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Witten’s twistor string theory gives rise to an enigmatic formula [1] known as the ‘‘connected

prescription’’ for tree-level Yang-Mills scattering amplitudes. We derive a link representation for the

connected prescription by Fourier transforming it to mixed coordinates in terms of both twistor and dual

twistor variables. We show that it can be related to other representations of amplitudes by applying the

global residue theorem to deform the contour of integration. For six and seven particles we demonstrate

explicitly that certain contour deformations rewrite the connected prescription as the Britto-Cachazo-

Feng-Witten representation, thereby establishing a concrete link between Witten’s twistor string theory

and the dual formulation for the S matrix of the N ¼ 4 SYM recently proposed by Arkani-Hamed et al.

Other choices of integration contour also give rise to ‘‘intermediate prescriptions.’’ We expect a similar

though more intricate structure for more general amplitudes.
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I. INTRODUCTION

Witten’s twistor string theory proposal [2] launched a
series of developments that have greatly expanded our
understanding of the mathematical structure of scattering
amplitudes over the past several years, particularly in the
maximally supersymmetric Yang-Mills theory (SYM). The
most computationally useful technology to have emerged
from subsequent developments is the Britto-Cachazo-
Feng-Witten (BCFW) on-shell recursion relation [3,4],
the discovery of which initiated a vast new industry for
the computation of amplitudes. Building on [5], two recent
papers [6,7] have paved the way for a return to twistor
space by showing that the BCFW recursion has a natural
formulation there. Here, we bring this set of developments
full circle by demonstrating a beautiful connection be-
tween the original twistor string proposal and the dual
formulation for the S matrix of SYM recently proposed
by Arkani-Hamed et al. [8]. In particular, we show a
concrete relation between the former and the BCFW rep-
resentation of amplitudes.

Our specific focus is on the connected prescription [1]
due to Roiban and the authors (see also [9–12]), a fascinat-
ing but mysterious formula which has been conjectured to
encode the entire tree-level S matrix of SYM:

T n;kðZÞ ¼
Z
½dP �k�1d

n�
Yn
i¼1

�3j4ðZi � P ð�iÞÞ
�i � �iþ1

: (1)

Here, P ð�Þ denotes a P3j4-valued polynomial of degree
k� 1 in � and ½dP �k�1 is the natural measure on the space
of such polynomials. We review further details shortly but
pause to note that this formula simply expresses the content
of Witten’s twistor string theory: the Nk�2MHV super-
amplitude is computed as the integral of an open string
current algebra correlator over the moduli space of degree

k� 1 curves in supertwistor space P3j4.

The formula (1) manifests several properties that scat-
tering amplitudes must possess, including conformal in-
variance and cyclic symmetry of the superamplitude, both
of which are hidden in other representations such as
BCFW. It is also relatively easy to show that it possesses
the correct soft and collinear-particle singularities, as well
as (surprisingly) parity invariance [1,13]. Despite these
conceptual strengths the connected prescription has re-
ceived relatively little attention over the past five years
because it has resisted attempts to relate it directly to the
more computationally useful BCFW recursion relation.
Here, we remedy this situation by showing for the first

time a direct and beautiful relation between the connected
prescription (1) and the BCFW recursion. Specifically, we
demonstrate explicitly for n ¼ 6, 7 (and expect a similar
though more intricate story for general n) that different
choices of integration contour in (1) compute different, but
equivalent, representations of tree-level amplitudes.1 The
privileged contour singled out by the delta functions ap-
pearing in (1) computes the connected prescription repre-
sentation in which the n particle Nk�2MHV amplitude is
expressed as a sum of residues of the integrand over the

roots of a polynomial of degree h n� 3
k� 2

i (where ha
b
i are

Eulerian numbers). Different representations of tree-level
amplitudes, including BCFW representations as well as
intermediate prescriptions similar to those of [14,16], are
all apparently encoded in various residues of the integrand
T n;k and are computed by choosing various appropriate

contours. The equivalence of different representations fol-
lows from the global residue theorem, a multidimensional
analogue of Cauchy’s theorem.

1It has been argued in [14] that the connected prescription can
also be related to the Cachazo-Svrček-Witten representation [15]
by a contour deformation in the moduli space of curves.
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The integrand T has many residues in common with

L n;kðW Þ ¼
Z
½dC�k�n

Yn
i¼1

�4j4ðC�iW iÞ
ði; iþ 1; . . . ; iþ k� 1Þ (2)

recently written down by Arkani-Hamed et al. [8]. Here,
½dC�k�n is the measure on the space of k� n matrices
modulo left-multiplication by GLðkÞ and (m1; � � � ; mk)
denotes the minor obtained from C by keeping only col-
umns m1; . . . ; mk. Residues of both T and L compute
BCFW representations of tree amplitudes. In addition, T
also computes various other tree-level representations
while L evidently computes parity-conjugate P(BCFW)
representations at tree level as well as leading singularities
of loop amplitudes. It is natural to wonder whether there
exists some richer object D (for ‘‘dual’’), which contains
information about various connected and disconnected
representations of amplitudes at tree level and at all loops.
This could help shed further light on twistor string theory
at the loop level.

It is not yet known which contour computes which
object from the integrand L. In contrast, as mentioned
above, the connected prescription T comes equipped
with a certain privileged contour that calculates the tree
amplitude. Various other contours that compute different
representations of the same amplitude can be easily deter-
mined by applying the global residue theorem. We hope
that a better understanding of the relation between L and
T may allow us to transcribe information about the privi-
leged contour from the latter to the former.

In Sec. II, we review the connected prescription for
computing scattering amplitudes and derive its link repre-
sentation by Fourier transforming it to mixed Z, W var-
iables. In Sec. III, we demonstrate the precise relation
between the connected prescription, BCFWand intermedi-
ate representations of all six- and seven-particle
amplitudes.

II. LINKING THE CONNECTED PRESCRIPTION

Let us begin by reviewing some details of the connected
prescription formula (1) for the color-stripped n particle
Nk�2MHV scattering amplitude. The 4j4 component ho-

mogeneous coordinates for the ith particle inP3j4 areZi ¼
ð��

i ; �
_�
i ; �

A
i Þ with �, _� ¼ 1, 2 and A ¼ 1, 2, 3, 4. In split

signature��þþ the spinor helicity variables ��
i ,

~� _�
i can

be taken as independent real variables and the twistor
transform realized in the naive way as a Fourier transform

from ~� _�
i to � _�

i .
As emphasized in [1] (see also [12]) the integral (1) must

be interpreted as a contour integral in a multidimensional
complex space. The delta functions specify the contour of
integration according to the usual rule

Z
dmzhð~zÞYm

i¼1

�ðfið~zÞÞ ¼
X

hð~zÞ
�
det

@fi
@zj

��1
(3)

with the sum taken over the set of ~z� satisfying f1ð~z�Þ ¼
� � � ¼ fmð~z�Þ ¼ 0. In practice, the calculation of any n
particle Nk�2MHV amplitude therefore reduces to the
problem of solving certain polynomial equations that ap-

pear to have hn� 3
k� 2

iroots in general.

To write the connected formula slightly more explicitly

we first express the delta functions on P3j4 in terms of
homogeneous coordinates via the contour integral

�3j4ðZ�Z0Þ ¼
Z d�

�
�4j4ðZ� �Z0Þ: (4)

Next, we parameterize the degree k� 1 polynomial P in

terms of its k C4j4-valued supercoefficients Ad as

P ð�Þ ¼ Xk�1

d¼0

Ad�
d: (5)

Using these ingredients (1) may be expressed as

A ðZÞ ¼
Z d4kj4kAdn�dn�

volGLð2Þ
Yn
i¼1

�4j4ðZi � �iP ð�iÞÞ
�ið�i � �iþ1Þ ;

(6)

where we have indicated that the integrand and measure
are invariant under a GLð2Þ acting as Möbius transforma-
tions of the �i combined with a simultaneous compensat-
ing reparameterization of the curve P ð�Þ. This symmetry
must be gauge fixed in the usual way.
Motivated by [7] we now consider expressing the con-

nected prescription (1) in a mixed representation where
some of the particles are specified in terms of the Z
variables as above, while others are specified in terms of

the variables W ¼ ð ~� _a; ~� _a; ~�AÞ related by Fourier trans-
form

F ðW Þ ¼
Z

d4j4ZFðZÞeiW �Z; (7)

where W �Z ¼ ~� � ��� � ~�þ � � ~�. A particularly
convenient choice for the Nk�2MHV amplitude is to leave
precisely k particles in terms of Z and transform the rest to
W . This replaces the 4nj4n delta functions in (6) withY

i

expði�iW i � P ð�iÞÞ
Y
J

�4j4ðZJ � �JP ð�JÞÞ: (8)

Here and in all that follows, it is implicit that sums or
products over i run over the subset of the n particles
expressed in the W variables, while sums or products
over J run over the particles expressed in terms of Z’s.
The utility of our choice is that there are now precisely

as many delta functions as supermoduli A, which more-
over can be integrated out trivially since they appear
linearly inside delta functions. This operation sets

P ð�Þ ¼ X
J

ZJ

�J

Y
K�J

�K � �

�K � �J

; (9)
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which is easily seen to satisfy P ð�JÞ ¼ ZJ=�J. The result-
ing expression for the integral may be cleaned up with the
help of the change of variables

xi ¼ �i

Y
K

ð�K � �iÞ; x�1
J ¼ �J

Y
K�J

ð�K � �JÞ; (10)

which (ignoring for the moment overall signs) transforms
(6) into an integral that can be put into the form of a link
representation

A ðW i;ZJÞ ¼
Z

dciJUðciJÞeiciJW i�ZJ (11)

(as introduced in [7]) with the integrand given by

UðciJÞ ¼ 1

volGLð2Þ
Z Yn

a¼1

d�adxa
xað�a � �aþ1Þ

�Y
i;J

�

�
ciJ � xixJ

�J � �i

�
: (12)

Note that this expression still requires GLð2Þ gauge
fixing. Usually this is accomplished by freezing four var-
iables �1, �2, �3, x1 to arbitrary values with the Jacobian

1

volGLð2Þ
Z

d�1d�2d�3dx1

¼ x1ð�1 � �2Þð�2 � �3Þð�3 � �1Þ: (13)

Consequently, in (12) there are effectively only 2n� 4
integration variables and kðn� k� 4Þ delta functions, so
that after integrating out the x’s and�’s there remain inU a
net ðk� 2Þðn� k� 2Þ delta functions.

Henceforth we will work with component amplitudes
rather than superamplitudes. The formula (11) still holds
with the same UðciJÞ given in (12), but with W i and ZJ

now replaced, respectively, by Wi and ZJ. Futhermore, we
find it convenient to always choose all negative helicity
gluons to be expressed in terms of Z variables and all
positive helicity gluons to be expressed in terms of W
variables.

As emphasized in [7] an important feature of the link
representation is that returning to physical space is simple

because the Fourier transforms � _�
i ! ~� _�

i , ~��
i ! ��

i turn
the exponential factors in (11) intoY

i

�2ð��
i � ciJ�

�
J Þ
Y
J

�2ð~� _�
J þ ciJ ~�

_�
i Þ: (14)

For given kinematics ð��
i ;

~� _�
i Þ these equations fix the kðn�

kÞ ciJ as linear functions of ðk� 2Þðn� k� 2Þ remaining
free parameters denoted �	. Finally, we obtain the physical

space amplitude in terms of U as

A ð�; ~�Þ ¼ J�4

�X
pi

�Z
dðk�2Þðn�k�2Þ�UðciJð�	ÞÞ;

(15)

where J is the Jacobian from integrating out (14). We will

always implicitly choose for simplicity a parameterization
of ciJð�	Þ for which J ¼ 1. Before proceeding let us again

emphasize that each ciJð�	Þ is linear in the �’s.

III. EXAMPLES

For the trivial case of maximally helicity violating am-
plitudes (k ¼ 2) the remaining integrations are easily car-
ried out, leading to

U��þ���þ ¼ 1

c31cn2

Yn�1

i¼3

1

ci;iþ1:1;2

(16)

in terms of cij;KL ¼ ciKcjL � ciLcjK. The MHV case k ¼
n� 2 yields the same result with cab ! cba. When trans-
formed to physical space using (15) these yield, respec-
tively, the Parke-Taylor formula and its conjugate.

A. Six-point amplitudes

Next we consider the six-particle alternating helicity
amplitude, for which we find from (12) the representation

Uþ�þ�þ� ¼ 1

c14c36c52
�ðS135:246Þ; (17)

where S refers to the sextic polynomial

Sijk:rst ¼ ciscktcjk:rscij:tr � citckscjk:trcij:rs: (18)

In this example the appearance of �ðS135:246Þ can be under-
stood as follows: we are trying to express nine variables ciJ
in terms of eight variables (the x’s and �’s) by solving the
delta-function equations

ciJ ¼ xixJ
�J � �i

: (19)

A solution to this overconstrained set of equations for the
ciJ exists if and only if the sextic S135:246 vanishes.
From (17) we arrive at the expression

Aþ�þ�þ� ¼
Z

d�
1

c14c36c52
�ðS135:246Þ (20)

for the physical space amplitude. In this case S135:246 is
quartic in the single � parameter. By choosing numerical
values for the external kinematics and summing over the
four roots of S135:246 one can verify that (20) reproduces the
correct amplitude.
Now consider more generally the object

1

c14c36c52

1

S135:246
(21)

as a function of �. The contour integral of this object
around the four zeroes of S135:246 evidently computes the
alternating helicity six-particle amplitude. But (21) has
three other poles located at the vanishing of c14, c36 or
c52. By Cauchy’s theorem we know that the sum of these
three residues computes minus the amplitude,
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Aþ�þ�þ� ¼ �
Z

d�
1

S135:246
�ðc14c36c52Þ: (22)

Since the ciJ are linear in � it is simple to calculate the
corresponding residues analytically, and one obtains

½13�4h46i4
½12�½23�h45ih56is123h6j5þ 4j3�h4j5þ 6j1�

þ ði ! iþ 2Þ þ ði ! iþ 4Þ;
(23)

which is the BCFW representation for the amplitude.
Analysis of the other two independent six-particle he-

licity configurations proceeds along the same lines with
link representations obtained from (12):

Uþþþ��� ¼ c25
c12:45c23:56

�ðS123:456Þ; (24)

Uþþ�þ�� ¼ c16
c13c46c12:56

�ðS124:356Þ: (25)

In each case the connected presentation expresses the
amplitude as a sum over the four roots of the quartic
Sijk:lmn in the � plane, which a simple application of

Cauchy’s theorem relates to a sum over simple linear roots,
which compute the BCFW representation of the amplitude.

B. Seven-point amplitudes

For the seven-particle split-helicity amplitude we find

Uþþþþ��� ¼ c25c26c36c37
c12:56c34:67

�ðS123:567Þ�ðS234:567Þ: (26)

There are now two � variables, and the locus where both of
the delta functions vanish consists of 14 isolated points in
C2. The coordinates of these points are determined by the
vanishing of a polynomial, which is a product of one of
degree 11 and three of degree 1. The three linear roots do
not contribute because the numerator factors in (26) vanish
there. Therefore, (26) represents the amplitude as a sum
over the roots of a degree 11 polynomial, as expected for
the connected prescription for n ¼ 7, k ¼ 3.

To proceed we must use the multidimensional analogue
of Cauchy’s theorem known as the global residue theorem:

I
f1¼���¼fn¼0

dnz
hðzÞ

f1ðzÞ � � � fnðzÞ ¼ 0 (27)

when hðzÞ is a polynomial of degree less than
P

degfi �
ðnþ 1Þ, so that it has no poles at finite z and the integrand
falls off sufficiently fast to avoid a pole at infinity.

To apply (27) to (26) we consider the integrand

c25c26c36c37
c12:56c34:67

1

S123:567S234:567
: (28)

There are seven independent ways of grouping the terms in
the denominator into a product f1f2. The choice

f1 ¼ c12:56S234:567; f2 ¼ c34:67S123:567 (29)

is particularly nice: in this application of the global residue
theorem all 11 poles at the locus S123:567 ¼ S234:567 ¼ 0
contribute as do the roots located at

c12:56 ¼ S123:567 ¼ 0; (30)

c34:67 ¼ S234:567 ¼ 0; (31)

c12:56 ¼ c34:67 ¼ 0; (32)

which amazingly turn out to each consist of a single linear
root. The global residue theorem expresses the connected
representation of the amplitude as (minus) the sum of these
three linear roots, which a simple calculation reveals as
precisely the three terms contributing to the BCFW repre-
sentation of the amplitude.
Equally amazing is the choice

f1 ¼ S123:567; f2 ¼ c12:56c34:67S234:567: (33)

This contour computes the sum of residues at 15 poles; 11
of those are the connected prescription poles, which we
know compute the correct physical amplitude, while the
others consist of a single linear root together with four
quartic roots. Schematically then this global residue theo-
rem identity expresses

Aþþþþ��� ¼ X
11 roots ¼ �X

4 roots� 1 roots:

(34)

We interpret the right-hand side of this equation as an
‘‘intermediate’’ prescription [14,16], obtained by BCFW
decomposing Aþþþþ��� once into the product of a three-
particle amplitude with a split-helicity six-particle ampli-
tude, and then computing the latter via the connected
prescription as a sum over four roots.
We end by tabulating link representations for the re-

maining independent seven-particle helicity amplitudes

Uþþþ�þ�� ¼ c26c27c25:46
c12:46c23:67

�ðS125:467Þ�ðS235:467Þ;

Uþþ�þþ�� ¼ c23c56c57c25:36
c53c12:36c45:67

�ðS125:367Þ�ðS245:367Þ;

Uþþ�þ�þ� ¼ c17c43c14:57
c47c63c12:57

�ðS124:357Þ�ðS146:357Þ:
(35)

As usual we interpret �ðuÞ ¼ 1=u in the integrand with the
delta functions indicating the preferred contour, which
computes the connected prescription representation of the
amplitude.

IV. CONCLUSION

It is obviously of great interest to extend the analysis of
this paper showing the concrete relation between the con-
nected prescription and the BCFW on-shell recursion be-
yond the examples considered here. Link representations
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for any desired amplitude may be obtained straightfor-
wardly from the general formula (12). Shortly after our
paper appeared, explicit formulas for certain classes of
helicity configurations were presented in the overlapping
paper [17].

The difficulty in extending the contour deformation
analysis to further cases is that the integrals in the link
representations no longer localize at discrete points in the �
variables. For example, for n ¼ 8, k ¼ 3 the link repre-
sentation for the connected prescription involves three
delta functions of sextics, but it is easy to check that the
locus where the three sextics vanish is actually a line in C3

rather than isolated points, so it is difficult to interpret the
integral via (3). We emphasize that no such difficulty exists

when the connected prescription is formulated in terms of
the original variables x and �, where for n ¼ 8, k ¼ 3 one
indeed finds 26 isolated roots in ðx; �Þ space.
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