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The group structure of the variant chiral symmetry discovered by Lüscher in the Ginsparg-Wilson

description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of

linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism

of this extended chiral group, and the CP transformation properties of the symmetry generators are found.

The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its

cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with

these symmetries are discussed, including the fact that some different, noncommuting symmetry

generators lead to the same Noether current. These are universal features of lattice chiral fermions based

on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations.

In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are

related to complex energy singularities that violate reflection positivity and impede continuation to

Minkowski space.

DOI: 10.1103/PhysRevD.80.085023 PACS numbers: 11.15.Ha, 11.30.�j, 11.30.Rd

I. INTRODUCTION

This article is concerned with the structure of the sym-
metry group of lattice chiral fermions based on the
Ginsparg-Wilson relation [1]. Several independent con-
structions of lattice chiral fermions that incorporated the
Ginsparg-Wilson relation were developed in the 1990s [2–
4], although the fact that the Ginsparg-Wilson relation was
the key to how they all represented chiral symmetry was
realized only afterward. The transformations which, acting
on the fermion variables, left the fermion action invariant
were subsequently discovered by Lüscher [5]. It is curious
that this timeline of developments is almost the opposite to
how the consequences of symmetries are usually found.
There have been several excellent reviews of these devel-
opments in the Proceedings of International Symposia on
Lattice Field Theory from that time [6].

In a recent paper [7] it was pointed out that lattice chiral
symmetry based on the Ginsparg-Wilson relation has sev-
eral surprising features. They follow from the fact that
there are multiple asymmetric forms of Lüscher’s symme-
try transformation. The different forms are mathematically
inequivalent, and, in fact, the symmetry generators corre-
sponding to them do not even commute with one another.
As a consequence, it was observed that the group of lattice
chiral symmetries is not a finite-dimensional Lie group, but
has an infinite number of linearly independent generators.
CP is an automorphism of this extended group, but in
general it mixes generators. A quite peculiar feature of
Ginsparg-Wilson chiral symmetry is that the usual, one-to-
one correspondence between currents and symmetries is
lost. Some of the different, noncommuting symmetries
lead to identical Noether currents.

Underlying these strange features is a key difference
between the Euclidean space path integral formulation of
field theory and canonical field theory: that in the path
integral fermion and antifermion variables must be treated
as independent, and not conjugate variables [8]. Indeed,
Lüscher’s symmetry transformation quite explicitly ex-
ploits this characteristic of Euclidean fermionic path
integrals.
In this article, we examine the structure of lattice chiral

symmetry more fully, and we clarify the roles of the
‘‘extra’’ symmetry transformations. We display the struc-
ture of the extended chiral group and show that the extra
transformations correspond to an invariant subgroup of the
extended group. From a group theoretic perspective, the
fact that this subgroup is not trivial is implicated in all of
the above peculiarities of Ginsparg-Wilson fermions. The
beginning sections of this article follow the order of
Ref. [7], extending the treatment to include flavored as
well as flavor-singlet transformations.
In Sec. II, we show that the different forms of Lüscher’s

asymmetric symmetry transformation do not commute
with each other, and that this enlarges the chiral symmetry
group of Ginsparg-Wilson fermions to an infinite-
parameter Lie group. The minimal extension needed in
order that the algebra of symmetry generators close is
constructed. We evaluate the action of CP on the gener-
ators of the group in Sec. III. This much of the analysis
depends only on the form of Lüscher’s transformation, that
is on the Ginsparg-Wilson relation itself.
In Sec. IV, following the procedure of Kikukawa and

Yamada [9], we construct the conserved Noether currents
associated with each of the generators of the extended
chiral group. In order to display the currents in closed
form, an explicit construction of the chiral Ginsparg-
Wilson action is needed, and we use overlap fermions*mandula@post.harvard.edu
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based on the Wilson action. We show that the mismatch
between the symmetry generators and the currents derived
from them occurs for flavored generators as well as for
flavor singlets. There are two multiplets of mathematically
different transformations which give rise to identical
Noether currents. We derive the Ward identities for the
currents by the standard technique of making a change of
integration variable corresponding to an infinitesimal
space-time dependent version of each of the symmetry
transformations in Sec. V.

In Sec. VI, we show that the extended lattice chiral
group factors into the direct product of an infinite-
parameter invariant subgroup and a finite-dimensional
Lie group. We display the elements of the infinite-
parameter subgroup and the commutators of their gener-
ators explicitly, and show that it is an invariant subgroup.
We calculate the commutators of the generators of the
factor group formed from the cosets of the infinite-
parameter subgroup, and show that it is isomorphic to the
ordinary continuum chiral group. CP is an automorphism
of each of the factors of the full lattice chiral group
separately. The generators of the infinite-parameter sub-
group are not in general CP eigenstates. However, the
generators of the factor group are CP eigenstates and
transform under CP exactly as in the continuum. The
elements of the factor group, being cosets and not individ-
ual group elements, are not directly represented on the
fermion operators.

In Sec. VII, we address issues that arise in continuing
Green’s functions from Euclidean to Minkowski space. We
examine the solvable example of free overlap fermions,
which of course has all the properties discussed above. We
focus on the behavior of the theory as we take the contin-
uum limit. Taking the continuum limit only in time pro-
duces a theory with unphysical singularities in the complex
energy plane. When the full continuum limit is taken,
keeping the negative mass parameter proportional to the
inverse lattice spacing, these singularities recede to infin-
ity. That limit yields a valid continuum theory that has
ordinary, conventional chiral symmetry. The infinite-
parameter invariant subgroup that encapsulates the extra
chiral symmetries becomes trivial, i.e. all of its generators
vanish.

In Sec. VIII, we discuss the noncanonical aspects of
Ginsparg-Wilson chiral fermions. The peculiar features
of Ginsparg-Wilson fermions discussed above, specifically
the multiple, asymmetric forms of Lüscher’s chiral trans-
formations, which causes the enlargement of the chiral
symmetry group, and the mismatch between symmetries
and their currents, could not occur in a canonically quan-
tized field theory. They are the result of employing the
freedom that comes with the need to treat fermions and
antifermions as independent variables of integration in
Euclidean fermionic path integrals. However, treatments
of other field theories by path integrals do not lead to such

peculiarities, even though in any Euclidean path integral,
antifermion variables are independent of fermion variables.
The difference between Ginsparg-Wilson fermions and
other treatments of symmetry using Euclidean space path
integrals is that one usually considers only symmetry trans-
formations that act on the independent antifermion varia-
bles as they would if the antifermion variables were the
conjugates of the fermion variables. However, none of the
symmetries of Ginsparg-Wilson fermions, neither the
forms discovered by Lüscher nor the extensions thereof
discussed here, have this property.
In Sec. IX, we summarize the arguments and indicate

that they form a coherent picture. Since all of these issues
were uncovered by analyzing the symmetry group of the
Ginsparg-Wilson equation, they are universal properties of
Ginsparg-Wilson fermions and are inherent in all imple-
mentations of lattice fermions based on the Ginsparg-
Wilson relation, including overlap, domain-wall, and
perfect-action chiral fermions.

II. THE EXTENDED CHIRAL ALGEBRA

The following discussion uses only the Ginsparg-Wilson
relation [1], the most familiar form of which (suppressing
the lattice spacing) is

�5DþD�5 ¼ D�5D; (1)

where D is the lattice Dirac kernel, a �5-Hermitian
(�5D�5 ¼ Dy) matrix labeled by color, spin, and lattice
site indices. If we write the kernel asD ¼ 1� V, then V is
unitary (as well as �5-Hermitian). In fact, these properties
of V

V�1 ¼ Vy ¼ �5V�5 (2)

are completely equivalent to the Ginsparg-Wilson equation
(1).
The (flavor singlet) chiral transformations under which

the fermion action SF ¼ �cDc is invariant are generated
by [5]

�c ¼ �5ð1�DÞc ¼ �5Vc � �c ¼ �c�5: (3)

The asymmetric treatment of lattice fermions and antifer-
mions is allowed because fermions and antifermions enter
the Euclidean path integral as independent, not conjugate,
variables. One may modify the transformation of the anti-
fermion variables instead of the fermion variables,

�0c ¼ �5c �0 �c ¼ �c ð1�DÞ�5 ¼ �cV�5; (4)

or use any linear combination of these transformation
rules. Whatever one’s choice, the Ginsparg-Wilson equa-
tion insures the invariance of the action SF.
These transformations are universally regarded as physi-

cally equivalent, but they are certainly different.
Furthermore, each generates a symmetry of SF. This means
that the full chiral symmetry group of this theory is not
generated by a choice of one or the other of these trans-
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formations (nor a linear combination thereof), but by both.
This ‘‘enlarged’’ chiral group is not the end of the story
either, because the two transformations do not even com-
mute. Explicitly,

½�0; ��c ¼ �0�c � ��0c ¼ ðV�1 � VÞc
½�0; �� �c ¼ �0� �c � ��0 �c ¼ �c ðV � V�1Þ: (5)

Their commutator, a vector rather than an axial transfor-
mation, is yet another symmetry of the fermion action.
Upon further commutation, each of the chiral transforma-
tions (3) and (4) generates new symmetry transformations,
further enlarging the chiral group.

A full group is easily found by writing the Ginsparg-
Wilson equation as

�5DþD�5V ¼ 0; (6)

a form that displays the symmetry under Eq. (3) most
clearly. Right multiplication by Vn�1 and the use of the
unitarity and �5-Hermiticity of V gives

V1�n�5DþD�5V
n ¼ 0; (7)

while right multiplication by �5V
nþ1, and noting that

�5D�5 ¼ �V�1D, gives

� VnDþDVn ¼ 0: (8)

From these we can read off the remaining axial and vector
transformations of the fermion variables that generate
symmetries of the Ginsparg-Wilson action. They are (in-
cluding flavored transformations)

�ðnÞ
A;ic ¼ �i�5V

nc �ðnÞ
A;i

�c ¼ �cV1�n�5�i

�ðnÞ
V;ic ¼ �i�iV

nc �ðnÞ
V;i

�c ¼ i �cVn�i:
(9)

We recognize the two axial transformations with which we
began this discussion as

� ¼ �ð1Þ
A;0 �0 ¼ �ð0Þ

A;0: (10)

The commutators of the generalized axial and vector gen-
erators are

½�ðnÞ
A;i; �

ðmÞ
A;j � ¼ idijkð�ðn�mÞ

V;k � �ðm�nÞ
V;k Þ þ fijkð�ðn�mÞ

V;k

þ �ðm�nÞ
V;k Þ

½�ðnÞ
V;i; �

ðmÞ
A;j � ¼ idijkð�ðm�nÞ

A;k � �ðmþnÞ
A;k Þ � fijkð�ðmþnÞ

A;k

þ �ðm�nÞ
A;k Þ

½�ðnÞ
V;i; �

ðmÞ
V;j� ¼ �2fijk�

ðnþmÞ
V;k :

(11)

This shows that the algebra closes and so further enlarge-
ment of the chiral group is not required. This minimal
chiral group is of infinite rank, and the vector transforma-

tions �ðnÞ
V;i, with i such that f�ig are a complete set of

commuting flavor matrices, are mutually commuting
generators.

Infinite-parameter symmetry groups are often a sign of
some disease in a theory, and so a few remarks about this
are in order. First of all, the elaborate structure of the lattice
chiral symmetry group that we have described is built into
the Ginsparg-Wilson equation, and applies to all imple-
mentations of the relation. The enlargement of the sym-
metry group, in fact the existence of the group itself,
reflects c and �c being independent variables in the
Euclidean space path integral.

III. CP SYMMETRY

The only notable failure of the Ginsparg-Wilson imple-
mentation of chiral symmetry has been the inability, at
least to date, to use it to construct lattice fermions with
chiral interactions [10,11]. (For recent alternative construc-
tions of lattice chiral fermions, see [12–14].) This failure is
related to the fact that CP transforms the two forms of the
asymmetric chiral transformations � and �0 into one an-
other [10]. However, we will see that CP is an automor-
phism of the enlarged chiral group.
Under parity, the fermion variables and V ¼ 1�D

transform as

P c !�4Pc P �c ! �cP�4 PV!�4PVP�4; (12)

where the matrix P ¼ P�1 acts only on the site labels and
reflects the x1;2;3 indices

ðPÞðx1;x2;x3;x4Þ;ðy1;y2;y3;y4Þ ¼ �x1;�y1�x2;�y2�x3;�y3�x4;y4 : (13)

Charge conjugation is represented on the link variables by
complex conjugation, so the fermion variables and V trans-
form as

C c !C �c T C �c !�c TC�1 CV ! �V���1: (14)

The matrices C and � depend on the representation of the
Dirac matrices. � flips the sign of the imaginary � matri-
ces, so that

���
��

�1 ¼ �� (15)

and invariance of the action requires C ¼ ��T
5 .

The CP transformation properties of the generators of
the lattice chiral group follow from their action on the CP
transformed variables. In a basis in which all the flavor
matrices �i are Hermitian, they are

ðCP Þ�1�ðnÞ
A;iðCP Þc ¼ ��i�5V

1�nc

ðCP Þ�1�ðnÞ
A;iðCP Þ �c ¼ � �cVn�5�i

ðCP Þ�1�ðnÞ
V;iðCP Þc ¼ i�iV

nc

ðCP Þ�1�ðnÞ
V;iðCP Þ �c ¼ �i �cVn�i:

(16)

Comparing the above with the definitions of the generators
(9) shows that

ðCP Þ�1�ðnÞ
A;iðCP Þ ¼ ��ð1�nÞ

A;i

ðCP Þ�1�ðnÞ
V;iðCP Þ ¼ ��ðnÞ

V;i:
(17)
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Thus CP is seen to be an automorphism of the extended
chiral symmetry group, but one that mixes the axial gen-
erators. This is the symmetry group view of the difficulty in
reconcilingCP invariance with chiral symmetry as realized
through the Ginsparg-Wilson equation.

IV. EUCLIDEAN SPACE CURRENTS

The conserved currents associated with each of the �ðnÞ
A;i

and �ðnÞ
V;i symmetries are constructed following the Noether

procedure. Variations of the fermion variables under space-
time varying versions of each of the axial and vector
symmetries are generated by

�ðnÞ
A;iðxÞc ¼ IðxÞ�i�5V

nc

�ðnÞ
A;iðxÞ �c ¼ �cV1�n�5�iIðxÞ

�ðnÞ
V;iðxÞc ¼ �iIðxÞ�iV

nc

�ðnÞ
V;iðxÞ �c ¼ i �cVn�iIðxÞ;

(18)

where ðIðxÞÞy;z ¼ �y;x�x;z denotes the matrix that projects

onto site x. It is convenient to introduce an infinitesimal
function of lattice site, which we call "ðxÞ and to let E be
the diagonal matrix

E ¼ X
x

"ðxÞIðxÞ: (19)

We denote the generators of local transformations,
weighted by "ðxÞ, as

�ðnÞ
A;i ¼

X
x

"ðxÞ�ðnÞ
A;iðxÞ �ðnÞ

V;i ¼
X
x

"ðxÞ�ðnÞ
V;iðxÞ: (20)

Their effects on the fermionic action SF ¼ �c ð1� VÞc are

�ðnÞ
A;iSF ¼ �c�i½ð1� VÞE�5V

n þ V1�n�5Eð1� VÞ�c
�ðnÞ

V;iSF ¼ �i �c�i½ð1� VÞEVn � VnEð1� VÞ�c : (21)

The conserved currents are the coefficients of @ðþÞ
� "ðxÞ in

each of these expressions,

�ðnÞ
A;iSF ¼ X

x;�

ð@ðþÞ
� "ðxÞÞJ5ðnÞi� ðxÞ

�ðnÞ
V;iSF ¼ X

x;�

ð@ðþÞ
� "ðxÞÞJðnÞi� ðxÞ;

(22)

where @ðþÞ
� is the forward, nearest neighbor ordinary (as

opposed to covariant) difference.
Note that in Eq. (21) the n ¼ 0 and n ¼ 1 terms are

equal,

�ð0Þ
A;iSF ¼ �ð1Þ

A;iSF �ð0Þ
V;iSF ¼ �ð1Þ

V;iSF: (23)

Therefore, even before explicitly constructing the currents,
we can conclude that the n ¼ 0 and n ¼ 1 currents must be
equal,

J5ð0Þi� ðxÞ ¼ J5ð1Þi� ðxÞ Jð0Þi� ðxÞ ¼ Jð1Þi� ðxÞ: (24)

In canonically quantized field theory such a mismatch
between symmetries and currents could never occur, be-
cause in the canonical formulation the operators that gen-
erate symmetry transformations are the space integrals of
the time components of their conserved currents. However,
the possibility for such a situation to arise is inherent in
fermionic path integrals, precisely because in Euclidean
space path integrals, fermionic and antifermionic variables
must be treated as independent, not conjugate variables.
To display the currents we will need to use an explicit

formulation of lattice chiral fermions, and overlap fermi-
ons based on the Wilson fermion action [4] are the most
convenient. The overlap kernel is

Dov ¼ 1þ DWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dy

WDW

q ; (25)

where DW is the Wilson kernel with a negative mass term

DW ¼ X
�

1

2a�
½��ðU� �Uy

�Þ þ ð2�U� �Uy
�Þ� � s:

(26)

Here ðU�Þx;y ¼ �xþ�̂;yU�ðxÞ is a matrix formed from the

lattice link variables U�ðxÞ that connect site x to site xþ
�̂, a� is the lattice spacing in the � direction, and, to

eliminate the fermion doublers, the parameter s must sat-
isfy

0< s <
2

max
�

a�
: (27)

To evaluate the currents, we first put the site-dependent
variations of the action (21) into a form in which the matrix
E appears only in commutators

�ðnÞ
A;iSF ¼ �c�5�if½E;Vn�1�ðV � 1Þ � V�1½E; V�Vn�1gc

�ðnÞ
V;iSF ¼ i �c�ifV½E; Vn�1�ðV � 1Þ � ½E; V�Vn�1gc :

(28)

We then expand the commutators using

½E; Vn�1� ¼ Xn�2

m¼0

Vm½E; V�Vn�m�2 ðn � 2Þ

¼ � X1�n

m¼1

V�m½E; V�Vnþm�2 ðn � 0Þ; (29)

which converts the expressions for the variations of the
action to sums of terms in which E enters only through the
single commutator ½E;V�. This commutator was evaluated
in the original paper of Kikukawa and Yamada [9]. When
put into matrix notation, their result reads

½E; V� ¼ X
x;�

ð@ðþÞ
� "ðxÞÞK�ðxÞ; (30)

where
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K�ðxÞ ¼ 1

�

Z þ1

�1
dt

t2 þDWD
y
W

½T�ðxÞt2 þDWT
y
�ðxÞDW�

� 1

t2 þDy
WDW

T�ðxÞ ¼ 1

2
½ð�� � 1ÞIðxÞU� þ �� þ 1ÞUy

�IðxÞ� (31)

Since the currents are the coefficients of @ðþÞ
� "ðxÞ in

�ðnÞ
A;V;iSF [Eq. (22)], they are obtained from the expanded

forms of Eq. (28) simply by replacing each occurrence of
½E; V� by K�ðxÞ. This gives the rather ungainly results

J5ðnÞi� ðxÞ ¼ �c�5�i

�Xn�2

m¼0

VmK�ðxÞVn�m�2ðV � 1Þ � V�1K�ðxÞVn�1

�
c ðn � 2Þ

¼ �c�5�i

�
� X1�n

m¼1

V�mK�ðxÞVnþm�2ðV � 1Þ � V�1K�ðxÞVn�1

�
c ðn � 0Þ

JðnÞi� ðxÞ ¼ i �c�i

�
V

Xn�2

m¼0

VmK�ðxÞVn�m�2ðV � 1Þ � K�ðxÞVn�1

�
c ðn � 2Þ

¼ i �c�i

�
�V

X1�n

m¼1

V�mK�ðxÞVnþm�2ðV � 1Þ � K�ðxÞVn�1

�
c ðn � 0Þ: (32)

As noted above, the n ¼ 1 currents are equal to the n ¼ 0
currents.

V. EXTENDED SYMMETRY WARD IDENTITIES

The Euclidean space analogues of conservation laws are
the Ward identities. They express the physical implications
of symmetries. The Ward identities for each Green’s func-
tion are derived by making an infinitesimal change of
integration variables

c ! c 0 ¼
�
1þX

x

"ðxÞ�ðnÞ
AV;iðxÞ

�
c

�c ! �c 0 ¼
�
1þX

x

"ðxÞ�ðnÞ
AV;iðxÞ

�
�c

(33)

in the path integral expression for that Green’s function

hc c c � � � �c �c �c i ¼
Z

DcD �c c c c � � � �c �c �c e�SF :

(34)

(In this discussion we suppress all space-time labels on the
fermionic variables and the overall normalization.) Three
sorts of terms result from the changes of variable. Besides

the explicit action of the �ðnÞ
AV;iðxÞ acting on c and �c ,

Eq. (18), there are the shifts in the action, Eq. (22),�
1þX

x

"ðxÞ�ðnÞ
A;iðxÞ

�
e�SF ¼

�
1�X

x;�

ð@ðþÞ
� "ðxÞÞJ5ðnÞi� ðxÞ

�
e�SF

�
1þX

x

"ðxÞ�ðnÞ
V;iðxÞ

�
e�SF ¼

�
1�X

x;�

ð@ðþÞ
� "ðxÞÞJðnÞi� ðxÞ

�
e�SF

(35)

and also the Jacobians coming from the changes of variable

@ðc 0; �c 0Þ
@ðc ; �c Þ

��������A;i
¼ det

�
1þX

x

"ðxÞIðxÞ�5�iV
n

�

� det

�
1þX

x

"ðxÞV1�n�5�iIðxÞ
�

¼ 1þ �i;0

X
x

Trð"ðxÞIðxÞ�5ðVn þ V1�nÞÞ

@ðc 0; �c 0Þ
@ðc ; �c Þ

��������V;i
¼ det

�
1� i

X
x

"ðxÞIðxÞVn

�

� det

�
1þ i

X
x

"ðxÞVnIðxÞ
�
¼ 1: (36)

Changes of integration variable do not affect the value of
an integral, so the sum of all these first order shifts must
vanish. Collecting the coefficient of "ðxÞ in the sum gives
the Ward identities

ð�ðnÞ
A;iðxÞ � �i;0q

ðnÞ
A ðxÞÞhc c c � � � �c �c �c i

þ @ð�Þ
� hc c c � � � �c �c �c J5ðnÞi� ðxÞi ¼ 0

�ðnÞ
V;iðxÞhc c c � � � �c �c �c i
þ @ð�Þ

� hc c c � � � �c �c �c JðnÞi� ðxÞi ¼ 0: (37)

Here we have denoted the contribution coming from the

Jacobean of the �ðnÞ
A;0ðxÞ transformation as

qðnÞA ðxÞ ¼ TrIðxÞ�5ðVn þ V1�nÞ (38)

This is the path integral form of the axial anomaly [15]. All
the flavor singlet axial symmetries are anomalous. Note

that qðnÞA ðxÞ ¼ qð1�nÞ
A ðxÞ, but that generically the anomalies

are different from one another, because they come from the

Jacobeans of different transformations �ðnÞ
A;0ðxÞ. By contrast,
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the integrated anomalies,
P

xq
ðnÞ
A ðxÞ, are all equal to the

index of the Ginsparg-Wilson kernel,
P

xq
ð1Þ
A ðxÞ.

The basic Ward identities come from the fermion propa-
gator hc �c i. They are

�5�iIðxÞVnhc �c iþhc �c iV1�nIðxÞ�i�5

þ@ð�Þ
� hc J5ðnÞi� ðxÞ �c iþ�i;0q

ðnÞ
A ðxÞhc �c i¼0

�i�iIðxÞVnhc �c iþ ihc �c iVnIðxÞ�iþ@ð�Þ
� hc JðnÞi� ðxÞ �c i¼0

(39)

For higher Green’s functions, the �ðnÞ
AVðxÞ�

hc c c � � � �c �c �c i term expands into a sum of terms,
one for each fermion variable, like the first two on the
left-hand side of (39). The form of these identities, espe-
cially those for higher Green’s functions, shows the con-
nection with the conservation laws in canonically
quantized field theory.

VI. AN INVARIANT SUBGROUP AND ITS COSETS

In this section we will study an invariant subgroup of the
extended chiral group and the group formed by its cosets.
To fix notation, we denote the chiral group by G and the

subgroup (to be identified below) by ~G. Generic elements

of each are denoted as g 2 G and ~g 2 ~G. The condition

that the subgroup ~G is an invariant subgroup is that for any

elements g 2 G and ~g 2 ~G, g~gg�1 is in the subgroup

g~gg�1 2 ~G: (40)

Each coset of G with respect to ~G consists of those ele-
ments of G which are related by multiplication by some

element of ~G. We will redundantly label the cosets by any

of the elements they contain, g ~G. The group element g0 is

an element of g ~G if there is some element ~g 2 ~G such that
g0~g ¼ g.
There is a natural multiplication law for cosets under

which they form a group. It is

ðg1 ~GÞðg2 ~GÞ ¼ ðg1g2Þ ~G: (41)

This rule is consistent because Eq. (40) assures that the

product of any element of g1 ~G times any element of g2 ~G,

g1~g1g2~g2 ¼ g1g2ðg�1
2 ~g1g2Þ~g2 2 ðg1g2Þ ~G; (42)

always lies in the coset ðg1g2Þ ~G. The factor group of cosets

is denoted as G= ~G.
It is useful to express the above in terms of the gener-

ators of the groups G and ~G, and thereby identify the

generators of the group of cosets. Let � and ~� be the Lie

algebras of G and ~G, respectively, and let � and ~� be
generic elements of the respective algebras. Then (1þ �)

and (1þ ~�) are generic infinitesimal elements of G and ~G,

and applying the criterion for the subgroup ~G to be an
invariant subgroup of G to lowest order,

ð1þ �Þð1þ ~�Þð1� �Þ ¼ ð1þ ½�; ~��Þ (43)

gives the condition for ~� to generate an invariant Lie

subalgebra of G, namely, that for all elements of � and ~�,

½�; ~�� 2 ~�: (44)

With these preliminaries, let us observe that the elements

~� ðnÞ
A;i � �ðnÞ

A;i � �ð0Þ
A;i

~�ðnÞ
V;i � �ðnÞ

V;i � �ð0Þ
V;i (45)

are the generators of an invariant subgroup of the extended

chiral symmetry group generated by �ðnÞ
A;i and �ðnÞ

V;i. Their

commutators follow from Eq. (11), and are

½~�ðnÞ
A;i;

~�ðmÞ
A;j � ¼ idijkð~�ðn�mÞ

V;k � ~�ðm�nÞ
V;k Þ þ fijkð~�ðn�mÞ

V;k þ ~�ðm�nÞ
V;k Þ � idijkð~�ð�mÞ

V;k � ~�ðmÞ
V;kÞ � fijkð~�ð�mÞ

V;k þ ~�ðmÞ
V;kÞ

� idijkð~�ðnÞ
V;k � ~�ð�nÞ

V;k Þ � fijkð~�ðnÞ
V;k þ ~�ð�nÞ

V;k Þ
½~�ðnÞ

V;i;
~�ðmÞ
A;j � ¼ idijkð~�ðm�nÞ

A;i � ~�ðmþnÞ
A;i Þ � fijkð~�ðm�nÞ

A;k þ ~�ðmþnÞ
A;k Þ � idijkð~�ð�nÞ

A;k � ~�ðnÞ
A;kÞ þ 2fijk ~�

ðmÞ
A;k þ fijkð~�ð�nÞ

A;k þ ~�ðnÞ
A;kÞ

½~�ðnÞ
V;i;

~�ðmÞ
V;j � ¼ �2fijk ~�

ðnþmÞ
V;k þ 2fijk ~�

ðmÞ
V;k þ 2fijk ~�

ðnÞ
V;k: (46)

That the commutator algebra of the ~�ðnÞ
VA;i closes shows that they indeed generate a proper subgroup. The commutators of

the ~�ðnÞ
VA;i and �ðnÞ

VA;i generators are

½�ðnÞ
A;i;

~�ðmÞ
A;j � ¼ idijkð~�ðn�mÞ

V;k � ~�ðm�nÞ
V;k Þ þ fijkð~�ðn�mÞ

V;k þ ~�ðm�nÞ
V;k Þ � idijkð~�ðnÞ

V;k � ~�ð�nÞ
V;k Þ � fijkð~�ðnÞ

V;k þ ~�ð�nÞ
V;k Þ

½�ðnÞ
V;i;

~�ðmÞ
A;j � ¼ idijkð~�ðm�nÞ

A;i � ~�ðmþnÞ
A;i Þ � fijkð~�ðm�nÞ

A;k þ ~�ðmþnÞ
A;k Þ � idijkð ~�ð�nÞ

A;k � ~�ðnÞ
A;kÞ þ fijkð~�ð�nÞ

A;k þ ~�ðnÞ
A;kÞ

½�ðnÞ
A;i;

~�ðmÞ
V;j� ¼ �idijkð~�ðn�mÞ

A;i � ~�ðnþmÞ
A;i Þ � fijkð~�ðn�mÞ

A;k þ ~�ðnþmÞ
A;k Þ þ 2fijk ~�

ðnÞ
A;k ½�ðnÞ

V;i;
~�ðmÞ
V;j � ¼ �2fijk ~�

ðnþmÞ
V;k þ 2fijk ~�

ðnÞ
V;k:

(47)

That the right-hand sides are elements of ~� shows that the subgroup is an invariant subgroup.
Let us identify the cosets of the extended chiral group. In an infinitesimal neighborhood of the identity, we can uniquely

parametrize a general group element as
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g ¼ 1þX
i;n

½cðnÞA;i�
ðnÞ
A;i þ cðnÞV;i�

ðnÞ
V;i�: (48)

Let us define the sums of the coefficients of the axial and
vector generators in this expansion as

CA;i ¼
X
n

cðnÞA;i CV;i ¼
X
n

cðnÞV;i: (49)

If the parameters CA;i and CV;i are all zero, then from
Eq. (45) it follows that g is an element of the invariant
subgroup ~G. If g and g0 are two infinitesimal group ele-
ments for which the parameter sums (49) are equal, then
gg0�1 can be written as

gg0�1 ¼ 1þX
n

ðcðnÞA;i � c0ðnÞA;i Þ�ðnÞ
A;i þ

X
n

ðcðnÞV;i � c0ðnÞV;i Þ�ðnÞ
V;i;

(50)

which, by (49), implies that gg0�1 is an element of the
invariant subgroup ~G, and so g and g0 are in the same coset.
Thus the coefficients CA;i and CV;i provide a complete
and nonredundant parametrization of the cosets that con-
tain group elements in the neighborhood of the identity,
ðg ~GÞðCA;i; CV;iÞ.

We can use this parametrization to determine the local
structure of the group of cosets. Let us take any represen-
tative infinitesimal group elements from two cosets

g ¼ 1þ � ¼ 1þX
i;n

½cðnÞA;i�
ðnÞ
A;i þ cðnÞV;i�

ðnÞ
V;i�

2 ðg ~GÞðCA;i; CV;iÞ
g0 ¼ 1þ �0 ¼ 1þX

j;m

½c0ðmÞ
A;j �

ðmÞ
A;j þ c0ðmÞ

V;j �
ðmÞ
V;j �

2 ðg ~GÞðC0
A;j; C

0
V;jÞ

(51)

and calculate their group commutator gg0g�1g0�1. The
leading term is 1þ ½�; �0�, which is evaluated using the
commutation relations given in Eq. (11). The result is
another infinitesimal group element

g00 ¼ 1þ ½�; �0� ¼ gg0g�1g0�1

¼ 1þX
k;p

c00ðpÞA;k �ðpÞ
A;k þ c00ðpÞV;k �

ðpÞ
V;k; (52)

where the coefficients are

c00ðpÞA;k ¼ X
i;j;n;m

ðidijkð�p;m�n � �p;mþnÞ � fijkð�p;mþn þ �p;m�nÞÞcðnÞV;ic
0ðmÞ
A;j

þ X
i;j;n;m

ð�idijkð�p;n�m � �p;mþnÞ þ fijkð�p;mþn þ �p;n�mÞÞcðnÞA;ic
0ðmÞ
V;j

c00ðpÞV;k ¼ X
i;j;n;m

ðidijkð�p;n�m � �p;m�nÞ þ fijkð�p;n�m þ �p;m�nÞÞcðnÞA;ic
0ðmÞ
A;j þ X

i;j;n;m

ð�2fijk�p;nþmÞcðnÞV;ic
0ðmÞ
V;j : (53)

Summing over n, m, and p, reduces this to

C00
A;k ¼ 2

X
i;j

fijkðCA;iC
0
V;j � CV;iC

0
A;jÞ

C00
V;k ¼ 2

X
i;j

fijkðCA;iC
0
A;j � CV;iC

0
V;jÞ

(54)

confirming that the coset in which the group commutator
lies, ðg ~GÞðC00

A;i; C
00
V;iÞ, does not depend on the choice of

representative group elements.
From Eq. (51) one sees that the coset parameters label

the cosets linearly near the origin, and so we may express a
generic coset near the identity element of the group of
cosets as

ðg ~GÞðCA;i; CV;iÞ ¼ 1þX
i

�
CA;ið� ~GÞA;i þ CV;ið� ~GÞV;i

�

(55)

and take the above as an implicit definition of the coset

group generators ð� ~GÞA;i and ð� ~GÞV;i. From (54) and (55)

we can read off the commutation relations of the generators

½ð� ~GÞA;i; ð� ~GÞA;j� ¼ þ2fijkð� ~GÞV;k
½ð� ~GÞV;i; ð� ~GÞA;j� ¼ �2fijkð� ~GÞA;k
½ð� ~GÞV;i; ð� ~GÞV;j� ¼ �2fijkð� ~GÞV;k:

(56)

The behavior of both the invariant subgroup and its factor
group under CP follow simply from the CP transformation
properties of the generators, Eq. (17). Applying these to the
generators of the invariant subgroup (45), we find (in a
flavor basis where the matrices �i are Hermitian)

ðCP Þ�1 ~�ðnÞ
A;iðCP Þ ¼ �~�ð1�nÞ

A;i þ ~�ð1Þ
A;i

ðCP Þ�1 ~�ðnÞ
V;iðCP Þ ¼ �~�ðnÞ

V;i:
(57)

Thus CP is an outer automorphism of the invariant sub-
group of the extended chiral group as well as of the full
group. As in the case of the full group, CP mixes the axial
generators.
The CP transformation properties of the factor group of

cosets follow from the action of CP on a general infini-
tesimal element of the extended chiral group, Eq. (48),

SYMMETRIES OF GINSPARG-WILSON CHIRAL FERMIONS PHYSICAL REVIEW D 80, 085023 (2009)

085023-7



ðCP Þ�1gðCP Þ ¼ 1�X
i;n

½cð1�nÞ
A;i �ðnÞ

A;i þ cðnÞV;i�
ðnÞ
V;i� (58)

and so all the elements of each coset are transformed into a
single image coset,

ðCP Þ�1ðg ~GÞðCA;i; CV;iÞðCP Þ ¼ ðg ~GÞð�CA;i;�CV;iÞ:
(59)

We can express this result in terms of the symbolic gen-
erators of the factor group, as defined in Eq. (55) as

ðCP Þ�1ð� ~GÞA;iðCP Þ ¼ �ð� ~GÞA;i
ðCP Þ�1ð� ~GÞV;iðCP Þ ¼ �ð� ~GÞV;i:

(60)

This result, together with the commutators of Eq. (56),

show that the structure of the coset factor group (g ~G) is
locally identical to continuum chiral symmetry.

The physical meaning of the invariant subgroup can be
seen from the Ward identities for the tilde transformations.

Each term in ~�ðnÞ
AVðxÞhc c c � � � �c �c �c i includes a factor of

IðxÞðVn � 1Þð1� VÞ�1 or IðxÞðV1�n � 1Þð1� VÞ�1. Both
give IðxÞ times finite sums of powers of either V or Vy; the
usual propagator ð1� VÞ�1 attached to IðxÞ has been can-
celed. This means that the nonanomalous Green’s func-

tions hc c c ��� �c �c �c ~J5ðnÞi� ðxÞi and hc c c ��� �c �c �c �
~JðnÞi� ðxÞi will each be given by a sum of fermionic Green’s

functions, each of which has one external fermion line
missing its propagator. Truncating the external lines, i.e.
multiplying by inverse propagators and going to the mass
shell, will therefore give zero for each term. The conclu-
sion of these considerations is that in the continuum limit,
no physical states will couple to the vector or to the
flavored (nonanomalous) axial currents associated with

the ~�ðnÞ
AV transformations, that is, with the symmetries in

the invariant subgroup.

VII. CONTINUATION TO MINKOWSKI SPACE

As was noted earlier, the mismatch between the
Euclidean space currents and the Euclidean space symme-
tries—two different symmetry transformations having the
same Noether current—could not occur in a Minkowski
space canonically quantized field theory, because in the
canonical formulation the generators of symmetry trans-
formations are the space integrals of the time components
of their conserved currents. This observation indicates that
a straightforward analytic continuation of Ginsparg-
Wilson fermions to Minkowski must encounter problems.
To see how these problems manifest themselves, we will
examine the simplest example of Ginsparg-Wilson fermi-
ons, overlap fermions without gauge fields. Being able to
continue to Minkowski space only requires that the time
dimension be continuous, and it will clarify the discussion
to allow for the spacings along the space and Euclidean
time directions to be different.

The Wilson kernel without gauge fields is then

DW ¼ X
�

1

2a�
½��ð@ðþÞ

� þ @ð�Þ
� Þ � ð@ðþÞ

� � @ð�Þ
� Þ� � s;

(61)

where a4 is the lattice spacing in the Euclidean time
direction and a1 ¼ a2 ¼ a3 � as is the lattice spacing in
(27) the spatial directions. The negative mass term is con-
strained so as to lie between 0 and 2 over the largest lattice
spacing a�. In momentum space, where DW is diagonal,

this gives for the Ginsparg-Wilson kernel

aDov ¼ 1� V ¼ 1þ DWffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dy

WDW

q

¼ i� � p̂þMþ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þM2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þM2

p ; (62)

where we have denoted

p̂ � ¼ 1

a�
sinða�p�Þ ^̂p� ¼ 2

a�
sin

�
a�p�

2

�

M ¼
�X4
�¼1

a�

2
^̂p2
�

�
� s:

(63)

The parameter a with no subscript has dimensions of
length and is fixed by the normalization of the fermion
propagator. Equation (62) of course satisfies the Ginsparg-
Wilson equation and the superabundance of symmetries
and the mismatch between symmetries and currents are
both still present. The symmetry generators and Noether
currents reduce to Eqs. (9), (32), and (31) and with

V ¼ � i� � p̂þMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þM2

p : (64)

Let us keep the spatial lattice intact but take a4 to zero. In
this limit the Ginsparg-Wilson kernel becomes

aDov ! aDð3Þ

¼ i�4p4 þ i�ð3Þ � p̂ð3Þ þMð3Þ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
4 þ p̂ð3Þ2 þMð3Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
4 þ p̂ð3Þ2 þMð3Þ2

q ;

(65)

where the superscript ð3Þ on � and p̂ connotes the 1, 2, and 3
components and

Mð3Þ ¼ lim
a4!0

M ¼
�
as
2

X3
i¼1

^̂p2
i

�
� s: (66)

In the a4 ! 0 limit the trigonometric functions of the
Euclidean energy are eliminated, p̂4 ! p4, and the terms

involving ^̂p4 vanish. In this limit the domain of complex
energy becomes the full complex plane and the natural
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expectation would be that one should obtain, after analytic
continuation in energy, a quantum mechanical theory of
fermions on a spatial lattice. This expectation is not
fulfilled.

In fact, the analytic structure of the kernel is inappro-
priate to a sensible real time theory, because there are
unphysical square root branch points at Euclidean energies

p4 ¼ 	i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð3Þ2 þMð3Þ2

q
: (67)

These branch points occur at real (Minkowski) energy.
Their presence means that the resulting Dirac kernel is
nonlocal in time. This nonlocality is mathematically re-
lated to the familiar failure of lattice ultralocality [16], but
its meaning is quite different. This is a real, physical
nonlocality in time, because it has a physically finite
temporal extent even in the a4 ! 0 limit. The extent of
the nonlocality in the continuous time direction is given by
Eq. (67), and so it varies with the spatial momentum. The
scale of the nonlocality in time is set by the lattice spacing
in the space dimensions, as. The resulting theory has all the
spurious extra symmetries of discrete time Ginsparg-
Wilson fermions, and so some impediment to reaching a
sensible real-time lattice theory had to appear. The unphys-
ical singularities at the locations given by Eq. (67) are the
expected impediments.

In contrast with other Euclidean lattice actions, where
taking the continuous time limit directly gives the canoni-
cal Hamiltonian [17,18]], there is no Hamiltonian corre-
sponding to the a4 ! 0 limit of free overlap fermions.

The fact that taking the continuous time limit of overlap
fermions does not result in a Hamiltonian theory, and the
fact that the overlap kernel is at best exponentially local in
the continuum, are both manifestations of the fact that
overlap fermions do not satisfy reflection positivity. If
they did, that would assure that straightforward analytic
continuation of the Euclidean space Green’s functions to
Minkowski space would give the target Minkowski space
theory [19].

The failure of the continuum time limit alone to give a
sensible theory does not mean that fully space-time con-
tinuous chiral fermions are out of reach. If we also take the

limit of continuous space,as ! 0, then p̂ð3Þ ! pð3Þ,Mð3Þ !
�s, and the free Ginsparg-Wilson kernel becomes

aDov ! aDðcontÞ

¼ i�4p4 þ i�ð3Þ � pð3Þ � sþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
4 þ pð3Þ2 þ s2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
4 þ pð3Þ2 þ s2

q :

(68)

This is still a nonlocal theory, because of the singularities at

p4 ¼ 	i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð3Þ2 þ s2

q
: (69)

However, if the negative mass parameter s is taken propor-

tional to the inverse lattice spacing and the action is
normalized by taking as ¼ 1, these spurious singularities
are banished to infinity and we recover the free massless
continuum Dirac kernel

Dov ! i� � p: (70)

There is no impediment to analytically continuing this
theory to Minkowski space. This Dirac kernel, of course,
admits no extra symmetries. In place of the Ginsparg-
Wilson relation it satisfies ordinary chiral symmetry. At
the end of this sequence of limits, as can be seen from
Eq. (64),

V ! lim
a�!0

s!1

�
� i� � p̂þMffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p̂2 þM2
p

�
¼ 1: (71)

The sequence of limits that were required to produce a
valid quantum theory from free overlap fermions also
eliminated all remnants of lattice Ginsparg-Wilson
chirality.

VIII. CONJUGATE FERMION
TRANSFORMATIONS

In this article, we have discussed several peculiar prop-
erties of the chiral symmetry of Ginsparg-Wilson lattice
chiral fermions. The specific issues we uncovered were:
(1) The chiral symmetry group of Ginsparg-Wilson lat-

tice fermions is not the same as the continuum chiral
symmetry group. There are an infinite number of
lattice chiral transformations corresponding to each
continuum transformation, and in consequence the
lattice theory has an unphysical superabundance of
conserved quantities.
The connection between conserved charges and
symmetry generators is (partially) lost. The gener-
ators of two pairs of different transformations

(�ð1Þ
A;i � �ð0Þ

A;i and �ð1Þ
V;i � �ð0Þ

V;i) have the same

Noether currents (J5ð0Þi� ¼ J5ð1Þi� and Jð0Þi� ¼ Jð1Þi� ).

This is obviously incompatible with canonically
quantized field theory, where the generator of a
symmetry transformation is the space integral of
the time component of its conserved current.

This situation could arise because in the Euclidean path
integral the antifermions are described by variables that are
not conjugate to the fermion variables. But why does this
phenomenon, clearly a latent possibility in every Euclidean
path integral treatment of a field theory, actually arise only
in consideration of Ginsparg-Wilson fermions?
The difference between Ginsparg-Wilson chirality and

other symmetries analyzed by Euclidean path integrals is
that while fermionic and antifermionic variables always
enter Euclidean space path integrals as independent, not
conjugate variables, we ordinarily consider only symmetry
transformations on c and �c that are compatible with their
being each others conjugates. However, the axial symme-
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try of the Ginsparg-Wilson action discovered by Lüscher,
and its generalizations discussed here, are incompatible
with c and �c being conjugate variables.

Specifically, under the transformations generated by

�ðnÞ
A;i, the Euclidean Dirac conjugates of the �c and c

variables transform as

�ðnÞ
A;ið�5

�c yÞ ¼ �i�5V
1�nð�5

�c yÞ
�ðnÞ
A;iðc y�5Þ ¼ ðc y�5ÞVn�5�i:

(72)

These are not the same as the �ðnÞ
A;i transformations on c

and �c . In fact, they are the transformations generated by

�ð1�nÞ
A;i .

This observation suggests a simple solution to all the
problems of lattice chiral symmetry we have been analyz-

ing: Generalize the �ðnÞ
A;i transformations nonintegral n, and

take the group generated by �ð1=2Þ
A;i and �ð0Þ

V;i as the lattice

chiral symmetry group. According to Eq. (11), the algebra
of this group is closed and requires no additional symme-
tries. It is exactly the same as the continuum chiral sym-
metry group. Furthermore, according to Eq. (17), these
generators are eigenvectors of CP with the correct
eigenvalues.

Alas, this ‘‘solution’’ is a mirage.

The reason is that the matrix V1=2 must be singular. A
simple way to see this is to note that while the eigenvalues
of V lie anywhere on the unit circle in the complex plane,

the eigenvalues of V1=2 are restricted to the right half of the
unit circle. Something must go wrong when an eigenvalue
of V approaches �1. The free overlap fermion example
discussed in the previous section illustrates this in detail.

For this example, V is given by Eq. (64), and its square
root is

V1=2 ¼
�i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mþ

ffiffiffiffiffiffiffiffiffiffiffiffi
p̂2þM2

p
2p̂2

r
� � p̂þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�Mþ

ffiffiffiffiffiffiffiffiffiffiffiffi
p̂2þM2

p
2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂2 þM24

p : (73)

At all 16 corners of the Brillouin zone, V is well defined. At
the origin, p ¼ ð0; 0; 0; 0Þ, M is negative and V is the unit
matrix. At the other 15 corners, M is positive and V is the

negative of the unit matrix. At the origin, V1=2 is also
perfectly well defined and is also the unit matrix.
However, in the neighborhoods of the other 15 corners of

the Brillouin zone, V1=2 is ill defined. Specifically, as p
approaches any corner of the Brillouin zone except the
origin,

V1=2 ! �i
� � p̂ffiffiffiffiffiffi
p̂2

p : (74)

The result is finite no matter how one takes the limit, and its
eigenvalues,	1, are also fixed. However, the matrix itself,
and so which eigenvectors have which eigenvalues, de-
pends entirely on the direction from which the corner is
approached.

IX. CONCLUSIONS AND SUMMARY

In this article, we have analyzed the group of vector
and axial vector symmetries of Ginsparg-Wilson lattice
chiral fermions. We found that the symmetry group on
the lattice is not the same as the continuum chiral symme-
try group. There are an infinite number of lattice chiral
transformations corresponding to each continuum trans-
formation. We also showed that the lattice chiral group
has an infinite-parameter invariant subgroup which encap-
sulates the extra symmetry transformations. Its factor
group is isomorphic to the continuum chiral symmetry
group. However, the factor group is not represented on
the fermionic variables, and so it cannot be used in any
straightforward way to represent continuum chiral symme-
try on the lattice.
We also constructed the Noether currents corresponding

to the generators of the extended lattice group, and derived
their Ward identities. In so doing we found a peculiar
situation, namely, that the connection between conserved
charges and symmetry generators was (partially) lost.
There are two pairs of different transformations whose

generators, �ð1Þ
A;i � �ð0Þ

A;i and �ð1Þ
V;i � �ð0Þ

V;i, have the same

Noether currents, J5ð0Þi� ¼ J5ð1Þi� and Jð0Þi� ¼ Jð1Þi� . We noted

that this situation is incompatible with canonically quan-
tized field theory, where the generator of a symmetry trans-
formation is the space integral of the time component of its
conserved current.
This situation could arise because the Euclidean path

integral does not automatically give a canonical field the-
ory, since antifermions are described by variables that are
not the conjugates of the fermion variables. The reason this
situation actually arose is not just a result of the indepen-
dence of fermion antifermion variables, but because all of

the axial symmetry transformations generated by the �ðnÞ
A;i

are incompatible with the antifermion variables being the
conjugates of the fermion variables.
We examined the lattice chiral symmetry group in the

solvable example of free overlap fermions, paying atten-
tion to the limit in which Euclidean time is taken continu-
ous but the spatial lattice remains discrete. The continuous
time limit retains all the extra symmetry of the fully
latticized theory, and there are also different symmetries
that have the same Noether generator. We observed that
there were singularities in the complex energy plan that
prevented the construction of a Hamiltonian theory, as
could be expected since the continuous time limit by itself
leaves intact the features of Ginsparg-Wilson fermions that
are in contradiction with canonical quantization.
These properties of Ginsparg-Wilson lattice fermions

form a coherent picture. The singularities are the mecha-
nism by which symmetries that are incompatible with
canonical field theory, such as the axial symmetries of
Ginsparg-Wilson fermions, are blocked from being ana-
lytically continued from Euclidean to Minkowski space.

JEFFREY E. MANDULA PHYSICAL REVIEW D 80, 085023 (2009)

085023-10



All of these considerations were uncovered by analyzing
the symmetry group of lattice fermions satisfying the
Ginsparg-Wilson equation. As such, these features are
quite general and are inherent in all implementations of
lattice fermions based on the Ginsparg-Wilson relation,
including overlap, domain-wall, and perfect-action chiral
fermions.
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