n� � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nN!ðN � nÞ!p X

h2SðNÞ
�h�1ð12...nÞh; (2.4)

where the prefactor gives the normalization

h�½m�ð0Þ�½n�ðzÞi ¼ �mn

jzj2�n
: (2.5)

There is a similar definition for double-cycle operators.
The operators (2.4) have conformal dimension (see e.g.
[24])

�n ¼ 6

24

�
n� 1

n

�
; (2.6)

where the 6 in the numerator is the central charge of each
copy of supersymmetric T4.
The (anti)chiral operators are built by dressing the twist

fields (2.4) with invariant contributions from the fermionic
sector to satisfy the (anti)chiral relationship � ¼ �Q,
where Q is the charge under the Uð1Þ of the N ¼ 2
subalgebra. There are three types of chiral operators:

Oð0;0Þ
n , Oða; �aÞ

n ða; �a ¼ 1; 2Þ, and Oð2;2Þ
n , corresponding to 0,

1, and 2-forms in T4, respectively, with n being the length
of the permutation cycle. We will consider only operators
whose holomorphic and antiholomorphic quantum num-
bers are equal, but it is easy to extend our results to

operators of mixed type, e.g. Oð0;2Þ
n .

More explicitly, the four real holomorphic fermions of
T4 can be combined, in each copy I, into two complex
fermions c 1

I , c
2
I , and bosonized as

c 1
I ¼ ei�

1
I ; (2.7)

c 2
I ¼ ei�

2
I ; I ¼ 1; . . . ; N: (2.8)

The Uð1Þ current of the N ¼ 2 algebra is

J ¼ i

2

XN
I¼1

@�1
I þ @�2

I : (2.9)

We define first the gauge-non-invariant chiral operators,

oð0;0Þð12...nÞ ¼ eiððn�1Þ=2nÞPn
I¼1

ð�1
Iþ�2

Iþ ��1
Iþ ��2

I Þ�ð12...nÞ; (2.10)

oða¼1; �a¼1Þ
ð12...nÞ ¼ eiððnþ1Þ=2nÞPn

I¼1
ð�1

Iþ ��1
I Þþiððn�1Þ=2nÞPn

I¼1
ð�2

Iþ ��2
I Þ

� �ð12...nÞ; (2.11)

oða¼2; �a¼2Þ
ð12...nÞ ¼ eiððn�1Þ=2nÞPn

I¼1
ð�1

Iþ ��1
I Þþiððnþ1Þ=2nÞPn

I¼1
ð�2

Iþ ��2
I Þ

� �ð12...nÞ; (2.12)

oð2;2Þð12...nÞ ¼ eiððnþ1Þ=2nÞPn
I¼1

ð�1
Iþ�2

Iþ ��1
Iþ ��2

I Þ�ð12...nÞ; (2.13)

and the gauge-invariant operators are obtained by summing
over the group orbit as in (2.4),

Oð0;0Þ
n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nN!ðN � nÞ!p X
h2SðNÞ

oð0;0Þ
h�1ð12...nÞh; (2.14)

4For more details on symmetric product orbifolds we refer the
reader to [1] and references therein. For more details on the
chiral ring of the symmetric product of T4 see [13].
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Oða; �aÞ
n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nN!ðN � nÞ!p X
h2SðNÞ

oða; �aÞ
h�1ð12...nÞh; (2.15)

Oð2;2Þ
n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nN!ðN � nÞ!p X
h2SðNÞ

oð2;2Þ
h�1ð12...nÞh: (2.16)

The conformal dimensions and charges are

�0
n ¼ Q0

n ¼ n� 1

2
; (2.17)

�a
n ¼ Qa

n ¼ n

2
; (2.18)

�2
n ¼ Q2

n ¼ nþ 1

2
; (2.19)

and similarly for the antiholomorphic sector. The anti-

chiral operators Oð0;0Þy
n , Oða; �aÞy

n , Oð2;2Þy
n are obtained by

reversing the sign in the exponents in (2.10), (2.11),
(2.12), and (2.13). The theory has actually N ¼ 4 super-
symmetry, and the (anti)chiral states are the (lowest)high-
est weights in an SUð2Þ multiplet.

The fusion rules of the chiral ring are [13]

ð0; 0Þ � ð0; 0Þ ! ð0; 0Þ þ ð2; 2Þ;
ð0; 0Þ � ð2; 2Þ ! ð2; 2Þ;
ð0; 0Þ � ða; aÞ ! ða; aÞ;
ða; aÞ � ða; aÞ ! ð2; 2Þ:

(2.20)

These rules are easy to obtain by combining the composi-
tion law of the permutation group and the conservation of
Uð1Þ charge. To leading order in 1=N the five structure
constants corresponding to the above OPEs are [13]

hOð0;0Þy
n3 Oð0;0Þ

n2 Oð0;0Þ
n1 i ¼

�
1

N

�
1=2 ðn3Þ3=2

ðn2n1Þ1=2
; (2.21)

hOð2;2Þy
n3 Oð2;2Þ

n2 Oð0;0Þ
n1 i ¼

�
1

N

�
1=2 ðn2Þ3=2

ðn3n1Þ1=2
; (2.22)

hOðb; �bÞy
n3 Oða; �aÞ

n2 Oð0;0Þ
n1 i ¼ �ab� �a �b

�
1

N

�
1=2 ðn3n2Þ1=2

ðn1Þ1=2
; (2.23)

hOð2;2Þy
n3 Oða; �aÞ

n2 Oðb; �bÞ
n1 i ¼ �ab� �a �b

�
1

N

�
1=2 ðn2n1Þ1=2

ðn3Þ1=2
; (2.24)

hOð2;2Þy
n3 Oð0;0Þ

n2 Oð0;0Þ
n1 i ¼

�
1

N

�
1=2 1

ðn3n2n1Þ1=2
: (2.25)

Conservation of Uð1Þ charge imposes the relation n3 ¼

n1 þ n2 � 1 in all the cases, except in (2.25), where we
have n3 ¼ n1 þ n2 � 3.
Consider a correlator of gauge-invariant operators

(ignoring the fermionic dressing and normalization fac-
tors),

�Yp
j¼1

�½nj�ðzj; �zjÞ
�
� X

hj2SðNÞ

�Yp
j¼1

�hjð12...njÞh�1
j
ðzj; �zjÞ

�
:

(2.26)

A term in this expansion will be nonzero only if the product
of its group elements in a fixed order5 satisfies,

ðnpÞðnp�1Þ . . . ðn1Þ ¼ 1; (2.27)

where ðnjÞ � hjð12 . . . njÞh�1
j .

Some terms of the sum (2.26) will be ‘‘disconnected,’’
namely, the p-point function splits into two or more inde-
pendent factors with no common colors, such as

�Yq
j¼1

�hjgjh
�1
j
ðzj; �zjÞ

�
conn

� Yp
j¼qþ1

�hjgjh
�1
j
ðzj; �zjÞ

�
conn

:

(2.28)

Each term in the expansion (2.26) has a certain number of
active colors, which we denote by c. For example, in a
three-point function, the term

h�ð4321Þ�ð34Þ�ð123Þi (2.29)

has c ¼ 4. It is convenient to organize the connected terms
in the sum (2.26) into groups of terms with fixed number of
colors �Yp

i¼1

�½ni�ðzi; �ziÞ
�
conn:

¼ X
c

RcðniÞ; (2.30)

such that each Rc is a sum of terms

RcðniÞ ¼ Fcðni; NÞXHc

j¼1

h�np . . .�n1ij; (2.31)

with a fixed c. Hc is the number of distinct ways of
satisfying (2.27), up to a relabeling of colors reflected in
the symmetry factors Fcðni; NÞ, which can be computed
exactly (see [1] for details). These symmetry factors en-
code the dependence of the correlators on N.
The terms in (2.31) are computed, as usual in orbifolds,

by going to the covering surface(s) where operators are
single valued. The genus g of the covering surface is fixed
by the Riemann-Hurwitz formula

g ¼ 1

2

Xp
j¼1

ðn� 1Þ � cþ 1: (2.32)

5It is convenient to choose this order to coincide with the radial
ordering of the operators in the correlator (see [1] for details).
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Thus, we see that the sum over c in (2.30) is equivalently a
sum over the genera of the covering surfaces. For every g
the symmetry factor scales at large N as (see e.g. [1])

Fcðni; NÞ � N1�g�ðp=2Þ; (2.33)

which shows that the leading terms in (2.30) come from the
sphere (g ¼ 0).

An interesting property of the four structure con-
stants (2.21), (2.22), (2.23), and (2.24) of the chiral ring,
which will hold for their generalization to p-point extremal
correlators as well, is that only genus zero covering sur-
faces contribute. Indeed, the Riemann-Hurwitz relation
(2.32) and the relation n3 ¼ n1 þ n2 � 1 give

g ¼ 1

2

X3
j¼1

ðnj � 1Þ � cþ 1 ¼ n3 � c: (2.34)

But the number of colors c is at least as big as the longest
cycle, c � n3, and therefore only the c ¼ n3, g ¼ 0 term
in the genus expansion contributes. Therefore, using the
proper FcðniÞ factors, one can write expressions valid for
finite N [13],

hOð0;0Þy
n3 Oð0;0Þ

n2 Oð0;0Þ
n1 i ¼ Fðn1; n2Þ ðn3Þ3=2

ðn2n1Þ1=2
; (2.35)

hOð2;2Þy
n3 Oð2;2Þ

n2 Oð0;0Þ
n1 i ¼ Fðn1; n2Þ ðn2Þ3=2

ðn3n1Þ1=2
; (2.36)

hOðb; �bÞy
n3 Oða; �aÞ

n2 Oð0;0Þ
n1 i ¼ �ab� �a �bFðn1; n2Þ ðn3n2Þ

1=2

ðn1Þ1=2
; (2.37)

hOð2;2Þy
n3 Oða; �aÞ

n2 Oðb; �bÞ
n1 i ¼ �ab� �a �bFðn1; n2Þ ðn2n1Þ

1=2

ðn3Þ1=2
; (2.38)

where

Fðn1; n2Þ ¼
� ðN � n1Þ!ðN � n2Þ!
ðN � n1 � n2 þ 1Þ!N!

�
1=2

: (2.39)

In the large N limit, we can use

lim
N!1Fðn1; n2Þ ¼

�
1

N

�
1=2

; (2.40)

and the structure constants (2.21), (2.22), (2.23), and (2.24)
follow.

The case (2.25) is different, because we have n3 ¼ n1 þ
n2 � 3, which leads to

g ¼ 1

2

X3
j¼1

ðnj � 1Þ � cþ 1 ¼ n3 � cþ 1: (2.41)

Here, we must distinguish between two cases. If n1 ¼ 2,
n2 ¼ nþ 1 then n3 ¼ n and the only possible number of
colors is c ¼ nþ 1 ¼ n3 þ 1, so g ¼ 0. The finite N form
of (2.25) is in this case [13]

hOð2;2Þy
n Oð0;0Þ

2 Oð0;0Þ
nþ1i ¼

�
N � n

NðN � 1Þ
�
1=2 1

ð2nðnþ 1ÞÞ1=2 :
(2.42)

When both n1 > 2 and n2 > 2, Eq. (2.41) allows c ¼ n3,
g ¼ 1 or c ¼ n3 þ 1, g ¼ 0. Here, there are contributions
from covering surfaces with torus topology, which were
not computed so far, and thus the finite N form of the
correlator (2.25) is not known.

III. FOUR-POINT FUNCTIONS AND OPES

In this section we will compute planar contributions to
some four-point functions involving chiral and antichiral
operators, and we will explore their OPE limits.

A. The general form of the four-point functions

As we mentioned above, we are interested in mapping a
covering sphere, S2cover, with coordinate t, to the physical
sphere z, called S2base, such that the c fields XIðzÞ, I ¼
1; . . . c at a generic location z 2 S2base are traded for a single
field XðtIðzÞÞ, where tIðzÞ 2 S2cover are the c preimages of
the point z. As z approaches a point zi where a twist field
with ni colors is inserted, we require that ni of the c
preimages of z converge to the same point ti on S2cover.
This implies

t� ti � ðz� ziÞ1=ni ; (3.1)

and guarantees that the field XðtÞ in S2cover returns to its
original position only after we make ni full 2� rotations
around point zi on the base sphere S2base.
For a four-point function, we can use the SLð2;CÞ

invariance of Sbase to fix the twist fields at

z1 ¼ 0; z2 ¼ u; z3 ¼ 1; z4 ¼ 1; (3.2)

and the SLð2;CÞ invariance of Scover to fix the points where
their preimages converge at

t1 ¼ 0; t2 ¼ x; t3 ¼ 1; t4 ¼ 1: (3.3)

Thus, the map from S2cover to S2base is given by a c-sheeted
map such that

lim
t!0

zðtÞ � b1t
n1 ; (3.4)

lim
t!x

zðtÞ � uþ b2ðt� xÞn2 ; (3.5)

lim
t!1

zðtÞ � 1þ b3ðt� 1Þn3 ; (3.6)

lim
t!1zðtÞ � b4t

n4 : (3.7)
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Now, once we obtained a function zðtÞ satisfying the con-
ditions (3.4), (3.5), (3.5), and (3.7),6 we have not yet fixed
the covering map. The reason is that x is a preimage of z ¼
u and thus has to be chosen to satisfy

u ¼ zðt ¼ xÞ: (3.8)

This equation has in general several, say M, solutions xj
[which in general is different from the number c of pre-
images of zðtÞ at a generic t � x, because x also appears as
a parameter in zðtÞ for t � x]. The number M is the
number of different maps zðtÞ with the required behavior
(3.4), (3.5), (3.6), and (3.7). The problem of counting
ramified coverings is referred to as the Hurwitz problem
in the mathematical literature (see e.g. [39] for a review).
We will denote each of the covering maps by zjðtÞ (j ¼
1 . . .M), and the c inverse maps for each j as tj;IðzÞ (I ¼
1 . . . c), and we will have

zjðxjÞ ¼ u j ¼ 1 . . .M: (3.9)

The crucial observation now, is that M is precisely the
number of terms Hc in (2.31) corresponding to g ¼ 0. In
other words, M is the number of solutions of the group
theory condition (2.27) for p ¼ 4, up to color relabeling,
with the constraint

c ¼ 1
2ðn1 þ n2 þ n3 þ n4Þ � 1: (3.10)

For details of this correspondence see again [1]. Therefore,
the correlator of gauge-invariant operators will be a sum
over the M solutions of Eq. (3.8).

Let us define the operators

o�n ¼ ei�
P

n
I¼1

ð�1
Iþ�2

Iþ ��1
Iþ ��2

I Þ�n; (3.11)

O�
n ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nN!ðN � nÞ!p X
h2SðNÞ

o�
h�1ð12...nÞh: (3.12)

Here, O�
n is the normalized and gauge-invariant version of

o�n . We will later specialize to � ¼ n�1
2n or � ¼ nþ1

2n to get

operators of type Oð0;0Þ
n or Oð2;2Þ

n . One can easily generalize

the discussion to include operators of type Oða; �aÞ
n . Consider

the four-point function

hO�4
n4 ðz4; �z4ÞO�3

n3 ðz3; �z3ÞO�2
n2 ðz2; �z2ÞO�1

n1 ðz1; �z1Þig¼0

¼ Gðu; �uÞz�2�2

24 z�2þ�3��1��4

14 z�1þ�2��3��4

34 z��1��2��3þ�4

13

� c:c:; (3.13)

where

u ¼ z12z34
z13z24

: (3.14)

Expanding the sum over the SN group in each operatorO�i
ni

in (3.13), we will have a sum as (2.31):

hO�4
n4 ð1ÞO�3

n3 ð1ÞO�2
n2 ðuÞO�1

n1 ð0Þig¼

¼ Gðu; �uÞ � XM
j¼1

ho�4
n4 ð1Þo�3

n3 ð1Þo�2
n2 ðuÞo�1

n1 ð0Þij

¼ XM
j¼1

Gjðu; �uÞ; (3.15)

where in order to evaluate each term we use a different map
zjðtÞ to go to the covering surface. For this we will use the

stress-tensor method of Dixon et al. [40]. We compute first
the auxiliary function

gjðz; uÞ ¼
hTðzÞo�4

n4 ð1Þo�3
n3 ð1Þo�2

n2 ðu; �uÞo�1
n1 ð0Þij

ho�4
n4 ð1Þo�3

n3 ð1Þo�2
n2 ðuÞo�1

n1 ð0Þij
: (3.16)

Using now the OPE

TðzÞo�2
n2 ðuÞ ¼

�2

ðz� uÞ2 o
�2
n2 ðuÞ þ

1

z� u
@o�2

n2 ðuÞ þ . . . ;

(3.17)

we deduce

@u lnGjðuÞ ¼ fgjðz; uÞgð1=ðz�uÞÞ; (3.18)

where GjðuÞ is the contribution to the holomorphic part

of Gjðu; �uÞ and on the right-hand side we take the

coefficient of 1
z�u in the expansion of gjðz; uÞ. There is a

similar antiholomorphic expression, so that Gjðu; �uÞ ¼
GjðuÞ �Gjð �uÞ up to an overall constant. The dependence on

the index j comes from the fact that the computation of
(3.16) is done by mapping, with zjðtÞ, all the fields to the

covering sphere, where the twist fields disappear. We need
finally to sum over j as in (3.15). The relative coefficient is
fixed so that the sum is single valued as a function of u. The
overall factor is fixed by considering OPE limits.
Before proceeding, note that the dressing factors in

(3.11) satisfy

e�ð�1þ...þ�nÞ�ð12...nÞ ¼
�
dt

dz

�
�
en��; (3.19)

where the left-hand side lives in the base sphere and the
right-hand side lives in the covering surface.
To obtain the function (3.16) we can use that

TðzÞ ¼ � 1

2

X4
i¼1

@Xi
IðzÞ@Xi

IðzÞ �
1

2

X2
i¼1

@�i
IðzÞ@�i

IðzÞ;

(3.20)

6In general there can be several functions satisfying these
conditions. However, in the examples we will consider all the
covering maps are obtained from a single zðtÞ, so this multi-
plicity will not play any role for us. For a discussion of these
issues see [1].
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¼ � 1

2
lim
w!z

�X4
i¼1

@Xi
IðzÞ@Xi

IðwÞ þ
X2
i¼1

@�i
IðzÞ@�i

IðwÞ

þ 6N

ðz� wÞ2
�
: (3.21)

Inserting this expression in (3.16), we must consider the
two types of terms. The terms with Xi

I in (3.21) give

h@Xi
IðzÞ@Xi

IðwÞo�4
n4 ð1Þo�3

n3 ð1Þo�2
n2 ðuÞo�1

n1 ð0Þij
ho�4

n4 ð1Þo�3
n3 ð1Þo�2

n2 ðuÞo�1
n1 ð0Þij

¼ � t0j;IðzÞt0j;IðwÞ
ðtj;IðzÞ � tj;IðwÞÞ2

; (3.22)

and the terms with �i
I in (3.21) give

h@�i
IðzÞ@�i

IðwÞo�4
n4 ð1Þo�3

n3 ð1Þo�2
n2 ðuÞo�1

n1 ð0Þij
ho�4

n4 ð1Þo�3
n3 ð1Þo�2

n2 ðuÞo�1
n1 ð0Þij

¼ � t0j;IðzÞt0j;IðwÞ
ðtj;IðzÞ � tj;IðwÞÞ2

� ðt0j;IðzÞÞ2
�

n3�3

tj;IðzÞ � 1
þ n2�2

tj;IðzÞ � x
þ n1�1

tj;IðzÞ
�
2
; (3.23)

where in the second term we took the limit w ! z since
there is no singularity.

In the sum over I in (3.21), we only need for gjðz; uÞ in
(3.16) those n2 terms whose index I is one of the colors
appearing in the operator o�2

n2 , since only those terms will
contribute to the singularity as z ! u. Collecting all the
terms, taking the w ! z limit and subtracting the normal-
order singularity as in (3.21), we get finally

gjðz; uÞ ¼ 6

12

Xn2
I¼1

ftj;I; zg þ 2
Xn2
I¼1

ðt0j;IðzÞÞ2
2

�
�

n3�3

tj;IðzÞ � 1
þ n2�2

tj;IðzÞ � x
þ n1�1

tj;IðzÞ
�
2
: (3.24)

Here, ft; zg is the Schwartzian derivative

ft; zg ¼ t000

t0
� 3

2

�
t00

t0

�
2 ¼

�
t00

t0

�0 � 1

2

�
t00

t0

�
2
; (3.25)

and the factor of 2 in front of the second term comes from
the two values i ¼ 1, 2 in �i.

Now, the n2 inverse maps in the sum of (3.24) behave as

tj;I � xj � eðð2�IiÞ=n2Þðz� uÞ1=n2 I ¼ 1; . . . ; n2:

(3.26)

Since the terms in (3.24) involve derivatives of tj;IðzÞ, we
see that all the n2 terms contribute to the singularities of
gjðz; uÞ as z ! u. Each of these n2 terms has an expansion

in powers of ðz� uÞ1=n2 , but since gjðz; uÞ has no mono-

dromies as z goes around u, all the terms in (3.24) with
fractional powers of (z� u) cancel out. Thus, we can just
take

gjðz; uÞ ¼ n2
2
ftj;I; zg þ n2ðt0j;IðzÞÞ2

�
�

n3�3

tj;IðzÞ � 1
þ n2�2

tj;IðzÞ � x
þ n1�1

tj;IðzÞ
�
2
; (3.27)

where tj;I is any of the (3.26) maps, and we keep only the

terms with integer powers of (z� u) in the expansion of
gjðz; uÞ.
The residue in the ðz� uÞ�1 pole in (3.18) will be a

function of xj, so it is convenient to express the left-hand

side of (3.18) as a function of xj as well, using

@u logGjðuÞ ¼ u0ðxjÞ�1@xj logGjðuÞ: (3.28)

The generic structure of the differential equation for GjðzÞ
has then the form

u0ðxÞ�1@x logG ¼
�
A

��
t00

t0

�0 � 1

2

�
t00

t0

�
2
�

þ ðt0Þ2
�

B

t� x
þ C

t
þ D

t� 1

�
2
	
ð1=ðz�uÞÞ

;

(3.29)

where

A ¼ n2
2
; (3.30)

B ¼ n3=22 �2; (3.31)

C ¼ ffiffiffiffiffi
n2

p
n1�1; (3.32)

D ¼ ffiffiffiffiffi
n2

p
n3�3; (3.33)

and t ¼ tj;IðzÞ, x ¼ xj.

B. Polynomial maps: A simple example

To complete the computation we need to construct the
explicit map zðtÞ as a function of the integers ni. For any
p-point function, we expect this map to be a quotient of
polynomials. For four-point functions, these polynomials
are solutions of Heun’s differential equation [1]. When the
polynomial in the denominator of zðtÞ has degree zero, zðtÞ
itself is a polynomial. If we choose the branching of order
np at z ¼ 1 to correspond to t ¼ 1, this occurs, in a

p-point function, whenever the branching numbers ni sat-
isfy

np ¼ Xp�1

i¼1

ni � pþ 2: (3.34)

This has been shown in detail in [1] for p ¼ 4, and the
generalization to arbitrary p is immediate. A correlator
whose quantum numbers satisfy the above relation has only
connected contributions [cf. (2.28)]. Moreover, in this case
one can verify that c ¼ np and therefore the Riemman-
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Hurwitz Eq. (2.32) implies that the only covering surface to
contribute to the correlator will be a sphere. Note that the
four structure constants (2.35), (2.36), (2.37), and (2.38) of
the chiral ring satisfy the polynomial condition (3.34), but
the fifth structure constant (2.25) does not.

In this section wewill consider a simple polynomial map
for a four-point function with branching numbers

n1 ¼ n; (3.35)

n2 ¼ n3 ¼ 2; (3.36)

n4 ¼ nþ 2: (3.37)

In this case we have c ¼ nþ 2 colors and as expected g ¼
0. In Appendix Awe present the details of the zðtÞ function
as well as its inverse. The equation u ¼ zðxÞ is

u � vðxÞ ¼ x1þn 2þ n� nx

ð2þ nÞx� n
; (3.38)

and has M ¼ nþ 2 solutions. Let us choose a root xj of

(3.38). The Eq. (3.29) can be integrated and the result has
the form

logGjðuÞ ¼ AfAðxjÞ þ B2fB2ðxjÞ þ C2fC2ðxjÞ
þ D2fD2ðxjÞ þ 2BCf2BCðxjÞ þ 2BDf2BDðxjÞ
þ 2CDf2CDðxjÞ; (3.39)

where

fA ¼ 1

8

�
�2 logð�1þ xÞ � �2þ nþ n2

n
logx

þ 2
�2þ 2nþ n2

nð2þ nÞ logð�nþ ð2þ nÞxÞ
�
;

fB2 ¼ � 1

4

�
logðx� 1Þ þ ðn� 1Þ logx

� n logðð2þ nÞx� nÞ
2þ n

�
;

fC2 ¼ �ð2þ nÞ logx� 2 logðð2þ nÞx� nÞ
2nð2þ nÞ ;

f2BC ¼ ð2þ nÞ logx� logðð2þ nÞx� nÞ
2ð2þ nÞ ;

fD2 ¼ � 1

4
logðx� 1Þ þ n logðð2þ nÞx� nÞ

8þ 4n
;

f2CD ¼ � log4ðn� ð2þ nÞxÞ
2ð2þ nÞ ;

f2BD ¼ ð2þ nÞ logðx� 1Þ � logðð2þ nÞx� nÞ
2ð2þ nÞ ; (3.40)

with x ¼ xj. Using the expressions in (3.39), we get GjðuÞ
and similarly �Gjð �uÞ. We can finally sum over j to get

Gðu; �uÞ ¼ C4

Xnþ2

j¼1

GjðuÞ �Gjð �uÞ; (3.41)

¼ C4

Xnþ2

j¼1

jxjðuÞ � 1j2�jxjðuÞj2�








xjðuÞ � n

2þ n










2	

;

(3.42)

where C4 is a constant and the powers �, 	, and � are

� ¼ � 1

4
½Aþ B2 � 4BDþ D2�

¼ � 1

2

�
1

2
þ 4ð�3 � �2Þ2 � 8�3�2

�
; (3.43)

� ¼ � 1

4

��2þ nþ n2

2n
Aþ ðn� 1ÞB2 � 4BCþ 2

n
C2

�

¼ �
��2þ nþ n2

8n
þ nð2�2

2 � 4�2�1 þ �2
1Þ � 2�2

2

�
;

(3.44)

	 ¼ 1

4

��2þ 2nþ n2

nð2þ nÞ Aþ n

nþ 2
B2 � 4

nþ 2
BðCþ DÞ

þ 4

nþ 2

�
Cffiffiffi
n

p �
ffiffiffi
n

p
2

D

�
2
�

¼ 1

4nðnþ 2Þ ½n
2 þ 2n� 2þ 8n2ð�2

1 þ �2
2 þ �2

3Þ
� 16ð�1n

2ð�2 þ �3Þ þ 2n�2�3Þ�: (3.45)

C. Some nonextremal four-point functions and their
OPEs

We have now all the ingredients to compute some ex-
amples explicitly, using the polynomial map we introduced
above. Consider

hOð0;0Þy
nþ2 ð1ÞOð0;0Þ

2 ð1ÞOð0;0Þy
2 ðu; �uÞOð2;2Þ

n ð0Þi ¼ Gðu; �uÞ:
(3.46)

The quantum numbers are �1 ¼ nþ1
2n , �2 ¼ ��3 ¼ �1=4,

from which we get � ¼ �1, � ¼ �n� 1, 	 ¼ 1, and
thus, from (3.42),

Gðu; �uÞ ¼ C4

Xnþ2

i¼1

jxiðuÞ � 1j�2jxiðuÞj�2n�2

�








xiðuÞ � n

2þ n










2

: (3.47)

It only remains to find C4, which can be done by consid-
ering OPE limits. Note that since the polynomial map leads
to sphere contributions only, we expect to find the finite N
expression for C4.
Consider the limit u ! 0. The equation uðxÞ ¼ 0 has

nþ 1 roots with x ¼ 0 and one root with x ¼ 2þn
n . Taking
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the former case, we obtain

u ¼ � 2þ n

n
xnþ1 þOðxnþ2Þ: (3.48)

Inserting this into (3.47) we get that

Gðu; �uÞju!0 ¼ C4ðnþ 1Þjuj�2 þOðu�1Þ þOð �u�1Þ
þOð1Þ; (3.49)

where the factor (nþ 1) comes from the number of terms
in (3.47), which have the behavior (3.48). The terms of
order Oð1Þ include the leading contribution to (3.47) from
the root x ¼ 2þn

n , which is a constant.

Now, in the limit u ! 0 we have

Oð0;0Þy
2 ðu; �uÞOð2;2Þ

n ð0Þ � C1O
ð2;2Þ
n�1ð0Þ
juj2 þ C2O

ð0;0Þ
nþ1ð0Þ
juj2 : (3.50)

The two operators appearing in this OPE happen to be
chiral because (3.49) fixes their conformal dimension to be
� ¼ �0

2 þ �2
n � 1 ¼ n

2 , and their charge is Q ¼ n
2 from

charge conservation, but in general the OPE of a chiral
operator with an antichiral operator is neither chiral nor
antichiral. Inserting this OPE in (3.46), we see that only the
second term can survive due to the length of the cycles.
Therefore, the OPE limit yields

C4ðnþ 1Þ ¼ hOð0;0Þy
nþ2 Oð0;0Þ

2 Oð0;0Þ
nþ1ihOð2;2Þ

n Oð0;0Þy
2 Oð0;0Þy

nþ1 i;
(3.51)

and using the structure constants (2.35) and (2.42) [the
(a, a) ring has the same structure constants as the (c, c)
ring], we get the finite N result

C4 ¼ ðnþ 2Þ3=2
2ðnþ 1Þ2n1=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � nÞðN � n� 1Þ

N2ðN � 1Þ2
s

: (3.52)

We can verify this expression for C4 by re-obtaining it in
another limit. When u ! 1, we get nþ 1 solutions with
x ! 1 and a single solution with x� n

2þn . In the former

case one explicitly obtains that

u�� n

nþ 2
xnþ1: (3.53)

Inserting this into (3.47) gives

Gðu; �uÞju!1 ¼ C4ðnþ 1Þ n2

ðnþ 2Þ2 juj
�2 þOð1Þ; (3.54)

where the (nþ 1) is again the number of terms in (3.47),
which diverge in the OPE limit. The OPE leads again to a

chiral intermediate state Oð2;2Þ
nþ1, and thus we get

C4

n2ðnþ 1Þ
ðnþ 2Þ2 ¼ hOð0;0Þy

2 Oð0;0Þy
nþ2 Oð2;2Þ

nþ1ihOð2;2Þy
nþ1 Oð0;0Þ

2 Oð2;2Þ
n i:
(3.55)

Inserting the structure constants (2.42) and (2.36), we get
for C4 exactly the same expression as in (3.52). One could
try to further take the limit u ! 1, but in this case the
intermediate state is neither chiral nor antichiral, so we
cannot use the structure constants of the chiral ring.
Consider next the four-point function

hOð0;0Þy
nþ2 ð1ÞOð0;0Þy

2 ð1ÞOð0;0Þ
2 ðuÞOð2;2Þ

n ð0Þi: (3.56)

This correlator is obtained from (3.46) by interchanging the
positions of z2 ¼ u with z3 ¼ 1. Using (3.13), this implies
that (3.56) is equal to

hOð0;0Þy
nþ2 ð1ÞOð0;0Þ

2 ð1ÞOð0;0Þy
2 ð1=u; 1= �uÞOð2;2Þ

n ð0Þi � juj�2:

(3.57)

In general, SLð2;CÞ transformations in the u sphere are not
simple in the x sphere, but for our particular map (3.38), we
have

1=vðxÞ ¼ vð1=xÞ; (3.58)

and therefore

hOð0;0Þy
nþ2 ð1ÞOð0;0Þy

2 ð1ÞOð0;0Þ
2 ðuÞOð2;2Þ

n ð0Þi

¼ C4

Xnþ2

j¼1

jxiðuÞ � 1j�2









xiðuÞ � n

2þ n










2

: (3.59)

This result can be verified by computing the coefficients �,
�, 	 explicitly. Note that there is no singularity as u ! 0,
since this corresponds to the OPE of two chiral operators.

IV. EXTREMAL CORRELATORS AND HURWITZ
NUMBERS

Armed with this experience, we are ready to tackle the
computation of extremal correlators.

A. Extremal four-point functions and double-cycle
operators

Consider the following extremal four-point functions

hOð0;0Þy
nþ2 ð1ÞOð0;0Þ

2 ð1ÞOð0;0Þ
2 ðu; �uÞOð0;0Þ

n ð0Þi ¼ G1ðu; �uÞ;
(4.1)

hOð2;2Þy
nþ2 ð1ÞOð2;2Þ

2 ð1ÞOð0;0Þ
2 ðu; �uÞOð0;0Þ

n ð0Þi ¼ G2ðu; �uÞ;
(4.2)

which we can compute with the same map of the previous
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section. The quantum numbers for G1 are �1 ¼ n�1
2n , �2 ¼

�3 ¼ 1
4 . Using these values in (3.43), (3.44), and (3.45)

gives � ¼ � ¼ 	 ¼ 0. Similarly, for G2 we have �1 ¼
n�1
2n , �2 ¼ 1

4 , �3 ¼ 3
4 , and we get again � ¼ � ¼ 	 ¼ 0.

From (3.42), this means that both G1 and G2 are constants.
We get thus a nice check on our formulas for �, �, 	, since
this is precisely what we expect: the limits u ! 0, 1
correspond to OPEs of chiral operators, so G1ðuÞ and
G2ðuÞ should have no singularities at u ¼ 0, 1. But these
are the only singularities we expect in G1ðuÞ, G2ðuÞ. So
G1ðuÞ, G2ðuÞ are meromorphic functions with no singular-
ities and therefore should be constants. This result is of
course general, so we will have

hOð0;0Þy
n4 ð1ÞOð0;0Þ

n3 ð1ÞOð0;0Þ
n2 ðu; �uÞOð0;0Þ

n1 ð0Þi ¼ C4; (4.3)

with C4 a constant and

n4 ¼ n3 þ n2 þ n1 � 2; (4.4)

from charge conservation, which is the familiar polynomial
condition (3.34).

It only remains to determine C4 from OPE limits. But
here things are subtler than for nonextremal correlators,
because the OPE of two chiral operators has no singular-

ities. Taking for example Oð0;0Þ
n2 and Oð0;0Þ

n1 , we get

Oð0;0Þ
n2 Oð0;0Þ

n1 ¼ C3O
ð0;0Þ
~n þ C0

3O
ð2;2Þ
~n�2 þ

X~n�1

i¼2

ðD3ðiÞOð0;0Þ;ð0;0Þ
ði;~n�iþ1Þ

þD0
3ðiÞOð2;2Þ;ð0;0Þ

ði�1;~n�iÞ þ 	 	 	Þ þ 	 	 	 ; (4.5)

where

~n ¼ n1 þ n2 � 1: (4.6)

The operators in the parentheses in the second line of (4.5)
are double-cycle operators. They are always present in the
OPE of single-cycle operators and correspond, for in-
stance, to a product of two single cycles without common
colors. Since such a product has no singularities, we
ignored these operators in the previous section. But in
the OPE of two chiral operators they appear on par with
the single-cycle operators.

The problem now is that we do not know the structure
constants D3, D

0
3 (and other structure constants including

multicycle operators) in (4.5), so we cannot use this OPE to
determine C4 in (4.3). Of course, in principle these struc-
ture constants can be computed using, e.g. the techniques
of [15]. But this has not been done so far, and as we will see
below, it is not necessary.

The presence of the double-cycle terms cannot be
avoided even in the large N limit. To see this, insert the
OPE (4.5) into (4.3). This gives

C4 ¼ C3hOð0;0Þy
n4 Oð0;0Þ

n3 Oð0;0Þ
~n i

þ X~n�1

i¼2

D3ðiÞhOð0;0Þy
n4 Oð0;0Þ

n3 Oð0;0Þ;ð0;0Þ
ði;~n�iþ1Þi; (4.7)

¼ hOð0;0Þy
~n Oð0;0Þ

n2 Oð0;0Þ
n1 ihOð0;0Þy

n4 Oð0;0Þ
n3 Oð0;0Þ

~n i

þ X~n�1

i¼2

hOð0;0Þ;ð0;0Þy
ði;~n�iþ1Þ O

ð0;0Þ
n2 Oð0;0Þ

n1 ihOð0;0Þy
n4 Oð0;0Þ

n3 Oð0;0Þ;ð0;0Þ
ði;~n�iþ1Þi:

(4.8)

Remember from (2.33) that the three-point functions of

single-cycle operators scale as N�ð1=2Þ, so the first term in
(4.8) scales as N�1. Using the same combinatorial argu-
ments used to obtain (2.33) (see e.g. [1]), it is easy to show
that at large N

hOð0;0Þ;ð0;0Þy
ðn2;n1Þ Oð0;0Þ

n2 Oð0;0Þ
n1 i � 1; (4.9)

hOð0;0Þy
n4 Oð0;0Þ

n3 Oð0;0Þ;ð0;0Þ
ðn2;n1Þ i � 1

N
: (4.10)

In particular, the correlator (4.9) only receives contribu-
tions from its disconnected terms (see (2.28)). It follows
then that in the sum in (4.8) there is always a term that
scales as N�1, as the first term, and thefore cannot be
discarded.
A similar situation occurs in a free gauge theory [31].

Consider the following correlator in free UðNÞ gauge
theory

IðYMÞ
4 ¼ hTr �ZJðx0ÞTrZJ1ðx1ÞTrZJ2ðx2ÞTrZJ3ðx3Þi; (4.11)

where J ¼ J1 þ J2 þ J3. Let us take the OPE limit x1 !
x0. The leading contributions to this are

IðYMÞ
4 ¼ 1

jx0 � x1j2J1
½hTr �ZJ�J1ðx0ÞTrZJ2ðx2ÞTrZJ3ðx3Þi

� hTrZJ�J1TrZJ1Tr �ZJi
þ hðTr �ZJ2Tr �ZJ3Þðx0ÞTrZJ2ðx2ÞTrZJ3ðx3Þi
� hðTrZJ2TrZJ3ÞTrZJ1Tr �ZJi þ . . .�: (4.12)

In general the second term coming from a double-trace
state is subleading in 1=N, but here the two terms are of the
same order. To see this we normalize the operators so that
the two-point functions will be OðN0Þ and thus the planar
s-point functions of single traces behave as N2�s. The first
term in (4.12) is of order N�2 and the second naively is of
order N�4. However, the leading contribution to the three-
point function

hðTr �ZJ2Tr �ZJ3Þðx0ÞTrZJ2ðx2ÞTrZJ3ðx3Þi
comes from the disconnected diagrams, which gives a
scaling of N�2 to the second term in (4.12). Thus, the
two terms have the same order in 1=N, and both have to
be counted.
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B. The � deformation

To bypass the problem of determining the structure
constants involving two-cycle states we would like to de-
form slightly our extremal correlators, so as to split single-
cycle from double-cycle terms in the OPE (4.5). We can
achieve this using the following trick. Let us change in-

finitesimally the momentum of, say, Oð0;0Þ
n2 and Oð0;0Þ

n3 , as

�2 ! �2 ¼ n2�1
2n2

� � and �3 ! �3 ¼ n3�1
2n3

þ �. The OPE

(4.5) is now7

Oð�Þð0;0Þn2 ðu; �uÞOð0;0Þ
n1 ð0Þ

¼ C3ð�ÞOð�Þð0;0Þ~n ð0Þ
juj2�1�

þ C0
3ð�ÞOð�Þð2;2Þ~n�2ð0Þ

juj2�1�

þ X~n�1

i¼2

ðD3ði; �ÞOð�Þð0;0Þ;ð0;0Þði;~n�iÞ

þD0
3ði; �ÞOð�Þð2;2Þ;ð0;0Þði�1;~n�iÞ þ 	 	 	Þ þ 	 	 	 (4.13)

The four-point function (4.3) will now have a form similar
to (3.42)

hOð0;0Þy
n4 ð1ÞOð��Þð0;0Þn3 ð1ÞOð�Þð0;0Þn2 ðu; �uÞOð0;0Þ

n1 ð0Þi

¼ C4

H4

XH4

j¼1

~Cjð�Þ
Yt
i¼1

jxjðuÞ � qtj2�tð�Þ; (4.14)

such that lim�!0�tð�Þ ¼ 0 and lim�!0
~Cjð�Þ ¼ 1. The sum

is over the number of maps from the covering surface,
which for four-point functions satisfying (4.4) is H4 ¼ n4
(see e.g. Section 3.3 in [1]).

We can now take the limit u ! 0. In [1] we proved that
the number of terms in the sum over j in (4.14), which
contribute to the leading singularity is precisely the num-
ber ~n defined in (4.6). Thus, for ~n terms in (4.14) we will
have

Yt
i¼1

jxjðuÞ � qtj2�tð�Þ ! c�j

juj2�1�
; (4.15)

with cj some constant. Inserting now the OPE (4.13) in

(4.14), and equating the terms with leading singularity
juj�2�1�, we get

C4

n4

X~n
j¼1

c�j ¼ hOð0;0Þy
n4 Oð��Þð0;0Þn3 Oð�Þð0;0Þ~n i

� hOð�Þð0;0Þy~n Oð�Þð0;0Þn2 Oð0;0Þ
n1 i: (4.16)

We can now safely take the limit � ! 0, and we get,

C4

~n

n4
¼ hOð0;0Þy

n4 Oð0;0Þ
n3 Oð0;0Þ

~n ihOð0;0Þy
~n Oð0;0Þ

n2 Oð0;0Þ
n1 i: (4.17)

Note that if we keep only the single-cycle terms in the OPE
(4.5), we would get an expression similar to (4.17) but
without the factor ~n

n4
. Thus, the combined effect of the

double-cycle terms in (4.5) is precisely to add this factor.
Inserting now the three-point functions (2.35) into

(4.17), gives finally

C4 ¼ F4ðniÞ n5=24

ðn1n2n3Þ1=2
; (4.18)

where

F4ðniÞ ¼
�ðN � n1Þ!ðN � n2Þ!ðN � n3Þ!

ðN � n4Þ!ðN!Þ2
�
1=2

: (4.19)

Note that the final expression (4.18) does not depend on the
length ~n of the intermediate state. In particular, we can
repeat the derivation of C4 using any other OPE limit and
obtain the same result.
This computation can be easily extended to other ex-

tremal correlators. Using the chiral fusion rules (2.20), one
can verify that all possible extremal correlators can be
obtained by adding operators of type (0, 0) to the structure
constants of the chiral ring.
When adding one operator of type (0, 0) to the structure

constants (2.35), (2.36), (2.37), and (2.38) cases, we get
again the polynomial relation (4.4). Thus, the counting of
total and divergent terms is the same as in the above case,
and we get

hOð0;0Þy
n4 Oð0;0Þ

n3 Oð0;0Þ
n2 Oð0;0Þ

n1 i ¼ F4ðniÞ n5=24

ðn1n2n3Þ1=2
; (4.20)

hOð2;2Þy
n4 Oð2;2Þ

n3 Oð0;0Þ
n2 Oð0;0Þ

n1 i ¼ F4ðniÞ n
3=2
3 n1=24

ðn2n1Þ1=2
; (4.21)

hOðb; �bÞy
n4 Oða; �aÞ

n3 Oð0;0Þ
n2 Oð0;0Þ

n1 i ¼ �ab� �a �bF4ðniÞ n
3=2
4 n1=23

ðn2n1Þ1=2
;

(4.22)

hOð2;2Þy
n4 Oða; �aÞ

n3 Oðb; �bÞ
n2 Oð0;0Þ

n1 i ¼ �ab� �a �bF4ðniÞ ðn4n3n2Þ
1=2

n1=21

:

(4.23)

C. Extremal nonpolynomial four-point function

The correlator

hOð2;2Þy
n4 Oð0;0Þ

n3 Oð0;0Þ
n2 Oð0;0Þ

n1 i (4.24)

is different from the cases studied above because the
conservation of charge here leads to

7Note that since the radius of the bosons �i
I was fixed from

bosonizing the fermions, a change of their momentum by � is
actually a change in the radius away from the fermionization
point. This in turn implies that we should deform the momenta of
all the operators in the correlator. But we can ignore this subtlety,
since in the sphere the correlators are analytic functions of the
external momenta, and there is no other dependence on the
compactification radius.
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n4 ¼ n1 þ n2 þ n3 � 4: (4.25)

The corresponding map is not polynomial [cf. (4.4)], but
rather the quotient of a polynomial and a monomial. Of
course one can still build the map following the prescrip-
tion developed in [1],8 but the �-deformation technique
that we introduced does not need the actual map. All we
need is the total number of different maps and the number
of terms in the sum over maps which diverge in the
possible OPEs. But this information can be obtained
from the symmetric-group theoretical version of the map
counting, and then it reduces to a combinatorial problem.

Note that in the previous cases, when we took the OPE

(4.5), the operator Oð2;2Þ
~n�2 did not survive inside the correla-

tion function. But in the four-point function (4.24) it does
and therefore the �-deformed four-point function is, to
leading order,

hOð2;2Þy
n4 Oð��Þð0;0Þn3 Oð�Þð0;0Þn2 Oð0;0Þ

n1 i
¼ juj�2��1 � ½hOð2;2Þy

n4 Oð��Þð0;0Þn3 Oð�Þð0;0Þn1þn2�1iC3ð�Þ
þ hOð2;2Þy

n4 Oð��Þð0;0Þn3 Oð�Þð2;2Þn1þn2�3iC0
3ð�Þ�; (4.26)

¼ juj�2��1 � ½hOð2;2Þy
n4 Oð��Þð0;0Þn3 Oð�Þð0;0Þn1þn2�1i

� hOð�Þð0;0Þyn1þn2�1O
ð0;0Þ
n1 Oð�Þð0;0Þn2 i

þ hOð2;2Þy
n4 Oð��Þð0;0Þn3 Oð�Þð2;2Þn1þn2�3i

� hOð�Þð2;2Þyn1þn2�3O
ð0;0Þ
n1 Oð�Þð0;0Þn2 i�: (4.27)

On the other hand, following the same logic as in the
previous section, the above expression is equal to

juj�2��1
C4

H4

�X~nb
j¼1

c�j þ
X~na
j¼1

~c�j

�
; (4.28)

where H4 is the total number of mappings. We have
separated the terms contributing to the OPE singularity

into two sums. In the first ~nb terms, the operators Oð0;0Þ
n2

and Oð0;0Þ
n1 share one color, and in the other ~na terms they

share two colors. These two sums clearly correspond to the
two terms in the right-hand side of (4.27). In Appendix B 3
we compute these numbers to be

~n a ¼ n1 þ n2 � 3; ~nb ¼ n1 þ n2 � 1;

H4 ¼ 2n4:
(4.29)

We can equate either of the two terms in (4.27) and (4.28).
Taking � ! 0 gives the equations

C4

~na
H4

¼ hOð2;2Þy
n4 Oð2;2Þ

n1þn2�3O
ð0;0Þ
n3 ihOð2;2Þy

n1þn2�3O
ð0;0Þ
n1 Oð0;0Þ

n2 i;
(4.30)

C4

~nb
H4

¼ hOð2;2Þy
n4 Oð0;0Þ

n1þn2�1O
ð0;0Þ
n3 ihOð0;0Þy

n1þn2�1O
ð0;0Þ
n1 Oð0;0Þ

n2 i;
(4.31)

and plunging the relevant structure constants we get, at
large N,

C4 ¼ 2

N

ðn4Þ1=2
ðn1n2n3Þ1=2

: (4.32)

The fact that we get the same result by equating separately
the first and second terms in (4.27) and (4.28) is a nontrivial
check of the procedure. Note that to extend (4.32) to finite
N we would have to compute torus contributions.

D. Extremal polynomial p-point functions

We can now generalize the above results to extremal
p-point functions. As in the case of four-point functions,
there are four polynomial correlators and one nonpolyno-
mial. We will consider only the former for simplicity.
The coordinate dependence of extremal p-point corre-

lators is

hOð0;0Þy
np ðzpÞOð0;0Þ

np�1
ðzp�1Þ . . .Oð0;0Þ

n1 ðz1Þi

¼ Cp

Yp�1

i¼1

jzi � zpj�4�i ; (4.33)

where Cp is a constant. This is fixed by the absence of

singularities when the chiral operators approach each other
and by requiring invariance under global conformal trans-

formations. We will put Oð0;0Þy
np ðzpÞ at zp ¼ 1, so this

expression becomes just Cp.

To determine Cp from OPE limits, we proceed as above.

In order to avoid the multicycle terms in the OPEs we

deform again the momentum of Oð0;0Þ
n2 by � and the mo-

mentum of Oð0;0Þ
n3 by��. The correlator becomes the usual

sum over all the maps from the covering surface

hOð0;0Þy
np Oð0;0Þ

np�1
. . .Oð�Þð0;0Þn2 Oð0;0Þ

n1 i

¼ Cp

Hp

XHp

j¼1

jkðxjðz1; z2; . . .ÞÞj2�: (4.34)

Note that charge conservation in (4.33) implies the poly-
nomial condition

np ¼ Xp�1

i¼1

ni � pþ 2: (4.35)

Since c ¼ np for polynomial maps, the number Hp of

terms in (4.34) is the number of np-sheeted covering

maps from S2cover to S2base with p branching points, with

branching numbers n1; n2; . . . np. The problem of deter-

mining Hp is well known in the mathematical literature on

branched coverings, and its solution when (4.35) holds is8For the case n1 ¼ n4 ¼ n, n2 ¼ n3 ¼ 2, see [1,14].
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[39,41]

Hp ¼ np�3
p : (4.36)

For p ¼ 4 we proved this result in [1], and for p ¼ 5 we
present a proof in Appendix B 1 as an illustration of the
diagrammatic description of symmetric products we intro-
duced in [1].

The details of the functions kðxjðz1; z2; . . .ÞÞ in (4.34)

have not been worked out for p > 4, but they are not
important for us. We are only interested in the fact that
as z2 ! z1, a certain number ~n of terms in (4.34) will
behave as

jkðxjðz1; z2; . . .Þj2� !
c�j

jz12j2��1
: (4.37)

This number ~n counts how many terms in (4.34) contribute
to the singularity of the deformed OPE (4.13). In

Appendix B 2 we prove that ~n ¼ ðn1 þ n2 � 1Þnp�4
p .

Therefore, in the limit z2 ! z1, the coefficients of the
leading jz12j�2��1 singularity at both sides of (4.34) satisfy

Cp

np�3
p

Xðn1þn2�1Þnp�4
p

j¼1

c�j ¼hOð�Þð0;0Þyn1þn2�1Oð�Þð0;0Þn2 Oð0;0Þ
n1 iCð�Þp�1;

(4.38)

where

Cð�Þp�1 ¼ hOð0;0Þy
np Oð0;0Þ

np�1
. . .Oð��Þð0;0Þn3 Oð�Þð0;0Þn1þn2�1i:

(4.39)

We can take now the limit � ! 0 in both sides of (4.38) to
get

Cp

ðn1 þ n2 � 1Þ
np

¼ hOð0;0Þy
n1þn2�1O

ð0;0Þ
n2 Oð0;0Þ

n1 iCp�1; (4.40)

¼ Fðn1; n2Þ ðn1 þ n2 � 1Þ3=2
ðn1n2Þ1=2

Cp�1; (4.41)

or equivalently

Cp ¼ Fðn1; n2Þ
npðn1 þ n2 � 1Þ1=2

ðn1n2Þ1=2
Cp�1: (4.42)

Iterating this recursion relation p� 3 times, we get finally

hOð0;0Þy
np Oð0;0Þ

np�1
. . .Oð0;0Þ

n2 Oð0;0Þ
n1 i ¼ FpðniÞ

ðnpÞp�3=2

ðn1n2 . . . np�1Þ1=2
;

(4.43)

where

FpðniÞ ¼
� Qp�1

i¼1 ðN � niÞ!
ðN � npÞ!ðN!Þp�2

�
1=2

: (4.44)

The same procedure can be applied to obtain the following
extremal correlators:

hOð2;2Þy
np Oð2;2Þ

np�1
Oð0;0Þ

np�2
. . .Oð0;0Þ

n1 i ¼ FpðniÞ
ðnpÞp�7=2ðnp�1Þ3=2
ðnp�2 	 	 	n1Þ1=2

;

(4.45)

hOðb; �bÞy
np Oða; �aÞ

np�1
Oð0;0Þ

np�2
. . .Oð0;0Þ

n1 i

¼ �ab� �a �bFpðniÞ
ðnpÞp�5=2ðnp�1Þ1=2
ðnp�2 	 	 	 n1Þ1=2

; (4.46)

hOð2;2Þy
np Oða; �aÞ

np�1
Oðb; �bÞ

np�2
Oð0;0Þ

np�3
. . .Oð0;0Þ

n1 i

¼ �ab� �a �bFpðniÞ
ðnpÞp�7=2ðnp�1np�2Þ1=2

ðnp�3 	 	 	 n1Þ1=2
: (4.47)

The large N limit is obtained using

lim
N!1FpðniÞ ¼

�
1

N

�ðp�2Þ=2
: (4.48)

According to [23], extremal correlators are not renormal-
ized under marginal deformations away from the orbifold
point, so one expects the same expressions in the string/
supergravity dual.

E. Extremal correlators compute Hurwitz numbers

If we now look back at our results, we notice that the five
types of correlators (four polynomial and one nonpolyno-
mial) can all be expressed in a uniform way by performing
the rescaling

Oð0;0Þ
n ! Ôð0;0Þ

n ¼ n1=2Oð0;0Þ
n ; (4.49)

Oð0;0Þy
n ! Ôð0;0Þy

n ¼ n�3=2Oð0;0Þy
n ; (4.50)

Oða; �aÞ
n ! Ôða; �aÞ

n ¼ n�1=2Oða; �aÞ
n ; (4.51)

Oða; �aÞy
n ! Ôða; �aÞy

n ¼ n�1=2Oða; �aÞy
n ; (4.52)

Oð2;2Þ
n ! Ôð2;2Þ

n ¼ n�3=2Oð2;2Þ
n ; (4.53)

Oð2;2Þy
n ! Ôð2;2Þy

n ¼ n1=2Oð2;2Þy
n : (4.54)

With this rescaling the two-point functions become

hÔða; �aÞy
n Ôða; �aÞ

n i ¼ hÔð2;�2Þy
n Ôð2;2Þ

n i ¼ hÔð0;0Þy
n Ôð0;0Þ

n i ¼ 1

n
;

(4.55)

and the five structure constants of the chiral ring become, at
large N,9

9As in (2.23) and (2.24), for the two types of extremal
correlators with a, �a indices we have to add appropriately �s
and �s to (4.56), (4.57), and (4.58).
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hÔy
n3Ôn2Ôn1i ¼

�
1

N

�
1=2

: (4.56)

Remarkably, the five types of extremal correlators are now
given by the simple expression

Ĉ p ¼ FpðniÞHpðfnigÞ; (4.57)

where HpðfnigÞ is, as defined above (4.36) for the poly-

nomial cases, the number of maps contributing to a given
correlator. The relation (4.57) also holds, at large N, for the
nonpolynomial four-point function (4.32), with H4ðfnigÞ
given in (4.29).

The elegance of this result suggests that this relation
might hold also for more general extremal correlators,
which include (properly rescaled) multicycle states. In
this case, the Hurwitz numbers count the number of
maps with multicycle branching points. More precisely,
we conjecture that in the large N limit the nonvanishing
extremal correlators satisfy

�
Ô

A0y
½g0� ðz0; �z0Þ

Yp�1

i¼1

ÔAi

½gi�ðzi; �ziÞ
�
¼ 1

Nðp=2Þ�1
Hpðf½gi�gÞ;

(4.58)

where Hpðf½gi�gÞ is the number of maps from the base

sphere to the covering sphere with p ramifications of
type (gi) at points zi, and Ai denote the additional quan-
tum numbers. Since the Hurwitz numbers are topological
invariants it is likely that it will be possible to prove our
conjecture from first principles by performing a topologi-
cal twist of the symmetric product theory, and using local-
ization techniques.10 The topological A and B models,
obtained in the standard fashion by twisting the (2, 2)
supersymmetry, are equivalent in this case, because the
model has (4, 4) supersymmetry. It is plausible that the full
power of this bigger symmetry may play a role in proving
our conjecture and extending our results, much as it did in

the proof of the nonrenormalization theorem [23]. The
investigation of these ideas is left for future work.
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APPENDIX A: DETAILS OF THE POLYNOMIAL
MAP

In this appendix we derive the map relevant for the
correlators discussed in Sec. III.
We discuss a map from a covering sphere, t, to a base

sphere, z, with ramification points of order n at z ¼ 0,
order 2 at z ¼ 1, order nþ 2 at z ¼ 1 and order 2 at z ¼
u. We take the images of the ramification points to be at
t ¼ 0, 1,1 and t ¼ x, respectively. The relation between x
and u will be derived shortly. The derivative of the map is
given by

z0ðyÞ ¼ Cðyþ xÞn�1ðyþ x� 1Þy; (A1)

where y ¼ t� x. Integrating the above we get

zðyÞ ¼ Cðxþ yÞn nðnþ 1Þy2 þ ðn2ðx� 1Þ � 2nÞyþ xð2þ n� nxÞ
nð2þ 3nþ n2Þ þ vðxÞ: (A2)

We set C and vðxÞ by demanding zðy ¼ 1� xÞ ¼ 1 and zðy ¼ �xÞ ¼ 0,

vðxÞ ¼ x1þn 2þ n� nx

ðnþ 2Þx� n
; zðtÞ ¼ tn

nðnþ 1Þt2 � nðnþ 2Þð1þ xÞtþ ðnþ 2Þðnþ 1Þx
ðnþ 2Þx� n

: (A3)

The relation between u and x is set by demanding x to satisfy u ¼ vðxÞ.
Explicit construction of the differential equation satisfied by a four-point function requires computing several quantities

built from the map in the limit of t ! x (3.29), e.g. the Schwarzian derivative. Lets us find the expansion of z� u in terms
of y. Writing z� u ¼ y2

P
kaky

k we obtain for the first coefficients,

a0 ¼ 1P
n�1
k¼0

P
1
l¼0

2
kþlþ2 ð�1Þkþlþ2ðn� 1

k
Þ½x�kðx� 1Þ2þk � x2þlðx� 1Þ�l�

; (A4)

10See e.g. [42] for a relation between Hurwitz numbers and topological strings.
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a1 ¼ 2

3
a0

�
n� 1

x
þ 1

x� 1

�
; a2 ¼ 1

2
a0

�
n� 1

xðx� 1Þ þ
ðn� 1Þðn� 2Þ

2x2

�
: (A5)

We can also compute the inverse expansion

y ¼ X1
k¼1

ckðz� uÞk=2: (A6)

The different expansion coefficients are related as

c1 ¼ a�1=2
0 ; c2 ¼ � a1a

�2
0

2
;

c3 ¼ a�3=2
0

8

�
5
a21
a20

� 4
a2
a0

�
:

(A7)

The above results are needed to write down the differ-
ential Eq. (3.29). We get for the quantities appearing in this
equation,

�
t00

t0

�0 ¼ 1

2

1

ðz� uÞ2 �
c2
c1

1

2
ðz� uÞ�3=2 þ . . .

�
t00

t0

�
2 ¼ 1

4

1

ðz� uÞ2 �
c2
c1

ðz� uÞ�3=2

þ 3

�
c22
c21

� c3
c1

�
ðz� uÞ�1 þ . . .

(A8)

From here we obtain

�
t00

t0

�0 � 1

2

�
t00

t0

�
2 ¼ 3

8

1

ðz� uÞ2 �
3

2

�
c22
c21

� c3
c1

�
ðz� uÞ�1

þ . . . : (A9)

We will also need the following

ðt0Þ2 ¼ c21
4
ðz� uÞ�1 þ c1c2ðz� uÞ�1=2

þ 1

2
ð2c22 þ 3c1c3Þ . . .

1

t� x
¼ 1

c1
ðz� uÞ�1=2 � c2

c21
þ c22 � c1c3

c31
ðz� uÞ1=2

þ . . .

1

t� xþ a
¼ 1

a
� c1

a2
ðz� uÞ1=2 �

�
c2
a2

� c21
a3

�
ðz� uÞ

þ �c31 þ 2ac1c2 � a2c3
a4

ðz� uÞ3=2 þ . . . ;

(A10)

where a is some complex number.
Plugging the above results into (3.29), and integrating

the differential equation, expression (3.39) is obtained.

APPENDIX B: COUNTING MAPS AND OPE
LIMITS

In this appendix we compute the total number of maps,
and the number of maps contributing to the OPE limit in
several cases relevant to the discussion in the bulk of the
paper. It can be shown that counting covering maps is
equivalent to counting certain types of graphs, and in fact
there are many ways to define such graphs [39]. In [1] we
developed a diagrammatic language suitable for symmetric
product orbifolds. In what follows we use this language to
solve the enumerative problems at hand. For notations and
explanations of the diagrams we refer the reader to [1],
where the case of four-point polynomial maps is treated in
detail.

1. Diagrammatic counting of maps for five-point
polynomial correlators

We want to compute the total number of maps, and the
number of maps contributing to the OPE limit, in a five-
point polynomial correlator. Consider a polynomial corre-
lator with cycles ~n1 
 ~n2 
 ~n3 
 ~n4 inserted at finite
points and cycle ~n5 ¼ ~n1 þ ~n2 þ ~n3 þ ~n4 � 3 inserted at
infinity. The different diagrams contributing to the poly-
nomial correlator can be split into eight classes. These are
depicted in Fig. 1. To count the number of diagrams we
sum the contributions from each graph and each possible
ordering, i.e. each assignment of the cycle lengths ~ni to the
lengths ni appearing in Fig. 1. Essentially we have to count
all the possible ways to choose the numbers l and k in these
diagrams. The results are summarized in the table below.

Class Ordering #

(I) bcdea n2n3
(II) ebcda n3ðn4 � 1Þ
(II) becda n3ðn4 � 1Þ
(II) bceda n2ðn4 � 1Þ
(III) decba ðn1 � 1Þn3
(III) dceba ðn1 � 1Þn2
(III) dcbea ðn1 � 1Þn2
(IV) bdeca ðn2 � 1Þðn4 � 1Þ
(IV) bdcea ðn2 � 1Þðn3 � 1Þ
(IV) debca ðn1 � 1Þðn4 � 1Þ
(IV) dbeca ðn1 � 1Þðn4 � 1Þ
(IV) dbcea ðn1 � 1Þðn3 � 1Þ
(V) c e (d) b (d) a n2ðn2 � 1Þ
(VI) (b) d (b) e c a n3ðn3 � 1Þ
(VII) [b, c, d] e a ðn4 � 2Þðn4 � 1Þ
(VIII) e [b, c, d] a ðn1 � 2Þðn1 � 1Þ

Summing all the contributions from the table above we get
that the number of maps in the five-point extremal case is
~n25 ¼ ð~n1 þ ~n2 þ ~n3 þ ~n4 � 3Þ2. Let us count now the dia-
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grams that contribute in the OPE limit of ~n1 cycle colliding
with the ~n2 cycle. The diagrams that contribute are the ones
with a propagator stretched between ~n1 and ~n2. Thus, we
count those diagram in the table above having a propagator
between the two first cycles in column Ordering. We get
that the number of such maps is ð~n1 þ ~n2 � 1Þ~n5.

2. OPE counting

The number Hp of terms in (4.34) is the number of

np-sheeted covering maps from S2cover to S2base with p

branching points, with branching numbers n1; n2; . . . np,

and satisfying

np ¼ Xp�1

i¼1

ni � pþ 2: (B1)

The maps in this case are polynomial. This number can be
shown [41] to be equal to

Hp ¼ np�3
p : (B2)

Let us call ~n to the number of maps, out ofHp, such that the

OPE of the operator with quantum number n1 and to
operator with quantum number n2 gives a single cycle of
size n1 þ n2 � 1.
To determine ~n consider an auxiliary (p� 1)-point cor-

relator with cycles of length ðn1 þ n2 � 1Þ; n3; n4; . . . ;
np�1; np. From (B2) there are np�4

p such maps. To obtain

a p-point correlator of form (B1) we have to split the n1 þ
n2 � 1 cycle of the auxiliary correlator into n1 and n2 cycle
in all possible ways. Obviously, there are n1 þ n2 � 1
ways to do so, so the total number of maps is

~n ¼ ðn1 þ n2 � 1Þns�4
p : (B3)

Note that in correlators satisfying (B1), two vertices can
either have no common colors or just a single common
color. And thus in the OPE between a pair of consecutive

FIG. 1 (color online). The eight classes of different diagrams contributing to a generic polynomial five-point function. The number
over each line is the number of propagators joined in that line. The four vertices at finite positions are b, c, d, e, and a is the vertex at
infinity. Below each diagram we indicate the ordering of the vertices. The commutator denotes that vertices commute, and parenthesis
indicate the possible position of an operator.
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vertices, either the cycles ni and niþ1 join to a single cycle
of length ni þ niþ1 � 1 or to a double cycle of the form
ðniÞðniþ1Þ. It is easy to see this fact diagrammatically. Any

diagram of such p-point correlator has all the propagators,
except p� 2 ones, going to the vertex np, and the remain-

ing p� 2 propagators connect the first p� 1 vertices into
some connected tree structure. This is exemplified in Fig. 2.
It is easy to see that two vertices either do not have any
common loop and thus no common color, or they have a
single common color loop.

3. Planar maps in the extremal nonpolynomial four-
point function

In this section we count diagrammatically all the planar
maps contributing to the ‘‘near polynomial’’ case, n4 ¼
n1 þ n2 þ n3 � 4. All the classes of diagrams are depicted
in Fig. 3. We can count the number of diagrams in each
class by just counting the number of values the parameter k
can take in each class of diagrams in Fig. 3. The results are
summarized in table below. The column labeled OPE
denotes whether the diagrams contribute in the OPE limit
(i) when two contracted cycles have two indices in com-
mon, or (ii) when a single index is common.

FIG. 2 (color online). An example of a generic graph of a
polynomial map. The blue lines connect the first p� 1 ramifi-
cation points and the dashed black lines go to ramification point
np. In this case we have a particular example of a diagram

contributing to hð�½2�Þ17�½18�i.

FIG. 3 (color online). The different classes of diagrams contributing to the ‘‘near polynomial’’ four-point function. Thin blue lines
represent a single propagator of the graph.
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Class Ordering # OPE

(I) bcda n2 � 1 i

(II) dcba n2 � 1 ii

(III) bdca n3 � 2 -

(III) dbca n3 � 2 -

(IV) cbda n1 � 2 i

(IV) cdba n1 � 2 ii

(V) dcba 1 ii

(VI) bcda 1 ii

Summing all the contributions we get that the number of
maps is 2ðn1 þ n2 þ n3 � 4Þ ¼ 2n4. The number of maps
contributing to (i) OPE limit is n1 þ n2 � 3, and to the (ii)
OPE limit is n1 þ n2 � 1.
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