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We reveal nonmanifest gauge and SOð1; 5Þ Lorentz symmetries in the Lagrangian description of a six-

dimensional free chiral field derived from the Bagger-Lambert-Gustavsson model in [P.-M. Ho and

Y. Matsuo, J. High Energy Phys. 06 (2008) 105.] and make this formulation covariant with the use of a

triplet of auxiliary scalar fields. We consider the coupling of this self-dual construction to gravity and its

supersymmetrization. In the case of the nonlinear model of [P.-M. Ho, Y. Imamura, Y. Matsuo, and

S. Shiba, J. High Energy Phys. 08 (2008) 014.] we solve the equations of motion of the gauge field, prove

that its nonlinear field strength is self-dual and find a gauge-covariant form of the nonlinear action. Issues

of the relation of this model to the known formulations of the M5-brane worldvolume theory are

discussed.
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I. INTRODUCTION

The problem of the Lagrangian formulation of the the-
ory of self-dual or in general duality-symmetric fields, i.e.
fields whose strengths are subject to a duality condition,
has attracted a great deal of attention for decades. A
classical physical example, the duality symmetry between
electric and magnetic fields of free Maxwell equations,
inspired Dirac to promote it to the gauge theory of electri-
cally and magnetically charged particles by introducing the
magnetic monopoles [1]. Since then duality-symmetric
fields appeared and have played an important role in
many field theories, in particular, in String Theory and M
theory. The gauge fields whose field strength is self-dual
are often called chiral (p-form) fields. In space-times of
Lorentz signature such fields exist if p ¼ 2k (k ¼ 0; 1; . . . )
and the space-time dimension is D ¼ 2ðpþ 1Þ.

Main problems of the Lagrangian formulation of the
duality-symmetric and, in particular, the chiral fields are
i) to construct an action whose variation would produce the
first-order duality condition on the field strengths as a
consequence of dynamical equations of motion; ii) to
find a manifestly Lorentz-covariant form of such an action,
which is of a great help for studying a (nonlinear) coupling
of duality-symmetric fields to gravity and other fields in the
theory; iii) to quantize such a theory.

The first two (classical) problems have been solved in a
number of papers using different (classically equivalent)
approaches. It has been realized that it is not possible to
construct manifestly duality-symmetric and Lorentz-
covariant actions without using auxiliary fields. In various
space-time dimensions nonmanifestly Lorentz-covariant
duality-symmetric actions were constructed and studied
in [2–7], see also [8] for more recent developments based

on a holographic formulation of self-dual theory. It is
known that in these models the Lorentz-invariance gets
restored at the level of the equations of motion (i.e. when
the duality relation holds) and is actually a somewhat
modified nonmanifest symmetry of the action (see e.g. [7]).
To make the Lorentz invariance of the duality-

symmetric action manifest, in particular, that of the
chiral-field action, one should introduce auxiliary fields.
In different formulations their amount vary from infinity
[9–12] to a few [13,14] or even one [15,16]. The relation
between different noncovariant and covariant formulations
was studied e.g. in [16–18]. The quantization of duality-
symmetric and chiral gauge fields (which is a subtle and
highly nontrivial problem, especially in topologically non-
trivial backgrounds) has also been intensively studied, see
e.g. [2,8–12,19–27] and references therein.
One more, noncovariant, Lagrangian formulation of a

chiral 2-form gauge field in six space-time dimensions was
derived in [28,29] from a Bagger-Lambert-Gustavsson
(BLG) model of interacting Chern-Simons and matter
fields inD ¼ 3 [30,31]. This has been achieved by promot-
ing the non-Abelian gauge symmetry of the BLG model to
the infinite-dimensional local symmetry of volume pre-
serving diffeomorphisms in an internal three-dimensional
space, see also [32,33]. It was argued in [28,29] that when
the initial D ¼ 3 space-time and the three-dimensional
internal space are treated as six-dimensional space-time,
such a model describes a nonlinear effective field theory on
the worldvolume of a 5-brane of M theory in a strong C3

gauge field background. Other aspects of the relation of the
M5-brane to the BLG model based on the 3-algebra asso-
ciated with volume preserving diffeomorphisms were con-
sidered e.g. in [33–35]. In particular, the authors of [33]
found a relation of the M5-brane action [36–38], in the
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limit of infinite M5-brane tension, to a Carrollian limit of
the BLG model in which the speed of light is zero (which
amounts to suppressing all spacial derivatives along the
M2-brane).

The aim of this paper is to discuss and clarify some
issues of theD ¼ 6 chiral-field model of [28,29] regarding
its space-time and gauge symmetries, and self-duality
properties. We shall first consider the free chiral-field for-
mulation of [28] and then its nonlinear generalization
constructed in [29]. We shall also compare this model
with the original actions for theD ¼ 6 chiral 2-form gauge
field [5,7,16], as well as with the M5-brane action [36,37]
and equations of motion [39–43].

In the free-field case, we show that, like the actions of
[5,7], the quadratic chiral-field action of [28] possesses a
nonmanifest six-dimensional (modified) Lorentz symme-
try and can be covariantized, coupled to gravity and super-
symmetrized in a way similar to the approach of [15,16].
However it differs from the original PST formulation in the
number of auxiliary fields required for making the D ¼ 6
chiral-field action of [28] manifestly covariant. We show
that the latter requires three scalar fields, taking values in
the three-dimensional representation of a GLð3Þ group,
while the formulation of [15,16] makes use of a single
auxiliary scalar field. This is expected, since in the model
of [28,29] the six space-time directions are subject to 3þ 3
splitting, instead of the 1þ 5 splitting of [5,7,15,16,36,37].

We then consider the nonlinear chiral-field model of
[28,29] neglecting its couplings to scalar and spinor matter
fields. By solving the nonlinear field equations derived in
[29] we find an explicit form of gauge field strength
components that were missing in the formulation of [29]
and show that the complete D ¼ 6 field strength trans-
forms as a scalar field under volume preserving diffeo-
morphisms and satisfies the complete set of Bianchi
relations. We prove that the general solution of the non-
linear field equations results in the Hodge self-duality of
the D ¼ 6 nonlinear gauge field strength, thus confirming
the assumption of [29]. We also find that the action of
the nonlinear model can be rewritten in a form that in-
volves solely the components of the chiral-field strength
and hence is covariant under the volume preserving
diffeomorphisms.

The paper is organized as follows. In Sec. II we recall the
basic properties of a free 2-form chiral field in six-
dimensional space-time (Sec. II A), consider the structure
of a noncovariant action for the D ¼ 6 chiral-gauge field a
la [5,7] (Sec. II B) and overview the covariant Lagrangian
description of the chiral fields proposed and developed in
[15,16] (Sec. II C). In Secs. III A and III B we consider the
alternative noncovariant formulation of [28,29] at the free-
field level and reveal its hidden gauge and Lorentz
symmetries. In Secs. III C, III D, and III E we propose its
covariantization, coupling to gravity and supersymmetri-
zation along the lines of the approach of [15,16]. In Sec. IV

we consider the nonlinear generalization of the alternative
chiral-field formulation and study its symmetry and self-
duality properties. In Sec. V we briefly discuss issues of the
relation of the model of [28,29] to the worldvolume theory
of the M5-brane.

II. ACTIONS FOR THE D ¼ 6 CHIRAL FIELD

A. The antisymmetric 2-rank gauge field in D ¼ 6

Let R1;5 be a six-dimensional Minkowski space having
the metric ��� ¼ diagð�1; 1; 1; 1; 1; 1Þ and parametrized

by coordinates x� (� ¼ 0; 1; . . . ; 5). Let A�� be a two-rank

antisymmetric tensor field with the field strength

F��� ¼ @�A�� þ @�A�� þ @�A��: (2.1)

The field strength (2.1) is invariant under the gauge trans-
formations1

�A�� ¼ 2@½����ðxÞ ¼ @��� � @���: (2.2)

These gauge transformations are reducible because of the
residual gauge invariance of the gauge parameter,

��� ¼ @��ðxÞ: (2.3)

The classical action for this field is

S ¼ � 1

4!
g2
Z

d6xF���F
���; (2.4)

where g is a coupling constant of mass dimensionality,
which we shall put equal to one in what follows. The
corresponding equation of motion is

�S

�A��
¼ @�F

��� ¼ 0: (2.5)

By definition, the field (2.1) satisfies the Bianchi identity

"��	��
@	F��
 ¼ 0: (2.6)

On the mass shell, such an antisymmetric tensor field A��

describes 6 degrees of freedom. This number can be re-
duced to three if one imposes an additional, self-duality,
condition

F��� ¼ ~F���; (2.7)

where

~F ��� :¼ 1

6
"�����	F

��	: (2.8)

The field A�� satisfying Eq. (2.7) is called the chiral

field.
A natural question is whether one can derive the first-

order self-duality condition (2.7) from an action principle
as an equation of motion of A��. The answer is positive,

1We use the symmetrization and antisymmetrization of indices
with ‘‘strength one’’, i.e. with the normalization factor 1

n! .
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though the construction is nontrivial, and the resulting
action possess peculiar properties to be reviewed in the
next section.

B. Noncovariant action

Usually the actions for free bosonic fields are of a
quadratic order in their field strengths, like Eq. (2.4). So
if, in order to get a chiral-field action, one tries to modify
the action (2.4) with some other terms depending solely on
components of F���, one gets the equations of motion that

are of the second order in derivatives. Thus, the chiral-field
action should have a structure and symmetries which
would allow one to reduce the second order differential
equations to the first-order self-duality condition. Such
actions have been found for various types of chiral fields
[2–7] but they turn out to be nonmanifestly space-time
invariant. In the D ¼ 6 case the self-dual action can be
written in the following form

S ¼ � 1

4!

Z
d6x½F���F

��� þ 3ðF� ~FÞ0ijðF� ~FÞ0ij�;
ði; j ¼ 1; . . . ; 5Þ: (2.9)

It contains the ordinary kinetic term for A��, and the

second term which breaks manifest Lorentz-invariance
down to its spatial subgroup SOð5Þ, since only the time
components of (F� ~F) enter the action.2 However, it turns
out that Eq. (2.9) is (nonmanifestly) invariant under modi-
fied space-time transformations [4,7] which [in the gauge
A0i ¼ 0 for the local symmetry (2.2)] look as follows

�Aij ¼ x0vk@kAij þ xkvk@0Aij � xkvkðF� ~FÞ0ij:
(2.10)

The first two terms in (2.10) are standard Lorentz boosts
with a velocity vi which extend SOð5Þ to SOð1; 5Þ. The last
term is a nonconventional one, it vanishes when (2.7) is
satisfied, so that the transformations (2.10) reduce to the
conventional Lorentz boosts on the mass shell.

From (2.9) one gets the A�� field equations, which have

the form of Bianchi identities

"ijklm@kðF� ~FÞlm0 ¼ 0: (2.11)

Their general (topologically trivial) solution is

ðF� ~FÞij0 ¼ 2@½i�j�ðxÞ: (2.12)

If the right hand side of (2.12) were zero, then

Fij0 ¼ ~Fij0 ¼ 1

6
"ijklmF

klm (2.13)

and, hence, as one can easily check, the full covariant self-
duality condition is satisfied. And this is what we would
like to get. One could put the right-hand side (rhs) of (2.12)
to zero if there is an additional local symmetry of (2.9) for
which @½i�j� ¼ 0 is a gauge fixing condition. And there is

indeed such a symmetry [7] which acts on the components
of A�� as follows

�A0i ¼ �iðxÞ; �Aij ¼ 0;

�ðF� ~FÞij0 ¼ 2@½i�j�:
(2.14)

The existence of this symmetry is the reason why the
quadratic action describes the dynamics of the self-dual
field A�� with twice less physical degrees of freedom than

that of a non-self-dual one. It also implies that the compo-
nents A0i are pure gauge and enter the action only under a
total derivative. A0i can be thus put to zero directly in the
action, which fixes the gauge symmetry (2.14). The action
(2.9) then reduces to

S ¼ � 1

4!

Z
d6x½2FijkF

ijk þ "ijklmFklm@0Aij�;
ði; j ¼ 1; . . . ; 5Þ: (2.15)

Equation (2.15) does not contain the A0j component of the

six-dimensional chiral field. Thus, on the mass shell, the
role of this component is taken by the ‘‘integration’’ func-
tion �jðxÞ of (2.12), which appears upon solving the sec-

ond order field Eq. (2.11). We shall encounter the same
feature in the alternative formulation of [28], but before
describing the construction of [28] let us first review a
covariant Lagrangian description of the chiral field pro-
posed in [15,16].

C. Lorentz-covariant formulation

The covariant formulation of [15,16] is constructed with
the use of a single auxiliary scalar field aðxÞ. The covariant
generalization of the action (2.9) for the D ¼ 6 self-dual
field looks as follows

S ¼ � 1

4!

Z
d6x

�
F���F

���

� 3

ð@�a@�aÞ@
�aðxÞðF� ~FÞ��
ðF� ~FÞ�
�@�aðxÞ

�
:

(2.16)

In addition to standard gauge symmetry (2.3) of A��ðxÞ the
covariant action (2.16) is invariant under two different
local transformations:

�A�� ¼ 2@½�a���ðxÞ; �a ¼ 0; (2.17)

�a ¼ ’ðxÞ; �A�� ¼ ’ðxÞ
ð@aÞ2 ðF� ~FÞ���@

�a: (2.18)

The transformations (2.17) are a covariant counterpart of

2Alternatively, but equivalently, one might separate one spa-
cial component from other five and construct an SOð1; 4Þ invari-
ant action similar to (2.9) but in which the sign of the second
term is changed and the time index 0 is replaced with a space
index, e.g. 5. This choice is convenient when performing the
dimensional reduction of the D ¼ 6 theory to D ¼ 5.
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(2.14) and play the same role as the latter in deriving the
self-duality condition (2.7).

Local symmetry (2.18) ensures the auxiliary nature of
the field aðxÞ required for keeping the space-time covari-
ance of the action manifest [15]. An admissible gauge
fixing condition for this symmetry is

@�aðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�@�a@
�a

p ¼ �0
�: (2.19)

In this gauge the action (2.16) reduces to (2.9). The modi-
fied space-time transformations (2.10), which preserve the
gauge (2.19) arise as a combination of the Lorentz boost
and the transformation (2.18) with’ ¼ �vixi, (i ¼ 1, 2, 3,
4, 5).

One may wonder whether by using the gauge trans-
formation (2.18) one can put the field aðxÞ to zero. This
is indeed possible if one takes into account the subtlety that
by imposing such a gauge fixing one should handle a
singularity in the action (2.16) in such a way that the ratio
@�a@

�a=@�a@
�a remains finite. This can be achieved by

first imposing the gauge fixing condition aðxÞ ¼ �x�n�,

where n� is a constant timelike vector n2 ¼ �1 and then

sending the constant parameter � to zero. As one can see,
such a limit is compatible with the gauge choice (2.19) with
n� ¼ �0

�.

For further analysis it is useful to note that the auxiliary
field aðxÞ enters the action (2.16) only through the combi-
nation which forms a projector matrix of rank one

P�
� ¼ 1

@�a@
�a

@�a@
�a; P�

�P�
� ¼ P�

�: (2.20)

Then the action (2.16) takes the form

S ¼ � 1

4!

Z
d6x½F���F

���

� 3ðF� ~FÞ�
�P�
�ðF� ~FÞ��
�: (2.21)

It produces the following Lorentz-covariant counterpart of
the self-duality condition (2.13)

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð@aÞ2p F���@
�a ¼ 1

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð@aÞ2p @�a"����

F

�



� ~F��: (2.22)

As one can easily see, Eq. (2.22) is equivalent to the self-
duality condition (2.7).

III. FREE D ¼ 6 CHIRAL-GAUGE FIELD FROM
THE BLG MODEL

A. Noncovariant formulation

A different noncovariant Lagrangian description of the
D ¼ 6 chiral field was obtained in [28,29] from a Bagger-
Lambert-Gustavsson (BLG) model [30,31] of interacting
Chern-Simons and matter fields inD ¼ 3 by promoting the
gauge symmetry of the BLG model to the infinite-

dimensional local symmetry of volume preserving diffeo-
morphisms of an internal three-dimensional space. The
original three-dimensional space-time (supposed to be a
worldvolume of coincident M2-branes) was assumed in
[28,29] to combine with the three-dimensional internal
space and to form the six-dimensional worldvolume of a
5-brane carrying a 2-form chiral field. So in the formula-
tion of [28,29] the D ¼ 6 Lorentz symmetry SOð1; 5Þ is
(naturally) broken by the presence of membranes to
SOð1; 2Þ � SOð3Þ. In particular, the action for the free
chiral field is constructed with the use of components of
A�� which are split into SOð1; 2Þ � SOð3Þ tensors and is

thus an SOð1; 2Þ � SOð3Þ invariant counterpart of the
SOð5Þ (or SOð1; 4Þ) covariant chiral-field Lagrangian of
Sec. II B.
We shall now briefly review this formulation for the case

of the free gauge field. The nonlinear chiral-field model of
[28,29] will be discussed in Sec. IV.
With respect to the subgroup SOð1; 2Þ � SOð3Þ, the

SOð1; 5Þ components of A�� split as follows

A�� ¼ ðAab; Aa _b; A _a _bÞ; (3.1)

where the indices a ¼ ð0; 1; 2Þ and _a ¼ ð1; 2; 3Þ, corre-
spond, respectively, to the SOð1; 2Þ and SOð3Þ subgroup
of the fullD ¼ 6 Lorentz group. Each of the antisymmetric
fields Aab and A _a _b has three components, while Aa _b has
nine components. The D ¼ 6 coordinates x� split into xa

and x _a.
Only the components Aa _b and A _a _b were used in the

construction of the chiral-field Lagrangian of [28], which
has the form

L ¼ � 1

4
Fa _b _cðF� ~fÞa _b _c � 1

12
F _a _b _cF

_a _b _c; (3.2)

where

Fa _b _c ¼ @aA _b _c � @ _bAa _c þ @ _cAa _b; (3.3)

F _a _b _c ¼ @ _aA _b _c � @ _bA _a _c þ @ _cA _a _b; (3.4)

~f a _b _c ¼
1

2
"abc" _b _c _af

bc _a (3.5)

and

fab _c ¼ @aAb _c � @bAa _c: (3.6)

Here "abc and " _a _b _c are the antisymmetric unit tensors
invariant under SOð1; 2Þ and SOð3Þ, respectively.
Note that the tensor (3.6) as well as the Lagrangian (3.2)

do not contain the components Aab of the gauge potential.
Because of this the Lagrangian (3.2) is invariant under the
gauge transformations

�Aa _b ¼ @a� _b � @ _b�a (3.7)

only modulo a total derivative.
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As in the case of the formulation of Sec. II B, Eqs. (2.12)
and (2.15), the Aab component of the chiral field appears on
the mass shell upon integrating out one of the derivatives of
the second order field equations which follow from the
Lagrangian (3.2) and have (upon the use of the Bianchi
identities) the form [28]

�S

�Aa _b
¼ 0 ) @ _cðF� ~fÞa _b _c ¼ 0 ) ðF� ~fÞa _b _c

¼ 1

2
" _b _c _a"abc@

_aAbc; (3.8)

�S

�A _a _b
¼ 0 ) @aF

a _b _c þ @ _aF
_a _b _c ¼ 0; (3.9)

where Aabðx�Þ is an SOð1; 2Þ antisymmetric tensor field.
Then Eq. (3.8) takes the form of the duality relation

ðF� ~FÞa _b _c ¼ 0 ) Fa _b _c ¼ ~Fa _b _c; (3.10)

where

~F a _b _c �
1

2
"abc" _b _c _aF

bc _a (3.11)

and

Fab _c ¼ fab _c þ @ _cAab ¼ @aAb _c � @bAa _c þ @ _cAab (3.12)

is a complete gauge invariant Fab _c component of the field
strength F���.

Substituting Fa _b _c with its dual (3.10) and (3.12) into the
Eq. (3.9) we get

@ _aF _a _b _c þ
1

2
" _a _b _c"abc@

_a@aAbc ¼ 0;

) F _a _b _c þ
1

2
" _a _b _c"abc@

aAbc ¼ " _a _b _cfðxÞ;
(3.13)

where fðxaÞ is a function of only three coordinates xa ¼
ðx0; x1; x2Þ, that can always be written as the divergence of
a vector fðxÞ ¼ @af

aðxÞ. It can thus be absorbed by a
redefinition Aab ! Aab þ 1

3"abcf
cðxÞwithout any effect on

(3.10). As a result, Eq. (3.13) takes the form of the duality
relation

Fabc ¼ 1

6
"abc" _a _b _cF

_a _b _c; (3.14)

where

Fabc ¼ @aAbc þ @bAca þ @cAab (3.15)

are components of the field strength of the D ¼ 6 chiral
field which do not enter the Lagrangian (3.2).

Equations (3.8) and (3.14) combine into the SOð1; 5Þ
covariant self-duality condition (2.7) in which the compo-
nents of the D ¼ 6 antisymmetric tensor "����
� are

defined as follows

"abc _a _b _c ¼ �" _a _b _c abc ¼ "a _b _c bc _a ¼ "abc" _a _b _c: (3.16)

B. Symmetries of the noncovariant formulation

We have already mentioned that the Lagrangian (3.2) is
invariant under the gauge transformations (3.7) only up to a
total derivative, because the Aab component of the gauge
field does not enter the Lagrangian. We can restore the
complete gauge invariance of the Lagrangian by adding to
it certain terms depending on Aab in such a way that they
enter the Lagrangian as total derivatives and hence do not
modify corresponding equations of motion. With these
terms the action takes the form

S ¼ � 1

4

Z
d6x

�
Fa _b _cðFa _b _c � ~Fa _b _cÞ

þ 1

3
F _a _b _cðF _a _b _c � ~F _a _b _cÞ

�

¼ 1

4

Z
d6x

�
~Fab _cð ~Fab _c � Fab _cÞ þ 1

3
~Fabcð ~Fabc � FabcÞ

�
:

(3.17)

Since the component Aab enters this action under a total
derivative, in addition to the conventional gauge symmetry
(2.2), the action (3.17) is also invariant under the following
local transformations

�Aab ¼ �abðx�Þ; (3.18)

which are analogous to the transformations (2.14) in
Sec. II B.
We shall now show that, similar to the formulation of

Sec. II B, the action (3.17) has a nonmanifestD ¼ 6 space-
time symmetry.
By construction, Eq. (3.17) is manifestly invariant under

the SOð1; 2Þ � SOð3Þ subgroup of the full Lorentz group
SOð1; 5Þ. So we should check its invariance under the
transformations of the components of the gauge field A��

corresponding to the coset SOð1; 5Þ=½SOð1; 2Þ � SOð3Þ�
which are parametrized by the 3� 3 constant matrix �a

_b
,

�1A
a _a ¼ �a

_b
A

_b _a þ �b
_cðxb@ _c � x _c@bÞAa _a;

�1A
_a _b ¼ �� _a

aA
a _b þ �

_b
bA

b _a þ �b
_cðxb@ _c � x _c@bÞA _a _b:

(3.19)

[For simplicity, we work in the gauge Aab ¼ 0, which can
always be imposed by fixing one of the local symmetries
(2.2) and (3.18)]. The action is not invariant under the
transformations (3.19), but changes as follows

�1S ¼ � 1

2

Z
d6x� _c

bðFa _b _c � ~Fa _b _cÞðFab _b � ~Fab _bÞ:
(3.20)

This variation of the action can be compensated if the
Lorentz transformations of the gauge field are accompa-
nied by the following transformation

�2Aa _b ¼ �c
_d
x

_dðFca _b � ~Fca _bÞ;
�2A _a _b ¼ 0; ðAab ¼ 0Þ:

(3.21)
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Indeed,

�2S ¼ 1

2

Z
d6x� _c

bðFa _b _c � ~Fa _b _cÞðFab _b � ~Fab _bÞ: (3.22)

As a result, we conclude that the action (3.17) is invari-
ant under the following modified SOð1; 5Þ=½SOð1; 2Þ �
SOð3Þ� transformations

�Aa _a ¼ �a
_b
A

_b _a þ �b
_cðxb@ _c � x _c@bÞAa _a

þ �
_d
cx _dðFca _a � ~Fca _aÞ;

�A _a _b ¼ �� _a
aA

a _b þ �
_b
bA

b _a þ �b
_cðxb@ _c � x _c@bÞA _a _b;

(3.23)

which together with the SOð1; 2Þ � SOð3Þ transformations
form a modified nonmanifest D ¼ 6 Lorentz symmetry of
the action (3.17). The space-time transformations become
the conventional SOð1; 6Þ Lorentz transformations on the
mass shell, when the gauge field strength satisfies the self-
duality condition.

C. Alternative covariant formulation

Let us now generalize the action (3.17) in such a way
that it becomes Lorentz-covariant. To this end, by analogy
with the covariant formulation of Sec. II C, we introduce
auxiliary fields which appear in the action in the form of
projector matrices P�

�ðxÞ and ��
�ðxÞ

P�
�P�

� ¼ P�
�ðxÞ; ��

���
� ¼ ��

�ðxÞ;
��

� ¼ ��
� � P�

�:
(3.24)

In contrast to the projector (2.20), we now require that
P�

�ðxÞ and ��
�ðxÞ have the rank three and look for an

action that has a local symmetry, analogous to (2.18),
which allows one to gauge fix the projectors to become
the constant matrices

P�
� ¼ �b

a 0
0 0

� �
; ��

� ¼ 0 0
0 � _b

_a

 !
: (3.25)

To construct the SOð1; 5Þ covariant generalization of the
action (3.17) we first rewrite it in the form

S ¼ 1

4!

Z
d6x½�F���F

��� þF abcF abc þ 3F ab _cF ab _c�;
(3.26)

where

F ��� ¼ F��� � ~F���; F abc ¼ Fabc � ~Fabc;

F ab _c ¼ Fab _c � ~Fab _c; etc: (3.27)

Note that the field F ��� is anti-self-dual,

~F ��� ¼ 1

6
"�����	F ��	 ¼ �F ���: (3.28)

Now, using the projectors (3.24), we construct the Lorentz-
covariant generalization of (3.26)

S ¼ 1

4!

Z
d6x½�F���F

���

þF ���F ��	ðP�
�P�

�P
�
	 þ 3P�

�P�
��

�
	Þ�; (3.29)

or, equivalently,

S ¼ � 1

12

Z
d6xF���F ��	ð��

���
��

�
	 þ 3�

�
���

�P
�
	Þ

¼ � 1

12

Z
d6x ~F���F ��	ðP�

�P�
�P

�
	 þ 3P�

�P�
��

�
	Þ:
(3.30)

We shall now show that the action (3.29) or (3.30) has
indeed the required local symmetry, provided the projec-
tors are constructed in an appropriate way from a triplet of
scalar fields arðxÞ (r ¼ 1, 2, 3) being a vector with respect
to the GLð3Þ group. These scalar fields play the same role
as the auxiliary field aðxÞ of Sec. II C.

D. Symmetries of the covariant action

Recall that the action (3.17) is invariant under the local
transformations (3.18). The generalization of this symme-
try to the case of the Lorentz-covariant action (3.29) is

�A�� ¼ P�
�P

�
����ðxÞ; �P�

� ¼ ���
� ¼ 0: (3.31)

To check this and other symmetries let us perform a
general variation of the action (3.29) with respect to A��.

Using the identities

"�����	P
�
�0P�

�0P
�
�0 ¼ �"����0�0�0�

�
���

��
�
	;

"�����	P
�
½�0P�

�0�
�
�0� ¼ �"����0�0�0�

�
½��

�
�P

�
	�;

P�0
�P�0

�@�P�� ¼ 0;

(3.32)

we find that

�S�A ¼ 1

12

Z
d6x�F���½�F��� þ ðP�

�P�
�P

�
	 þ 3P

�
�P�

��
�
	 ��

�
���

��
�
	 � 3�

�
���

�P
�
	ÞF ��	�

¼ 1

12

Z
d6x�F���½�F��� þ ð�4P�

�P�
�P

�
	 þ 6P�

�P�
��

�
	 � ��

���
��

�
	ÞF ��	�

¼
Z

d6x�A��

�
1

2
@�F ��� � 1

2
P�
�P�

�@�F
��� � ð@�P�

� ÞP�
�F

��� � @�ðP�
�P

�
��

�
	F ��	Þ

�
: (3.33)
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For the variation of A�� in the form (3.31) we get

��S ¼ �
Z

d6x���F �
�P�
�P

�
��

�

�

	
�ð@½�P�

	�Þ: (3.34)

We see that ��S ¼ 0 if

�

���

	@½�P	�
�P�

� ¼ 0: (3.35)

Equation (3.35) is the main differential constraint which
must be satisfied by the projector. It is solved by expressing
the projector in terms of derivatives of a triplet of auxiliary
scalar fields arðxÞ with the index r ¼ 1, 2, 3 corresponding
to a three-dimensional representation of GLð3Þ. Namely,

P�
� ¼ @�a

rY�1
rs @�as; ��

� ¼ ��
� � P�

�; (3.36)

where Y�1
rs is the inverse matrix for3

Yrs � @�a
r@�as:

Thus, to satisfy the requirement of the local symmetry
(3.31), the projector in the action (3.29) is taken to be in the
form (3.36).

In view of the similarity of the structure of the projectors
(2.20) and (3.36), one may expect that there is a local
symmetry acting on arðxÞ and A��, analogous to (2.18),

which allows one to get the gauge condition (3.25) by
putting

ar ¼ �a
rxa (3.37)

and to recover the modified Lorentz transformation (3.21)
and (3.23) of the noncovariant formulation as a compensat-
ing transformation of the local symmetry, preserving the
gauge (3.25) and (3.37).

There is indeed such a local symmetry, i.e.

�’a
r ¼ ’rðxÞ; �’A�� ¼ 2’rY�1

rs @	asF ��	P
�
½��

�
��;

(3.38)

where ’rðxÞ are local parameters. To check the invariance
of the action under (3.38) it is also instructive to present the
variation of the projector

�’P�� ¼ 2��ð�@�’qY�1
qr @�Þar: (3.39)

Note that the variation (3.39) preserves the constraint
(3.35), which reflects the fact that the latter is solved by
the projector P�

� having the form (3.36). A direct compu-

tation shows that the action is invariant under the variations
(3.38) and (3.39). Indeed,

�’S ¼
Z

d6xT
��
r @�@�a

r ¼ 0; (3.40)

where T��
r is the antisymmetric tensor of the form

T
��
r ¼ �T

��
r

¼ Y�1
rs Y�1

kl ’
k@
as@�alð��

���
��

�
	F ��	F �
�

þ 2�
½�
½
�

���F �

��F ����

�
�P

�

 Þ: (3.41)

The gauge condition (3.37) is preserved under the com-
bined Lorentz transformations and the ’-transformation

(3.38) with parameters �a
_b
and ’ ¼ ��a

_b
x

_b, respectively,

�ar ¼ �La
r þ �’a

r ¼ 0: (3.42)

When acting on the components of the gauge field A��,

such a combined transformation generates the modified
Lorentz transformations (3.23) of the noncovariant
formulation.

E. Coupling to gravity and supersymmetric
generalization

Because of the manifest Lorentz covariance of the for-
mulation under consideration, like in the case of the for-
mulation of [15,16], the coupling of the chiral gauge field
to gravity is straightforward. One should only replace in
the action (3.29) and in all the symmetry transformations
the Minkowski metric ��� with a curved D ¼ 6 metric

g��ðxÞ. As a result theD ¼ 6 chiral-field action coupled to

gravity has the following form

S ¼ 1

24

Z
d6x

ffiffiffiffiffiffiffi�g
p ½�F���F

���

þF ���F ��	ðP�
�P�

�P
�
	 þ 3P

�
�P�

��
�
	Þ�

þ
Z

d6x
ffiffiffiffiffiffiffi�g

p
R; (3.43)

where now the projectors include the D ¼ 6 metric

P�
� ¼ @�a

rð@�arg�
@
asÞ�1g��@�a
s;

��
� ¼ ��

� � P�
�:

(3.44)

1. N ¼ ð1; 0Þ, D ¼ 6 tensor supermultiplet

The simplest N ¼ ð1; 0Þ supersymmetric generaliza-
tion of the chiral-field action is also straightforward. It
involves the N ¼ ð1; 0Þ superpartners of A�� which are

a scalar field �ðxÞ and an SUð2Þ symplectic Majorana-
Weyl fermion c I

AðxÞ (A ¼ 1, 2, 3, 4; I ¼ 1, 2) [44,45]

ðc I
AÞ� ¼ �c I _A ¼ "IJB

B
_A
c J

B; (3.45)

where the matrix B is unitary and satisfies B�B ¼ �1. The
SUð2Þ indices are raised and lowered according to the
following rule

c I ¼ "IJc J; c I ¼ "IJc
J "12 ¼ �"12 ¼ 1:

The existence of the matrix B implies that we do not need
spinors with dotted indices for the fermionic action to be
real. To construct the N ¼ ð1; 0Þ supersymmetric action3Compare with Eq. (2.20) of Sec. II C.
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one should just add to the action (3.29) or (3.30) the kinetic
terms for c AIðxÞ and �ðxÞ. The resulting free action is

S ¼ 1

4!

Z
d6x½�F���F

���

þF���F ��	ðP�
�P�

�P
�
	 þ 3P

�
�P�

��
�
	Þ�

� 1

2

Z
d6xðc I�

�@�c
I þ @��@��Þ: (3.46)

It is invariant under the following supersymmetry trans-
formations with a constant fermionic parameter �AI

��� ¼ �Ic I; ��A�� ¼ �I���c I;

��c I ¼
�
��@��þ 1

12
����K

���

�
�I; ��a

rðxÞ ¼ 0;

(3.47)

where

K��� ¼ 1

2
½F��� þ ~F��� þ ð��

���
��

�
	 þ 6�

½�
� ��

�P
��
	

� P�
�P�

�P
�
	 � 6P½�

� P�
��

��
	 ÞF ��	�

� F��� þ ð2P�
�P�

�P
�
	 � 6P½�

� P�
��

��
	 ÞF ��	 (3.48)

is the self-dual tensor K��� ¼ 1
6 "�����	K

��	. The con-

ventions for the D ¼ 6 gamma-matrices are given in the
Appendix.

Note that the supersymmetry transformation (3.47) of
the fermionic field is unusual. In addition to the field
strength F��� it contains terms with the anti-self-dual
tensor F ��	. On the mass shell, due to the self-duality
condition F ��	 ¼ 0, the supersymmetry variation of the
fermions take the conventional form. Our supersymmetry
transformations differ from those given in [29] (in the
linear approximation of their model) by this additional
contribution to the variation of the fermions, which is
required for the supersymmetry of the action.

2. N ¼ ð2; 0Þ, D ¼ 6 tensor supermultiplet

One can combine the supersymmetric action (3.46) with
actions for other matter supermultiplets, e.g. by including
into the model four more scalars and one more Majorana-
Weyl spinor and thus getting the action for anN ¼ ð2; 0Þ,
D ¼ 6 chiral tensor supermultiplet (associated with the
physical fields on the M5-brane worldvolume).

The fields of the N ¼ ð2; 0Þ tensor supermultiplet
transform under the SOð5Þ R-symmetry of the N ¼
ð2; 0Þ superalgebra as follows. The tensor field is a singlet
of SOð5Þ, the set of the five scalars �m, m ¼ 1; . . . ; 5 form
an SOð5Þ vector while the fermions c IA carry the index
I ¼ 1, 2, 3, 4 of a spinor representation of SOð5Þ �
USpð4Þ and the index A ¼ 1, 2, 3, 4 of a spinor represen-
tation of SOð1; 5Þ � Spð4Þ. The fermions satisfy the
USpð4Þ-symplectic Majorana-Weyl condition analogous
to (3.45)

ðc I
AÞ� ¼ �c I _A ¼ CIJB

B
_A
c J

B; (3.49)

where CIJ is a skew-symmetric USpð4Þ-invariant tensor
CIJCJK ¼ �I

K; CIJCIJ ¼ �4; (3.50)

which is used to rise and lower the USpð4Þ indices
c I

A ¼ CIJc IA; c IA ¼ CIJc
J
A: (3.51)

The antisymmetric matrices 	
m
IJ ¼ �	

m
JI associated with

the spinor representation of SOð5Þ �USpð4Þ satisfy the
conventional anticommutation relations

	
m
IJ	

nJK þ 	
n
IJ	

mJK ¼ 2�mn�K
I ; (3.52)

and the orthogonality and completeness relations

	
m
IJ	

nIJ ¼ �4�mn;

	
m
IJ	

KL
m ¼ �2ð�K

I �
L
J � �L

I �
K
J Þ � CIJC

KL;

CIJ	
m
IJ ¼ 0:

(3.53)

The action

S ¼ 1

24

Z
d6x½�F���F

���

þF ���F ��	ðP�
�P�

�P
�
	 þ 3P

�
�P�

��
�
	Þ�

� 1

2

Z
d6xðc IA�

�AB@�c
I
B þ @��

m@��mÞ (3.54)

is invariant under the following N ¼ ð2; 0Þ supersymme-
try variations of the fields

���
m ¼ �IA	

m
IJc

J
A; (3.55)

��A�� ¼ �I���c IB; (3.56)

��c IA ¼
�
��
AB	

m
IJ@��m�

JB þ 1

12
ð����ÞABK����BI

�
;

(3.57)

��a
rðxÞ ¼ 0: (3.58)

As a further generalization, one can straightforwardly
couple the matter supermultiplets discussed above to su-
pergravity and construct D ¼ 6 chiral supergravity actions
in a form alternative to that considered in [46–49].

F. Comparison of the two actions for the chiral field

Let us now compare the chiral field actions of Secs. II
and III. For simplicity, let us consider their noncovariant
versions (2.9) and (3.26). We split the SOð5Þ indices i; j; . . .
of the second term of (2.9) into the SOð3Þ indices _a; _b; . . .
and SOð2Þ indices I, J ¼ 1, 2 and try to rewrite the terms of
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the action (2.9) in a form in which the indices I, J combine
with the timelike index 0 into the SOð1; 2Þ indices a, b, c.
As a result, upon the use of the anti-self-duality ofF ��� ¼
ðF� ~FÞ���, the action (2.9) can be rewritten in the form

S ¼ � 1

4!

Z
d6x½F���F

��� �F abcF abc � 3F ab _cF ab _c

þ 6F 0 _a _bF
_a _b
0 �: (3.59)

We see that (3.59) differs from the action (3.26) in the last
term which is quadratic in the components F 0 _a _b of the
anti-self-dual part of the field strength. Since on the mass
shell F ��� vanishes, the two formulations are classically

equivalent, as we have seen in the previous sections. It
would be of interest to understand whether the difference
of the two chiral-field actions off the mass shell may lead to
different results upon quantization. For instance, the two
formulations may complement each other when the chiral
field is considered in topologically nontrivial backgrounds.

IV. NONLINEAR MODEL FOR THE D ¼ 6
CHIRAL-GAUGE FIELD FROM THE BLG ACTION

REVISITED

Let us now consider the nonlinear chiral-field model of
[28,29]. We shall study this model in a simplified case, in
which all the scalar and spinor matter fields are put to zero,
and will show that the general solution of the field equa-
tions of this model results in the D ¼ 6 Hodge self-duality
of a nonlinear field strength of the chiral field. We shall
thus prove the assumption of the authors of [29] that the
field strength is self-dual. The solution of the equations of
motion will allow us to get the dual field strength compo-
nents which were missing in [29], to show that they trans-
form as scalar fields under the volume preserving
diffeomorphisms and to find a form of the nonlinear action
of [29] which only involves components of the field
strength and, hence, is gauge-covariant.

Let us begin with a short overview of the model. It was
obtained from the Bagger-Lambert-Gustavsson model by
promoting its non-Abelian gauge symmetry based on a 3-
algebra to an infinite-dimensional local symmetry of vol-
ume preserving diffeomorphisms in an internal three-
dimensional space N 3 whose algebra is defined by the
Nambu bracket

ff; g; hg � " _a _b _c@ _af@ _bg@ _ch;

where fðx _aÞ, gðx _aÞ and hðx _aÞ are functions on N 3, x
_a are

local coordinates of N 3 and " _a _b _c is the SOð3Þ-invariant
antisymmetric unit tensor. The six-dimensional space-
time, which is assumed to be associated with the worldvo-
lume of an M5-brane, is a fiber bundle with the fiber N 3

over the three-dimensional space-time of the BLG model.
The six-dimensional coordinates are x� ¼ ðxa; x _aÞ as de-
fined in the previous sections.

According to [28,29], the field content of the six-
dimensional model with the local symmetry of the
N 3-volume preserving diffeomorphisms comprises gauge

fields Aa _bðx�Þ and A _a ¼ 1
2 "

_a _b _cA _b _cðx�Þ, the five scalar

fields Xmðx�Þ, m ¼ 1; . . . ; 5, interpreted as five bulk direc-
tions transversal to the 5-brane worldvolume, and 16 fer-
mionic superpartners �ðx�Þ thereof. In what follows we
shall neglect the matter fields Xm and�. The fields Aa _b and
A _a _b are assumed to be part of the components of theD ¼ 6
chiral gauge field A�� whose components Aab do not

appear in the nonlinear model of [28,29].
The field A _a can be combined with the coordinates x _a to

form the quantities

X _a � 1

g
x _a þ A _aðx�Þ; (4.1)

where g is a coupling constant. X _a are interpreted in
[28,29] as coordinates parametrizing three bulk directions
orthogonal to the M2-branes and parallel to the 5-brane.
A scalar field � and the gauge fields Aa _b and A _a _b

transform under local gauge transformations with parame-
ters � _aðx�Þ and �aðx�Þ as follows

��� ¼ g� _c@ _c�;

��A _a _b ¼ @ _a� _b � @ _b� _a þ g� _c@ _cA _a _b;
(4.2)

��Aa _b ¼ @a� _b � @ _b�a þ g� _c@ _cAa _b þ gð@ _b�
_cÞAa _c;

(4.3)

where

� _a ¼ � 1

g
��x

_a ¼ � _a _b _c@ _b� _c (4.4)

so that @ _a�
_a ¼ @ _a�

_a _b _c@ _b� _c � 0, which is the volume
preserving condition.
Here it is worth to mention a subtle point of the con-

struction of [29]. Namely, the quantities X _a defined in (4.1)
transform as scalars under the volume preserving diffeo-
morphisms (4.2) and (4.4), though they carry the vector
index _a. As we shall see below, this property allows one to
construct gauge field strengths which transform as scalars
under (4.2) and, hence, can be used to construct a gauge
invariant action of the model within the line of [29].
If �i (i ¼ 1, 2, 3) are scalar fields with respect to the

volume preserving diffeomorphisms, their Nambu bracket
f�1;�2;�3g is also a scalar field. This allows one to define
a covariant derivative along the fiber N 3 [29]

D _a� ¼ g2

2
" _a _b _cf�; X

_b; X _cg

¼
�
@ _a þ gð@ _bA

_b@ _a � @ _aA
_b@ _bÞ

þ g2

2
" _a _b _c"

_d _e _f@ _dA
_b@ _eA

_c@ _f

�
�: (4.5)
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Note that

D _aX
_b ¼ 1

g
� _a

_b detM ¼ g2fX _1; X
_2; X

_3g� _a
_b;

where

M _a
_b ¼ g@ _aX

_b ¼ �
_b
_a þ g@ _aA

_b: (4.6)

One also defines a covariant derivative along the xa direc-
tions of the D ¼ 6 space-time which acts on a scalar field
� as follows

D a� ¼ @a�� gfAa _b; x
_b;�g ¼ ð@a � gBa

_a@ _aÞ�:

(4.7)

where

Ba
_a ¼ "

_b _c _a@ _bAa _c: (4.8)

The definition of the covariant derivative Da can be ex-
tended to any tensor field T on N 3 [32]

D aT ¼ ð@a � gLBa
ÞT; (4.9)

where LBa
is the Lie derivative along the N 3 vector field

ðBaÞ _a.
It follows from (4.8) that Ba

_a is a divergenceless field

@ _aBa
_a ¼ 0; (4.10)

which plays the role of the deformation of the Nambu-
Poisson structure when the parameters of the volume pre-
serving diffeomorphisms depend on xa. Under the gauge
transformations (4.2), (4.3), and (4.4), Ba

_a transforms as
follows

�Ba
_a ¼ @a�

_a þ g�
_b@ _bBa

_a � gBa
_b@ _b�

_a: (4.11)

Therefore, the covariant derivative Da, Eq. (4.9), trans-
forms as a scalar.

Note that, since X _a is a scalar under the gauge trans-

formations (4.2), (4.3), and (4.4), and " _a _b _c is the invariant
tensor, also the covariant derivative D _a is scalar under the

gauge transformations and the matrix M _a
_b transforms as a

covariant vector (with respect to the lower index _a), i.e.

�M _a
_b ¼ � _c@ _cM _a

_b þ gð@ _a�
_cÞM _c

_b:

Because of this property the matrix M _a
_b, as well as its

inverse M
_�1b

_a , acts as a ‘‘bridge’’ which converts scalar
quantities, like D _a, into vector ones, like @ _a, and vice
versa. They can also be regarded as dreibeins which relate
global SOð3Þ vector indices with N 3 worldvolume indi-
ces. For example, the following useful identity holds for
the covariant derivative (4.5) acting on a field �

D _a� ¼ detMM�1 _b
_a @ _b�: (4.12)

Thus, when � is a scalar field, the above formula demon-

strates how the matrix M�1 _b
_a transforms the vector @ _b�

into the scalarD _a� (with respect to the volume preserving
diffeomorphisms).
Note that, as defined in Eq. (4.5), the derivativeD _a acts

covariantly only on the N 3-scalar fields, but using the

matrixM _a
_b one can generalize it to act covariantly also on

theN 3-tensor fields. For instance, the covariant derivative
of a vector field V _b is

D̂ _aV _b ¼ D _aV _b � ðD _aM
_c
_b
ÞM�1 _d

_c V _d: (4.13)

One can use the covariant derivatives (4.5) and (4.7) to
construct covariant field strengths of the gauge fields A _a

and Aa _b as follows

H _a _b _c þ
1

g
" _a _b _c ¼

1

6
" _f½ _a _bD _c�X

_f (4.14)

and

H a _a _b ¼ " _a _b _fDaX
_f: (4.15)

Explicitly, the field strengths (4.14) and (4.15) have the
following form

H _1 _2 _3 ¼ @ _aA
_a þ g

2
ð@ _aA

_a@ _bA
_b � @ _bA

_a@ _aA
_bÞ

þ g2

6
" _a _b _c"

_d _f _e@ _dA
_a@ _fA

_b@ _eA
_c;

� 1

g
ðdetM� 1Þ; (4.16)

H a _b _c ¼ @aA _b _c � @ _bAa _c þ @ _cAa _b � g"
_d _e _f@ _dAa _e@ _fA _b _c

� " _a _b _cDaX
_a: (4.17)

The field strengths H _a _b _c and H _a _b c, which by construc-
tion transform as scalars under the gauge transformations
(4.2), can also be derived from the commutator of the
covariant derivatives, since as was shown in [29]

½D _a;D _b�� ¼ �g2fH _a _b _f; X
_f;�g; (4.18)

½Da;D _b�� ¼ �g2fH a _b _f; X
_f;�g (4.19)

and

½Da;Db�� ¼ � g

detM
"abcDd

~H dc _aD _a�: (4.20)

Equation (4.19), in which� is taken to be X
_b is nothing but

the Bianchi identity

D a
~H abc þD _a

~H _abc � 0; (4.21)

where ~H abc
and ~H ab _c

are Hodge dual of (4.16), similar to
Eqs. (3.11) and (3.14) of the linear case.
In the absence of the scalar and fermion matter fields, the

nonlinear chiral-field action of [29] has the following form
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S ¼ �
Z

d6x

�
1

4
H a _b _cH

a _b _c þ 1

12
H _a _b _cH

_a _b _c

þ 1

2
"abcBa

_a@bAc _a þ g detBa
_a

�
(4.22)

or equivalently (up to a total derivative)

S ¼ �
Z

d6x

�
1

2
ðDaX

_bÞ2 þ g4

2
fX _1; X

_2; X
_3g2 þ 1

2g2

þ 1

2
"abcBa

_a@bAc _a þ g detBa
_a

�
: (4.23)

One can compare the form (4.23) of the action (and also the
complete action of [29] including the scalar and the spinor
fields) with the action of the BLG model based on the
volume preserving diffeomorphisms constructed in [32].
One can see that the two actions differ only by the fact that
in the model of [29] the eight BLG scalars transforming as
vectors of an SOð8Þ R-symmetry are split into 3þ 5 sca-
lars X _a and Xm (m ¼ 1; � � � ; 5), so that SOð8Þ is broken to
SOð3Þ � SOð5Þ. The scalar fields X _a are identified, via
Eq. (4.1), with three directions along N 3 and with com-
ponents A _a _b of the chiral gauge field. Note that both of the
models are invariant under the volume preserving diffeo-
morphisms, because the above identification does not
change the variation properties of X _a, which remain the
scalar fields, as discussed above.

The action (4.22) is invariant under the volume preserv-
ing diffeomorphisms but does not have a covariant form
due to the fact that its last two (Chern-Simons) terms are
not expressed in terms of the field strengths. We shall
present a gauge-covariant form of the action of this model
in Sec. IVB.

Varying the action (4.22) with respect to the gauge
potentials Aa _b and A _a _b one gets the covariant equations
of motion [29]

D a
~H ab _c þD _aH _ab _c ¼ 0; (4.24)

D aH a _b _c þD _aH _a _b _c ¼ 0; (4.25)

In [29] the field strength components H abc and H ab _c,
which do not show up in the action (4.22) and equations of
motion (4.24) and (4.25), were not defined, but it was
assumed that they are dual, respectively, to (4.16) and
(4.17), so that the whole nonlinear field strength H ���

is Hodge self-dual

H ��� ¼ ~H ��� ) H a _b _c ¼
1

2
"abc" _b _c _aH

bc _a;

H _a _b _c ¼ � 1

6
" _a _b _c"

abcH abc: (4.26)

In the next subsection we shall prove this assumption and
find the explicit expressions for H ab _c and H abc in the
following form

H ab _c ¼ M�1 _b
_c ðFab _b þ g" _a _e _k"

_d _f _g" _k _g _b@ _aAa _e@ _dAb _fÞ
¼ M�1 _d

_c ðFab _d þ g" _d _a _bBa
_aBb

_bÞ; (4.27)

1

6
"abcH abc ¼ 1

1þ detM

�
1

3
"abcFabc � g

2
H a _b _cH

a _b _c

� g"abcBa
_bFbc _b � 4g2 detBa

_b

�

¼ 1

2þ g
6 "

_a _b _cH _a _b _c

�
�
1

3
"abcFabc � g

2
H a _b _cH

a _b _c

� g"abcBa
_bFbc _b � 4g2 detBa

_b

�
; (4.28)

where Fab _b and Fabc are the linear field strengths (3.12)
and (3.15), respectively.
By a straightforward calculation one can show that

the field strengths (4.27) and (4.28) are covariant and trans-
form as scalars under the local gauge transformations (4.2),
(4.3), and (4.4), as their dual counterparts (4.16) and (4.17)
do. This is achieved by requiring the following gauge
transformations of the potential Aab

��Aab ¼ @a�b � @b�a þ g�
_b@ _bAab

þ gðAa _c@b�
_c � Ab _c@a�

_cÞ: (4.29)

Note that Eq. (4.27) is the covariant generalization of a
‘‘pre-field-strength’’

Gab _c ¼ @aAb _c � @bAa _c þ g" _c _a _bBa
_aBb

_b (4.30)

introduced in [32]. The addition to (4.30) of the term @ _cAab

makes it to transform as a covariant vector under the gauge
transformations (4.2), (4.3), (4.4), and (4.29), while multi-
plication byM�1 converts this vector into the gauge scalar
H ab _c.

A. Solution of the equations of motion and the Bianchi
identities

Let us now explain how one gets the field strengths
(4.27) and (4.28) and the duality relations (4.26) by solving
the field Eqs. (4.24) and (4.25). The derivation is similar to
that in the linear case of Sec. IV, but requires more inter-
mediate steps.

We start with Eq. (4.24) and multiply it by M�1 _d
_c to get

M�1 _d
_c Da

~H ab _c þM�1 _d
_c D _aH _ab _c ¼ 0: (4.31)

In view of the definition (4.17) of the field strength
H _ab _c ¼ �H b _a _c and the identity (4.12), the second
term of this equation can be written as a total partial
derivative
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M�1 _d
_c D _aH _ab _c ¼ detM" _c _a _fM�1 _d

_c M�1 _b
_a @ _bD

bX _f

¼ "
_d _b _c@ _bðM _c

_fDbX _fÞ

¼ 1

2
"

_d _b _c@ _bðM _c
_f" _f _a _kH

b _a _kÞ: (4.32)

The first term of (4.31) can also be presented as a total
partial derivative

M�1 _d
_c Da

~H ab _c ¼ "bacM�1 _d
_c DaDcX

_c

¼ �"bac" _a _b _d@ _a

�
@aAc _b þ

g

2
" _b _c _fB

_c
aBc

_f

�
;

(4.33)

where B _c
a is defined in (4.8).

Substituting (4.32) and (4.33) into Eq. (4.31) we get the
Bianchi-like equation which, upon taking off the total
derivative (in topologically trivial spaces), produces the
duality relation

H b _a _c ¼ 1

2
"bcd" _a _c _bH cd _b � ~H b _a _c

; (4.34)

where H cd _b are, by definition, the ‘cd _b’-components of
the nonlinear gauge field strength given in Eq. (4.27). The
components Aab of the gauge potential have appeared in
Fab _b as a result of the integration of Eq. (4.31). Substituting
the above duality relation back into Eq. (4.24) we get the
Bianchi identity

D a
~H ab _c þD _a

~H _ab _c ¼ 0: (4.35)

It is important to observe that the expression (4.27) for
H ab _c follows directly from the Bianchi identity (4.35),
without any need of the equation of motion (4.24). Indeed,
using the identity (4.12) and the explicit form (4.17) of
H a _b _c, the Bianchi identity (4.35) can be rewritten as

½Da;Db�X _c ¼ �g2fH ab _d; X
_d; X _cg: (4.36)

This expression brings the commutation relation (4.20) to
the form similar to that of (4.18) and (4.19). The explicit
form of Eq. (4.36) is

" _a _b _c@ _að@½aAb� _b þ " _b _d _fðBa
_aBb

_bÞÞ@ _cX
_g

¼ " _a _b _c@ _aðH ab _d@ _bX
_dÞ@ _cX

_g; (4.37)

which yields (4.27) after integration. Therefore, Eq. (4.27)
holds off the mass shell. The equation of motion (4.24)
together with the Bianchi (4.35) yields

D _að ~H _a _b c �H _a _b cÞ ¼ 0 (4.38)

that implies the self-duality condition (4.34), which was
explicitly shown above.
We can now proceed and solve the second field

Eq. (4.25). Multiplying it by M _a
_d" _d _b _c we get

M _a
_d" _d _b _cDaH a _b _c þ 2M _a

_dD _dH _1 _2 _3 ¼ 0: (4.39)

Using the definition (4.16) of H _a _b _c and the
identity (4.12), one finds that the second term of this
equation is a total derivative

2M _a
_dD _dH _1 _2 _3 ¼

1

g
@ _aððdetMÞ2 � 1Þ; (4.40)

where in the rhs we have introduced the unit constant to
ensure that the integral of (4.40) does not diverge when
g ! 0 and detM ! 1.
It now remains to show that also the first term in (4.39) is

a total derivative modulo the duality relation (4.34). To this
end using Eqs. (4.15) and (4.27) of H bc _d we rewrite this
term in the following form

M _a
_d" _d _b _cDaH a _b _c ¼ "abcM _a

_dDaH bc _d þ 2M _a
_dDa

�
DaX _d �

1

2
"abcH bc _d

�

¼ "abcDaðFbc _a þ g" _k _g _aBb
_kBc

_gÞ � 2gðDa@ _aX
_dÞDaX _d þ 2Da

�
M _a

_d

�
DaX _d �

1

2
"abcH bc _d

��
:

(4.41)

Upon some algebra we finally get

M _a
_d" _d _b _cDaH a _b _c ¼ @ _a

�
"abc@aAbc � g

2
H a _b _cH

a _b _c � g"abcBa
_bFbc _b � 4g2 detBa

_b

�

þ 2Da

�
M _a

_d

�
DaX _d �

1

2
"abcH bc _d

��
: (4.42)

Notice that the first term is a total derivative and the last
term is proportional to the duality relation (4.34).
Therefore, when the duality relation (4.34) is satisfied,
Eq. (4.39) can be integrated to produce, as in the linear
case of Sec. III A, the field strength H abc given in (4.28),

the duality relation

H _a _b _c ¼ � 1

6
" _a _b _c"

abcH abc (4.43)

and the Bianchi identity
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D a
~H a _b _c þD _a

~H _a _b _c ¼ 0: (4.44)

One may ask if it is possible to get the expression (4.28)
for H abc starting from the Bianchi identity (4.44) without
the use of equations of motion and, in particular, the duality
relation (4.34). Unfortunately, for H abc defined in (4.28)
this seems not to be possible. Indeed, if one starts from the

Bianchi relation (4.44), adds to it the null term

2 detM@ _aH _1 _2 _3 �
1

g
@ _aððdetMÞ2 � 1Þ ¼ 0;

and repeats the previous calculation without taking into
account the duality condition (4.34) one gets

@ _a

�
1

3
"abcFabc � g

2
H a _b _cH

a _b _c � g"abcBa
_bFbc _b � 4g2 detBa

_b þ 1

g
ðdet2 M� 1Þ

�
þ 2Da

�
M _a

_d

�
DaX _d �

1

2
"abcH bc _d

��

� 1

3
detM@ _að"abcH abc þ " _a _b _cH _a _b _cÞ ¼ 0; (4.45)

which is satisfied only if one uses the duality relations
(4.34) and (4.43). Thus we have encountered a peculiar
feature of the model under consideration that if the non-
linearH abc has the form (4.28), the Bianchi relation (4.44)
is only satisfied on the mass shell.

B. Gauge-covariant action

The knowledge of the explicit form (4.28) of H abc

allows us to rewrite the action (4.22) in the equivalent
(modulo total derivatives) but gauge-covariant form

S ¼ �
Z

d6x

�
1

8
H a _b _cH

a _b _c þ 1

12
H _a _b _cH

_a _b _c

� 1

144
"abcH abcH _a _b _c"

_a _b _c � 1

12g
"abcH abc

�
:

(4.46)

Note that, as one can check directly, the potential Aab

enters the action (4.46) only under a total derivative and
hence can be dropped out modulo boundary terms. This
means that, as in the case of its free-field limit considered
in Sec. III, the action (4.46) is invariant under the local
symmetry (3.18).

Note also that the last term in (4.46) is of a Chern-
Simons type and can be interpreted as a coupling of the
5-brane to the constant background field C3 which has the
nonzero components C _a _b _c ¼ 1

g " _a _b _c along the

x _a-directions of the 5-brane. It can thus be rewritten in
the Chern-Simons form similar to that of the M5-brane
action (see Eq. (5.3) below)Z

d6x
1

12g
"abcH abc ¼ 1

2

Z
H 3 ^ C3;

where the field strengthH 3 and C3 are regarded asD ¼ 6
three-forms. The presence of the constant background field
C3 explicitly breaks theD ¼ 6 Lorentz invariance. It is not
obvious that the action (4.46) can be invariant under a
modified Lorentz symmetry similar to (3.23) of the free-
field case. This issue requires additional study.

In the next section we shall briefly discuss a possibility
of the construction of an alternative nonlinear generaliza-

tion of the chiral-field action (3.29) which may possess
(nonmanifest) Lorentz invariance and describe an M5-
brane in a generic D ¼ 11 background.
This completes our consideration of the nonlinear chiral-

field model. We have proved that the general solution of the
nonlinear Eqs. (4.24) and (4.25) is amount to the Hodge
self-duality of the nonlinear field strengthH ���. Thus the

number of independent gauge field degrees of freedom of
the nonlinear model is the same as in the linear case, i.e.
equals to three, as was assumed in [29]. The knowledge of
the explicit form of the field strengthsH abc andH ab _c has
also allowed us to fined the form (4.46) of the nonlinear
action (4.22) whose Lagrangian is covariant under the
volume preserving diffeomorphisms. We leave for a future
the analysis of the nonlinear model in the presence of the
scalar and spinor matter fields.

V. ON THE RELATION TO THE M5-BRANE

Let us now briefly discuss the relation of the model of
[28,29] to the known formulations of the M5-brane. In [29]
it was shown that by performing a double dimensional
reduction, the BLG model with the gauge group of 3d
volume preserving diffeomorphisms reduces to a five-
dimensional noncommutative Uð1Þ gauge theory with a
small noncommutativity parameter which can be inter-
preted as an effective worldvolume theory of a D4-brane
in a background with a strong NS-NS gauge field B2. The
symmetries and the fields of these two theories are known
to be related to each other by the Seiberg-Witten map [50].
Thus, the authors of [29] assumed that the BLGmodel with
the Nambu-Poisson algebra structure and a week coupling
constant can be related to an M5-brane theory in a D ¼ 11
background with a constant gauge field C3 (in a strong C3

value limit) and proposed a Seiberg-Witten map relating
the two theories.
M5-branes in a constant C3 field with M2-branes ending

on M5 and corresponding noncommutative (quantum)
structures have been considered, e.g. in [51–53] using the
formulation of [39,41] and extending the results of [54] on
a self-dual string soliton on M5. From the perspective of
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multiple M2-branes the M5-brane in a constant C3 field
was studied in [35] making use of a C-field modified Basu-
Harvey equation [55]. Recently, in [56] these M2-M5
brane systems and corresponding BPS string solutions on
the M5-brane worldvolume have been studied in the frame-
work of the model of [28,29] in the linear order of the
coupling constant g and an agreement with previous results
have been found via the Sieberg-Witten map.

As we have seen in Sec. III F, at the quadratic order the
alternative actions for the chiral field differ in a term
quadratic in anti-self-dual components of the gauge field
strength, so to study the relation between [28,29] and the
conventional formulations of the M5-branes in more detail
it should be useful to have a Lagrangian formulation of the
M5-brane dynamics in which the components of the field
strength of the chiral gauge field are naturally split into the
SOð1; 2Þ � SOð3Þ way, as has been considered in the pre-
vious sections. Let us briefly discuss how one might con-
struct such a formulation.

In the known Lagrangian formulation of the M5-brane,
the six-dimensional indices of the chiral-field strength are
subject to the 1þ 5 splitting (as has been explained in
Sec. III). Then the self-duality condition (2.13) or its
Lorentz-covariant counterpart (2.22) gets generalized to a
nonlinear relation between the components of the chiral-
field strength F��� and its dual ~F��� [36,37]. In the

covariant formalism [36] the nonlinear self-duality condi-
tion has the following Born-Infeld-like form

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð@aÞ2p H���@
�a ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detg

p �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðg�
 þ i ~H�
Þ

q
� ~H��

(5.1)

where g�� is an induced metric on the worldvolume of the

M5-brane, H��� � ðFþ CÞ��� is the field strength of the

M5-brane worldvolume chiral gauge field A�� extended

with the worldvolume pullback of the antisymmetric gauge
field C3 of D ¼ 11 supergravity and

~H �� ¼ 1

6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�ð@aÞ2p @�a"����

H

�

: (5.2)

Equation (5.1) follows from the Dirac-Born-Infeld-like
M5-brane action

SM6
¼
Z
M6

d6x

�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� detðg�� þ i ~H��Þ

q

�
ffiffiffiffiffiffiffi�g

p
4ð@aÞ2 @�a

~H���H���@
�a

�

� 1

2

Z
M6

½C6 þH3 ^ C3�; (5.3)

where C6 is the dual of the gauge potential C3. It is
important to notice that the dual field strength ~H�� (5.2)

which enters the Born-Infeld part of the action (5.3) and the

rhs of the self-duality condition (5.1) is invariant under the
gauge transformations (2.17).
An alternative Lorentz-covariant nonlinear self-duality

condition [which does not involve the auxiliary scalar field
aðxÞ] was obtained from the superembedding description
of the M5-brane [39,40] which was the first to produce the
complete set of the M5-brane equations of motion [39].4

The superembedding self-duality condition is formulated
in terms of a conventional Hodge self-dual rank-3 field

h��� ¼ ~h��� which is related to the field strength H��� ¼
ðFþ CÞ��� by the following nonlinear algebraic equation

ðFþ CÞ��� ¼ ðm�1Þ��h���; h��� ¼ ~h���;

F��� ¼ @�A�� þ @�A�� þ @�A��;
(5.4)

where

m�
� ¼ ��

� � 2h�
�h

��: (5.5)

In [41] it was shown that the nonlinear self-duality condi-
tion that follows from the superembedding is equivalent to
the self-duality condition (5.1) resulting from the M5-
brane action [more precisely, to its noncovariant counter-
part when the field aðxÞ is gauge fixed as in (2.19)]. The
relation and the equivalence of the whole systems of the
M5-brane equations of motion which follow from the two
alternative formulations was established in [42].
Yet another derivation of the nonlinear self-duality con-

dition based on its consistency with the M5-brane kappa-
symmetry was given in [43]. This derivation is in a sense
close to the one which follows from the superembedding
formulation since from the point of view of the super-
embedding the kappa-symmetry is just a peculiar realiza-
tion of a conventional local supersymmetry on the
worldvolume of the branes (see [60] for a review).
The evidence that the two a priori different approaches,

the on-shell superembedding formulation [39] (or its
kappa-symmetric counterpart [43]) and the action principle
of [36,37], give the equivalent interrelated descriptions of
the classical dynamics of the M5-brane, points to its
uniqueness and, hence, allows one to assume that any
alternative formulation of the M5-brane dynamics should
be related to those described above.
In particular, an appropriate nonlinear generalization of

the self-duality conditions (3.10) and (3.14) [which would
be alternative to (5.1)] should be related to the Lorentz-
covariant superembedding self-duality condition (5.4).
One can try to derive a nonlinear self-duality relation
generalizing Eqs. (3.10) and (3.14) from Eq. (5.4) by
performing the (3þ 3) splitting of the six-dimensional
indices of H��� and h��� and following the lines of

4Other cases in which the superembedding condition results in
the dynamical equations of motion include the Type II D ¼ 10
superstrings and the D ¼ 11 M2-brane [57], and D-branes
[58,59].
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Ref. [41]. The goal is to get these conditions in the follow-
ing generic form [whose rhs is invariant under the gauge
transformations (3.18) or (3.31)]

Habc ¼ fabcð ~H; ~Hd _bÞ; Hab _c ¼ gab _cð ~H; ~Hd _bÞ; (5.6)

where fabcð ~H; ~Hd _bÞ and gab _cð ~H; ~Hd _bÞ are tensorial func-
tions of

~H � 1

6
" _a _b _cðFþ CÞ _a _b _c; ~Hd

_b
� 1

2
" _b _c _dðFþ CÞd _c _d:

(5.7)

Once the explicit form of (5.6) is known, one can use it to
construct an M5-brane action in a form alternative to (5.3).
Such an action should be invariant under local symmetries
generalizing (3.18) and (3.23) [or (3.31) and (3.38)] and
should produce the nonlinear self-duality conditions (5.6).
Having at hand this alternative formulation of the M5-
brane dynamics one can analyze its relation to the model
of [29] in a limit of a strong constantC3 field. Note that one
cannot directly relate the nonlinear self-dual field strength
h��� to the self-dual field strength H ��� of the previous

section, since the former is invariant under the conven-
tional gauge transformations (2.2), while the latter is in-
variant under the gauge transformations (4.2), (4.3), (4.4),
and (4.29) which include the volume preserving diffeo-
morphisms. Therefore, the gauge field potentials and the
field strengths in the two formulations may only coincide at
the free-field level when the coupling constant g is set to
zero. In the generic case the relation is not straightforward
and can probably be established via a kind of the Seiberg-
Witten map proposed in [29] or by generalizing results of
[33]. We leave the study of these problems for a future
research.
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APPENDIX

Let�, � ¼ 0; . . . ; 5 be SOð1; 5Þ Lorentz indices while A,
B ¼ 1, 2, 3, 4 be the corresponding spinor indices. The
matrices ð��ÞAB and ð��ÞAB satisfy the Weyl algebra

ð��ÞABð��ÞBC þ ð��ÞABð��ÞBC ¼ �2����
C
A (A1)

and are related to each other as follows

ð��ÞAB ¼ 1

2
"ABCDð��ÞCD; ð��ÞAB ¼ 1

2
"ABCDð��ÞCD;

(A2)

where "1234 ¼ "1234 ¼ 1.
The �-matrices satisfy the following identities

ð��ÞABð��ÞCD ¼ 2ð�C
A�

D
B � �D

A�
C
BÞ;

ð��ÞABð��ÞAB ¼ 4���; ð��ÞABð��ÞCD ¼ 2"ABCD:

(A3)

We define the antisymmetrized products of gamma-
matrices as

ð���ÞAB ¼ 1

2
½ð��ÞACð��ÞCB � ð��ÞACð��ÞCB�

¼ ð�½�ÞACð���ÞCB;
ð����ÞAB ¼ ð�½�ÞACð��ÞCDð���ÞDB;

ð����
ÞAB ¼ ð�½�ÞACð��ÞCDð��ÞDEð�
�ÞEB; etc: (A4)

There is the following duality relation for these matrices,

��1...�k
¼ �ð�1Þkðk�1Þ=2 1

ð6� kÞ! "�1...�6
��kþ1...�6 : (A5)

In particular,

��� ¼ 1

4!
"�����
�

���
;

����
 ¼ � 1

2
"���
���

��;

���� ¼ 1

6
"�����	�

��	:

(A6)

One can prove the following identity

�����
 ¼ �ð�
���� þ �
���� þ �
����Þ

� 1

2
"���
���

��: (A7)
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