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BPS operators from the Wilson loop in the 3-dimensional supersymmetric Chern-Simons theory
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We consider the small deformation of the pointlike Wilson loop in the 3-dimensional N =6
superconformal Chern-Simons theory. By Taylor expansion of the pointlike Wilson loop in powers of
the loop variables, we obtain the BPS operators that correspond to the excited string states of the dual IIA
string theory on the pp wave background. The BPS conditions of the Wilson loop constrain both the loop
variables and the forms of the operators obtained in the Taylor expansion.
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I. INTRODUCTION

The dual gravity interpretation of the supersymmetric
Wilson loop in the D=4 N =4 super Yang-Mills
(SYM) theory has been important in the context of the
AdS/CFT correspondence [1]. The supersymmetric Wilson
loop contains the 6 scalar fields @/, and the expectation
value of the Wilson loop is protected from the UV diver-
gence [2]. The expectation value of the circular Wilson
loop was obtained by analyzing the string minimal surface
in the anti—de Sitter space [3]. Furthermore, the supersym-
metric Wilson loop in the Berenstein-Maldacena-Nastase
(BMN) sector can be described by the dual IIB string
theory on the pp wave background. The BMN correspon-
dence [4] is the duality between the infinite strings of
operators in N = 4 SYM and the excited string states in
the dual IIB string theory on the pp wave background. In
Ref. [5], it was conjectured that the 1/2-Bogomol’nyi-
Prasad-Sommerfield (BPS) pointlike Wilson loop W(Cy)
for C, shrinking to a spacetime point is mapped to the
vacuum state of the dual IIB string theory on the pp wave
background. The functional derivatives of the Wilson loop
are mapped to the excited string states. We have summa-
rized the results obtained in Ref. [5] in Table I.

In this paper, motivated by the work in Ref. [5], we
consider the dual ITA string theory description of the super-
symmetric Wilson loop in the recently proposed D = 3
N = 6 Chern-Simons-matter theory [Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory] [6,7]. The ABJM the-
ory is the low-energy effective theory of the N M2-branes
at the singularity of the orbifold C*/Z,." This theory can
be analyzed by using the dual IIA string theory on the
AdS, X CP3 spacetime and on its Penrose limit [8—12] in
the parameter regime

JA> 1,

where k is the Chern-Simons level, N is the rank of the
gauge group, A = N/k is 't Hooft coupling, and ¢ is the

1/2

e ~ <1, (1.1)

k5/2
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dilaton. The first one in (1.1) implies that, in the dual
type IIA string theory, the radius of curvature is much
larger than 1 in the string unit, and the second one implies
that we take the small string coupling limit, to suppress the
quantum corrections.

The supersymmetric Wilson loop in the ABJM theory
was proposed in the literature [13—15]. The Wilson loop
contains a product of the bifundamental scalars on the
exponent. It was shown that the straight line and circular
Wilson loops preserve 1/6 of the ABJM supersymmetry.

The main purpose of our paper is to study the dual IIA
string theory description of the pointlike Wilson loop that
has enhanced 1/3 supersymmetry. We show that by de-
forming the pointlike Wilson loop, we can obtain the BPS
operators that correspond to the excited string states of the
dual TIA string theory on the pp wave background.” The
BPS conditions of the Wilson loop, (3.10) and (3.11), give
the constraint on both the loop variables and the forms of
the BPS operators. By following the conjecture in Ref. [5],
we give maps from the functional derivatives of the Wilson
loop to the dual ITA string excited states.

The Penrose limit of the dual gravity theory is given by
the following limit:

A
N,J — oo with X = — fixed, (1.2)
J2

where J is the charge of the infinite strings of operators
under the U(1) subgroup of SU(4) R symmetry. By deter-
mining the function /(A) that appears in the dispersion
relation, the gauge/gravity correspondence has been
proved up to the curvature corrections to the pp wave
background [17].

The content of this paper is as follows: In Sec. II, we
consider the pointlike Wilson loop in the ABJM theory and
compare it with the vacuum state of the dual ITA super-
string theory. In Sec. III, we obtain the BPS conditions for
the Wilson loop. We show that the pointlike Wilson loop is
1/3 BPS and the supersymmetry generator preserved by
the pointlike Wilson loop is the same as that preserved by
the infinite chain dual to the ITA string vacuum state. In

“See [16] on the deformation of the Wilson loop operator in
the N = 4 SYM as well as in the YM theory.
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TABLE 1. The relation between the functional derivatives and
the IIB string oscillation modes af; ) and a?’:;“. In the table, u =

0,1,2,3,a=1,234,and Z = P + DO,
SYM side Dual IIB string side
Functional Corresponding
derivatives operators
— W(Cy) 0; p*)
wins/t M
f dseZ’n'ms/t 5 DMaZ a4(-lil-)a
[ dse 5 (x) P )

Sec. IV, we solve the BPS equations satisfied by the loop
variables and expand the Wilson loop in powers of the
independent loop variables. Thus, we obtain the maps from
the functional derivatives of the Wilson loop to the dual ITA
string excited states.

II. THE SUPERSYMMETRIC WILSON LOOP IN
THE ABJM THEORY

The ABIM theory is the 3-dimensional N = 6 super-
symmetric Chern-Simons theory with the gauge group
U(N) X U(N). The fields in the ABJM theory are the
U(N) X U(N) gauge fields A,, and A,,, the bifundamental
bosonic fields Y/ [Y! = (A,, A,, B,, B,)] and the bifunda-
mental spinors ¢,,, where I (I = 1, ..., 4) is the index of
SUR(4) R symmetry and a (a = 1, 2) is the (2 + 1)-
dimensional spinor index.

According to Ref. [13], the supersymmetric Wilson loop
in the ABJM theory becomes®

WiC] =Tr[Pexpi f ds(i (s)A,, + MY (s)yly,f)], @1
C

where x”(s) describes the path C on R"? and the function
M,’(s), determined by the supersymmetry (SUSY), will be
the coordinate of the transverse space C*/Z;. We assume
that M,’(s) is a 4 X 4 real matrix.*

In Ref. [14], they also obtain the Wilson loop with the gauge
field A,,. We do not consider the Wilson loop with A,, here; our
Wilson loop breaks the parity symmetry of the ABJM theory (see
[11,18]).

*We can give M,’(s) a Ug(1) charge. Ug(1) is a subgroup of
SUR(4) R symmetry. In the Wilson loop (2.1), the Ug(1) sym-
metry that rotates A; and B; by @ = exp(i¢/2) also operates on
M,’(s) as follows:

a 000 myp My N3 My a 000
-1 _ 0100 My My Npz Nipy 0100
VMV = _

00adoO msy M3y M3z Nlzy 00 a0

0001 My Myp Mgz Mgy 0001

myp ami; a2m13 ANy

_ | amy myp  amy my
a@my amyy myz amy |
amy Mgy QM3 My

In Sec. IV, we use this Ug(1) symmetry to classify the loop
variables.
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We consider the pointlike Wilson loop whose path C,
shrinks to the point x™ = x (" = 0). We set M’, in a
nilpotent matrix,

0010
00 0 O
00 0O (2.2)
0 0 0 O

By expanding the exponential part of the Wilson loop, we
obtain the infinite sum of the local operator as follows:

W[Co] = Trlexp(itA; By (xo))]

J
Z i T ), (23)
where ¢ describes the periodicity of the loop; we identify
s = 0 with s = ¢. In higher order of J, Eq. (2.2) includes
the infinite strings of the operator A; B, that correspond to
the vacuum state of the dual IIA string theory. In Sec. IV,
by deforming (2.3), we also obtain the BPS operators that
correspond to the dual IIA string excited states.

In next section, we analyze the SUSY preserved by the
Wilson loop (2.1) and (2.3).

III. SUPERSYMMETRY

In Sec. IIT A, we shortly review the SUSY transforma-
tion of the supersymmetric Wilson loop in the ABJM
theory. In Sec. III B, we derive the BPS conditions satisfied
by the supersymmetric Wilson loop. In Sec. III C, we show
that the pointlike Wilson loop (2.3) is 1/3 BPS.

A. Supersymmetry transformation of the Wilson loop

The N = 6 SUSY generator described by the super-
space coordinate is w; ,,> which transforms as the antisym-
metric representation of SUg(4) and satisfies the following
relations:

l] 1

Wl = %GIJKL

(wlloz) = Wy wKL,a’ (31)

IK

o'®wi, = 8',€, (3.2)

where € (i=1,...,6) are Majorana spinors, which are
also the N =6 SUSY generator. The N =6 SUSY
transformations are given by

8Y' =iy, (3.3)

8Y, =iyt w,, (3.4)

84, = —(Y'y'ty, 0 + oy, Y], (39
84, =y Y y,01 + 0y, YW, (36

Sw; 7 1s obtained by using the Clebsch-Gordan decomposition
of the 6 Majorana spinors €; (i = 1, ..., 6), which are also the
IN = 6 SUSY generators (see Appendix B).
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where the convention of the spinors is the same as given in
Refs. [7,19].

We consider the SUSY transformation of the Wilson
loop as follows:

ei(leQ”+w”Q”)W[C]e*i(qu”wa”Q_u) = W[C] + 5W[C:|’
3.7

where Q' is the SUSY generator. The Wilson loop pre-
serves a part of the SUSY in the ABJM theory when
SW[C] = 0 for an arbitrary s.

By using the condition §W[C] = 0, we can show that
the SUSY generator w,p preserved by the Wilson loop
satisfies the following equations as given in Ref. [13]:

OfpYmapX" = iMpKwgsp =0, (3-8)

(3.9)

wAB'“yman’” — iM,Aw’BB = 0.

Note that the complex conjugate of (3.8) gives (3.9) when
M,’ is a Hermitian matrix.

B. BPS conditions
When we contract (3.8) and (3.9) by using €,4 and the
charge conjugation matrix C (see Appendix A) or when we
multiply (3.8) by y,&" — iM” from the right,’ we obtain
the following BPS conditions:

4x2(s) + M K(s)M ' (s) = 0, (3.10)

det(x%(s) + MT(s)M” (s)) = det(x2(s) + M(s)M(s)) = O.
3.11)

(3.10) and (3.11) are the necessary condition to preserve a
part of SUSY: The straight line and (2.3) satisfy (3.10).
Equation (3.10) is similar to the BPS conditions %> + y> =
0 satisfied by the Wilson loop inthe d = 4, N = 4 SYM.

C. Supersymmetry preserved by the pointlike
Wilson loop

We can show easily that the pointlike Wilson loop (2.3)
preserves 1/3 of the SUSY in the ABJM theory. For x,, =
0, Egs. (3.8) and (3.9) are given by

MBKwKA,,B = 0, (3]2)

(3.13)

MIBw[ﬁA =

®When we multiply (3.9) by y,&" — iM from the right, we
obtain the same equation.
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By solving these equations, we obtain w3 = wy3 =
wyy = w3, = 0.7 The pointlike Wilson loop preserves
the SUSY w;, and w;4 which are not constrained by
(3.12) and (3.13). Note that the Wilson loop over the
straight path is 1/6 BPS. We guess that there is an enhance-
ment of the SUSY when we shrink the loop to a point.

We want to explain why the Wilson loop in the ABJM
theory is 1/3 BPS or 1/6 BPS instead of 1/2 BPS. In the
dual ITA string theory side, the Wilson loop is described by
the fundamental string on AdS, X CP? spacetimes. From
the supersymmetry analysis [14] of the Killing spinors, it
has been known that the fundamental string dual to the
straight Wilson loop is not localized at CP? but smeared
along CP3: The smeared string preserves less SUSY. So,
we guess that a similar phenomenon happens for our point-
like Wilson loop.

IV. BPS OPERATORS FROM THE WILSON LOOP

In this section, we show that the BPS operators arise in
the double series expansion of the pointlike Wilson loop
operator (2.3) in powers of the loop variables 6x™(s) and
OM,’(s) = my,(s) (see also [5]).

First, we consider the Wilson loop fluctuated near the
point x™(s) = xi. We parametrize M,’(s) by

0 0 1 0 my; mpp 0 miy
0 0 0 O m m m m
Ty — 21 22 23 24
MI (S) O O 0 O + ms msyp mss3 M3y ’
0 0 00 My Mgy Mgz Mgy
“4.1)

where we fix the gauge freedom of the parameter s by
imposing M,? = 1, and for convenience, omit the label s in
my;(s). Since the loop coordinates Sx™(s) and m;;(s)
should be periodic about s, they can be rewritten as fol-
lows:

00
5xm(s)= Z 5xz1r11)6277ins/t’
n=—o00

m 4.2)
m]J(S) = Z m(n)1132ﬂ-ins/l for (I, J) * (3, 1)

n=-—oo

In the Fourier space, the loop variables have zero modes.
The loop variables §x™(s) and §M,’(s) are not indepen-
dent but are related by the BPS condition (3.10) and (3.11).
By substituting (4.1) into the matrix X, = (8x*> + M?),,
and the BPS condition (3.10) and (3.11), we obtain the
following matrix elements and the following equation:

"The superconformal group satisfied by (2.3) is SU(2|2) gen-
erated by w, and w4 as given in Ref. [9].
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X, = 6x> + m112 + mpmy + my + mygmy,,

Xi3 = my + mpmyz + maz + mymgs, Xy =
Xo1 = myymyy + mypmyy + myzmszy + mogmyy,

Xo3 = myy + mymyz + mozmsz + mygmys, Xo4
X31 = mzymyy + myymyy + mazmzy + mygmyy,

X33 = 8x2 + ma; + mpymsy + myy® + magmys,

Xq1 = mgymyy + mypymy; + myzmzy + mggmyy,

Xy3 = myy + mypmyz + myzmsz + mygmys, Xua

detX = X1 X5 X33X4q — X11 X200 X34X43 + X 11 X350 X43X04
— X1 X10X33 X404 T X1 X12X34 X453 — X01 X350 X43X14
+ X531 X10X03 X404 — X351 X120 X03X04 + X531 X200 X43X14
— X1 X12X23 X34 + X1 X12X33X04 — X1 X0 X33X 14

@)#3,1)

= 4.5
m31 2 ( )

A special solution of (4.4) is given by®
Moy = Myy = Myy = Myy = 0, (4.6)
M3y = =My,  M3q = —M My, My = —My333,
4.7
My = —Niy3ms3, myy = —mg, (4.8)
8xr =0, 4.9)
=X =X14=X3=Xp3 =Xpp = X4 =X = X4y =0.
(4.10)

In the Fourier space, the relations (4.5), (4.6), (4.7), (4.8),
(4.9), and (4.10) are rewritten as follows:

M32(n) = ~M11(n)M12(~n)s M34n) = ~ ML) M 14(=n)>
Myi(n) = ~M43(n)M33(—n)> (4.11)
Mo1(n) = ~M3(n)M33(~n)> My = ~M33(,, (4.12)
5:x96x0, = 8x1oxl, + 6x26x2, (forn # 0), (4.13)
M31 () = My M1 (=n)- (4.14)

Note that, while the zero modes 5)‘?(1)) are the independent
parameters, ox/", is not independent.

Recall that tﬁm loop variable has the Ug(1) charges as
given in Table II (see footnote 4). The loop variable also
has the dimension A since the dimension of the Wilson
loop becomes zero. Since the charge Q(= A — J) of the
loop variables is well-defined for (4.6), (4.7), (4.8), (4.9),

8We can solve (3.11) about m3; since (3.11) is the equation of
second degree about mjy;. However, we cannot expand the
denominator of the solution in powers of the loop variables.

= X1 X350 X3 Xy + X1 X4 X3 X34

PHYSICAL REVIEW D 80, 086001 (2009)

Xip = myymyy + mppmyy + mz + mygmy,

myymyg + mippmoy + may + Mgy,

Xpy = 832 4+ miamyy + my? + mpzmsy + mogmy,,

= my My + MypMoy + Myzmsy + Mogiiy, 43)
X3 = mzymyy + mypmay + mazmzy + mygmyy, .
X34 = mzymyy + m3pmoy + mazmzy + Mzgmyy,
Xgp = myymyy + mypmy; + myzmsy + mygmys,

— .2 2
= 0x° + M4y + MoyNyy + M34My43 + m44 y

— X1 X4 X33X04

+ X1 X3 X13X44 — X01 XpX13X34 + X01 X4 X33X14

= X351 X0 X13X44 T X351 X0 X13X04 — X531 X420 X23X14

+ X1 X0 X13X34 — X1 X350 X13X04 + X1 X350 X3 X 14 =
|

and (4.10), we expand the Wilson loop fluctuated at xj' up
to one in powers of the charge Q of the loop variable and up

0, 44

to one impurity as follows:
ow[C
WIC] = WIC,] + [ ds S my(s 2V
Q(m )=1/2 5mlj(s) C=Cy
1 SW[C]
+ | dséx™(s)
fo 8x"(s) | c=c,
! SW[C]  SsW[C]
+ | dsm (s)( - ) e
]0 ! omyy(s)  dmss(s) c=C,
(4.15)

where we used (4.6), (4.7), and (4.8). Here, ZQ(mkl):n
means that we sum the terms in which the charge of m;;
is n; for n = 1/2, we sum the terms containing m,, ma,
mys, and Mys3.

We introduce a new functional derivative as follows:

1) 1) _ 1)
W omy, 5”133'

(4.16)

By substituting the Fourier transformation of the loop

variables (4.2) into the resulting formula, we obtain
1 BW[C]
WIC] = WICo] + mi [ ds
SW[C] ,
27rms/ 27ins/
I+ 28 (n)f ds———= 5 (5) e !
SW[C] ,
+ m nfd e27rms/t+,,,.
Z 1 8m'(s) | c—c,
4.17)

The functional derivative of (2.3) contained in (4.17) gen-
erates the impurity operator (in the sense of the spin chain)
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Ux(1) charge of the loop variables (i = 1,2, 3, 4).

TABLE II.

PHYSICAL REVIEW D 80, 086001 (2009)

myz My, Mg, Mp3, My3

m
Ox™, mjj, Mag, Mgy

Mmay, Mgy, M3p, M34 M3

J 1 1/2
O=A-J) 0 1/2

0 -1/2 -1
1 3/2 2

as follows [20,21]:

SW(C) =i x(8))X"(s f
) | o TGO + (0, 1Y))
X ()M, ($)wi (O]l e=c,
=1 Z % Ti[(D,,A B)(x0)(A;B;(x0))” ],
=0 7'
(4.18)
SWO) | S e
ML) | e, IZ;_)T T Y5Y] (x0)(A1 B (x0))'],

(4.19)

where wil/(C) describes the Wilson line along the path C
from s = s’ to s = s and the covariant derivative D,,
including A,, operates on Y'Y so that Y'Y is an adjoint
field. Note that (4.18) and (4.19) do not depend on the loop
parameter s.
By using (4.18) and (4.19), we find that the right side of
(4.17) becomes the zero mode contribution as follows:
0 . NS
S O 14,8, )
J=0 *
it Y e TY YT (A, B) ](x)
Q(mij)=]/2

+ itmyy o) TH(Y' Y — Y3YI)(AB1)I(x0)

+ ltﬁxf'(’)) Tr[(DmAIBI)(AIBI)J](X())]. (420)

In higher order of J, Eq. (4.20) contains the following
infinite strings of the operator A;B;, the bifundamental
scalars Y! Y}L, and the covariant derivative D,,:

Tr[(A;B)'1(xo), Tf[YiY}L (A1B1)”1(xo), @21
Tr[(D,,A1B1)(AB) 1(xo), .
Te[(Y'y] = Y3vd)(A,B)) 1(x)), (4.22)

where (i, j) = (1,2),(1,4), (2, 3), (4,3) and we separated
the operators coupled to the independent loop variables.
These BPS operators protected by the supersymmetry cor-
respond to the vacuum state and the excited states of the
dual ITA string theory on the pp wave background (see
[8,9]).

By following the correspondence between (4.21) and the
dual ITA string excited states, and by following the con-
jecture in Ref. [5], we map the functional derivatives of the

Wilson loop to the dual IIA string excited states in
Table III.

Before ending this section, we want to comment on the
relation between our Taylor expansion of the pointlike
Wilson loop and strong coupling expansion: The Wilson
loop should be expanded in terms of 1/+/A [22] and have a
convergent region of the expansion. The operators obtained
in the Taylor expansion should be normalized by using
their 2-point function. However, the appearance of strong
coupling expansion is not clear in both our pointlike
Wilson loop and that of N = 4 SYM [5]. On the other
hand, our Taylor expansion of the Wilson loop (4.20) is
similar to the mode expansion of the wave function in the
string field theory (SFT) as was pointed out in the work of
Ref. [5]. Since the SFT is independent of the string cou-
pling, (4.20) may be independent of the ’t Hooft coupling.

V. DISCUSSIONS

In this paper, motivated by the paper [5], we discussed
the dual ITA string description of a slightly deformed
pointlike Wilson loop. By expanding the pointlike
Wilson loop in powers of the loop variables, we obtained
the BPS operators’ that correspond to the excited string
states of the IIA string theory on the p p wave background.
Our new result was the impurity operator Y'y| — y3y{
that was not determined from the analysis in the gravity
side [8]. By following the conjecture in Ref. [S], we gave
the maps from the functional derivatives of the Wilson loop
to the dual IIA string excited states in Table III.

The BPS conditions of the Wilson loop (3.10) and (3.11)
constrained both the loop variables and the forms of the
BPS operators, though we did not prove the uniqueness of
solution of the BPS conditions. In Appendix C, we also
obtained the BMN operators [23] in higher order terms of
the Taylor expansion (C1). It will also be important to
compute the anomalous dimension [24] of the BMN op-
erators (C15) and (C16).

Since our Wilson loop is pointlike, it is important to
construct the straight line BPS Wilson loop that connects
the pointlike 1/3-BPS Wilson loop to the 1/6-BPS Wilson
loop in the ABJM theory. We leave it to future work.

We also want to comment on the Wilson loop in the
ABJM theory from the viewpoint of 11-dimensional theory

°As was pointed out in Ref. [9], we need to include the
fermions to complete the BPS multiplet that the impurity opera-
tors belong to, though the gauge/gravity duality could be proven
by using only the bosonic string action.
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TABLE III. The relation between the functional derivatives
and the IIA supergravity modes (the zero modes of the string
oscillation operator). In the table, m=0,1,2, (i) =
(1,2),(1,4),(2,3),(4,3),and k = 5,6,7,8.

ABJIM side Dual IIA superstring side
Dual ITACorresponding
superstring side operators
T s W(Co) [0; p*)
2mins/t m+1
j dseZ‘n'in s/t 6"(;(3) 1 DTmAlBé t a((é)l)
jdse2 , '_/t 5 ry, -_+Y Y3 o)
Jdsem™ sl YY) )

(M theory). It has been known that in the dual IIA super-
gravity side, the Wilson loop is described by the funda-
mental string on the AdS, X CP? spacetime. Then, the
dual fundamental string should be described by the M2-
brane wrapped on the M-circle: The 3-form C(3) in the 11-
dimensional supergravity reduces to the Neveu-
Schwarz-Neveu-Schwarz field B, coupling to the IIA
string. Thus, it is also interesting to analyze the dynamics
of the Wilson loop by using the loop equation [25].'% As
the dynamics of the Wilson loop describe the dynamics of
the dual string, the loop equation will also describe the
dynamics of the M2-brane wrapped on the M-circle. When
we analyze the loop equation, however, we need to extend
the analysis to include supersymmetry (see also [21]).
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APPENDIX A: CHARGE CONJUGATION MATRIX

In Appendix A, we introduce the charge conjugation
matrix of both SO(6) and SO(4) and construct the reduc-
ible representation of SO(6) gamma matrices by using the
reducible representation of SO(4) gamma matrices.

The charge conjugation matrix constructed by SO(6)
gamma matrices satisfies the following relations:

Cy'C™l = =y, (Al)
cT = nC,
(Cyiriz-in)T = 5inT T pC
— n(_1)(1/2)n(n+1)c,yi]i2...i,,’ (AZ)

where (A1) is the definition of the charge conjugation

'"“The loop equation for the pure Chern-Simons theory is
slightly different from that of the YM theory.
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matrix and 7 is a constant determined later.'' (A2) shows
that the matrix defined on the right-hand side of (A2)
transforms as the symmetric tensor or the antisymmetric
tensor in terms of the SO(6) spinor index. Since the prod-
uct representation in Table IV must be consistent with the
decomposition 8, ® 8, — 365 ® 284, n must be +1.

C defined in (A1) is the metric of the spinor index as
follows:

C=Cup=Cl, Cl=(C)P
: : (A3)
Caﬂ(yl)'gy = (Cyl)ayr
Cyi = (Cyi)T’ Caﬁgaygﬂa = Cyé’ (A4)

where g is the spinor representation of SO(6)."?
We introduce the SO(4) charge conjugation matrix C
that satisfies the following relations:

CpkC™' = —(pM, (A5)

CT=-C (A6)

We decompose the SO(6) Dirac gamma matrices and the
charge conjugation matrix as follows:

k(0 Pk> s_(0 175) 6_ (0 —i
y (pk O 4 ‘y pj 0 4 ‘y l O >
(AT)

c=<_0@ g) (A8)

where pf is the SO(4) Dirac gamma matrix. Here the
matrices defined in (A7) and (AS8) satisfy the Clifford
algebra and the definition of the charge conjugation matrix.

APPENDIX B: CLEBSCH-GORDAN
DECOMPOSITION OF THE 6 MAJORANA
SPINORS

We show the Clebsch-Gordan decomposition of the
6 SO(1,2) Majorana spinors €;, which transform as the
vector representation of spin(6) ~ SO(6), and show the
equality (3.2). We know the following equivalence:

spin (6) ~ SU(4), (B1)
6, ~ 64, (B2)
4, ~4,. (B3)

We introduce the new matrix C, and 4, spinor index /
and J as follows:

" These equations are satisfied for any SO(N).

We can show the second equation in (A4) by expanding the
exponential of g in powers of the generator of the Lorentz
algebra.
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TABLE IV. The product representation of the 8 spinor repre-
sentation.

n 0 1 2 3 4 5 6
6Cn 1 6 15 20 15 6 1
(_1)(1/2)n(n+l) + _ _ + + _ _

y,»=(0 %)
Vg 0

0 iC
C, = ( 5 l Ps)

(I,J=1~4),

_ (&9 0
Cyy' = A ).
2y ( 0 (&9

By using (A4), we can show that ézi/i transforms as an
antisymmetric tensor in terms of the index /7, J.

We describe the Clebsch-Gordan decomposition of 6‘2 i
as follows:

I
/-
(@}
N (e]
:v
(@}
[«R
o
N——

(B4)

(BS)

vy — v = Z(C‘zfzi)”v”, (B6)
<7
wr; = €(Co)y. (B7)

We choose the basis of the SO(4) gamma matrices as
follows:

1:0_1 2200'1
P i o) ° ol 0)

(B3)
3 0 o 4 _ 0 o?
p o 0) P ot 0/

PHYSICAL REVIEW D 80, 086001 (2009)

C=p'p’,  C=p*p. (B9)
After a SO(6) permutation of the SO(6) gamma matrices
¥! including a change of the signs, we obtain the super-
symmetry generator w;;, which satisfies (3.1) and (3.2)
(see also [19]).

It is convenient to introduce the following equations:

(Cy) = —y'C, (B10)

(CY) =vy'C". (B11)

By using the SO(6) gamma matrices C and C,, we can
show (3.2) as follows:

€,(Cyy)€e(Csy™) (B12)
= €e'e;,(Cy’y'y’C*y") (B13)
= €'e;Cy'yIC" = €€,CC* = € ¢l (B14)

where y7 = yly2y3y*.

APPENDIX C: HIGHER ORDER TERMS IN THE
EXPANSION OF THE POINTLIKE WILSON LOOP

In this section, we compute higher order terms in the
expansion (4.15). We expand the pointlike Wilson loop up
to 2 in powers of the charge Q as follows:

S ) oW
W[C] = W[C,] + f as Y m[j(s)M + ] " dssxm(s) V[;[C] f ds(m”(s) Lc]
— 5mij(5) C=C, 0 Sx™(s) C=C, my (s)
O(my;)=1/2
SW[C] 8*WIC]
+m (s)g) [ ds fds m;;(sy)my(s,)
? dm33(s)/ | c=c, : ? 0m;; +m“) 1 A 5mij(sl)5mkl(s2) C=Cy
SW[C 5*w[C
[ds m;i(s) —— €] jzdsl [tdsz z mij(sl)ﬁx”(sz)#
O Qm)=3/2 5"11,(3) Cc=C, 0 0 0(my—=1/2 5x (S2)5mij(s1) Cc=C,
1 [ t 82WI[C] SW[C]
+- | ds fds m;i(s1)my(s,) fdsm (s)
2j0 l 0 ’ (m +%k,) 3/2 ST Smij(sl)éjmkl(sz) Cc=C, . dms3;(s) | c—c,
I t 8?W[C]
+— | ds [ ds,0x"(s,)6x"(87) ——————
3 Jyds fjamoronorisaiss|
' / 8*wW[C
+fdslf dS2 Z m]J(Sl)(SX (S2)()8[]()
0 0 O(mpy)=1 Sp)ompy(S1) | c=c,
8*wlcC
[dslf ds, ij(sl)mkl(52)8 (‘)E | +-e (CD)
Olm,; +mk1) 2 mij(sl) my(s3) | c=c,
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where ZQ(mi/_er“):n means that we sum the terms in which 6x06x%, = sxloxL, + 6x26x%, (for n # 0), (C4)
the charge of m;;my; is n. Recall that the loop variables

satisfy the relation (4.11), (4.12), (4.13), and (4.14) as

follows: mM31(n) = Mi1(n)M11(-n)- (&)

m = —m Mir2(—n)» m = —m Myg(—n),
20 HoTRe o Hm T Because of (C4), the spacetime coordinates are twisting for
Mar(m) = 743 M33(—n), €2 =0 By substituting the Fourier transformation of the
loop variables (4.2) into (C1) and by using (C2)—(C5), we
Ma(n) = ~M3(n)M33(~n)s Mmim = My, (€3 obtain
|
W[C] _ W[Co] + Zmu(n)[ ds g}:’[i:)l 27rms/t + z(Sx(n)[ ds (;V[:n[((j] e27rinx/t
Q(m”) 12 7 l] C=Cy x"(s) | c=c,

8W[C] mins 52W[C]
+ Zmll(n)f 5m/(s) T/t Z Z mij(nl)mkl(nz)[ ds1/ dsy om

oo Qomy+myg)=1 .12 ij(s1)8mp(s2) | c=c,
X e2milmsi+ms,)/t 4 Q(muz) ” ,,%, 6x(n )m,j(nz)/ ds, [ ds2$% C:CUeZﬂ'i(nlsl+nzs2)/[
+ nézmll(nl)mm(nz)<’[ ds [ ds, % C=Coezm(n,s.+nzxz)/t _ _[(: ds ;}ZEZ]) C=CO€27Ti(n]+n2)x/t)
- n%:zmu(nl)MM(nz)(/ ds, [ d&% C:COeZﬂ'i(nlsl+nzsz)/T - ]Ot ds ;;ZEZ]) CCO)eZWi(n]+n2)S/t
+ n§2m11(nl)m43(n2)<f ds, [ ds2% C:C[]€27Ti(nlsl+nzsz)/t + j: ds ;XE?;]) C_C”ezm(n,+nz)s/,)
+ H%Zmll(nl)mﬁ(nz)([ ds) [ ds2% C:CUeZﬂ'i(nlsl+nzS2)/t + ](: ds%|6,=coe2ﬁi(nl+n2)s/t>
+ 5% n%"z Bxf'r‘l])SxE’nz) fot ds, f()t dS2% C:COe27Ti(nls1+nzs2)/t
+ - n§7m11(n1)m11(n2)<[ dslf dsz% C:COe2m(nls1+n2s2)/r n [’ ds ;XE(C;]) C_Coezm(nl+n2)s/;)
T o

where the loop variables 6xf’r’l) (for n # 0) are not independent. Note that, in the context of the spin chain, the impurity D,,
coupling with ox{}, mixes with the fermions: We guess that the Wilson loop containing the fermions will be needed to
explain the full excited string spectrum in the ITA string theory. The two functional derivatives of the pointlike Wilson loop
are given by

52W(C) 1) ! t s +1
m c—c, 5x (s )lTr[(Fm](x(sl))x (s1) + D, YIY (X(Sl))MJ(M))W (C)]|C=C0
= iTt[8(s; — $2)D(,D,)A; By (x0)ws! TH(CY] + i TH[F,,, (x0)8(s) — sp)wi! T (Co)]
— Tr[D,, A B, (x)wi* (Co)D, A By (xo)wi, ' (Co)], (C7)
52W C s+t
S5 | eoe = 53Ty A s)5) + DY s M5 Ol

= iTt[8(s; — 5,)D,, YKYT(XO)W"H(CO)] — Ti[D,,A; By (xo)wy? (CO)YKYT(XO) W‘]H(Co)],
(C8)
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8*W(C) + : !
= iT{y'y} SO leme, = —TIY YT (xp)W2(Co) YEY T (xg)wi T (C)].
BMKL(sz)BMIJ(sl) c—c, 5MKL(S2)l il j(x(51))W.1 ( )]|cfco il j(xO)W 1( 0) L(xo)W ) ( 0)]
(C9)
Next, we introduce the following integral:
Fy(n, k, J) = B jl dssk(1 — §)/ke?ming ~ L ex (27Tink) (in the large J limit) (C10)
2D = om ) 7 P\ g '

The derivation of the second line in (C10) is given in the appendix of [5]. By substituting (C7)—(C9) into (C6) and by
transforming the parameter (s;, s,) into (s,/t, (s, — s;)/1) for the double integral about s; and s,, we obtain the local
operator expression of the remaining terms as follows: The Q = 1 terms in which a product of the loop variables has the
charge Q = 1 become

J
> > Z(i[)J+2mij(n,)mlm(—nl)|:Z Tr[YiY;r(A1B1)kYIYrL : (A131)]_ki|(xo)F2(”1, k, J). (C11)
k=0

Q(myj+my,)=1 J m

The Q = 3/2 terms become

J
+ 3 (i) 2m, l(nl)muwl)[z T{(Y'Y] — Y3YD)(A B)Y'Y](A B ~F](x) - Falny, k. J)
J n k=0

7
TY[Y3Y2Jr (AlBl)JH](xo)] + Z Z(it)”zm”(,,l)mm(,nl)[ Z Tr (V! Y;r - YBY;)(AlBl)kylYJ(AIBI)Jik]
=0

1
J+ 1) T

X (xq) * Fo(ny, k, J) —

1
(J + 1!

J
T Y3y} (AlBl)“‘](xo)] +y Z(z‘r)’”mll(mmmm)[ > Tl(r'yf - v3r})
J n k=0

X (A B)RYAYT(A B F(xg) + Fylny, b J) +

1
TES (AlBl)“'](xo)]
J
+y Z(z‘r)“zmn(m)ng(_n,{Z Ti{(Y'Y] — Y2 YDA, B)FY2YT (A, B) "H](x0) - Fa(ny, k. J)
J m k=0

1
+ m TI‘[YZYF (AIBI)J+1](X())], (CIZ)

where we have not written the terms dependent on 6x™ since they are not independent. We obtain the Q = 2 terms up to
two impurity as follows:

1 , - -
= Z(zr)f”mn(n,)mn(_nl)[ > Ty = YDA B Y] = YY) - (A B o) Faln, k)
J om k=0

+

1
TEST Tr[Y3Y1T(AlBl)J“](x0)] 4+ (C13)

where we have not written the terms dependent on 6x™ for the same reason. Note that O = 2 terms also contain the
3 impurity terms.
In the large J limit, (C11)—(C13) contain the following BMN operators:
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J
> TyiviA, B YY(A, By TFle2mink Y,

k=0

J

k=
J

PHYSICAL REVIEW D 80, 086001 (2009)

(C14)

(Y'Y} — V3YH(A,B)*Y'Y](A,B)) ~K]e2mink/7 — Te{ Y3V (A, By) "],
0

Ty — Y3vyH(A,B)*Y'v](A,B)) ~Kle2mink/7 — Te{Y3Y [ (A, B))'*'],

x-
I

0

M~

,v.
I

0

k=0

k=0

J
S r(r'y! = vYHA By - VYA, B,y e + Ti[ vy (A, B ],

where (i, j) and (I, m) are equal to (1, 2), (1,4), (2,3), and (4, 3).

(1]

(3]

(4]
(5]

(C15)

T(Y'Y! — V3 YH(A, B Y*Yi(A,B)) ~K]e2™"%/7 + Te{Y*Y (A, By) '],

J
> T(r'y! - v vHA,B )Yy (A, By K2k + Ti[ ¥y (A, B, ],

(Cl6)
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