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We consider the small deformation of the pointlike Wilson loop in the 3-dimensional N ¼ 6

superconformal Chern-Simons theory. By Taylor expansion of the pointlike Wilson loop in powers of

the loop variables, we obtain the BPS operators that correspond to the excited string states of the dual IIA

string theory on the pp wave background. The BPS conditions of the Wilson loop constrain both the loop

variables and the forms of the operators obtained in the Taylor expansion.
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I. INTRODUCTION

The dual gravity interpretation of the supersymmetric
Wilson loop in the D ¼ 4 N ¼ 4 super Yang-Mills
(SYM) theory has been important in the context of the
AdS/CFT correspondence [1]. The supersymmetricWilson
loop contains the 6 scalar fields �i, and the expectation
value of the Wilson loop is protected from the UV diver-
gence [2]. The expectation value of the circular Wilson
loop was obtained by analyzing the string minimal surface
in the anti–de Sitter space [3]. Furthermore, the supersym-
metric Wilson loop in the Berenstein-Maldacena-Nastase
(BMN) sector can be described by the dual IIB string
theory on the pp wave background. The BMN correspon-
dence [4] is the duality between the infinite strings of
operators in N ¼ 4 SYM and the excited string states in
the dual IIB string theory on the pp wave background. In
Ref. [5], it was conjectured that the 1=2-Bogomol’nyi-
Prasad-Sommerfield (BPS) pointlike Wilson loop WðC0Þ
for C0 shrinking to a spacetime point is mapped to the
vacuum state of the dual IIB string theory on the pp wave
background. The functional derivatives of the Wilson loop
are mapped to the excited string states. We have summa-
rized the results obtained in Ref. [5] in Table I.

In this paper, motivated by the work in Ref. [5], we
consider the dual IIA string theory description of the super-
symmetric Wilson loop in the recently proposed D ¼ 3
N ¼ 6 Chern-Simons-matter theory [Aharony-Bergman-
Jafferis-Maldacena (ABJM) theory] [6,7]. The ABJM the-
ory is the low-energy effective theory of the N M2-branes
at the singularity of the orbifold C4=Zk.

1 This theory can
be analyzed by using the dual IIA string theory on the
AdS4 � CP3 spacetime and on its Penrose limit [8–12] in
the parameter regimeffiffiffiffi

�
p � 1; e2� � N1=2

k5=2
� 1; (1.1)

where k is the Chern-Simons level, N is the rank of the
gauge group, � ¼ N=k is ’t Hooft coupling, and � is the

dilaton. The first one in (1.1) implies that, in the dual
type IIA string theory, the radius of curvature is much
larger than 1 in the string unit, and the second one implies
that we take the small string coupling limit, to suppress the
quantum corrections.
The supersymmetric Wilson loop in the ABJM theory

was proposed in the literature [13–15]. The Wilson loop
contains a product of the bifundamental scalars on the
exponent. It was shown that the straight line and circular
Wilson loops preserve 1=6 of the ABJM supersymmetry.
The main purpose of our paper is to study the dual IIA

string theory description of the pointlike Wilson loop that
has enhanced 1=3 supersymmetry. We show that by de-
forming the pointlike Wilson loop, we can obtain the BPS
operators that correspond to the excited string states of the
dual IIA string theory on the pp wave background.2 The
BPS conditions of the Wilson loop, (3.10) and (3.11), give
the constraint on both the loop variables and the forms of
the BPS operators. By following the conjecture in Ref. [5],
we give maps from the functional derivatives of the Wilson
loop to the dual IIA string excited states.
The Penrose limit of the dual gravity theory is given by

the following limit:

N; J ! 1 with �0 ¼ �

J2
fixed; (1.2)

where J is the charge of the infinite strings of operators
under the Uð1Þ subgroup of SUð4Þ R symmetry. By deter-
mining the function hð�Þ that appears in the dispersion
relation, the gauge/gravity correspondence has been
proved up to the curvature corrections to the pp wave
background [17].
The content of this paper is as follows: In Sec. II, we

consider the pointlike Wilson loop in the ABJM theory and
compare it with the vacuum state of the dual IIA super-
string theory. In Sec. III, we obtain the BPS conditions for
the Wilson loop. We show that the pointlike Wilson loop is
1=3 BPS and the supersymmetry generator preserved by
the pointlike Wilson loop is the same as that preserved by
the infinite chain dual to the IIA string vacuum state. In

*mfujita@gauge.scphys.kyoto-u.ac.jp
1In the special case of the gauge group SUð2Þ � SUð2Þ, the

ABJM theory has SOð8Þ enhanced global R symmetry.

2See [16] on the deformation of the Wilson loop operator in
the N ¼ 4 SYM as well as in the YM theory.

PHYSICAL REVIEW D 80, 086001 (2009)

1550-7998=2009=80(8)=086001(10) 086001-1 � 2009 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.80.086001


Sec. IV, we solve the BPS equations satisfied by the loop
variables and expand the Wilson loop in powers of the
independent loop variables. Thus, we obtain the maps from
the functional derivatives of theWilson loop to the dual IIA
string excited states.

II. THE SUPERSYMMETRIC WILSON LOOP IN
THE ABJM THEORY

The ABJM theory is the 3-dimensional N ¼ 6 super-
symmetric Chern-Simons theory with the gauge group
UðNÞ �UðNÞ. The fields in the ABJM theory are the

UðNÞ �UðNÞ gauge fields Am and Âm, the bifundamental
bosonic fields YI [YI ¼ ðA1; A2; �B1; �B2Þ] and the bifunda-
mental spinors c I�, where I (I ¼ 1; . . . ; 4) is the index of
SURð4Þ R symmetry and � (� ¼ 1; 2) is the (2þ 1)-
dimensional spinor index.

According to Ref. [13], the supersymmetric Wilson loop
in the ABJM theory becomes3

W½C�¼Tr

�
Pexpi

I
C
dsð _xmðsÞAmþMJ

I ðsÞYIYy
J Þ
�
; (2.1)

where xmðsÞ describes the path C on R1;2 and the function
MI

JðsÞ, determined by the supersymmetry (SUSY), will be
the coordinate of the transverse space C4=Zk. We assume
that MI

JðsÞ is a 4� 4 real matrix.4

We consider the pointlike Wilson loop whose path C0

shrinks to the point xm ¼ xm0 ( _xm ¼ 0). We set MI
J in a

nilpotent matrix,

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCA: (2.2)

By expanding the exponential part of the Wilson loop, we
obtain the infinite sum of the local operator as follows:

W½C0� ¼ Tr½expðitA1B1ðx0ÞÞ�

¼ X1
J¼0

ðitÞJ
J!

Tr½ðA1B1ÞJ�ðx0Þ; (2.3)

where t describes the periodicity of the loop; we identify
s ¼ 0 with s ¼ t. In higher order of J, Eq. (2.2) includes
the infinite strings of the operator A1B1 that correspond to
the vacuum state of the dual IIA string theory. In Sec. IV,
by deforming (2.3), we also obtain the BPS operators that
correspond to the dual IIA string excited states.
In next section, we analyze the SUSY preserved by the

Wilson loop (2.1) and (2.3).

III. SUPERSYMMETRY

In Sec. III A, we shortly review the SUSY transforma-
tion of the supersymmetric Wilson loop in the ABJM
theory. In Sec. III B, we derive the BPS conditions satisfied
by the supersymmetric Wilson loop. In Sec. III C, we show
that the pointlike Wilson loop (2.3) is 1=3 BPS.

A. Supersymmetry transformation of the Wilson loop

The N ¼ 6 SUSY generator described by the super-
space coordinate is !IJ,

5 which transforms as the antisym-
metric representation of SURð4Þ and satisfies the following
relations:

ð!IJ;�Þ� ¼ !IJ
� ; !IJ

� ¼ 1
2�

IJKL!KL;�; (3.1)

!IK!KJ ¼ �I
J�

i�i; (3.2)

where �i (i ¼ 1; . . . ; 6) are Majorana spinors, which are
also the N ¼ 6 SUSY generator. The N ¼ 6 SUSY
transformations are given by

�YI ¼ i!IJc J; (3.3)

�Yy
I ¼ ic yJ!IJ; (3.4)

�Am ¼ �ðYIc Jy�m!IJ þ!IJ�mc IY
y
J Þ; (3.5)

�Âm ¼ c IyYJ�m!IJ þ!IJ�mY
y
I c J; (3.6)

TABLE I. The relation between the functional derivatives and
the IIB string oscillation modes �

�
ðnÞ and �

4þa
ðnÞ . In the table, � ¼

0; 1; 2; 3, a ¼ 1; 2; 3; 4, and Z ¼ �5 þ i�6.

SYM side Dual IIB string side

Functional

derivatives

Corresponding

operators

� � � WðC0Þ j0;pþiR
dse2�ins=t �

�x�ðsÞ D�Z �
�
ðnÞR

dse2�ins=t �
�yaðsÞ �a �4þa

ðnÞ

3In Ref. [14], they also obtain the Wilson loop with the gauge
field Âm. We do not consider the Wilson loop with Âm here; our
Wilson loop breaks the parity symmetry of the ABJM theory (see
[11,18]).

4We can give MI
JðsÞ a URð1Þ charge. URð1Þ is a subgroup of

SURð4Þ R symmetry. In the Wilson loop (2.1), the URð1Þ sym-
metry that rotates A1 and B1 by � ¼ expði’=2Þ also operates on
MI

JðsÞ as follows:

V�1MV¼
� 0 0 0
0 1 0 0
0 0 �� 0
0 0 0 1

0
BBB@

1
CCCA

m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

0
BBB@

1
CCCA

�� 0 0 0
0 1 0 0
0 0 � 0
0 0 0 1

0
BBB@

1
CCCA

¼
m11 �m12 �2m13 �m14

��m21 m22 �m23 m24

��2m31 ��m32 m33 ��m34

��m41 m42 �m43 m44

0
BBB@

1
CCCA:

In Sec. IV, we use this URð1Þ symmetry to classify the loop
variables.

5!IJ is obtained by using the Clebsch-Gordan decomposition
of the 6 Majorana spinors �i (i ¼ 1; . . . ; 6), which are also the
N ¼ 6 SUSY generators (see Appendix B).
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where the convention of the spinors is the same as given in
Refs. [7,19].

We consider the SUSY transformation of the Wilson
loop as follows:

eið!IJQ
IJþ!IJ �QIJÞW½C�e�ið!IJQ

IJþ!IJ �QIJÞ ¼ W½C� þ �W½C�;
(3.7)

where QIJ is the SUSY generator. The Wilson loop pre-
serves a part of the SUSY in the ABJM theory when
�W½C� ¼ 0 for an arbitrary s.

By using the condition �W½C� ¼ 0, we can show that
the SUSY generator !AB preserved by the Wilson loop
satisfies the following equations as given in Ref. [13]:

!�
AB�m�	 _xm � iMB

K!KA;	 ¼ 0; (3.8)

!AB;��m�	 _xm � iMI
A!IB

	 ¼ 0: (3.9)

Note that the complex conjugate of (3.8) gives (3.9) when
MI

J is a Hermitian matrix.

B. BPS conditions

When we contract (3.8) and (3.9) by using ��	 and the

charge conjugation matrix Ĉ (see Appendix A) or when we
multiply (3.8) by �n _x

n � iMT from the right,6 we obtain
the following BPS conditions:

4 _x2ðsÞ þMI
KðsÞMK

IðsÞ ¼ 0; (3.10)

detð _x2ðsÞ þMTðsÞMTðsÞÞ ¼ detð _x2ðsÞ þMðsÞMðsÞÞ ¼ 0:

(3.11)

(3.10) and (3.11) are the necessary condition to preserve a
part of SUSY: The straight line and (2.3) satisfy (3.10).
Equation (3.10) is similar to the BPS conditions _x2 þ _y2 ¼
0 satisfied by the Wilson loop in the d ¼ 4, N ¼ 4 SYM.

C. Supersymmetry preserved by the pointlike
Wilson loop

We can show easily that the pointlike Wilson loop (2.3)
preserves 1=3 of the SUSY in the ABJM theory. For _xm ¼
0, Eqs. (3.8) and (3.9) are given by

MB
K!KA;	 ¼ 0; (3.12)

MI
B!IA

	 ¼ 0: (3.13)

By solving these equations, we obtain !13 ¼ !23 ¼
!24 ¼ !34 ¼ 0.7 The pointlike Wilson loop preserves
the SUSY !12 and !14 which are not constrained by
(3.12) and (3.13). Note that the Wilson loop over the
straight path is 1=6BPS.We guess that there is an enhance-
ment of the SUSY when we shrink the loop to a point.
We want to explain why the Wilson loop in the ABJM

theory is 1=3 BPS or 1=6 BPS instead of 1=2 BPS. In the
dual IIA string theory side, the Wilson loop is described by
the fundamental string on AdS4 � CP3 spacetimes. From
the supersymmetry analysis [14] of the Killing spinors, it
has been known that the fundamental string dual to the
straight Wilson loop is not localized at CP3 but smeared
along CP3: The smeared string preserves less SUSY. So,
we guess that a similar phenomenon happens for our point-
like Wilson loop.

IV. BPS OPERATORS FROM THE WILSON LOOP

In this section, we show that the BPS operators arise in
the double series expansion of the pointlike Wilson loop
operator (2.3) in powers of the loop variables �xmðsÞ and
�MI

JðsÞ ¼ mIJðsÞ (see also [5]).
First, we consider the Wilson loop fluctuated near the

point xmðsÞ ¼ xm0 . We parametrize MI
JðsÞ by

MI
JðsÞ ¼

0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

0
BBB@

1
CCCAþ

m11 m12 0 m14

m21 m22 m23 m24

m31 m32 m33 m34

m41 m42 m43 m44

0
BBB@

1
CCCA;

(4.1)

where we fix the gauge freedom of the parameter s by
imposingM1

3 ¼ 1, and for convenience, omit the label s in
mIJðsÞ. Since the loop coordinates �xmðsÞ and mIJðsÞ
should be periodic about s, they can be rewritten as fol-
lows:

�xmðsÞ ¼ X1
n¼�1

�xmðnÞe
2�ins=t;

mIJðsÞ ¼
X1

n¼�1
mðnÞIJe2�ins=t for ðI; JÞ � ð3; 1Þ:

(4.2)

In the Fourier space, the loop variables have zero modes.
The loop variables �xmðsÞ and �MI

JðsÞ are not indepen-
dent but are related by the BPS condition (3.10) and (3.11).
By substituting (4.1) into the matrix Xab ¼ ð� _x2 þM2Þab
and the BPS condition (3.10) and (3.11), we obtain the
following matrix elements and the following equation:

6When we multiply (3.9) by �n _x
n � iM from the right, we

obtain the same equation.

7The superconformal group satisfied by (2.3) is SUð2j2Þ gen-
erated by !12 and !14 as given in Ref. [9].
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X11 ¼ � _x2 þm11
2 þm12m21 þm31 þm14m41; X12 ¼ m11m12 þm12m22 þm32 þm14m42;

X13 ¼ m11 þm12m23 þm33 þm14m43; X14 ¼ m11m14 þm12m24 þm34 þm14m44;

X21 ¼ m21m11 þm22m21 þm23m31 þm24m41; X22 ¼ � _x2 þm12m21 þm22
2 þm23m32 þm24m42;

X23 ¼ m21 þm22m23 þm23m33 þm24m43; X24 ¼ m21m14 þm22m24 þm23m34 þm24m44;

X31 ¼ m31m11 þm32m21 þm33m31 þm34m41; X32 ¼ m31m12 þm32m22 þm33m32 þm34m42;

X33 ¼ � _x2 þm31 þm23m32 þm33
2 þm34m43; X34 ¼ m31m14 þm32m24 þm33m34 þm34m44;

X41 ¼ m41m11 þm42m21 þm43m31 þm44m41; X42 ¼ m41m12 þm42m22 þm43m32 þm44m42;

X43 ¼ m41 þm42m23 þm43m33 þm44m43; X44 ¼ � _x2 þm14m41 þm24m42 þm34m43 þm44
2;

(4.3)

detX ¼ X11X22X33X44 �X11X22X34X43 þX11X32X43X24 �X11X32X23X44 þX11X42X23X34 �X11X42X33X24

�X21X12X33X44 þX21X12X34X43 �X21X32X43X14 þX21X32X13X44 �X21X42X13X34 þX21X42X33X14

þX31X12X23X44 �X31X12X43X24 þX31X22X43X14 �X31X22X13X44 þX31X42X13X24 �X31X42X23X14

�X41X12X23X34 þX41X12X33X24 �X41X22X33X14 þX41X22X13X34 �X41X32X13X24 þX41X32X23X14 ¼ 0; (4.4)

m31 ¼
4ð� _xÞ2 þ P

ði;jÞ�ð3;1Þ
mijmji

2
: (4.5)

A special solution of (4.4) is given by8

m22 ¼ m44 ¼ m24 ¼ m42 ¼ 0; (4.6)

m32 ¼�m11m12; m34 ¼�m11m14; m41¼�m43m33;

(4.7)

m21 ¼ �m23m33; m11 ¼ �m33; (4.8)

� _x2 ¼ 0; (4.9)

)X12 ¼X14 ¼X43 ¼X23 ¼X42 ¼X24 ¼X22 ¼X44 ¼ 0:

(4.10)

In the Fourier space, the relations (4.5), (4.6), (4.7), (4.8),
(4.9), and (4.10) are rewritten as follows:

m32ðnÞ ¼ �m11ðnÞm12ð�nÞ; m34ðnÞ ¼ �m11ðnÞm14ð�nÞ;

m41ðnÞ ¼ �m43ðnÞm33ð�nÞ; (4.11)

m21ðnÞ ¼ �m23ðnÞm33ð�nÞ; m11ðnÞ ¼ �m33ðnÞ; (4.12)

�x0n�x
0�n ¼ �x1n�x

1�n þ �x2n�x
2�n ðfor n � 0Þ; (4.13)

m31ðnÞ ¼ m11ðnÞm11ð�nÞ: (4.14)

Note that, while the zero modes �xmð0Þ are the independent
parameters, �xmðnÞ is not independent.

Recall that the loop variable has the URð1Þ charges as
given in Table II (see footnote 4). The loop variable also
has the dimension � since the dimension of the Wilson
loop becomes zero. Since the charge Qð¼ �� JÞ of the
loop variables is well-defined for (4.6), (4.7), (4.8), (4.9),

and (4.10), we expand the Wilson loop fluctuated at xm0 up

to one in powers of the chargeQ of the loop variable and up
to one impurity as follows:

W½C� ¼ W½C0� þ
Z t

0
ds

X
QðmijÞ¼1=2

mijðsÞ �W½C�
�mijðsÞ

��������C¼C0

þ
Z t

0
ds�xmðsÞ�W½C�

�xmðsÞ
��������C¼C0

þ
Z t

0
dsm11ðsÞ

�
�W½C�
�m11ðsÞ �

�W½C�
�m33ðsÞ

���������C¼C0

þ� � � ;

(4.15)

where we used (4.6), (4.7), and (4.8). Here,
P

QðmklÞ¼n

means that we sum the terms in which the charge of mij

is n; for n ¼ 1=2, we sum the terms containing m12, m14,
m23, and m43.
We introduce a new functional derivative as follows:

�

�m0 ¼
�

�m11

� �

�m33

: (4.16)

By substituting the Fourier transformation of the loop
variables (4.2) into the resulting formula, we obtain

W½C� ¼ W½C0� þ
X

QðmijÞ¼1=2

X
n

mijðnÞ
Z t

0
ds

�W½C�
�mijðsÞ

��������C¼C0

� e2�ins=t þX
n

�xmðnÞ
Z t

0
ds

�W½C�
�xmðsÞ

��������C¼C0

e2�ins=t

þX
n

m11ðnÞ
Z t

0
ds

�W½C�
�m0ðsÞ

��������C¼C0

e2�ins=t þ � � � :

(4.17)

The functional derivative of (2.3) contained in (4.17) gen-
erates the impurity operator (in the sense of the spin chain)

8We can solve (3.11) about m31 since (3.11) is the equation of
second degree about m31. However, we cannot expand the
denominator of the solution in powers of the loop variables.
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as follows [20,21]:

�WðCÞ
�xmðsÞ

��������C¼C0

¼ iTr½ðFmnðxðsÞÞ _xnðsÞ þ ðDmY
IYy

J Þ

� ðxðsÞÞMI
JðsÞÞwsþt

s ðCÞ�jC¼C0

¼ i
X1
J¼0

ðitÞJ
J!

Tr½ðDmA1B1Þðx0ÞðA1B1ðx0ÞÞJ�;

(4.18)

�WðCÞ
�MK

LðsÞ
��������C¼C0

¼ i
X1
J¼0

ðitÞJ
J!

Tr½YKYy
Lðx0ÞðA1B1ðx0ÞÞJ�;

(4.19)

where ws00
s0 ðCÞ describes the Wilson line along the path C

from s ¼ s0 to s ¼ s00 and the covariant derivative Dm

including Am operates on YIYy
J so that YIYy

J is an adjoint
field. Note that (4.18) and (4.19) do not depend on the loop
parameter s.

By using (4.18) and (4.19), we find that the right side of
(4.17) becomes the zero mode contribution as follows:

X1
J¼0

ðitÞJ
J!

½Tr½ðA1B1ÞJ�ðx0Þ

þ it
X

QðmijÞ¼1=2

mijð0Þ Tr½YiYy
j ðA1B1ÞJ�ðx0Þ

þ itm11ð0Þ Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞJ�ðx0Þ
þ it�xmð0Þ Tr½ðDmA1B1ÞðA1B1ÞJ�ðx0Þ�: (4.20)

In higher order of J, Eq. (4.20) contains the following
infinite strings of the operator A1B1, the bifundamental

scalars YiYy
j , and the covariant derivative Dm:

Tr ½ðA1B1ÞJ�ðx0Þ; Tr½YiYy
j ðA1B1ÞJ�ðx0Þ;

Tr½ðDmA1B1ÞðA1B1ÞJ�ðx0Þ;
(4.21)

Tr ½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞJ�ðx0Þ; (4.22)

where ði; jÞ ¼ ð1; 2Þ; ð1; 4Þ; ð2; 3Þ; ð4; 3Þ and we separated
the operators coupled to the independent loop variables.
These BPS operators protected by the supersymmetry cor-
respond to the vacuum state and the excited states of the
dual IIA string theory on the pp wave background (see
[8,9]).

By following the correspondence between (4.21) and the
dual IIA string excited states, and by following the con-
jecture in Ref. [5], we map the functional derivatives of the

Wilson loop to the dual IIA string excited states in
Table III.
Before ending this section, we want to comment on the

relation between our Taylor expansion of the pointlike
Wilson loop and strong coupling expansion: The Wilson

loop should be expanded in terms of 1=
ffiffiffiffi
�

p
[22] and have a

convergent region of the expansion. The operators obtained
in the Taylor expansion should be normalized by using
their 2-point function. However, the appearance of strong
coupling expansion is not clear in both our pointlike
Wilson loop and that of N ¼ 4 SYM [5]. On the other
hand, our Taylor expansion of the Wilson loop (4.20) is
similar to the mode expansion of the wave function in the
string field theory (SFT) as was pointed out in the work of
Ref. [5]. Since the SFT is independent of the string cou-
pling, (4.20) may be independent of the ’t Hooft coupling.

V. DISCUSSIONS

In this paper, motivated by the paper [5], we discussed
the dual IIA string description of a slightly deformed
pointlike Wilson loop. By expanding the pointlike
Wilson loop in powers of the loop variables, we obtained
the BPS operators9 that correspond to the excited string
states of the IIA string theory on the pp wave background.

Our new result was the impurity operator Y1Yy
1 � Y3Yy

3

that was not determined from the analysis in the gravity
side [8]. By following the conjecture in Ref. [5], we gave
the maps from the functional derivatives of theWilson loop
to the dual IIA string excited states in Table III.
The BPS conditions of the Wilson loop (3.10) and (3.11)

constrained both the loop variables and the forms of the
BPS operators, though we did not prove the uniqueness of
solution of the BPS conditions. In Appendix C, we also
obtained the BMN operators [23] in higher order terms of
the Taylor expansion (C1). It will also be important to
compute the anomalous dimension [24] of the BMN op-
erators (C15) and (C16).
Since our Wilson loop is pointlike, it is important to

construct the straight line BPS Wilson loop that connects
the pointlike 1=3-BPS Wilson loop to the 1=6-BPS Wilson
loop in the ABJM theory. We leave it to future work.
We also want to comment on the Wilson loop in the

ABJM theory from the viewpoint of 11-dimensional theory

TABLE II. URð1Þ charge of the loop variables (i ¼ 1; 2; 3; 4).

m13 m12, m14, m23, m43 �xm, mii, m24, m42 m21, m41, m32, m34 m31

J 1 1=2 0 �1=2 �1
Qð¼ �� JÞ 0 1=2 1 3=2 2

9As was pointed out in Ref. [9], we need to include the
fermions to complete the BPS multiplet that the impurity opera-
tors belong to, though the gauge/gravity duality could be proven
by using only the bosonic string action.
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(M theory). It has been known that in the dual IIA super-
gravity side, the Wilson loop is described by the funda-
mental string on the AdS4 � CP3 spacetime. Then, the
dual fundamental string should be described by the M2-
brane wrapped on the M-circle: The 3-form Cð3Þ in the 11-

dimensional supergravity reduces to the Neveu-
Schwarz–Neveu-Schwarz field B�
 coupling to the IIA

string. Thus, it is also interesting to analyze the dynamics
of the Wilson loop by using the loop equation [25].10 As
the dynamics of the Wilson loop describe the dynamics of
the dual string, the loop equation will also describe the
dynamics of the M2-brane wrapped on the M-circle. When
we analyze the loop equation, however, we need to extend
the analysis to include supersymmetry (see also [21]).
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APPENDIX A: CHARGE CONJUGATION MATRIX

In Appendix A, we introduce the charge conjugation
matrix of both SOð6Þ and SOð4Þ and construct the reduc-
ible representation of SOð6Þ gamma matrices by using the
reducible representation of SOð4Þ gamma matrices.

The charge conjugation matrix constructed by SOð6Þ
gamma matrices satisfies the following relations:

C�iC�1 ¼ ��iT; (A1)

CT ¼ �C;

ðC�i1i2...inÞT ¼ �inT . . .�i1T�C

¼ �ð�1Þð1=2Þnðnþ1ÞC�i1i2...in ; (A2)

where (A1) is the definition of the charge conjugation

matrix and � is a constant determined later.11 (A2) shows
that the matrix defined on the right-hand side of (A2)
transforms as the symmetric tensor or the antisymmetric
tensor in terms of the SOð6Þ spinor index. Since the prod-
uct representation in Table IV must be consistent with the
decomposition 8s 	 8s ! 36S 
 28A, � must be þ1.
C defined in (A1) is the metric of the spinor index as

follows:

C ¼ C�	 ¼ CT; C�1 ¼ ðC�1Þ�	;
C�	ð�iÞ	� ¼ ðC�iÞ��;

(A3)

C�i ¼ ðC�iÞT; C�	g
�
�g

	
� ¼ C��; (A4)

where g is the spinor representation of SOð6Þ.12
We introduce the SOð4Þ charge conjugation matrix Ĉ

that satisfies the following relations:

Ĉ�kĈ�1 ¼ �ð�kÞT; (A5)

Ĉ T ¼ �Ĉ: (A6)

We decompose the SOð6Þ Dirac gamma matrices and the
charge conjugation matrix as follows:

�k ¼ 0 �k

�k 0

� �
; �5 ¼ 0 �5

�5 0

� �
; �6 ¼ 0 �i

i 0

� �
;

(A7)

C ¼ 0 Ĉ
�Ĉ 0

 !
; (A8)

where �k is the SOð4Þ Dirac gamma matrix. Here the
matrices defined in (A7) and (A8) satisfy the Clifford
algebra and the definition of the charge conjugation matrix.

APPENDIX B: CLEBSCH-GORDAN
DECOMPOSITION OF THE 6 MAJORANA

SPINORS

We show the Clebsch-Gordan decomposition of the
6 SOð1; 2Þ Majorana spinors �i, which transform as the
vector representation of spinð6Þ � SOð6Þ, and show the
equality (3.2). We know the following equivalence:

spin ð6Þ � SUð4Þ; (B1)

6v � 6A; (B2)

4s � 4v: (B3)

We introduce the new matrix C2 and 4s spinor index I
and J as follows:

TABLE III. The relation between the functional derivatives
and the IIA supergravity modes (the zero modes of the string
oscillation operator). In the table, m ¼ 0; 1; 2, ði; jÞ ¼
ð1; 2Þ; ð1; 4Þ; ð2; 3Þ; ð4; 3Þ, and k ¼ 5; 6; 7; 8.

ABJM side Dual IIA superstring side

Dual IIA

superstring side

Corresponding

operators

� � � WðC0Þ j0;pþiR
dse2�ins=t �

�xmðsÞ DmA1B1 �mþ1
ð0ÞR

dse2�ins=t �
�m0ðsÞ Y1Yy

1 � Y3Yy
3 �4

ð0ÞR
dse2�ins=t �

�mijðsÞ jQ¼1=2 YiYy
j �k

ð0Þ

10The loop equation for the pure Chern-Simons theory is
slightly different from that of the YM theory.

11These equations are satisfied for any SOðNÞ.
12We can show the second equation in (A4) by expanding the
exponential of g in powers of the generator of the Lorentz
algebra.
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�i ¼ 0 �̂i
I _J

�̂i
_IJ

0

 !
;

C2 ¼
0 iĈ�5

�iĈ�5 0

 !
¼ 0 Ĉ2;I _J

Ĉ2; _IJ 0

0
@

1
A

ðI; J ¼ 1� 4Þ; (B4)

C2�
i ¼ ðĈ2�̂

iÞIJ 0
0 ðĈ2�̂

iÞ _I _J

 !
: (B5)

By using (A4), we can show that Ĉ2�̂
i transforms as an

antisymmetric tensor in terms of the index I; J.

We describe the Clebsch-Gordan decomposition of Ĉ2�̂
i

as follows:

vIJ ! vi � X
I<J

ðĈ2�̂
iÞIJvIJ; (B6)

!IJ ¼ �iðĈ2�̂
iÞIJ: (B7)

We choose the basis of the SOð4Þ gamma matrices as
follows:

�1 ¼ 0 �i
i 0

� �
; �2 ¼ 0 
1


1 0

� �
;

�3 ¼ 0 
3


3 0

� �
; �4 ¼ 0 
2


2 0

� �
;

(B8)

Ĉ ¼ �2�3; Ĉ2 ¼ �4�1: (B9)

After a SOð6Þ permutation of the SOð6Þ gamma matrices
�i including a change of the signs, we obtain the super-
symmetry generator !IJ, which satisfies (3.1) and (3.2)
(see also [19]).
It is convenient to introduce the following equations:

ðC�iÞ� ¼ ��iC�; (B10)

ðC�7Þ� ¼ �7C�: (B11)

By using the SOð6Þ gamma matrices C and C2, we can
show (3.2) as follows:

�iðC2�
iÞ�iðC�

2�
�iÞ (B12)

¼ �i�jðC�7�i�7C���jÞ (B13)

¼ �i�jC�
i�jC� ¼ �i�iCC

� ¼ �i�i1; (B14)

where �7 ¼ �1�2�3�4.

APPENDIX C: HIGHER ORDER TERMS IN THE
EXPANSION OF THE POINTLIKE WILSON LOOP

In this section, we compute higher order terms in the
expansion (4.15). We expand the pointlike Wilson loop up
to 2 in powers of the charge Q as follows:

W½C� ¼ W½C0� þ
Z t

0
ds

X
QðmIJÞ¼1=2

mijðsÞ �W½C�
�mijðsÞ

��������C¼C0

þ
Z t

0
ds�xmðsÞ�W½C�

�xmðsÞ
��������C¼C0

þ
Z t

0
ds

�
m11ðsÞ �W½C�

�m11ðsÞ

þm33ðsÞ �W½C�
�m33ðsÞ

���������C¼C0

þ 1

2

Z t

0
ds1

Z t

0
ds2

X
QðmijþmklÞ¼1

mijðs1Þmklðs2Þ �2W½C�
�mijðs1Þ�mklðs2Þ

��������C¼C0

þ
Z t

0
ds

X
QðmijÞ¼3=2

mijðsÞ �W½C�
�mijðsÞ

��������C¼C0

þ
Z t

0
ds1

Z t

0
ds2

X
QðmijÞ¼1=2

mijðs1Þ�xnðs2Þ �2W½C�
�xnðs2Þ�mijðs1Þ

��������C¼C0

þ 1

2

Z t

0
ds1

Z t

0
ds2

X
QðmijþmklÞ¼3=2

mijðs1Þmklðs2Þ �2W½C�
�mijðs1Þ�mklðs2Þ

��������C¼C0

þ
Z t

0
dsm31ðsÞ �W½C�

�m31ðsÞ
��������C¼C0

þ 1

2

Z t

0
ds1

Z t

0
ds2�x

mðs1Þ�xnðs2Þ �2W½C�
�xmðs1Þ�xnðs2Þ

��������C¼C0

þ
Z t

0
ds1

Z t

0
ds2

X
QðmIJÞ¼1

mIJðs1Þ�xnðs2Þ �2W½C�
�xnðs2Þ�mIJðs1Þ

��������C¼C0

þ 1

2

Z t

0
ds1

Z t

0
ds2

X
QðmijþmklÞ¼2

mijðs1Þmklðs2Þ �2W½C�
�mijðs1Þ�mklðs2Þ

��������C¼C0

þ� � � ; (C1)

TABLE IV. The product representation of the 8S spinor repre-
sentation.

n 0 1 2 3 4 5 6

6Cn 1 6 15 20 15 6 1

ð�1Þð1=2Þnðnþ1Þ þ � � þ þ � �
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where
P

QðmijþmklÞ¼n means that we sum the terms in which
the charge of mijmkl is n. Recall that the loop variables
satisfy the relation (4.11), (4.12), (4.13), and (4.14) as
follows:

m32ðnÞ ¼ �m11ðnÞm12ð�nÞ; m34ðnÞ ¼ �m11ðnÞm14ð�nÞ;

m41ðnÞ ¼ �m43ðnÞm33ð�nÞ; (C2)

m21ðnÞ ¼ �m23ðnÞm33ð�nÞ; m11ðnÞ ¼ �m33ðnÞ; (C3)

�x0n�x
0�n ¼ �x1n�x

1�n þ �x2n�x
2�n ðfor n � 0Þ; (C4)

m31ðnÞ ¼ m11ðnÞm11ð�nÞ: (C5)

Because of (C4), the spacetime coordinates are twisting for
n � 0. By substituting the Fourier transformation of the
loop variables (4.2) into (C1) and by using (C2)–(C5), we
obtain

W½C� ¼ W½C0� þ
X

QðmijÞ¼1=2

X
n

mijðnÞ
Z t

0
ds

�W½C�
�mijðsÞ

��������C¼C0

e2�ins=t þX
n

�xmðnÞ
Z t

0
ds

�W½C�
�xmðsÞ

��������C¼C0

e2�ins=t

þX
n

m11ðnÞ
Z t

0
ds

�W½C�
�m0ðsÞ

��������C¼C0

e2�ins=t þ X
QðmijþmklÞ¼1

X
n1;n2

mijðn1Þmklðn2Þ
Z t

0
ds1

Z t

0
ds2

�2W½C�
�mijðs1Þ�mklðs2Þ

��������C¼C0

� e2�iðn1s1þn2s2Þ=t þ X
QðmijÞ¼1=2

X
n1;n2

�xnðn1Þmijðn2Þ
Z t

0
ds1

Z t

0
ds2

�2W½C�
�xnðs2Þ�mijðs1Þ

��������C¼C0

e2�iðn1s1þn2s2Þ=t

þ X
n1;n2

m11ðn1Þm12ðn2Þ
�Z t

0
ds1

Z t

0
ds2

�2W½C�
�m0ðs1Þ�m12ðs2Þ

��������C¼C0

e2�iðn1s1þn2s2Þ=t �
Z t

0
ds

�W½C�
�m32ðsÞ

��������C¼C0

e2�iðn1þn2Þs=t
�

þ X
n1;n2

m11ðn1Þm14ðn2Þ
�Z t

0
ds1

Z t

0
ds2

�2W½C�
�m0ðs1Þ�m14ðs2Þ

��������C¼C0

e2�iðn1s1þn2s2Þ=t �
Z t

0
ds

�W½C�
�m34ðsÞ

��������C¼C0

�
e2�iðn1þn2Þs=t

þ X
n1;n2

m11ðn1Þm43ðn2Þ
�Z t

0
ds1

Z t

0
ds2

�2W½C�
�m0ðs1Þ�m43ðs2Þ

��������C¼C0

e2�iðn1s1þn2s2Þ=t þ
Z t

0
ds

�W½C�
�m41ðsÞ

��������C¼C0

e2�iðn1þn2Þs=t
�

þ X
n1;n2

m11ðn1Þm23ðn2Þ
�Z t

0
ds1

Z t

0
ds2

�2W½C�
�m0ðs1Þ�m23ðs2Þ

��������C¼C0

e2�iðn1s1þn2s2Þ=t þ
Z t

0
ds

�W½C�
�m21ðsÞ jC¼C0

e2�iðn1þn2Þs=t
�

þ 1

2

X
m;n

X
n1;n2

�xmðn1Þ�x
n
ðn2Þ

Z t

0
ds1

Z t

0
ds2

�2W½C�
�xmðs1Þ�xnðs2Þ

��������C¼C0

e2�iðn1s1þn2s2Þ=t

þ 1

2

X
n1;n2

m11ðn1Þm11ðn2Þ
�Z t

0
ds1

Z t

0
ds2

�2W½C�
�m0ðs2Þ�m0ðs1Þ

��������C¼C0

e2�iðn1s1þn2s2Þ=t þ
Z t

0
ds

�W½C�
�m31ðsÞ

��������C¼C0

e2�iðn1þn2Þs=t
�

þ � � � ; (C6)

where the loop variables �xmðnÞ (for n � 0) are not independent. Note that, in the context of the spin chain, the impurityDm

coupling with �xmðnÞ mixes with the fermions: We guess that the Wilson loop containing the fermions will be needed to
explain the full excited string spectrum in the IIA string theory. The two functional derivatives of the pointlike Wilson loop
are given by

�2WðCÞ
�xnðs2Þ�xmðs1Þ

��������C¼C0

¼ �

�xnðs2Þ iTr½ðFmlðxðs1ÞÞ _xlðs1Þ þDmY
IYy

J ðxðs1ÞÞMJ
I ðs1ÞÞws1þt

s1 ðCÞ�jC¼C0

¼ iTr½�ðs1 � s2ÞDðnDmÞA1B1ðx0Þws1þt
s1 ðC0Þ� þ iTr½Fmnðx0Þ�0ðs1 � s2Þws1þt

s1 ðC0Þ�
� Tr½DmA1B1ðx0Þws2

s1ðC0ÞDnA1B1ðx0Þws1þt
s2 ðC0Þ�; (C7)

�2WðCÞ
�MK

Lðs2Þ�xmðs1Þ
��������C¼C0

¼ �

�MK
Lðs2Þ iTr½ðFmlðxðs1ÞÞ _xlðs1Þ þDmY

IYy
J ðxðs1ÞÞMI

Jðs1ÞÞws1þt
s1 ðCÞ�jC¼C0

¼ iTr½�ðs1 � s2ÞDmY
KYy

Lðx0Þws1þt
s1 ðC0Þ� � Tr½DmA1B1ðx0Þws2

s1ðC0ÞYKYy
Lðx0Þ � ws1þl

s2 ðC0Þ�;
(C8)
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�2WðCÞ
�MK

Lðs2Þ�MI
Jðs1Þ

��������C¼C0

¼ �

�MK
Lðs2Þ iTr½Y

IYy
J ðxðs1ÞÞws1þt

s1 ðCÞ�jC¼C0
¼ �Tr½YIYy

J ðx0Þws2
s1ðC0ÞYKYy

Lðx0Þws1þl
s2 ðC0Þ�:

(C9)

Next, we introduce the following integral:

F2ðn; k; JÞ ¼ 1

ðJ � kÞ!k!
Z 1

0
d~s~skð1� ~sÞJ�ke2�in~s � 1

JJ!
exp

�
2�ink

J

�
ðin the large J limitÞ: (C10)

The derivation of the second line in (C10) is given in the appendix of [5]. By substituting (C7)–(C9) into (C6) and by
transforming the parameter ðs1; s2Þ into ðs1=t; ðs2 � s1Þ=tÞ for the double integral about s1 and s2, we obtain the local
operator expression of the remaining terms as follows: The Q ¼ 1 terms in which a product of the loop variables has the
charge Q ¼ 1 become

X
QðmijþmlmÞ¼1

X
J

X
n1

ðitÞJþ2mijðn1Þmlmð�n1Þ
�XJ
k¼0

Tr½YiYy
j ðA1B1ÞkYlYy

m � ðA1B1ÞJ�k

�
ðx0ÞF2ðn1; k; JÞ: (C11)

The Q ¼ 3=2 terms become

þX
J

X
n1

ðitÞJþ2m11ðn1Þm12ð�n1Þ
�XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞkY1Yy
2 ðA1B1ÞJ�k�ðx0Þ � F2ðn1; k; JÞ

� 1

ðJ þ 1Þ! Tr½Y
3Yy

2 ðA1B1ÞJþ1�ðx0Þ
�
þX

J

X
n1

ðitÞJþ2m11ðn1Þm14ð�n1Þ
�XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞkY1Yy
4 ðA1B1ÞJ�k�

� ðx0Þ � F2ðn1; k; JÞ � 1

ðJ þ 1Þ! Tr½Y
3Yy

4 ðA1B1ÞJþ1�ðx0Þ
�
þX

J

X
n1

ðitÞJþ2m11ðn1Þm43ð�n1Þ
�XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 Þ

� ðA1B1ÞkY4Yy
3 ðA1B1ÞJ�k�ðx0Þ � F2ðn1; k; JÞ þ 1

ðJ þ 1Þ! Tr½Y
4Yy

1 ðA1B1ÞJþ1�ðx0Þ
�

þX
J

X
n1

ðitÞJþ2m11ðn1Þm23ð�n1Þ
�XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞkY2Yy
3 ðA1B1ÞJ�k�ðx0Þ � F2ðn1; k; JÞ

þ 1

ðJ þ 1Þ! Tr½Y
2Yy

1 ðA1B1ÞJþ1�ðx0Þ
�
; (C12)

where we have not written the terms dependent on �xm since they are not independent. We obtain the Q ¼ 2 terms up to
two impurity as follows:

þ 1

2

X
J

X
n1

ðitÞJþ2m11ðn1Þm11ð�n1Þ
�XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞkðY1Yy
1 � Y3Yy

3 Þ � ðA1B1ÞJ�k�ðx0ÞF2ðn1; k; JÞ

þ 1

ðJ þ 1Þ! Tr½Y
3Yy

1 ðA1B1ÞJþ1�ðx0Þ
�
þ � � � ; (C13)

where we have not written the terms dependent on �xm for the same reason. Note that Q ¼ 2 terms also contain the
3 impurity terms.

In the large J limit, (C11)–(C13) contain the following BMN operators:
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XJ
k¼0

Tr½YiYy
j ðA1B1ÞkYlYy

mðA1B1ÞJ�k�e2�ink=J; (C14)

XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞkY1Yy
2 ðA1B1ÞJ�k�e2�ink=J � Tr½Y3Yy

2 ðA1B1ÞJþ1�;

XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞkY1Yy
4 ðA1B1ÞJ�k�e2�ink=J � Tr½Y3Yy

4 ðA1B1ÞJþ1�;

XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞkY4Yy
3 ðA1B1ÞJ�k�e2�ink=J þ Tr½Y4Yy

1 ðA1B1ÞJþ1�;

XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞkY2Yy
3 ðA1B1ÞJ�k�e2�ink=J þ Tr½Y2Yy

1 ðA1B1ÞJþ1�;

(C15)

XJ
k¼0

Tr½ðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞkðY1Yy
1 � Y3Yy

3 ÞðA1B1ÞJ�k�e2�ink=J þ Tr½Y3Yy
1 ðA1B1ÞJþ1�; (C16)

where ði; jÞ and ðl; mÞ are equal to ð1; 2Þ, ð1; 4Þ, ð2; 3Þ, and ð4; 3Þ.
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