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We study D-dimensional gauge theory with an extra dimension of a circle at finite temperature. We

mainly focus on the expectation value of the gauge field for the direction of the extra dimension, which is

the order parameter of the gauge symmetry breaking. We evaluate the effective potential in the one-loop

approximation at finite temperature. We show that the vacuum configuration of the theory at finite

temperature is determined by a (D� 1)-dimensional gauge theory defined by removing the Euclidean

time coordinate as well as all of the fermions from the original D-dimensional gauge theory on the circle.

It is pointed out that gauge symmetry nonrestoration and/or inverse symmetry breaking can occur at high

temperature in a class of gauge theories on circles and that phase transitions (if they occur) are, in general,

expected to be first order.
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I. INTRODUCTION

Over the past few decades, a considerable number of
studies have been made on higher-dimensional field theo-
ries where some of the spatial coordinates are compactified
on certain topological manifolds. Such theories are found
to possess unexpectedly rich properties that shed new light
and give a deep understanding on high energy physics
beyond the standard model. In fact, it has been shown
that new mechanisms of gauge symmetry breaking [1–5],
spontaneous supersymmetry breaking [6], and breaking of
translational invariance [7,8] can occur and that various
phase structures arise in field theoretical models on such
space-time [9,10]. Furthermore, new diverse scenarios of
solving the hierarchy problem have been proposed in
Refs. [11–14].

Since the origin of gauge symmetry breaking is still an
unsolved problem, it will be worth pursuing alternative
possibilities of gauge symmetry breaking other than the
Higgs mechanism. In this paper, wewill focus on the gauge
symmetry breaking caused by expectation values of gauge
fields for the directions of extra dimensions particularly at
high temperature. If the gauge symmetry breaking of
SUð2Þ �Uð1Þ to Uð1Þem is given by the Higgs mechanism,
the gauge symmetry will be restored at high temperature,
since one-loop corrections to the Higgs mass squared are
proportional to T2 with positive coefficients at high tem-
perature [15–17]. On the other hand, the gauge symmetry
breaking via gauge fields for extra dimensions is expected
to exhibit quite different behavior at high temperature. This
is because the UV cutoff dependence is directly related to

the high temperature corrections [17] and because quantum
corrections to the zero modes of such gauge fields are
expected to be UV finite due to the higher-dimensional
gauge symmetry (while Higgs mass corrections are quad-
ratically divergent).
In this paper, we studyD-dimensional gauge theory with

an extra dimension of a circle at finite temperature, in
which there are two order parameters of gauge symmetry
breaking: One is the zero mode of the gauge field for the
direction of the Euclidean time, and the other is that for the
extra dimension. We evaluate the effective potential for the
zero modes in the one-loop approximation and clarify the
vacuum configuration at finite temperature. Our results
show that at high temperature the expectation value of
the gauge field for the extra dimension in the
D-dimensional gauge theory on a circle can be effectively
determined by a (D� 1)-dimensional theory defined by
removing the Euclidean time coordinate and all of the
fermions from the original D-dimensional gauge theory
on the circle and that the gauge symmetry nonrestoration
(SNR) and/or the inverse symmetry breaking (ISB) can
occur at high temperature in a class of such gauge theories.
We further point out that phase transitions (if they occur)
are, in general, expected to be first order. It would be of
interest to investigate physical implications of the above
results in cosmology [18].
This paper is organized as follows: In Sec. II, we briefly

explain the zero modes of the gauge fields for the
Euclidean coordinate and the extra dimension, which are
the order parameters of the gauge symmetry breaking. In
Sec. III, we evaluate the one-loop effective potential for the
zero modes and write it in three different ways. In Sec. IV,
we study the expectation values of the gauge fields, in
particular, at high temperature. In Sec. V, we present
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five-dimensional SUð2Þ models with the gauge symmetry
nonrestoration or the inverse symmetry breaking at high
temperature. The final section is devoted to conclusions.

II. DYNAMICALVARIABLES IN FINITE
TEMPERATURE GAUGE THEORIES

COMPACTIFIED ON S1

In this section, we briefly discuss dynamical zero modes,
which are the order parameters of gauge symmetry break-
ing, in D-dimensional gauge theory compactified on a
circle at finite temperature. The D-dimensional coordi-
nates of the system are decomposed as

xK ¼ ð�; xi; yÞ ði ¼ 1; 2; . . . ; D� 2Þ; (1)

where � denotes the coordinate for the Euclidean time
direction, which is compactified on a circle S1� whose

circumference is given by the inverse temperature � ¼
T�1. The y is the coordinate of the extra dimension, which
is compactified on another circle S1L of circumference L.
The xi (i ¼ 1; 2; . . . ; D� 2) are the coordinates on
(D� 2)-dimensional flat Euclidean space RD�2.
According to the decomposition (1) of the coordinates,
the gauge fields AK are also decomposed as

AK ¼ ðA�; Ai; AyÞ ði ¼ 1; 2; . . . ; D� 2Þ: (2)

Since the system has two distinct circles of S1� and S1L, the

zero modes of A� and Ay, i.e. the expectation values hA�i
and hAyi, become dynamical variables, which cannot be

gauged away, because the circles are multiply connected
[4].

A physical consequence of nontrivial vacuum expecta-
tion values hA�i and hAyi is to make the gauge bosons

massive through the couplings

g2ðtr½hA�i; hAii�2 þ tr½hAyi; hAii�2Þ: (3)

The appearance of massive gauge bosons is a signal for the
gauge symmetry breaking, so that the gauge symmetry
breaking patterns are determined by hA�i and hAyi.

It should be noted that the tree-level potential from the
coupling trF2

�y arises as

Vtree ¼ g2 tr½hA�i; hAyi�2: (4)

In terms of the dimensionless order parameters

ha�i � ghA�i �

2�
; hayi � ghAyi L

2�
; (5)

which are more suitable for our discussions, the tree po-
tential (4) can be written as

Vtree ¼ ð2�Þ4
g2�2L2

tr½ha�i; hayi�2: (6)

We observe that, in the weak coupling limit, the term (6)
dominates the potential, so that it is natural to expect that
the vacuum configuration lies along the flat direction

½ha�i; hayi� ¼ 0: (7)

In the following, we assume the relation (7).

III. ONE-LOOP EFFECTIVE POTENTIAL

In this section, we evaluate the one-loop effective po-
tential for the dynamical variables ha�i and hayi in the

D-dimensional finite temperature gauge theory with an
extra dimension of the circle S1L. We show that the effective
potential can be written into three different expressions:
One is suitable for examining the behavior of high
temperature or a large extra dimension. Another is suitable
for the opposite limit of low temperature or a small extra
dimension. The third one is useful for numerical
computations.
Before driving the effective potential for ha�i and hayi,

we will first give the effective potential for ha�i in
D-dimensional gauge theory at finite temperature but with-
out compactification and then that for ha�i at zero tem-
perature with the circle compactification. The forms of the
effective potentials without compactification or at zero
temperature turn out to be helpful in understanding the
high or low temperature behavior of the finite temperature
gauge theory with the extra dimension.

A. Effective potential at finite temperature

Let us first consider D-dimensional finite temperature
gauge theory without compactification. In this system, the
dynamical order parameter is given by ha�i. The standard
prescription [19] to evaluate effective potentials for ha�i
leads to [20]1

VDðha�i; �;MÞR
¼ N ð�1Þfþ1 2

ð2�ÞD=2

X1
l¼1

�
M

�l

�
D=2

KD=2ðM�lÞ

� trðRÞ½cosð2�lðha�i þ �ÞÞ�: (8)

This is a general form of the effective potentials associated
with a one-loop diagram in which a particle with bulk mass
M propagates. The superscript D stands for the number of
the total dimensions. The N is the number of (on-shell)
degrees of freedom for the particle. For example, N ¼ 1,

2, 2½D=2�, and 2½D=2��1 for a real scalar, a complex scalar, a
Dirac spinor, and a Weyl spinor, respectively. The factor

1The one-loop effective potential for hA�i has been derived in
the SUðNÞ gauge theory at finite temperature [21–23]. The one-
loop effective potential in the scenario of gauge-Higgs unifica-
tion at finite temperature has been studied in Ref. [24].
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ð�1Þfþ1 comes from the loop of the diagram, and
ð�1Þfþ1 ¼ �1ðþ1Þ for bosons (fermions). The � is de-
fined by � ¼ 0ð12Þ for bosons (fermions). The origin of this

phase is the quantum statistics for bosons and fermions:
Any bosonic (fermionic) fields have to obey the periodic
(antiperiodic) boundary conditions with respect to the
Euclidean time coordinate �, i.e.

�ð�þ �Þ ¼
�þ�ð�Þ for bosons;
��ð�Þ for fermions:

(9)

When the particle � which propagates the loop belongs to
the representation R of the gauge group, ha�i ¼ hac�iTc

R,

where Tc
R denotes a generator of the gauge group in the

representation R. Thus, the trace on (8) should be taken
over the gauge indices with respect to the representation
R. The K�ðzÞ is the modified Bessel function defined by

Z 1

0
dtt���1e�At�ðB=tÞ ¼ 2

�
A

B

�
�=2

K�ð2
ffiffiffiffiffiffiffi
AB

p Þ: (10)

It should be noted that the mode l in (8) corresponds to the
winding number around the circle S1� but not the

Matsubara frequency mode. The winding modes are intro-
duced from the Matsubara modes through the Poisson
summation formula. Actually, we will see the inverse
process later.

For the massless case, the potential (8) reduces to

VDðha�i; �;M ¼ 0ÞR ¼ N ð�1Þfþ1
�ðD2Þ

�D=2�D

X1
l¼1

1

lD

� trðRÞ½cosð2�lðha�i þ �ÞÞ�;
(11)

where we have used the formula

lim
z!0

z�K�ðzÞ ¼ 2��1�ð�Þ: (12)

For the fundamental representation of SUðNÞ, the effec-
tive potential (8) can be written in the familiar expression

VDðha�i; �;MÞfund ¼ N ð�1Þfþ1 2

ð2�ÞD=2

� X1
l¼1

�
M

�l

�
D=2

KD=2ðM�lÞ

� XN
i¼1

cosð2�lð’i þ �ÞÞ; (13)

where the expectation value ha�i is diagonalized by an
appropriate (constant) gauge transformation as ha�i ¼
diagð’1; ’2; . . . ; ’NÞ with

PN
i¼1 ’i ¼ 0. For the adjoint

representation of SUðNÞ, Eq. (8) is written as

VDðha�i; �;MÞadj ¼ N ð�1Þfþ1 2

ð2�ÞD=2

� X1
l¼1

�
M

�l

�
D=2

KD=2ðM�lÞ

� XN
i;j¼1

cosð2�lð’i � ’j þ �ÞÞ:

(14)

B. Effective potential on a circle

In the following, we consider D-dimensional gauge
theory on the circle S1L at zero temperature. The one-loop
effective potential is given by [4,25,26]

VDðhayi; L; �;MÞ ¼ N ð�1Þfþ1 2

ð2�ÞD=2

X1
n¼1

�
M

Ln

�
D=2

� KD=2ðMLnÞ
� trðRÞ½cosð2�nðhayi þ �ÞÞ�: (15)

In this system, the dynamical order parameter is the ex-
pectation value of the gauge field Ay (or ay) for the extra

dimension, and the inverse temperature � in (8) should be
replaced by the circumference L of the circle S1L. A differ-
ence between (8) and (15) arises in the phases of � and �.
It should be emphasized that the boundary conditions for
the Euclidean time direction are uniquely determined by
the quantum statistics, while those for the spatial extra
dimension are not, a priori, known and can be, in general,
twisted as

�ðyþ LÞ ¼ ei2���ðyÞ: (16)

Note that the mode n in (15) corresponds to the winding
number around the circle S1L for the spatial extra dimension
but not the Kaluza-Klein mode. The winding modes are
derived from the Kaluza-Klein modes through the Poisson
summation formula. Actually, we will see the inverse
process later. The expressions for M ¼ 0 and for the
fundamental and adjoint representations of SUðNÞ will
be obtained similarly as before.

C. Effective potential for ha�i and hayi
Let us finally examineD-dimensional gauge theory with

an extra dimension of the circle at finite temperature. Since
the system possesses two circles of S1� and S1L, both of

the expectation values a� and ay become dynamical.

According to the standard prescription, a general form of
one-loop effective potentials is found to be of the form [20]
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VDðha�i; �; hayi; L; �;MÞR ¼ N ð�1Þfþ1 2

ð2�ÞD=2
trðRÞ

�X1
l¼1

�
M

�l

�
D=2

KD=2ðM�lÞ cosð2�lðha�i þ �ÞÞ

þ X1
n¼1

�
M

Ln

�
D=2

KD=2ðMLnÞ cosð2�nðhayi þ �ÞÞ

þ 2
X1
l¼1

X1
n¼1

�
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�lÞ2 þ ðLnÞ2p �

D=2
KD=2ðM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�lÞ2 þ ðLnÞ2

q
Þ cosð2�lðha�i þ �ÞÞ

� cosð2�nðhayi þ �ÞÞ
�
; (17)

where we have used the relation (7). Since the expression (17) is suitable for investigating neither the high temperature
behavior nor the low temperature one, we rewrite it into two other different expressions. This is the main purpose of this
subsection.

To this end, we first combine the second and the third terms in (17) together:

2ndþ 3rd terms in ð17Þ ¼ N ð�1Þfþ1 2

ð2�ÞD=2
trðRÞ

� X1
l¼�1

X1
n¼1

�
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�lÞ2 þ ðLnÞ2p �

D=2
KD=2ðM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�lÞ2 þ ðLnÞ2

q
Þei2�lðha�iþ�Þ

� cosð2�nðhayi þ �ÞÞ
�

¼ N ð�1Þfþ1 1

ð4�ÞD=2
trðRÞ

� X1
l¼�1

X1
n¼1

Z 1

0
dtt�ðD=2Þ�1e�ð1=4tÞðð�lÞ2þðLnÞ2Þ�M2tei2�lðha�iþ�Þ

� cosð2�nðhayi þ �ÞÞ
�

¼ N ð�1Þfþ1 1

ð4�ÞðD�1Þ=2 trðRÞ
�
1

�

X1
~l¼�1

X1
n¼1

Z 1

0
dtt�ððD�1Þ=2Þ�1e�ððLnÞ2=4tÞ�t½M2þð2�=�Þ2ð~lþha�iþ�Þ2�

� cosð2�nðhayi þ �ÞÞ
�

¼ N ð�1Þfþ1 2

ð2�ÞðD�1Þ=2 trðRÞ
�
1

�

X1
~l¼�1

X1
n¼1

�
M~l

Ln

�ðD�1Þ=2
KðD�1Þ=2ðM~lLnÞ cosð2�nðhayi þ �ÞÞ

�
;

(18)

where

M~l �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ

�
2�

�

�
2ð~lþ ha�i þ �Þ2

s
: (19)

Note thatM~l is identical to the mass of the Matsubara mode ~l at finite temperature. In the second and the third equalities in
(18), we have used the formula (10) and the Poisson summation formula

X1
l¼�1

e�ðð�lÞ2=4tÞþi2�lðha�iþ�Þ ¼
ffiffiffiffiffiffiffiffi
4�t

p
�

X1
~l¼�1

e�tð2�=�Þ2ð~lþha�iþ�Þ2 ; (20)

respectively. In the last equality in (18), the formula (10) has been used again.
Inserting (18) into (17), we have
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VDðha�i; �; hayi; L; �;MÞR ¼ N ð�1Þfþ1 2

ð2�ÞD=2
trðRÞ

�X1
l¼1

�
M

�l

�
D=2

KD=2ðM�lÞ cosð2�lðha�i þ �ÞÞ
�

þ 1

�

X1
~l¼�1

N ð�1Þfþ1 2

ð2�ÞðD�1Þ=2 trðRÞ
�X1
n¼1

�
M~l

Ln

�ðD�1Þ=2
KðD�1Þ=2ðM~lLnÞ

� cosð2�nðhayi þ �ÞÞ
�
: (21)

In terms of the effective potential (8) and (15), we find that the effective potential (21) can be represented as

VDðha�i; �; hayi; L; �;MÞR ¼ VDðha�i; �;MÞR þ 1

�

X1
~l¼�1

VD�1ðhayi; L; �;M~lÞR: (22)

This expression turns out to be suitable for studying the behavior of high temperature or a large extra dimension, as we will
see in the next section. It should be emphasized that the formula (22) has a clear physical interpretation: The effective
potential of the D-dimensional gauge theory on S1L at finite temperature T is given by the sum of the D-dimensional
effective potential at finite temperature without compactification and the (one-dimensional lower) (D� 1)-dimensional
effective potentials on S1L at T ¼ 0 for Matsubara modes with masses M~l (times 1=�).

Let us next rewrite (17) into another expression. To this end, we combine the first and the third terms in (17) together:

1stþ 3rd terms in ð17Þ ¼ N ð�1Þfþ1 2

ð2�ÞD=2
trðRÞ

�X1
l¼1

X1
n¼�1

�
Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið�lÞ2 þ ðLnÞ2p �

D=2
KD=2ðM

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�lÞ2 þ ðLnÞ2

q
Þei2�nðhayiþ�Þ

� cosð2�lðha�i þ �ÞÞ
�

¼ N ð�1Þfþ1 1

ð4�ÞD=2
trðRÞ

�X1
l¼1

X1
n¼�1

Z 1

0
dtt�ðD=2Þ�1e�ð1=4tÞðð�lÞ2þðLnÞ2Þ�M2tei2�nðhayiþ�Þ

� cosð2�lðha�i þ �ÞÞ
�

¼ N ð�1Þfþ1 1

ð4�ÞðD�1Þ=2 trðRÞ
�
1

L

X1
~n¼�1

X1
l¼1

Z 1

0
dtt�ððD�1Þ=2Þ�1e�ðð�lÞ2=4tÞ�t½M2þð2�=LÞ2ð~nþhayiþ�Þ2�

� cosð2�lðha�i þ �ÞÞ
�

¼ N ð�1Þfþ1 2

ð2�ÞðD�1Þ=2 trðRÞ
�
1

L

X1
~n¼�1

X1
l¼1

�
M~n

�l

�ðD�1Þ=2
KðD�1Þ=2ðM~n�lÞ cosð2�lðha�i þ �ÞÞ

�
;

(23)

where

M~n �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ

�
2�

L

�
2ð~nþ hayi þ �Þ2

s
: (24)

We should note that M~n is nothing but the mass of the
Kaluza-Klein mode ~n associated with the circle compacti-
fication S1L. In the second and the third equalities in (23),
we have used the formula (10) and the Poisson summation
formula

X1
n¼�1

e�ððLnÞ2=4tÞþi2�nðhayiþ�Þ

¼
ffiffiffiffiffiffiffiffi
4�t

p
L

X1
~n¼�1

e�tð2�=LÞ2ð~nþhayiþ�Þ2 ; (25)

respectively. In the last equality in (23), we have again used
the formula (10).
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Inserting (23) into (17), we find

VDðha�i; �; hayi; L; �;MÞR
¼ VDðhayi; L; �;MÞR þ 1

L

X1
~n¼�1

VD�1ðha�i; �;M~nÞR:

(26)

This expression turns out to be suitable for studying the
behavior of low temperature or a small extra dimension,
as we will see in the next section. It follows from the
relation (26) that the effective potential of the
D-dimensional gauge theory on S1L at finite temperature
T is found to be equivalent to the sum of theD-dimensional
effective potential on S1L at zero temperature and the (one-
dimension lower) (D� 1)-dimensional effective potentials
at finite temperature T (without compactification) for the
Kaluza-Klein modes of masses M~n (times 1=L).

IV. SYMMETRY NONRESTORATION AND
INVERSE SYMMETRY BREAKING AT HIGH

TEMPERATURE

We have succeeded in deriving the three different ex-
pressions for the one-loop effective potential of the
D-dimensional gauge theory on S1L at finite temperature
T. Using those results, we clarify the vacuum structure for
the order parameters ha�i and hayi at high temperature as

well as low temperature and show that the symmetry non-
restoration and/or inverse symmetry breaking can occur at
high temperature in gauge theories with an extra dimension
of a circle.

Let us first investigate the vacuum configuration at high
temperature, i.e. LT � 1. It turns out that the second
expression (22) [or (21)] is particularly suitable for that
purpose. In the high temperature limit of LT ! 1, the first
term in (22) [or (21)] is dominant because the first term is
proportional to TD, while the second one is proportional to
T. The first term is the one-loop effective potential of the
D-dimensional uncompactified gauge theory at finite tem-
perature and turns out to determine the expectation value
ha�i (but not hayi). In Ref. [20], the vacuum configuration

of ha�i has been extensively studied in finite temperature
gauge theories. It has been shown that ha�i cannot acquire
nontrivial vacuum expectation values in finite temperature
SUðNÞ gauge theories that consist of an arbitrary number
of matter fields belonging to the fundamental and the
adjoint representations,2 as well as finite temperature
SUð2Þ gauge theories without any restrictions on the matter
contents. Hence, the analyses strongly suggest that ha�i is
trivial, i.e. ha�i ¼ 0. Although we take ha�i to be zero in

the following discussions, we will arrive at similar con-
clusions even if ha�i � 0.
Putting ha�i ¼ 0, we find that the expectation value hayi

can be determined by the second term in (22). Since the
modified Bessel function K�ðzÞ has an asymptotic formffiffiffiffiffiffiffiffiffiffiffi
�=2z

p
e�z as z ! 1, it exponentially decreases to zero as

z ! 1. This immediately implies that all of the fermions

as well as nonzero Matsubara modes (~l � 0) do not con-
tribute to the second term in (22) because M~lL � 1 for

LT � 1with � ¼ 1
2 or

~l � 0. Hence, we can write the total

effective potential for hayi symbolically as

VDðhayi;�;LÞtotal ’LT�1 1

�
VD�1ðhayi;LÞjwithout fermions:

(27)

Since the overall factor ��1 is irrelevant to the determi-
nation of hayi, we arrive at an important conclusion that at

high temperature LT � 1 the expectation value hayi is

determined by a (D� 1)-dimensional theory defined by
removing the Euclidean time coordinate as well as all of
the fermions3 from the original D-dimensional finite tem-
perature gauge theory on the circle.
We should make a comment on the above dimensional

reduction at high temperature. It is known that at high
temperature the thermal properties of a (3þ 1)-
dimensional field theory are given by an effective three-
dimensional field theory [28,29]. However, our present
situation is quite different from that given in
Refs. [28,29]: All of the fermions are completely de-
coupled at high temperature, but bosons are not. The
effective potential (27) is essentially independent of tem-
perature T at LT � 1 since the overall factor ��1 ¼ T
does not affect the minimization procedure of the potential
and since VD�1ðhayi;LÞjwithout fermions is completely inde-

pendent of T. Thus, the temperature dependence of the
effective potential for hayi disappears at high temperature

up to an overall factor ��1. This is in sharp contrast to
effective potentials in ordinary finite temperature field
theories, where masses or couplings for Higgs fields are,
in general, temperature-dependent at high temperature.
Let us next discuss the vacuum configuration of the

theory at low temperature, i.e. LT � 1. In this case, the
third expression (26) is found to be suitable. At low tem-
perature LT � 1, the first term in (26) becomes dominant
because the first term is proportional to L�D, while the
second one is proportional to L�1. Thus, the expectation
value hayi is determined by the effective potential of the

originalD-dimensional gauge theory compactified on S1L at
T ¼ 0, as expected naively.

2There is an exception. If the models includes only the matter
belonging to the adjoint representation of SUðNÞ, ha�i can take
one of the values in the center of SUðNÞ, i.e. ei2�ha�i ¼
eið2�=NÞk1N�N (k ¼ 0; 1; . . . ; N � 1) due to the ZN symmetry
[20].

3Ghost fields should not be excluded because they obey the
periodic boundary conditions for the Euclidean time direction
[27].
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The vacuum expectation value ha�i can then be deter-
mined by the second term in (26) with a ‘‘background’’
hayi. Since our previous analyses [20] strongly suggest that
ha�i acquires no nontrivial expectation values, we thus
arrive at the conclusion that at low temperature (or a small
extra dimension) LT � 1 the vacuum configuration of the
theory is determined by the original D-dimensional gauge
theory on S1L at zero temperature.

We have shown that the expectation value hayi of the
D-dimensional gauge theory on S1L at high temperature
LT � 1 is given by that of a (D� 1)-dimensional theory
defined by removing the Euclidean time coordinate and all
of the fermions from the original D-dimensional gauge
theory, while at low temperature LT � 1, hayi is given

by that of the originalD-dimensional gauge theory on S1L at
zero temperature. A crucial observation is that the fermion
contribution disappears in determining hayi at high tem-

perature, so that we expect that the vacuum configuration at
high temperature can be different from that at low tem-
perature. It is known that hayi can acquire nontrivial ex-

pectation values even without fermions by appropriately
choosing representations of the gauge group and twist
parameters �’s for scalars. This fact immediately suggests
that the symmetry nonrestoration or inverse symmetry

breaking can occur at high temperature in a class of gauge
theories with extra dimensions compactified on circles.4

This is indeed the case.
In the next section, we will present 5d SUð2Þ gauge

models compactified on a circle with the gauge symmetry
nonrestoration or the inverse symmetry breaking at high
temperature, as a demonstration. We would like to point
out that phase transitions in such a class of gauge theories
are expected to be, in general, first order. This observation
comes from the fact that effective potentials for hayi in-
clude higher powers of hayi and also odd powers of it. In

the next section, we will see that the model with ISB causes
the first order phase transition at a critical temperature.

V. 5d SUð2Þ MODELS WITH SNR AND ISB

In this section, we construct 5d finite temperature SUð2Þ
gauge models on a circle with the gauge symmetry non-
restoration and the inverse symmetry breaking at high
temperature. We numerically study the behavior of the
effective potential with respect to the temperature for
certain matter content. We assume all of the matter fields
are massless, so that (17), which is suitable for the numeri-
cal analyses, becomes

VD¼5ðha�i; hayi; t; �;M ¼ 0ÞR ¼ N ð�1Þfþ1
�ð52Þ

�5=2L5
trðRÞ

�X1
n¼1

1

n5
cosð2�nðhayi þ �ÞÞ þ t5

X1
l¼1

1

l5
cosð2�lðha�i þ �ÞÞ

þ 2t5
X1
l¼1

X1
n¼1

1

½l2 þ ðtnÞ2�5=2 cosð2�lðha�i þ �ÞÞ cosð2�nðhayi þ �ÞÞ
�
; (28)

where we have defined the dimensionless parameter t �
LT and have used (12). The two order parameters of gauge
symmetry breaking are

hayi ¼ diagð�;��Þ; ha�i ¼ diagð’;�’Þ (29)

for the gauge group SUð2Þ. Once we fix the matter content,
the effective potential is given by summing each contribu-
tion of the effective potential (28) from the gauge and the
matter fields. The vacuum configuration � is determined by
minimizing the total effective potential for fixed values of
LT and ’ ¼ 0, and we then find the unbroken gauge
symmetry of the model.

It has been known that the matter content and the
boundary conditions of fields for the S1L direction are
crucial for the determination of hayi [31]. In order to break
the original gauge symmetry through the nontrivial value
of hayi, adjoint fermions and/or twisted scalars are neces-

sary in the concerned model. On the other hand, the scalars
satisfying the periodic boundary condition do not break the
gauge symmetry. Since we have already understood the
dominant contributions to the effective potential at high

(low) temperature, one can appropriately choose the matter
content in such a way to realize the SNR/ISB.
Let us first present a model with the gauge symmetry

nonrestoration. We consider the matter content given by

ðNs
fd; �Þ ¼ ð2; 12Þ; ðNs

adj; �Þ ¼ ð6; 12Þ;
ðNf

fd; �Þ ¼ ð1; 0Þ; ðNf
adj; �Þ ¼ ð2; 0Þ;

(30)

where NsðfÞ
adj and NsðfÞ

fd stand for the number of the adjoint

scalars (fermions) and for the one of the fundamental
scalars (fermions), respectively. The � denotes the twisted
boundary condition defined by (16). We consider the sca-
lars satisfying the antiperiodic boundary condition in the
model.
At zero temperature, LT ¼ 0, the vacuum configuration

of the model is numerically found to be

� ’ 0:277 459: (31)

4Models with SNR or ISB have been previously reported in
multi-	�4 models [17] and little Higgs models [30].
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The SUð2Þ gauge symmetry is broken down to Uð1Þ. Then
we turn on and increase the temperature. We depict the
behavior of the vacuum expectation value �with respect to
LT in Fig. 1 by numerical calculations. We do not find the
vacuum configuration that respects the SUð2Þ gauge sym-
metry for any values of LT. This means that, even if we go
to the high temperature, the gauge symmetry is not re-
stored, unlike the usual Higgs mechanism. Hence, the
model realizes the symmetry nonrestoration. At high tem-
perature, LT � 1, we find that the vacuum expectation
value approaches

� ’ 0:276 746: (32)

We also observe that the model does not have a phase
transition.

As discussed in the previous section, at high tempera-
ture, LT � 1, � is determined by a four-dimensional
(R3 � S1L) gauge theory including the bosonic degrees of
freedom alone. In the high temperature limit, the present
model (30) consists of the gauge, adjoint, and fundamental
scalar fields. The vacuum expectation value � of the four-
dimensional gauge theory is numerically found to be � ’
0:276 746, which is the same as (32) obtained by the
original five-dimensional gauge theory in the high tem-
perature limit.

Let us next present a model with the inverse symmetry
breaking. The matter content in this case is given by

ðNs
fd; �Þ ¼ ð1; 12Þ; ðNs

adj; �Þ ¼ ð5; 12Þ;
ðNf

fd; �Þ ¼ ð1; 0Þ; ðNf
adj; �Þ ¼ ð0; 0Þ:

(33)

The notations are the same as before. Let us note again that
we consider the scalars satisfying the antiperiodic bound-
ary condition.

At zero temperature, LT ¼ 0, the vacuum configuration
of the model is found to be

� ¼ 0:5; (34)

for which the SUð2Þ gauge symmetry is unbroken. Let us
note that the massless gauge boson exists in the spectrum
even for the nontrivial value (34). When we turn on and
increase the temperature, the vacuum expectation value �
changes as depicted in Fig. 2. We observe that the value of
� jumps at the critical temperature LTc ’ 0:8836, and the
degenerate vacuum configurations—one is � ¼ 0:5, and
the other is � ’ 0:298 456—appear. The latter configura-
tion breaks the SUð2Þ gauge symmetry down to Uð1Þ. The
asymptotic value for LT � 1 is

� ’ 0:265 649: (35)

The SUð2Þ gauge symmetry is not restored. Hence, the
model realizes the inverse symmetry breaking. We also
depict the behavior of the effective potential at around the
critical temperature in Fig. 3. The phase transition is

1 2 3 4 5
LT

0.274

0.276

0.278

0.280

FIG. 1 (color online). The behavior of � with respect to LT in
the model (30). The asymptotic value of � for LT � 1 is about
0.276 746, which is consistent with the one obtained from the
four-dimensional gauge theory explained in the text.

0 1 2 3 4 5
LT

0.30

0.35

0.40

0.45

0.50

FIG. 2 (color online). The behavior of � with respect to LT in
the model (33). The critical temperature, at which the vacuum
expectation value jumps, is LTc ’ 0:8836. The asymptotic value
of � is about 0.265 649, which is consistent with the value
obtained by the four-dimensional gauge theory explained in
the text.

0.1 0.2 0.3 0.4 0.5

20

15

10

5

V_ eff

FIG. 3 (color online). The behavior of the effective potential
with respect to LT in the model (33). The solid (dashed, dotted)
line corresponds to LT ¼ LTc ð1:2; 0:5Þ, respectively. The criti-
cal temperature LTc is about 0.8836. The potential is symmetric
with respect to � ¼ 0:5, as understood from (28) and (29).
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clearly first order, which is also understood from the dis-
continuity of the vacuum expectation value in Fig. 2.

At high temperature, LT � 1, the � is determined by a
four-dimensional (R3 � S1L) gauge theory, where all of the
fermions are decoupled and the Euclidean time coordinate
shrinks. The � in the four-dimensional gauge theory is
numerically found to be � ’ 0:265 649. This is the same as
(35) obtained by the original five-dimensional gauge the-
ory at the high temperature limit.

We have presented the models with the symmetry non-
restoration and the inverse symmetry breaking at high
temperature. We note that at high temperature the model
is described by the four-dimensional (R3 � S1L) gauge
theory including only bosonic degrees of freedom. The
nontrivial boundary condition � for the scalar fields is
crucial for the two interesting phenomena at high
temperature.

Let us finally present a model which has both the usual
symmetry restoration of the SUð2Þ gauge symmetry and
the inverse symmetry breaking in the intermediate range of
LT. The matter content is given by

ðNs
fd; �Þ ¼ ð2; 12Þ; ðNs

adj; �Þ ¼ ð6; 12Þ;
ðNf

fd; �Þ ¼ ð1; 0Þ; ðNf
adj; �Þ ¼ ð0; 0Þ:

(36)

The vacuum configuration at zero temperature is numeri-
cally found to be

� ’ 0:359 407; (37)

for which the SUð2Þ gauge symmetry is broken to Uð1Þ. If
we increase the temperature, the behavior of the vacuum
expectation value � with respect to LT is given in Fig. 4.
The first order phase transition occurs at LTc1 ’ 0:2914,
and the SUð2Þ gauge symmetry is restored like the usual
Higgs mechanism. The second phase transition, which is

again first order, occurs at LTc2 ’ 0:8104. The SUð2Þ
gauge symmetry is again broken to Uð1Þ at high tempera-
ture. The asymptotic value for LT � 1 is � ’ 0:276 747.
This model belongs to the class of the inverse symmetry
breaking at high temperature, but the model has the usual
symmetry restoration of the SUð2Þ gauge symmetry in the
intermediate range of the temperature. This is similar to the
phase transition discussed in Ref. [30].

VI. CONCLUSIONS

We have investigated the D-dimensional gauge theory
with an extra dimension of a circle, in particular, at high
and low temperature. The theory possesses two order
parameters of gauge symmetry breaking: One is the zero
mode of the gauge field for the Euclidean time direction,
and the other is that for the direction of the extra dimen-
sion. We have evaluated the effective potential for the order
parameters in the one-loop approximation and succeeded
in expressing it in three different forms: One is suitable for
high temperature/a large extra dimension, another is suit-
able for low temperature/a small extra dimension, and the
third one is useful for numerical computations. Using those
expressions and mainly focusing on the expectation value
hayi of the extra component of the gauge field, we have

found that at high temperature the effective potential for
hayi in the D-dimensional gauge theory on the circle

reduces to that in a (D� 1)-dimensional theory defined
by removing the Euclidean time coordinate and all of the
fermions from the original theory, while at low temperature
it is determined by the original D-dimensional gauge the-
ory on the circle at zero temperature. This result leads to
the conclusion that the gauge symmetry nonrestoration
and/or the inverse symmetry breaking at high temperature
can occur in a class of gauge theories on a circle with
appropriate matter contents.
As a demonstration, we have presented 5d SUð2Þ gauge

models on a circle that cause the gauge symmetry non-
restoration or the inverse symmetry breaking to indeed
occur at high temperature. Those properties should be
contrasted to the gauge symmetry breaking induced by
the Higgs mechanism. In this case, one-loop radiative
corrections to the Higgs mass squared will be proportional
to T2 with positive coefficients at high temperature, so that
the gauge symmetry is expected to be restored at high
temperature [15–17]. We have further discussed that phase
transitions in such a class of gauge theories are, in general,
first order and have shown that it is actually the case for the
models we have studied.
Considering the higher rank gauge group such as SUð3Þ

is one of the simplest extensions of our studies. There are
more symmetry breaking patterns through hayi for that

case than the case of SUð2Þ. We expect a rich variety of
vacuum structures at finite temperature [32].
We can also easily extend the expressions of (22) and

(26) to gauge theories with extra dimensions of a higher-

0.0 0.5 1.0 1.5 2.0 2.5 LT

0.30

0.35

0.40

0.45

0.50

FIG. 4 (color online). The behavior of � respect to LT in the
model (36). The first (second) jump of the vacuum expectation
value occurs at LT ’ 0:2914 (0.8104). The asymptotic value for
LT � 1 is about 0.276 746, which is consistent with the one
obtained by the four-dimensional gauge theory explained in the
text.
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dimensional tori Tp ¼ S1L1
� S1L2

� � � � � S1Lp
. Then the

one-loop effective potential can be expressed in the follow-
ing two ways:

VDðha�i; �; hayii; Li; �i;MÞR
¼ VDðha�i; �;MÞR þ 1

�

X1
~l¼�1

VD�1ðhayii; Li; �i;M~lÞR

¼ VDðhayii; Li; �i;MÞR
þ 1

L1 � � �Lp

X1
~n1;���;~np¼�1

VD�pðha�i; �;M~n1���~npÞR; (38)

where

M~n1...~np �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þXp

i¼1

�
2�

Li

�
2ð~ni þ hayii þ �iÞ2

vuut : (39)

It immediately follows that at high temperature the vacuum
configuration for hayii (i ¼ 1; . . . ; p) can be determined by

the (D� 1)-dimensional (zero temperature) gauge theory
on the tori Tp without fermions, while at low temperature it
can be determined by the original D-dimensional zero
temperature gauge theory on Tp, so that the gauge sym-
metry nonrestoration and/or the inverse symmetry break-
ing at high temperature can occur in a class of gauge
theories compactified on Tp.

We would like to make some comments on high and low
temperature approximations and also higher order effects.
We have shown that the one-loop effective potential (17)
can be written into the two other different forms (22) and
(26). The expression (22) and (26) is useful for the analysis
at high (low) temperature LT � 1 (LT � 1) because
contributions of the nonzero Matsubara (Kaluza-Klein)
modes are exponentially suppressed. Those modes, how-
ever, become important at LT � 1, and high (low) tem-
perature approximations will break down. Then the
analyses of the one-loop effective potential at LT � 1

may be performed by numerical computations with the
original expression (17). The above observation suggests
that a phase transition will occur at a critical temperature
Tc of order 1=L if the high temperature vacuum configu-
ration is different from the low temperature one. This has
been confirmed for the models studied in Sec. V.
Our considerations are restricted to the one-loop ap-

proximation. Higher order effects could alter one-loop
results. One such effect will be temperature-dependent
mass corrections. At two-loop order, the squared mass

M2
~l
of the Matsubara mode ~l could acquire a mass correc-

tion �M2 	 g2T3.5 Then M~l in (21) is expected to be

replaced by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

~l
þ �M2

q
. If

ffiffiffiffiffiffiffiffiffiffiffi
�M2

p
L � 1, i.e. LT �

1=ðg24Þ1=3, where g24 � g2=L is a 4d dimensionless cou-
pling constant, contributions of all of the bosonic modes
would be exponentially suppressed like fermionic ones.
Therefore, for such a high temperature region, higher order
effects should be considered properly.
Our results suggest that if the gauge symmetry breaking

was caused not by Higgs fields but by gauge fields of extra
dimensions, the gauge symmetry could not be restored at
the early Universe or the gauge symmetry could be restored
with the first order phase transition. It would be of great
importance to investigate cosmological implications in
such a scenario.
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