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The nonequilibrium dynamics of quantum fields is an initial-value problem, which can be described by

Kadanoff-Baym equations. Typically, and, in particular, when numerical solutions are demanded, these

Kadanoff-Baym equations are restricted to Gaussian initial states. However, physical initial states are non-

Gaussian correlated initial states. In particular, renormalizability requires the initial state to feature

n-point correlations that asymptotically agree with the vacuum correlations at short distances. In order to

identify physical nonequilibrium initial states, it is therefore a precondition to describe the vacuum

correlations of the interacting theory within the nonequilibrium framework. In this paper, Kadanoff-Baym

equations for non-Gaussian correlated initial states describing vacuum and thermal equilibrium are

derived from the 2PI effective action. A diagrammatic method for the explicit construction of vacuum

and thermal initial correlations from the 2PI effective action is provided. We present numerical solutions

of Kadanoff-Baym equations for a real scalar�4 quantum field theory, which take the thermal initial four-

point correlation as the leading non-Gaussian correction into account. We find that this minimal non-

Gaussian initial condition yields an approximation to the complete equilibrium initial state that is

quantitatively and qualitatively significantly improved as compared to Gaussian initial states.
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I. INTRODUCTION

Nonequilibrium processes within astroparticle and high-
energy physics, like reheating after inflation, baryogenesis,
or relativistic heavy ion collisions, are typically described
by classical or semiclassical equations. These include
Boltzmann equations, hydrodynamic transport equations
or effective equations of motion for a coherent scalar field
expectation value [1–3]. The semiclassical treatment pro-
vides the possibility to relate fundamental parameters of
the underlying theory with model predictions. Although
inflation and baryogenesis occur at extremely high ener-
gies, key observables like the baryon asymmetry and the
spectral index are subject to experimental verification, for
example, by measurements of the cosmic microwave back-
ground radiation [4]. Therefore, it is of great importance to
assess the reliability of the underlying semiclassical ap-
proximations. This can be achieved by a comparison with a
completely quantum field theoretical treatment.

In recent years, it has been demonstrated that the time
evolution of relativistic scalar and fermionic quantum
fields far from equilibrium can be described based on first
principles by Kadanoff-Baym equations [5–9]. These
equations for the complete one- and two-point correlation
functions can be obtained from the stationarity conditions
of the 2PI effective action [10] defined on the Schwinger-
Keldysh closed real-time contour [11–15]. The advantages
of this approach are manifold: First, its conceptual sim-

plicity is very attractive. The only assumption entering the
derivation of Kadanoff-Baym equations is the truncation of
the so-called 2PI functional, which amounts to a controlled
approximation in the coupling constant or the inverse
number of field degrees of freedom for specific quantum
field theories [6]. Furthermore, Kadanoff-Baym equations
inherently incorporate typical quantum (e.g. off-shell) ef-
fects as well as ‘‘classical’’ (e.g. on-shell) effects in a
unified manner, and can be applied even to systems far
from equilibrium. Accordingly, they are very versatile and
can be employed both to assess the validity of conventional
semiclassical approximations (e.g. for baryogenesis and
leptogenesis), and in situations where a single effective
description does not exist [e.g. for (p)reheating by inflaton
decay and subsequent thermalization] [16–20].
It has been shown that numerical solutions of Kadanoff-

Baym equations not only provide a description of the
quantum thermalization process of relativistic quantum
fields for closed systems [5,21], but also feature a separa-
tion of time scales between kinetic and chemical equili-
bration (prethermalization) [22]. Furthermore, they have
been compared to semiclassical transport equations for
bosonic and fermionic systems [7,9,23–26] (see also
Refs. [27–31] for the nonrelativistic case). Moreover,
Kadanoff-Baym equations can describe the decay of a
coherent, oscillating scalar field expectation value under
conditions where parametric resonance occurs [16], and
have also been investigated in curved space-time [32,33].
These successes of the 2PI effective action and

Kadanoff-Baym equations in the area of nonequilibrium
quantum field theory make it worthwhile and, in view of
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realistic applications, necessary to answer the remaining
conceptual questions, like renormalization. The renormal-
ization of the 2PI effective action in vacuum and at finite
temperature has been established recently [34–38]. It has
been shown that the vacuum counterterms are also suffi-
cient at finite temperature. In order to extend this proof to
nonequilibrium situations, it is necessary to identify initial
states that are themselves free of divergences. In particular,
this requires that the correlation functions characterizing
these physical initial states are rendered finite by the
vacuum counterterms.

Typically, Kadanoff-Baym equations are solved for
Gaussian initial states. All connected n-point correlation
functions with n > 2 vanish for Gaussian initial states by
definition. However, in vacuum and at finite temperature
the three- and four-point correlation functions carry overall
divergences that are cancelled by corresponding vacuum
counterterms. Thus, Gaussian initial states lead to an un-
balanced divergence at the initial time [39]. In order to
overcome this shortcoming, physical initial states have to
carry non-Gaussian initial three- and four-point correlation
functions that differ from the vacuum correlations at most
by a finite amount.

In order to be able to identify physical initial states, it is
therefore a precondition to be able to describe vacuum and
thermal equilibrium within the standard framework of
nonequilibrium quantum field theory, i.e. on the closed
real-time path with finite initial time tinit � 0. Apart from
the question of renormalization it is also a matter of
principle that vacuum and thermal equilibrium should be
accessible within nonequilibrium field theory as special
cases by choosing the initial state appropriately.

In this work, Kadanoff-Baym equations for non-
Gaussian correlated initial states describing vacuum and
thermal equilibrium are derived from the 2PI effective
action formulated on the closed real-time path with finite
initial time. For that purpose, we propose a diagrammatic
method for the explicit construction of vacuum and thermal
initial correlations that is applicable to nonperturbative 2PI
approximations.

There exist several techniques to describe non-Gaussian
correlated initial states. These can be divided into two
categories: Either, the correlations are generated by mod-
ifying the closed real-time path C, or the initial state is
explicitly described by its density matrix �. We shall refer
to these as implicit and explicit techniques, respectively.
The implicit techniques include the so-called imaginary-
time stepping [15,27,28], where an imaginary branch is
added to the contour C, similar to the description of thermal
field theory [40–42]. Another possibility is to extend the
closed real-time contour C over the complete real axis, such
that it runs from �1 to þ1, and back to �1. The
correlated initial state is then generated by including an
external two-point sourceKðx; yÞ, that is switched off at the
‘‘initial’’ time [39].

For the explicit technique, the density matrix � of the
initial state is parameterized by initial n-point correlation
functions �nðx1; . . . ; xnÞ [43,44]. These appear in the form
of nonlocal effective n-point vertices in the 2PI effective
action. When deriving Kadanoff-Baym equations, these
inherit the contributions from non-Gaussian initial
correlations.
The advantage of the implicit techniques is that the

equilibrium limit can be approached without any additional
work. However, due to the implicit preparation of the
initial state, the freedom and the control in choosing the
initial state is restricted. The advantage of the explicit
technique is that the resulting Kadanoff-Baym equations
are very similar to the Gaussian case. Furthermore, the
explicit approach provides a maximal degree of freedom
for specifying the initial state.
The renormalization of Kadanoff-Baym equations has

recently been discussed based on the implicit technique
involving an external two-point source [39]. In this work,
we use the explicit technique. Thus, the methods developed
in this paper provide a complementary framework for
addressing the issue of renormalization.
The main purpose of this work is to provide techniques

for calculating the non-Gaussian initial correlations
�th
n ðx1; . . . ; xnÞ for a thermal initial state �th within the

2PI-Schwinger-Keldysh formalism. As explained above,
this is a prerequisite for studying the renormalization of
Kadanoff-Baym equations based on the explicit approach.
In Ref. [44], a perturbative expansion of the �th

n was
derived. Unfortunately, this expansion is not suitable for
the nonperturbative 2PI formalism. The main idea fol-
lowed in the present work is to determine the �th

n by
matching the Kadanoff-Baym equations for a thermal ini-
tial state on the one hand with the evolution equations
obtained from the 2PI effective action formulated on the
well-known thermal time contour [40–42,45,46] on the
other hand. For this matching procedure, we employ the
thermal time contour obtained by concatenating the closed
real-time contour with the imaginary-time contour. We
stress that it is important to keep a finite ‘‘initial’’ time.
In this case, both the horizontal and the vertical branches
contribute [45–47]. The contributions from the vertical
branch can then be identified with corresponding contri-
butions from the �th

n within the equivalent Schwinger-
Keldysh formalism. We note that, when considering an
exact thermal initial state, the propagator obtained from
the Kadanoff-Baym equations is time-translation invariant
within its domain of definition, in accordance with
Refs. [45–47].
This work is organized as follows: In Sec. II, we derive

Kadanoff-Baym equations for non-Gaussian initial states
from the corresponding 2PI effective action using the ex-
plicit technique. In Sec. III, we provide techniques for
calculating the non-Gaussian initial correlations
�th
n ðx1; . . . ; xnÞ within perturbation theory. These tech-
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niques are generalized to the nonperturbative 2PI case in
Sec. IV. In Sec. V, Kadanoff-Baym equations for a thermal
initial state are derived by combining the results from
Secs. II and IV. In Sec. VI, we compare numerical solutions
of Kadanoff-Baym equations for two nonequilibrium ini-
tial states that are approximations to the thermal initial
state. One of them is Gaussian, while the other also in-
cludes the leading non-Gaussian initial correlation. The
Appendices A and B contain additional material helpful
for Secs. III and IV, respectively.

II. EFFECTIVE ACTION AND KADANOFF-BAYM
EQUATIONS

A. Gaussian initial states

In this subsection, we start from the classical action for a
real scalar quantum field with a quartic self-interaction

S½�� ¼
Z

d4x

�
1

2
ð@�Þ2 � 1

2
m2�2 � �

4!
�4

�
; (1)

and review the basic elements of the derivation of the 2PI
effective action and the Kadanoff-Baym equations for the
case of a Gaussian initial state. In the following subsec-
tions, we can then easily expose the differences, which
arise for a non-Gaussian initial state.

The Schwinger-Keldysh propagator is defined by

Gðx; yÞ ¼ hTC�ðxÞ�ðyÞi � h�ðxÞih�ðyÞi; (2)

where TC denotes the time-ordering operator along the
closed real-time path C shown in Fig. 1 [11,14,15]. The
Schwinger-Keldysh propagator can be obtained by func-
tional differentiation from the generating functional for
correlation functions formulated on the closed real-time
path. The generating functional in the presence of a local
external source JðxÞ and a bilocal external source Kðx; yÞ is
given by [44]

Z�½J;K� ¼
Z

D’ðxÞh’þj�j’�i

� exp

�
iS½’� þ iJ’þ i

2
’K’

�
; (3)

where a matrix-vector notation has been used for the space-
time integrals in the exponential function,1 and j’�i are
the quantum states corresponding to the field configura-
tions ’�ðxÞ ¼ ’ð0�; xÞ. The information about the initial
state enters via the matrix element of the density matrix �,
which is known only at the initial time t ¼ tinit � 0.

A Gaussian initial state is an initial state for which all
connected n-point correlation functions with n � 3 vanish

at the initial time. The density matrix element for a
Gaussian initial state can be parameterized by

h’þj�j’�i ¼ exp

�
i�0 þ i�1’þ i

2
’�2’

�
: (4)

Therefore, in the Gaussian case, the contribution of the
density matrix to the generating functional (3) can formally
be absorbed into the external sources J þ �1 ! J andK þ
�2 ! K. As is, for example, explained in Ref. [48], this
means that the Gaussian initial density matrix does not
appear explicitly, but rather enters the dynamics via defin-
ing the initial conditions of all independent one- and two-
point functions. For vanishing field expectation value,
these are given by Gðx; yÞ, ð@x0 þ @y0ÞGðx; yÞ, and

@x0@y0Gðx; yÞ, all evaluated at x0 ¼ y0 ¼ 0 [9,48].

The 2PI effective action �½�;G� is the double Legendre
transform of the generating functional (3) with respect to
the external sources. For a Gaussian initial state, the gen-
erating functional has the same structure as the generating
functional in vacuum, except that all time integrations are
performed over the closed real-time path. Consequently,
for a Gaussian initial state the 2PI effective action can be
parameterized in the form [10]

�½�;G� ¼ S½�� þ i

2
TrlogC½G�1� þ i

2
TrC½G�1

0 G�
þ �2½�;G�; (5)

where G0
�1 is the inverse classical Schwinger-Keldysh

propagator and i�2½�;G� is the sum of all 2PI Feynman
diagrams without any external legs, where internal lines
represent the complete Schwinger-Keldysh propagator
Gðx; yÞ. The vertices of the diagrams contained in
i�2½�;G� are given by the third and fourth functional
derivatives of the classical action S½�� [10]. Eventually,
the Kadanoff-Baym equations

FIG. 1. Closed real-time path C. This time path was invented
by Schwinger [11] and applied to nonequilibrium problems by
Keldysh [14] (see also Refs. [12,13]). In order to avoid the
doubling of the degrees of freedom, we use the form presented
in Ref. [15].

1Throughout this work, the compact notation of Ref. [15] is
used for the contour integrals over the closed real-time path,
for example J’ � R

C d4xJðxÞ’ðxÞ ¼ R
d4x½JþðxÞ’þðxÞ �

J�ðxÞ’�ðxÞ�.
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ðhx þM2ðxÞÞGFðx; yÞ ¼
Z y0

0
d4z�Fðx; zÞG�ðz; yÞ

�
Z x0

0
d4z��ðx; zÞGFðz; yÞ;

ðhx þM2ðxÞÞG�ðx; yÞ ¼
Z y0

x0
d4z��ðx; zÞG�ðz; yÞ (6)

follow from the stationarity condition of the 2PI effective
action. Here, we use the notation of Ref. [9].

B. Non-Gaussian initial states

In the remainder of this section, Kadanoff-Baym equa-
tions are derived that can describe systems characterized
by a general non-Gaussian initial state [43,44,49]. For that
purpose, we extend the derivation of the previous subsec-
tion using a generalization of the Gaussian density matrix
(4). In general, the matrix element of the density matrix �
is an arbitrary functional of the field configurations ’þðxÞ
and ’�ðxÞ, which can be written as [44]

h’þj�j’�i ¼ expðiF½’�Þ: (7)

While for a Gaussian initial state F½’� is a quadratic
functional of the field, for a general non-Gaussian initial
state it may be Taylor expanded in the form [44]

F½’� ¼ X1
n¼0

1

n!

Z
C
d4x1 . . . d

4xn�nðx1; . . . ; xnÞ

� ’ðx1Þ � . . . � ’ðxnÞ: (8)

By definition F½’� depends only on the field configuration
evaluated at the boundaries of the time contour.
Consequently, the kernels �nðx1; . . . ; xnÞ are nonzero
only if all their time arguments lie on the boundaries of
the time contour. With the notation �þðtÞ ¼ �Cðt� 0þÞ
and ��ðtÞ ¼ �Cðt� 0�Þ, they can be written in the form

�nðx1; . . . ; xnÞ ¼ ��1;...;�n
n ðx1; . . . ; xnÞ��1ðx01Þ � . . . � ��nðx0nÞ;

(9)

where summation over �j 2 fþ;�g is implied. In this way,

the explicit dependence of the functional F½’� on the field
configurations ’þðxÞ and ’�ðxÞ may be recovered,

F½’� ¼ �0 þ
Z

d3x��
1ðxÞ’�ðxÞ þ . . . :

The set of all kernels �n with n � 0 encodes the complete
information about the density matrix characterizing the
initial state. Not all the kernels are independent. The
Hermiticity of the density matrix, � ¼ �y, implies that

i��1;...;�n
n ðx1; . . . ; xnÞ ¼ ði�ð��1Þ;...;ð��nÞ

n ðx1; . . . ; xnÞÞ�:
If the initial state is invariant under some symmetries, there
are further constraints. For example, for an initial state,
which is invariant under the Z2-symmetry � ! ��, all
kernels �nðx1; . . . ; xnÞ with odd n vanish. If the initial state

is homogeneous in space, the initial correlations
�nðx1; . . . ; xnÞ are invariant under space translations xi !
xi þ a of all arguments for any real three-vector a, and can
conveniently be expressed in spatial momentum space,

��1;...;�n
n ðx1; . . . ; xnÞ ¼

Z d3k1
ð2�Þ3 . . .

Z d3kn
ð2�Þ3

� exp

�
i
X
j

kjxj

�
ð2�Þ3

� �3ðk1 þ � � � þ knÞ
� ��1;...;�n

n ðk1; . . . ; knÞ:
Summarizing, the generating functional reads

Z�½J; K� ¼
Z

D’ exp

�
iS½’� þ iJ’þ i

2
’K’þ iF3½’�

�
;

(10)

where the kernels �0, �1 and �2 have been absorbed into
the measureD’ and into the sources J andK, respectively.
The functional F3½’� � F3½’;�3; �4; . . .� contains the
contributions of third, fourth, and higher orders of the
Taylor expansion (8) and vanishes for a Gaussian initial
state.

C. 2PI Effective action for non-Gaussian initial states

According to Eq. (10), the 2PI effective action in the
presence of non-Gaussian correlations is obtained from the
standard parameterization [10] of the 2PI effective action
applied to a theory described by the modified classical

action ~S½�� � S½�� þ F3½��,

�½�;G� ¼ ~S½�� þ i

2
TrlogC½G�1� þ i

2
TrC½~G�1

0 G�
þ ~�2½�;G�

� �G½�;G� þ �nG½�;G�; (11)

where i~G�1
0 ðx; yÞ � �2 ~S½��=��ðxÞ��ðyÞ. The Gaussian

part �G½�;G� coincides with the right-hand side of
Eq. (5), and the non-Gaussian part is given by

�nG½�;G� ¼ F3½�� þ 1

2
TrC

�
�2F3

����
G

�
þ �2;nG½�;G�;

where

�2;nG½�;G� � ~�2½�;G� � �2½�;G�:
The modified 2PI functional i~�2½�;G� is equal to the sum
of all 2PI Feynman diagrams without any external legs,
where internal lines represent the complete propagator
Gðx; yÞ and where vertices are given by the functional

derivatives of the modified classical action ~S½�� ¼ S½�� þ
F3½��. The contribution from the classical action S½��
leads to the classical local three- and four-point vertices.
Additionally, the contribution from the functional F3½��

MATHIAS GARNYAND MARKUS MICHAEL MÜLLER PHYSICAL REVIEW D 80, 085011 (2009)

085011-4



leads to effective nonlocal vertices, which contain the non-
Gaussian initial n-point correlations with n � 3 (see
Fig. 2),

i
�nF3½��

��ðx1Þ . . .��ðxnÞ � i ��nðx1; . . . ; xnÞ: (12)

These effective n-point vertices are only supported at the
initial time, and can be parameterized analogously to
Eq. (9). For a Z2-symmetric initial state, the field expecta-
tion value vanishes, �ðxÞ ¼ 0, such that ��nðx1; . . . ; xnÞ ¼
�nðx1; . . . ; xnÞ. The contribution of these effective nonlocal
vertices is most important close to the initial time. For
example, a nonzero four-point source �4ðx1; . . . ; x4Þ leads
to a nonvanishing value of the connected four-point corre-
lation function at the initial time, which is impossible for a
Gaussian initial state.

Note that those 2PI diagrams that contain exclusively the
classical vertices contribute to the functional i�2½�;G� by
definition. Therefore, the diagrams contributing to the non-
Gaussian part i�2;nG½�;G� contain at least one effective

vertex from Eq. (12).
In Sec. VI we study the numerical solution of Kadanoff-

Baym equations for a Z2-symmetric non-Gaussian initial
state with a nonzero initial four-point correlation. In this

case the 2PI functional ~�2 reads in ‘‘naı̈ve’’2 three-loop
approximation (see Fig. 3)

i~�2½G� ¼ 1

8

Z
C
d4x1234½�i��12�23�34 þ i�1234�G12G34

þ 1

48

Z
C
d4x1���8½�i��12�23�34þ i�1234�

�G15G26G37G48½�i��56�57�58 þ i�5678�; (13)
whereG12 ¼ Gðx1; x2Þ and�1234 ¼ �4ðx1; x2; x3; x4Þ. Note

that the contribution to the mixed basketball diagram in the
second and third line with one classical and one effective
vertex appears twice, which accounts for the symmetry
factor 1=24.

D. Self-energy for non-Gaussian initial states

The equation of motion for the complete propagator
obtained from Eq. (11) reads

G�1ðx; yÞ ¼ G�1
0 ðx; yÞ ��ðx; yÞ � i ��2ðx; yÞ; (14)

where ��2 ¼ �2 þ �2F3½��=���� and the complete self-
energy is given by

�ðx; yÞ ¼ 2i�~�2½�;G�
�Gðy; xÞ ¼ 2i��2½�;G�

�Gðy; xÞ þ 2i��2;nG½�;G�
�Gðy; xÞ

� �Gðx; yÞ þ�nGðx; yÞ; (15)

where �G contains the contributions to the self-energy,
which are also present for a Gaussian initial state, and the
non-Gaussian part�nG contains diagrams with at least one
nonlocal effective vertex. They can be further decomposed
as

�Gðx; yÞ ¼ �i�locðxÞ�Cðx� yÞ þ�G
non-locðx; yÞ;

�nGðx; yÞ ¼ i�nG
surfaceðx; yÞ þ�nG

non-locðx; yÞ: (16)

The non-Gaussian nonlocal part �nG
non-locðx; yÞ contains

diagrams where both external lines are attached to a
standard vertex. The non-Gaussian ‘‘surface’’ part
i�nG

surfaceðx; yÞ contains diagrams where at least one exter-

nal line is attached to a nonlocal effective vertex. Thus, the
surface part is supported only at the initial time surface
where x0 ¼ 0 or y0 ¼ 0. In general, such contributions can
arise in the following ways:
(1) From diagrams where both external lines are con-

nected to an effective nonlocal vertex as given in
Eq. (12). They are supported at x0 ¼ y0 ¼ 0.

FIG. 2. Nonlocal effective vertices i ��nðx1; . . . ; xnÞ connecting n lines for n ¼ 3, 4, 5, 6 encoding the non-Gaussian three-, four-,
five-, and six-point correlations of the initial state.

FIG. 3. Diagrams contributing to the three-loop truncation of the 2PI effective action in the symmetric phase (setting-sun
approximation) in the presence of an effective nonlocal four-point vertex.

2This means that nonlocal effective vertices do not affect the
counting of loops.

KADANOFF-BAYM EQUATIONS WITH NON-GAUSSIAN . . . PHYSICAL REVIEW D 80, 085011 (2009)

085011-5



(2) From diagrams where one of the two external lines
is connected to an effective nonlocal vertex, while
the other one is connected to a classical local vertex.
They are supported at x0 ¼ 0, y0 � 0 or vice versa.

(3) Via the contribution i ��2ðx; yÞ of the initial two-point
source, which is supported at x0 ¼ y0 ¼ 0. This is
the only Gaussian surface contribution.

Accordingly, the contributions to the self-energy, which are
supported at the initial time surface, can be further decom-
posed as

�surfaceðx; yÞ ¼ �nG
surfaceðx; yÞ þ ��2ðx; yÞ

� ���ðx; yÞ þ���ðx; yÞ þ���ðx; yÞ;
where

���ðx; yÞ ¼ ��1ðx0Þ��1;�2
�� ðx; yÞ��2ðy0Þ;

���ðx; yÞ ¼ ��
��ðx0; x; yÞ��ðy0Þ;

���ðx; yÞ ¼ ��ðx0Þ��
��ðx; y0; yÞ ¼ ���ðy; xÞ:

(17)

��� contains all contributions of type (1.) and (3.).
Diagrams of type (2.) contribute to��� or��� depending
on which external line is attached to the effective nonlocal
vertex and which to the classical local vertex. For all
diagrams contributing to ��� the left line is connected to
the classical four- or three-point vertex. The nonlocal part
of the self-energy can be split into statistical and spectral
components, similarly to the Gaussian case,

�non-locðx; yÞ � �G
non-locðx; yÞ þ�nG

non-locðx; yÞ

� �Fðx; yÞ � i

2
signCðx0 � y0Þ��ðx; yÞ:

(18)

The local part of the self-energy is identical to the Gaussian

case and is included in the effective time-dependent mass
term M2ðxÞ ¼ m2 þ�locðxÞ.
For the setting-sun approximation from Eq. (13), the

self-energy is given by (see Fig. 4)

�G
non-locðx; yÞ ¼

ð�i�Þ2
6

Gðx; yÞ3; �nG
non-locðx; yÞ ¼ 0;

i���ðx; yÞ ¼ i�2ðx; yÞ þ 1

2

Z
d4x34i�xy34G34

þ 1

6

Z
d4x2���7i�x234G25G36G47i�567y;

i���ðx; yÞ ¼ �i�

6

Z
d4x123Gx1Gx2Gx3i�123y;

i���ðx; yÞ ¼ �i�

6

Z
d4x234i�x234G2yG3yG4y:

E. Kadanoff-Baym equations for non-Gaussian initial
states

Convoluting Eq. (14) with the complete propagator
yields

ðhx þM2ðxÞÞGðx; yÞ ¼ �i�Cðx� yÞ
� i

Z
C
d4z½�non-locðx; zÞ

þ i���ðx; zÞ�Gðz; yÞ: (19)

The second line follows from the parameterization (16) of
the self-energy, and assuming x0 > 0 and y0 > 0. Using
Eqs. (17) and (18) and transforming to spatial momentum
space yields the Kadanoff-Baym equations for
GFðx0; y0; kÞ and G�ðx0; y0; kÞ for spatially homogeneous

non-Gaussian initial states,

ð@2
x0
þ k2 þM2ðx0ÞÞGFðx0; y0; kÞ ¼

Z y0

0
dz0�Fðx0; z0; kÞG�ðz0; y0; kÞ �

Z x0

0
dz0��ðx0; z0; kÞGFðz0; y0; kÞ

þ���;Fðx0; kÞGFð0; y0; kÞ þ 1

4
���;�ðx0; kÞG�ð0; y0; kÞ; (20)

and

ð@2
x0
þ k2 þM2ðx0ÞÞG�ðx0; y0; kÞ ¼

Z y0

x0

dz0��ðx0; z0; kÞG�ðz0; y0; kÞ;

where

FIG. 4. Diagrams contributing to the self-energy �ðx; yÞ in the setting-sun approximation in the presence of an effective nonlocal
four-point vertex. From left to right, the diagrams contribute to �loc, �

G
non-loc, ���, ���, and the last two both contribute to ���.
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���;Fðx0; kÞ ¼ �þ
��ðx0; kÞ þ��

��ðx0; kÞ;
���;�ðx0; kÞ ¼ 2ið�þ

��ðx0; kÞ ���
��ðx0; kÞÞ:

Thus, for a non-Gaussian initial state, the right-hand side of
the Kadanoff-Baym equation for the statistical propagator
is modified. In addition to the memory integrals there are
now new contributions originating from the non-Gaussian
initial correlations. Unlike the memory integrals, these new
contributions do not have to vanish in the limit x0, y0 ! 0.
This is due to the fact that the higher non-Gaussian corre-
lations of the initial state can lead to a nonvanishing value
of the connected four- and three-point correlation functions
at the initial time.

III. THERMAL INITIAL CORRELATIONS:
PERTURBATION THEORY

In order to derive Kadanoff-Baym equations that are
capable of describing thermal equilibrium, the thermal
density matrix

�th ¼ 1

Z
expð��HÞ

has to be represented by a Taylor expansion in terms of
thermal correlation functions �th

n ðx1; . . . ; xnÞ as in Eqs. (7)
and (8). These thermal correlation functions do then enter
the Kadanoff-Baym equations in the form of nonlocal
effective vertices, as described in the previous section.

The thermal correlations functions �th
n ðx1; . . . ; xnÞ can

be calculated order by order in the coupling constant within
usual perturbation theory (see Appendix A). However, in
the context of Kadanoff-Baym equations, it is necessary to
use approximations of the thermal correlation functions
that are compatible with the underlying truncation of the
2PI effective action. It is a major purpose of this paper to
provide computational techniques for identifying suitable
approximations of the thermal correlation functions
�th
n ðx1; . . . ; xnÞ.

For simplicity, in this section, we first present the com-
putational techniques within perturbation theory. In the
following section, these techniques are then generalized
to the nonperturbative 2PI formalism.
The main idea is to determine the functions

�th
n ðx1; . . . ; xnÞ by matching the description of thermal

equilibrium based on the closed real-time path C in the
presence of effective vertices �th

n (‘‘Cþ �’’) on the one
hand with the well-known equivalent description based on
the thermal time path (‘‘Cþ I’’) [40–42,45,46] shown in
Fig. 5 on the other hand.
The generating functional for these two descriptions is

obtained by inserting the respective representations of the
thermal density matrix

h’þj�thj’�i ¼
8<
:
R’ð�i�;xÞ¼’þðxÞ
’ð0;xÞ¼’�ðxÞ D’ expðiRI d4xLðxÞÞ for “Cþ I”;

expðiP1
n¼0 �

th
12���n’1’2 � � �’nÞ for “Cþ �”;

(21)

into Eq. (3). The argument of the exponential in the lower
expression is a shorthand notation for Eqs. (7) and (8). In
the following, we show how perturbative Feynman dia-
grams formulated within the well-known Cþ I formalism
can equivalently be represented within the Cþ �
formalism.

A. Thermal time contour Cþ I

In this subsection, we briefly review the well-known
description of thermal equilibrium based on the thermal
time contour Cþ I in order to establish the notations

required later on. We stress that, for our purpose, we
have to keep the initial time finite. For this case, the
formulation of thermal field theory has been discussed in
Refs. [45–47]. The free thermal propagator defined on the
thermal time contour Cþ I is

iG�1
0;thðx; yÞ ¼ ð�hx �m2Þ�CþI ðx� yÞ

for x0, y0 2 Cþ I . It may be decomposed into the free
thermal statistical propagator G0;Fðx; yÞ and the free ther-

mal spectral function G0;�ðx; yÞ,

FIG. 5. The thermal time contour Cþ I is obtained by con-
catenating the closed real-time contour C and the imaginary-time
contour I running from t ¼ 0 to t ¼ �i� [40–42,45,46]. We
employ this time path in order to infer the initial correlation
functions �th

n ðx1; . . . ; xnÞ required for describing thermal equi-
librium on the Schwinger-Keldysh closed real-time path C with
finite initial time shown in Fig. 1.
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G0;thðx; yÞ ¼ G0;Fðx; yÞ � i

2
signCþI ðx0 � y0ÞG0;�ðx; yÞ:

The explicit solution of the free equation of motion is

G0;Fðx0; y0; kÞ ¼
nBEð!kÞ þ 1

2

!k

cosð!kðx0 � y0ÞÞ;

G0;�ðx0; y0; kÞ ¼ 1

!k

sinð!kðx0 � y0ÞÞ
(22)

for x0, y0 2 Cþ I . Here, nBEð!kÞ is the Bose-Einstein
distribution function

nBEð!kÞ ¼ 1

e�!k � 1
; !k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ k2

p
:

Each of the two time arguments of the propagator can
either be real or imaginary, which yields four combinations

GCC
0;th, GCI

0;th, GIC
0;th, GII

0;th. These appear in perturbative

Feynman diagrams, which are constructed with the free
propagator G0;th and the classical vertices. In position

space, each internal vertex of a Feynman diagram is inte-
grated over the thermal time contour Cþ I . In order to
disentangle the contributions from the real and the imagi-
nary branch of the time contour, the following Feynman
rules are defined:

Filled circles denote a real time, and empty circles denote an imaginary time. As an example, the perturbative setting-sun
diagram is considered with propagators attached to both external lines, and evaluated for real external times x0, y0 2 C.
Both internal vertices are integrated over the two branches C and I , respectively. Using the Feynman rules above, the
resulting four contributions can be depicted as

We note that S0ðx; yÞjx0¼y0 is time independent, as expected
in thermal equilibrium. Nevertheless, the four contribu-
tions shown in the last line may individually depend on
time. However, this time dependence cancels out in their
sum, as has been, for example, discussed in Ref. [46].

B. Closed real-time contour with thermal initial
correlations Cþ �

Within the Cþ � formalism, all internal vertices of
Feynman diagrams are just integrated over the closed
real-time path C. However, the diagrams may contain non-
local effective n-point vertices. These represent the n-point
correlations �th

n ðx1; . . . ; xnÞ of the thermal initial state. In
the following, we show how to determine the �th

n by a
matching procedure employing the equivalent Cþ I
formalism.

Let us consider a Feynman diagram within the Cþ I
formalism, like, for example, the perturbative setting-sun
diagram S0ðx; yÞ. We assume that all time arguments cor-
responding to the external lines are real. It turns out that a

single diagram within the Cþ I formalism is represented
by a set of diagrams within the Cþ � formalism. Some of
these will contain nonlocal effective vertices. Since we are
working in the framework of perturbation theory, we have
to insert approximations to the exact effective vertices. For
this purpose, we have to determine (i) the topologies of the
required diagrams and (ii) the proper approximations for
the effective vertices.
In order to do so, we first consider the free thermal

propagator evaluated with one imaginary and one real
time. Using Eq. (22) together with elementary trigonomet-
ric addition theorems, it can be written as

GIC
0;thð�i	; y0; kÞ ¼ GII

0;thð�i	; 0; kÞ
G0;thð0; 0; kÞ GCC

0;Fð0; y0; kÞ

þ i@	G
II
0;thð�i	; 0; kÞGCC

0;�ð0; y0;kÞ:

Next, the unequal-time statistical propagator and the spec-
tral function are rewritten as
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GCC
0;Fð0; y0; kÞ ¼

Z
C
dz0�sðz0ÞGCC

0;thðz0; y0; kÞ; GCC
0;�ð0; y0; kÞ ¼ �2i

Z
C
dz0�aðz0ÞGCC

0;thðz0; y0; kÞ;

where

�sðz0Þ ¼ 1
2ð�Cðz0 � 0þÞ þ �Cðz0 � 0�ÞÞ; �aðz0Þ ¼ 1

2ð�Cðz0 � 0þÞ � �Cðz0 � 0�ÞÞ:
Combining these equations, a helpful expression for the free propagator evaluated with one imaginary and one real time is
obtained,

Here, the free connection �0ð�i	; z0; kÞ is given by

where

�s
0ð�i	;kÞ ¼ GII

0;thð�i	; 0; kÞ
G0;thð0; 0; kÞ ; �a

0ð�i	; kÞ ¼ 2@	G
II
0;thð�i	; 0; kÞ: (25)

Analogously, the free propagator evaluated with one real and one imaginary time can be written as

where

The connections �0 and �T
0 are attached to an imaginary and a real vertex on the left and right sides, respectively. Their

Fourier transform into position space is

�0ðv; zÞ ¼
Z d3k

ð2�Þ3 e
ikðv�zÞ�0ðv0; z0; kÞ (27)

for v0 2 I and z0 2 C, as well as �T
0 ðz; vÞ ¼ �0ðv; zÞ.

In general, for any thermal diagram on Cþ I with V internal vertices, there are 2V possibilities to combine the

integration over C or I at each vertex. For each of these 2V contributions, all lines connecting a real and an imaginary
vertex are replaced using relations (23) and (26). Thereby the parts containing I integrations are encapsulated into

nonlocal effective vertices. Thus, any thermal diagram on Cþ I can equivalently be represented by 2V diagrams on C,
which contain classical vertices as well as nonlocal effective vertices.

For example, the setting-sun diagram with one real and one imaginary vertex can be rewritten as
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According to the symbolic notation employed here, the subdiagram containing the imaginary vertex, marked by the box,
can be encapsulated into an effective nonlocal four-point vertex. Its structure is determined by the connections�0 and �

T
0 .

This can be seen by rewriting the above diagrams in terms of the corresponding formal expressions (only the first and last
one are given here),

ð�i�Þ2
6

Z
C
d4u

Z
I
d4vG0;thðx; uÞG3

0;thðu; vÞG0;thðv; yÞ

� �i�

6

Z
C
d4u

Z
C
d4z1234G0;thðx; uÞG0;thðu; z1ÞG0;thðu; z2ÞG0;thðu; z3Þ½�th

4;0Lðz1; z2; z3; z4Þ�G0;thðz4; yÞ:

In the last line, the thermal effective four-point vertex has been introduced,

Since the connection �0ðv; ziÞ is supported only at the
initial time z0i ¼ 0�, the effective four-point vertex van-
ishes as soon as one of the four real times z01; . . . ; z

0
4 lies

beyond the initial time. Thus, the effective four-point
vertex has precisely the structure of a nonlocal effective
vertex describing an initial correlation. Furthermore, the
above four-point vertex constitutes the leading order con-

tribution to the loop expansion of the thermal initial four-
point correlation function (see Appendix A).
Diagrams with internal lines connecting two imaginary

vertices contain the propagator GII
0;thð�i	;�i	0; kÞ. In or-

der to identify the correct effective vertices in this case, the
following relation is employed:

It can be verified by explicit calculation from Eqs (22), (24), and (A1). Here, the propagator D0ð�i	;�i	0; kÞ, which is
defined in Eq. (A1), is represented by the dotted line. It connects two imaginary times and furnishes the perturbative
expansion of the thermal initial correlations as discussed in Appendix A. Applying the upper relation, the setting-sun
diagram with two imaginary vertices can be rewritten as
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In the first step, the propagators connecting real and imagi-
nary vertices were replaced using relation (23). This al-
ready yields an effective nonlocal two-vertex, as indicated
in the third diagram in the first line. In order to check that
this effective nonlocal two-vertex is indeed composed from
the thermal initial correlations, the three propagators con-
necting the two imaginary vertices are replaced using
relation (29). Accordingly, the diagram splits into eight
terms. These can be combined to the four inequivalent
contributions shown in the second line.3 Finally, the parts
containing imaginary vertices and dotted lines can be
identified with the corresponding contributions to the per-
turbative expansion of the thermal initial correlations dis-
cussed in Appendix A. This is represented graphically by
encapsulating the subdiagrams inside the boxes. In the
third line, the first diagram thus contains a thermal effec-
tive two-point vertex, which itself appears at two-loop
order in the perturbative expansion of the thermal initial

correlations. Similarly, the thermal effective four- and six-
point vertices contained in the second and third diagram,
respectively, appear at one- and zero-loop order in the
perturbative expansion of the thermal initial correlations.
The two effective four-point vertices contained in the
fourth diagram are identical to the one already encountered
in Eq. (28).
Thus, using the representation (23) of the free propaga-

tor connecting a real and an imaginary time and Eq. (29),
any perturbative thermal Feynman diagram formulated on
the thermal time contour Cþ I can be related with a set of
perturbative Feynman diagrams formulated on the closed
real-time contour C. Furthermore, the required approxima-
tion to the complete thermal initial correlations �th

n can be
explicitly constructed with the help of the formalism in-
troduced here. For example, for the perturbative setting-
sun diagram, the equivalence between ‘‘Cþ I’’ and
‘‘Cþ �’’ can, in summary, be written as

As has been noted before, S0ðx; yÞjx0¼y0 is time indepen-
dent. Nevertheless, the individual contributions shown
above may depend on time, similarly as for the Cþ I
formalism. Since S0ðx; yÞjx0¼y0 is time independent, it is
clear that the time dependence of the individual contribu-
tions has to cancel when summing them up. Thus, the time-
translation invariance of thermal equilibrium within the
Cþ � formalism is manifestly inherited from the Cþ I
formalism [45–47] by the matching procedure described
here. Since the same argument applies for the 2PI case
discussed below, we will not repeat it there.

IV. THERMAL INITIAL CORRELATIONS: 2PI

In this section, the perturbative techniques introduced in
the previous section are generalized to the nonperturbative
2PI case. This is required since Kadanoff-Baym equations
are based on the 2PI formalism. While the Feynman dia-
grams shown in the previous section contain the free

propagator, the diagrams treated here contain the complete
propagator, which itself is the solution of a self-consistent
Schwinger-Dyson equation.

A. Thermal time contour Cþ I

The complete thermal propagator defined on the thermal
time path Cþ I satisfies the self-consistent Schwinger-
Dyson equation derived from the 2PI effective action in
thermal equilibrium

G�1
th ðx; yÞ ¼ iðhx þm2Þ�CþI ðx� yÞ ��thðx; yÞ; (30)

where x0, y0 2 Cþ I and �thðx; yÞ is the thermal self-
energy. For example, in setting-sun approximation it reads

�thðx; yÞ ¼ �i�

2
Gthðx; xÞ�CþI ðx� yÞ

þ ð�i�Þ2
6

Gthðx; yÞ3:

The complete propagator furnishes the expansion of the
2PI effective action in terms of 2PI Feynman diagrams.
Similar to the perturbative case, the following Feynman
rules are defined:

3Note that the symmetry factors are taken into account prop-
erly. For example, the symmetry factor of the second diagram in
the second line is one-third times the symmetry factor of the
original diagram in the first line. Since there are three possibil-
ities to obtain this diagram from the first one, it is obtained with
the correct prefactor.
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Accordingly, diagrams containing the complete propagator can be decomposed in analogy to the perturbative case. For
example,

B. Closed real-time contour with thermal initial
correlations Cþ �

As for the perturbative case, we will now use the equiva-
lence between Cþ I and Cþ � in order to infer the proper
thermal initial correlations �th

n ðx1; . . . ; xnÞ within the 2PI
framework.

In order to disentangle the contributions from the real
and the imaginary branch of the thermal time contour, a

generalization of Eq. (23) to the 2PI case is required.
Because of the nonperturbative nature of the 2PI formal-
ism, this generalization is nontrivial and requires a some-
what lengthy calculation that can be found in Appendix B.
The most important result is that the complete propagator
connecting imaginary and real times can be decomposed
into a convolution of a complete connection �ð�i	; z0;kÞ
and the complete real-real propagator,

Here, the complete connection is given by

While the first line is already known from the perturbative case, the second line is a new contribution. It contains the
nonlocal part of the thermal self-energy. The quantities �s, �a and D are straightforward generalizations of their
perturbative counterparts �s

0, �
a
0 and D0 [see Eqs (25), (29), (B12), and (B13)].

In contrast to the perturbative case, Eq. (32) is an implicit equation for the complete connection. For example, for the 2PI
setting-sun approximation, it has the form

Equation (32) can be solved iteratively,
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For example, for the setting-sun approximation, the first three steps of this iteration are

The first line represents the zeroth step and the first step,
and the second line shows all diagrams contributing at the
second step. All diagrams are generated with the correct
symmetry factors.

On the other hand, the nonperturbative generalization of
Eq. (29) reads

GII
th ð�i	;�i	0; kÞ
¼ Dð�i	;�i	0;kÞ þ

Z
C
dw0

Z
C
dz0�ð�i	; w0; kÞ

�GCC
th ðw0; z0; kÞ�Tðz0;�i	0; kÞ

¼ Dð�i	;�i	0;kÞ þ�sð�i	;kÞGthð0; 0; kÞ�sð�i	0; kÞ:
(34)

The derivation of this equation is also shown in
Appendix B. Similar to the perturbative case, the formal-
ism established above can be used to relate any Feynman
diagram formulated on the thermal time path (‘‘Cþ I’’)
with a set of Feynman diagrams formulated on the closed
real-time path C containing nonlocal effective vertices
representing the thermal initial correlations (‘‘Cþ �’’).
This is accomplished by three steps:

(1) First, the contour integrations over the thermal time
path Cþ I associated with internal vertices are
split into two integrations over C and I . A diagram

with V vertices is thus decomposed into 2V

contributions.
(2) Next, all internal propagator lines connecting a real

and an imaginary time are replaced using Eq. (31).
Additionally, the internal propagator lines connect-
ing two imaginary times are replaced according to
Eq. (34). The parts containing imaginary times are
encapsulated, which can be visualized by joining the
complete connections to boxes surrounding the
imaginary vertices.

(3) Eventually, the iterative solution of Eq. (32) for the
complete connection is inserted. Each resulting con-
tribution can be identified as a diagram formulated
on the closed real-time path C containing nonlocal
effective vertices �n. The latter are constructed ex-
plicitly, as appropriate for the underlying 2PI
approximation.

The first two steps are analogous to the perturbative case,
with complete propagators and connections instead of free
ones. The third step is special for the nonperturbative case.
It results in contributions that contain nonlocal effective
vertices �n of arbitrarily high order n. These take into
account the infinite sequence of thermal initial n-point
correlations, which are present due to the underlying non-
perturbative approximation.
For example, for the nonperturbative setting-sun dia-

gram, step one and two can be written as
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For the second diagram, the third step can be written as

The first diagram on the right-hand side is obtained by
inserting the zeroth iteration for the four complete con-
nections. The other diagrams are obtained by inserting the
first iteration. Note that all diagrams shown above are
generated with correct symmetry factors.

Each of the boxes with thin lines represents a nonlocal
effective vertex, encoding the correlations of the initial

state. A thin box that is attached to n propagator lines
represents a contribution to the thermal initial n-point
correlation function �th

n ðx1; . . . ; xnÞ. For example, the lead-
ing contributions to the thermal initial four- and six-point
correlations are given by

and

Note that these contributions are nonperturbative approximations of the exact thermal initial correlations, since they
involve the complete thermal propagator.
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V. KADANOFF-BAYM EQUATIONS WITH
THERMAL INITIAL CORRELATIONS

In this section, Kadanoff-Baym equations that can de-
scribe thermal equilibrium on the closed real-time path C
with finite initial time tinit ¼ 0 are derived. This requires to
take into account non-Gaussian correlations of the initial
(thermal) state of the system. These thermal initial corre-
lations have to be determined in accordance with the non-
perturbative 2PI formalism underlying the Kadanoff-Baym
equations. Therefore, the techniques developed in the pre-
vious section are combined with the Kadanoff-Baym equa-
tions for non-Gaussian initial states derived in Sec. II. As
before, the main idea is to match the Kadanoff-Baym
equations describing thermal equilibrium within the Cþ
� formalism on the one hand with equivalent evolution
equations obtained from the 2PI effective action within the
Cþ I formalism on the other hand.

On the one hand, we use that the Kadanoff-Baym equa-
tion for a thermal initial state is a special case of the
Kadanoff-Baym equation for a non-Gaussian initial state
[see Eq. (19)], which has the form

ð@2
x0
þ k2 þM2

thÞGthðx0; y0; kÞ

¼ �i�Cðx0 � y0Þ � i
Z
C
dz0½�G

th;nlðx0; z0; kÞ
þ�nG

th;nlðx0; z0; kÞ þ i�th;��ðx0; z0; kÞ�Gthðz0; y0; kÞ:
(37)

Here, �G
th;nlðx0; z0; kÞ and �nG

th;nlðx0; z0; kÞ denote the

Gaussian- and non-Gaussian parts of the nonlocal self-
energy, respectively. Furthermore,

�th;��ðx0; z0; kÞ ¼ �th;��;Fðx0;kÞ�sðz0Þ

� i

2
�th;��;�ðx0; kÞ�aðz0Þ

denotes the contribution from the non-Gaussian initial
correlations that is supported at the initial time surface
z0 ¼ 0 (see Sec. II).

On the other hand, the equation of motion of the com-
plete thermal propagator based on the thermal time contour
(‘‘Cþ I’’) evaluated for x0, y0 2 C is

ð@2
x0
þ k2 þM2

thÞGthðx0; y0; kÞ
¼ �i�CþI ðx0 � y0Þ

� i
Z
CþI

dz0�nl
th ðx0; z0;kÞGthðz0; y0; kÞ: (38)

Of course, the thermal propagator is time-translation in-

variant and thus only depends on the time difference x0 �
y0. The upper notation is chosen for convenience, in order
to simplify the comparison with the corresponding
Kadanoff-Baym equations.
Since the two formulations of thermal equilibrium are

equivalent, the solutions of the equation of motion (38)
evaluated for x0, y0 2 C as well as the Kadanoff-Baym
Eq. (37) for a thermal initial state have to agree. Now we
will use this equivalence in order to determine the non-
Gaussian parts of the thermal self-energy appearing on
right-hand side of the Kadanoff-Baym equation.
In order to do so, we start from Eq. (38) and split the

contour integration on the right-hand side into one integra-
tion over C and one over I . We note that the resulting two
contributions are in general not time-translation invariant,
but their sum certainly is. The integral over the imaginary-
time contour I can be rewritten using the complete con-
nection (32)

Z
I
dz0�nl

th ðx0; z0;kÞGthðz0; y0; kÞ

¼
Z
I
dv0�nl

th ðx0; v0; kÞ
Z
C
dz0�ðv0; z0;kÞGthðz0; y0; kÞ

¼
Z
C
dz0

Z
I
dv0�nl

th ðx0; v0; kÞ
�
�ð0Þðv0; z0; kÞ

þ
Z
I
dw0Dðv0; w0; kÞ�nl

th ðw0; z0; kÞ
�
Gthðz0; y0; kÞ:

Inserting this into the equation of motion (38), it takes
precisely the form of the Kadanoff-Baym Eq. (37) for a
non-Gaussian initial state. By comparison, the non-
Gaussian contributions to the self-energy for the thermal
initial state can be inferred,

�G
th;nlðx0; z0;kÞ ¼ �nl

th ðx0; z0; kÞjx0;z02C;

�nG
th;nlðx0; z0;kÞ ¼

Z
I
dv0

Z
I
dw0�nl

th ðx0; v0; kÞ
�Dðv0; w0; kÞ�nl

th ðw0; z0; kÞjx0;z02C;

i�th;��ðx0; z0;kÞ ¼
Z
I
dv0�nl

th ðx0; v0; kÞ
��ð0Þðv0; z0; kÞjx0;z02C: (39)

For the setting-sun approximation, the steps listed above
leading from the formulation of the Schwinger-Dyson
equation on the thermal time path (‘‘Cþ I’’) to the for-
mulation on the closed real-time path with thermal initial
correlations (‘‘Cþ �’’) are
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Thus, the Gaussian and non-Gaussian contributions to the self-energy in setting-sun approximation for a thermal initial
state are given by

We stress that the propagator determined by the Kadanoff-
Baym equations for a thermal initial state is time-
translation invariant, as required. The matching procedure
guarantees that this property is directly inherited from the
Cþ I formalism. Nevertheless, the contributions to the
self-energy derived above are not, and cannot be, time-
translation invariant individually (compare with the dis-
cussion in Sec. III and Refs. [45–47]).

Finally, in order to explicitly obtain the thermal initial
correlations that are appropriate for a specific 2PI approxi-
mation, the iterative expansion (33) of the complete con-
nection has to be inserted. This yields a series expansion of
the non-Gaussian self-energies

�th;�� ¼ X1
k¼0

�ðkÞ
th;��; �nG

th;nl ¼
X1
k¼0

�ðkÞ;nG
th;nl ;

where

�ð0Þ
th;�� ¼ �th;��j�ð0Þ ; �ðkÞ

th;�� ¼ �th;��j�ðkÞ ��ðk�1Þ
th;�� ;

and analogously for �nG
th;nl.

For example, in setting-sun approximation, the thermal
initial correlations obtained from inserting the zeroth, first,
and second iteration of the complete connection are
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The zeroth contribution contains the thermal nonlocal effective four-point vertex (35). The first iteration yields three
diagrams with thermal effective six-, eight-, and ten-point vertices, and the second iteration yields six contributions with
thermal effective eight-, ten-, 12- (two diagrams), 14-, and 16-point vertices. The smallest and largest are shown in the last
line of Eq. (41). The expansion of �nG

th;nl contains thermal nonlocal effective vertices of order six and higher,

The zeroth contribution contains the thermal nonlocal
effective six-point vertex (36). The first contribution con-
tains 15 diagrams with thermal effective vertices of order 8
to 18. The order of the thermal initial correlations appear-
ing up to the fifth contribution in setting-sun approximation
are shown in Table I.

Thus, vacuum or thermal initial states entail an infinite
hierarchy of initial n-point correlation functions. In the
setting-sun approximation, the non-Gaussian initial corre-
lation of lowest order is the four-point correlation given in
the first line of Eq. (41). Its contribution to the Kadanoff-
Baym equations is

i�ð0Þ
th;��ðx; zÞ ¼

�i�

6

Z
C
d4x123Gthðx; x1ÞGthðx; x2Þ

�Gthðx; x3Þi�th;2PI
4;0L ðx1; x2; x3; zÞ:

In the limit x0, y0 ! 0, only the thermal initial four-point
correlation contributes to the right-hand side of the
Kadanoff-Baym Eqs. (37):

Z
C
dz0½�G

th;nl þ�nG
th;nl þ i�th;���ðx0; z0; kÞGthðz0; y0; kÞ

!
Z
C
dz0i�ð0Þ

th;��ðx0; z0; kÞGthðz0; y0; kÞ: (42)
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The reason is that all other contributions contain at least
one internal classical vertex. However, these vertices are
accompanied by memory integrals. Because of the struc-
ture of the closed real-time-path, memory integrals vanish
when all external time arguments approach the initial time.

Altogether, Kadanoff-Baym equations that describe
thermal equilibrium have been derived on the closed
real-time path with finite initial time. This requires to
take into account non-Gaussian n-point correlations of
the initial state, which enter explicitly on the right-hand
side of the Kadanoff-Baym equations. The values of these
initial correlation functions for a thermal state can be
determined iteratively in accordance with the underlying
2PI approximation.

VI. NUMERICAL RESULTS

In this section, we support the findings of the previous
section by numerical solutions of Kadanoff-Baym equa-
tions. Of course, one cannot implement the complete infi-
nite hierarchy of initial n-point correlation functions,
which would be required for an exact description of ther-
mal equilibrium in the framework of Kadanoff-Baym
equations. However, thermal equilibrium can be ap-
proached closer and closer as one includes more and
more thermal initial correlations. Therefore, we consider

initial states that are obtained by keeping thermal initial
n-point correlation functions for n 	 nmax and setting all
higher initial correlations to zero,

�nðx1; . . . ; xnÞ ¼
�
�th
n ðx1; . . . ; xnÞ for n 	 nmax;

0 for n > nmax:

More precisely, we compare the time evolution obtained
for two Z2-symmetric initial states (A) and (B) with
nmax ¼ 2 and nmax ¼ 4, respectively. Both initial states
have in common that the statistical propagator is initialized
with the thermal propagator and that all initial correlations
�nðx1; . . . ; xnÞ with n > 4 vanish:

GFðx0; y0;kÞjx0¼y0¼0 ¼ Gthð�i	; 0; kÞj	!0;

@x0GFðx0; y0;kÞjx0¼y0¼0 ¼ 0;

@x0@y0GFðx0; y0;kÞjx0¼y0¼0 ¼ @2	Gthð�i	; 0; kÞj	!0;

�nðx1; . . . ; xnÞ ¼ 0; for n > 4;

where Gthð�i	; 0; kÞ is the complete thermal propagator at
temperature T ¼ Tinit. The only difference is in the initial
four-point correlation:

�4ðx1; . . . ; x4Þ ¼
�
0 for ðAÞ;
�th
4 ðx1; . . . ; x4Þ for ðBÞ;

where �th
4 ðx1; . . . ; x4Þ is chosen as shown in Eq. (41).

Accordingly, (A) is a Gaussian initial state and (B) is a
minimal non-Gaussian initial state, and both states ‘‘are as
thermal as possible’’ for the respective classes of initial
states.
In both cases, we employ the 2PI three-loop approxima-

tion as discussed in Ref. [9] and Sec. II. We note that an
equivalent set of equations can be obtained from the 4PI
three-loop approximation [50]. In this case, �4 determines
the initial value of the 4PI four-point function [49].
The numerical solutions were obtained on a lattice with

323 � 20002 lattice sites and lattice spacings of asmR ¼
0:5 and atmR ¼ 0:025. We use �R=4! ¼ 0:75 for the re-
normalized coupling constant.4 The bare mass mB and
coupling �B, as well as the thermal propagator
Gthð�i	; 0; kÞ are determined by a separate numerics pro-
gram as described in Refs. [34,35].

TABLE I. Thermal initial correlations in the 2PI setting-sun
approximation. The column number is the order n ¼ 4; 6; . . . of
the thermal initial n-point correlation. The row number k ¼
0; 1; . . . shows which initial correlations contribute to �ðkÞ

th;��

(upper table) and �ðkÞ;nG
th;nl (lower table), respectively. Because

of the Z2 symmetry, only even correlations are nonzero.

�th;��ðx0; z0; kÞ
4 6 8 10 12 14 16 � � � 22 � � � 28 � � � 34 � � �

0 �
1 � � �
2 � � � � �
3 � � � � � � � �
4 � � � � � � � � � � �
5 � � � � � � � � � � � � � �
..
.

�nG
th;nlðx0; z0;kÞ

4 6 8 10 12 14 16 18 � � � 30 � � � 42 � � � 54 � � � 66 � � �
0 �
1 � � � � � �
2 � � � � � � � � �
3 � � � � � � � � � � � �
4 � � � � � � � � � � � � � � �
5 � � � � � � � � � � � � � � � � � �
..
.

4We checked for our lattice settings that this value for the
coupling is far below the ‘‘Landau pole’’ exhibited by the 2PI 3-
loop approximation [35]. Apart from that, we also checked that
the damping rates for the unequal-time propagators increase like
�2, which indicates that the above value for the coupling lies in
the domain of validity of the 2PI 3-loop approximation.
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A. Time evolution of the equal-time propagator

Both initial states (A) and (B) are nonequilibrium initial
states, since the thermal initial correlations higher than
nmax are neglected. However, among all possible
Gaussian initial states, the state (A) has the minimal offset
from thermal equilibrium. Similarly, the state (B) has the
minimal offset from equilibrium among all possible initial
states that are parameterized by initial two- and four-point
correlation functions. In the following, we will compare
this minimal offset for both initial states (A) and (B). In
exact thermal equilibrium, the equal-time propagator
GFðt; t;kÞ is constant. Therefore, the time dependence of
the equal-time propagator is a measure for the deviation
from thermal equilibrium.

Figure 6 shows the time evolution of the equal-time
propagator obtained from the numerical solution of the
two sets of Kadanoff-Baym equations. We find that the
deviation from thermal equilibrium is considerable for the
Kadanoff-Baym equations with Gaussian initial state (A).
In contrast to this, for the Kadanoff-Baym equations with
the non-Gaussian initial state (B) the equal-time propaga-
tor remains very close to the thermal propagator at all
times. We have checked that this qualitative behavior stays
the same when varying the coupling strength or the lattice
spacings. This shows that the thermal initial four-point
correlation already yields a reasonable approximation of
the complete thermal initial state.

This observation can be understood by analyzing the
role of the thermal initial correlations (40) in the Kadanoff-
Baym Eqs. (20). In fact, there are two distinct reasons why
the contribution of the thermal initial n-point correlations
are suppressed for n > 4.

The first reason is that the effective loss of memory is
stronger the larger n. This can be seen as follows: The
thermal initial n-point correlations enter the Kadanoff-
Baym equations as effective n-point vertices. These are
connected with classical vertices by n lines. Each of these
lines yields a propagator Gðt; 0;kÞ for which one of the
time arguments is evaluated at the initial time [see Eq. (9)].
However, such unequal-time propagators are damped ex-
ponentially with respect to the time t [5]. Therefore, the
contribution of the initial n-point correlations is also
damped exponentially for t ! 1, and the damping is the
stronger the larger n.
The second reason is that the contributions to the

Kadanoff-Baym Eqs. (20), which arise from thermal initial
n-point correlations with n > 4, vanish in the limit t ! 0
as has been shown in Sec. V.
Thus, the influence of thermal initial n-point correla-

tions with n > 4 on the solutions of Kadanoff-Baym equa-
tions is suppressed compared to the initial four-point
correlation for early times (t ! 0) as well as for late times
(t ! 1).

B. Offset between initial and final temperature

Figure 7 shows the time evolution of the effective tem-
perature TðtÞ and the effective chemical potential5 
ðtÞ.
They are obtained by fitting a Bose-Einstein distribution

 0.3
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 0.01  0.1  1  10  100

G
F
(t

,t,
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k = mR

k = 2mR

 500  1000  1500  2000

KB, Gauss (A)

KB, Non-Gauss (B)

ThQFT

FIG. 6 (color online). Time evolution of the equal-time propagator GFðt; t;kÞ obtained from Kadanoff-Baym equations with thermal
initial two-point correlation function (initial state (A), red dashed lines) as well as thermal initial two- and four-point correlation
functions (initial state (B), green solid lines), for three momentum modes, respectively. The dotted horizontal lines show the
renormalized thermal propagator Gthð0; 0;kÞ, which serves as initial condition at t ¼ 0.

5Note that the effective chemical potential is introduced here
as a fit parameter in order to characterize the equilibration
process. Since particle number is not conserved for ��4 theory,
the effective chemical potential has to vanish in thermal
equilibrium.
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function to the effective particle number density nðt; kÞ for
all times t. The effective particle number density can
directly be extracted from solutions of Kadanoff-Baym
equations [9]. At the initial time, we have Tð0Þ ¼ Tinit

and 
ð0Þ ¼ 0. For t ! 1, the solutions approach thermal
equilibrium, i.e. TðtÞ ! Tfinal and 
ðtÞ ! 0 within the
numerical accuracy. The time evolution can be divided
into the three phases of (i) correlation buildup for tmR &
1, (ii) kinetic equilibration for 1 & tmR & 10, and
(iii) chemical equilibration for tmR * 10. The numerical
solutions clearly exhibit a separation between the time
scales of kinetic and chemical equilibration [9,22].

We see in Fig. 7 that the deviation from thermal equi-
librium is much smaller for the non-Gaussian initial state
(B) as compared to the Gaussian initial state (A). This
result supports the observation from the previous
subsection.

In addition, Fig. 7 reveals a qualitative difference be-
tween both sets of equations. For the Gaussian initial
condition (A), there is an offset between the initial tem-
perature Tinit and the final temperature Tfinal. However, for
the non-Gaussian initial condition (B), the initial and final
value of the temperature agree within the numerical
accuracy.

This behavior can be explained by the composition of
the total energy of the system. It can be split into kinetic
and correlation energy,

Etotal ¼ EkinðtÞ þ EcorrðtÞ; (43)

where

EkinðtÞ ¼ 1

2

Z d3k

ð2�Þ3
�
@x0@y0 þ k2 þm2

þ �

4

Z d3q

ð2�Þ3 GFðt; t; qÞ
�
GFðx0; y0; kÞjx0¼y0¼t;

EcorrðtÞ ¼ � 1

4

Z d3k

ð2�Þ3
�
ð���;Fðt;kÞGFð0; t; kÞ

þ 1

4
���;�ðt; kÞG�ð0; t;kÞÞ

�
Z t

0
dz0ð�Fðt; z0; kÞG�ðz0; t;kÞ

���ðt; z0; kÞGFðz0; t;kÞÞ
�
:

The total energy is conserved by the numerical solutions up
to numerical errors (< 1%). Using the thermal initial state,
we can also derive an expression for the total energy in
thermal equilibrium at temperature T,

EeqðTÞ ¼ Eeq
kinðTÞ þ Eeq

corrðTÞ;
where E

eq
kinðTÞ ¼ Ekinðt ¼ 0ÞjG¼Gth

and

E
eq
corrðTÞ ¼ � 1

4

Z d3k

ð2�Þ3 �th;��;Fðt;kÞGthð0; t;kÞjt¼0:

For all possible initial states, the final temperature can
then be determined by the requirement

Etotal ¼ EeqðTfinalÞ:
Both initial states considered here feature thermal n-point
correlations at temperature Tinit for n 	 nmax. Therefore,
we have

-0.3
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 0.3
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T
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R
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FIG. 7 (color online). Time evolution of the effective temperature and effective chemical potential obtained from Kadanoff-Baym
equations with thermal initial two-point correlation function (initial state (A), red dashed lines) as well as thermal initial two- and four-
point correlation functions (initial state (B), green solid lines). The shaded areas illustrate qualitatively the deviation of the effective
particle number density nðt; kÞ from the Bose-Einstein distribution function. They are obtained from the asymptotic standard error of
the fit (via least-square method) magnified by a factor 10, for better visibility. Nevertheless, the errors become invisibly small at times
tmR 
 10.
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Etotal ¼ EeqðTinitÞ � �Eðn>nmaxÞðTinitÞ;
where �Eðn>nmaxÞðTÞ denotes the contribution to the ther-

mal energy that comes from n-point correlations with n >
nmax. For initial state (A), we find

�Eðn>2ÞðTÞ ¼ E
eq
corrðTÞ:

Since the thermal correlation energy has a nonzero value,
we find that

Tfinal � Tinit for initial state ðAÞ:
This is in accordance with the results of Ref. [28] for the
nonrelativistic case. In general, one would expect that this
is also true for initial state (B). However, using Eq. (42), we
obtain

Eeq
corrðTÞ ¼ �

4!

Z
C
d4x1234Gthðx; x1ÞGthðx; x2Þ

�Gthðx; x3Þi�th
4 ðx1; x2; x3; x4ÞGthðx4; xÞjx¼0:

Thus, only the initial four-point correlation contributes to
the thermal correlation energy. Therefore, we have
�Eðn>4ÞðTÞ ¼ 0, which means that the initial and final

temperatures have to agree,

Tfinal ¼ Tinit for initial state ðBÞ:
This property is quite remarkable. It means that the total
energies for the initial state (B) and for the complete
thermal initial state are identical. Thus, the thermal initial
n-point correlations �th

n with n > 4 do not contribute to the
total energy of the initial state. Instead, the thermal initial
four-point correlation �th

4 already captures the complete
thermal correlation energy at the initial time in the setting-
sun approximation.

Moreover, this result can be generalized to arbitrary 2PI
approximations. In general, the correlation energy at the
initial time is given by

Ecorrðt ¼ 0Þ ¼ � 1

4

Z d3k

ð2�Þ3 ���;Fðt;kÞGFð0; t; kÞjt¼0:

The most general structure of the non-Gaussian self-energy
���ðx; yÞ is shown in Fig. 8. The kernels AnG

4 and AnG
3 may

in general contain classical as well as nonlocal effective
vertices. In the setting-sun approximation (13), they are
given by AnG

4 ¼ �4 and AnG
3 ¼ 0. In the limit t � x0 ! 0,

all contributions containing classical vertices vanish due to
the memory integrals accompanying these vertices. Thus,
at the initial time, only those parts of AnG

4 and AnG
3 do

contribute to the correlation energy that can be rewritten in

the form of an initial four- and three-point vertex,
respectively.
This property is characteristic for the �4 interaction. If

the Lagrangian would contain a (nonrenormalizable) �6

interaction, then also initial five- and six-point correlations
would explicitly contribute to the energy density of the
thermal initial state.

VII. CONCLUSIONS AND OUTLOOK

In this work, we derive Kadanoff-Baym equations for
non-Gaussian correlated initial states describing vacuum
and thermal equilibrium.We provide suitable techniques to
establish approximations to the exact thermal initial corre-
lation functions that match the approximation scheme
underlying the Kadanoff-Baym equations. These tech-
niques are applicable for arbitrary truncations of the 2PI
effective action. Examples are given for the 2PI three-loop
approximation.
Finally, we discuss numerical solutions of Kadanoff-

Baym equations for a real scalar �4 quantum field theory,
which take the thermal initial four-point correlation as the
leading non-Gaussian correction into account. These solu-
tions are compared to solutions obtained for Gaussian
initial states. For the latter, the initial state has no correla-
tion energy by definition. Therefore, even if one initializes
the two-point function with the thermal propagator for a
certain temperature, the system equilibrates at a different
temperature [28]. We show numerically and analytically
that this feature of the Gaussian initial state is remedied
completely already by taking the thermal initial four-point
correlation into account. The reason is that higher correla-
tions of the initial state do not contribute to the total energy
at the initial time. Thus, we find that including an initial
four-point correlation function yields a significantly im-
proved approximation to the complete thermal initial state
as compared to Gaussian initial states.
The techniques developed in this work provide a frame-

work for investigating the renormalization of Kadanoff-
Baym equations. It is known that the 2PI effective action
can be renormalized in thermal equilibrium [34,35].
Accordingly, it is possible to derive renormalized
Kadanoff-Baym equations for the thermal initial state us-
ing the techniques introduced above. These provide a well-
defined expansion point for nonequilibrium initial states.
For example, it is possible to parameterize the initial
n-point correlation functions in the form �n ¼
�th
n þ ��n. In the limit ��n ! 0, the thermal initial state

is recovered and thus the Kadanoff-Baym equations are

FIG. 8. Contribution���ðx; yÞ to the self-energy�ðx; yÞ, where the left line is connected to a classical vertex, and the right line to an
effective nonlocal vertex.
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formally finite. Then it is possible to investigate which
conditions the deviations ��n have to fulfill such that no
new divergences are introduced. This is left to future work.
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APPENDIX A: PERTURBATIVE CALCULATION
OF THERMAL DENSITY MATRIX ELEMENT

In order to describe the equilibrium limit within non-
equilibrium quantum field theory, it is important to calcu-
late the thermal density matrix element h’þj�thj’�i
evaluated with respect to two eigenstates �ð0; xÞj’�i ¼
’�ðxÞj’�i of the field operator �ðt; xÞ at time t ¼ tinit �
0. In the following, the perturbative expansion of the
thermal density matrix element is discussed based on
Ref. [44]. Therefore, the action (1) is formulated on the
imaginary time path, and split into the free part S0½�0� ¼R
I d4xðð@�0Þ2 �m2�2

0Þ=2 and the interaction part

Sint½�� ¼ �R
I d4x �

4!�ðxÞ4. For the free thermal density

matrix �0 ¼ 1
Z0

expð��H0Þ containing the free Hamil-

tonian H0, which is quadratic in the field, the matrix
element can be calculated by a path integral that is analo-

gous to Eq. (21). The result is [44]

h’þj�0j’�i ¼ N 0 exp½iS0½�0��;
where N 0 is a normalization factor, which is independent
of ’�, and �0ðxÞ is the solution of the free equation of
motion �S0=�� ¼ ð�h�m2Þ�0 ¼ 0 on I subject to the
boundary conditions

�0ð0; xÞ ¼ ’�ðxÞ and �0ð�i�; xÞ ¼ ’þðxÞ:
The solution is uniquely determined, and, in spatial mo-
mentum space, given by

�0ð�i	;kÞ ¼ sinhð!k	Þ
sinhð!k�Þ’þðkÞ

þ sinhð!kð�� 	ÞÞ
sinhð!k�Þ ’�ðkÞ;

where !2
k ¼ m2 þ k2.

The full thermal initial correlations can be obtained by
perturbing the full Hamiltonian H around H0,

h’þj�thj’�i ¼ N exp½iðS0½�0� þ Fint½�0�Þ�;
where N is a normalization factor and iS0½�0� is the free
contribution. iFint½�0� is the sum of all connected
Feynman diagrams with vertices given by the derivatives
of Sint½�� evaluated for �ðxÞ ¼ 0,

According to the Feynman rules given in Sec. III the empty circle reminds us that the corresponding integration runs over
the imaginary-time contour I . The boundary conditions of the path integral (21) are formally taken into account by the
‘‘field expectation value’’

along the imaginary contour I , as well as the propagator

which is the Greens function for solutions of the free equation of motion that vanish at the boundaries 	 ¼ 0, �. D0 is
denoted by the dotted line. To first order in �, iFint½�0� is given by
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The field-independent diagrams, like the first one above,
can be absorbed into the normalization N . The perturba-
tive expansions of the thermal initial correlations �th

n are
obtained by the n-th functional derivative of F½’þ; ’�� �
S0½�0� þ Fint½�0� with respect to the field,

i�th;�1;...;�n
n ðx1; . . . ; xnÞ ¼ �iF½’þ; ’��

�’�1ðx1Þ . . .�’�nðxnÞ
��������’¼0

;

to which all diagrams with n insertions of �0 contribute.
Here, the decomposition from Eq. (9) has been used. Thus,
the initial correlations obtained in this way are indeed
supported only at the initial time, as required. Formally,

the functional derivative corresponds to replacing the field
insertions by (distinguishable) external lines in the dia-
grammatic expansion of iFint½�0� according to

where �0ð�i	; x0; kÞ is defined in Eq. (24). For example,
the leading contribution to the thermal initial four-point
correlation function obtained from the fourth derivative of
iFint½�0� is given by [see Eq. (27)]

Switching again to momentum space, an explicit expression for the leading contribution to the perturbative thermal initial
four-point correlation function is obtained,

i�th;�1;�2;�3;�4
4;0L ðk1; k2; k3;k4Þ ¼ ��

Z �

0
d	��1

0 ð�i	;k1Þ��2
0 ð�i	;k2Þ��3

0 ð�i	;k3Þ��4
0 ð�i	;k4Þ;

where

�þ
0 ð�i	;kÞ ¼ sinhð!k	Þ

sinhð!k�Þ ; ��
0 ð�i	; kÞ ¼ sinhð!kð�� 	ÞÞ

sinhð!k�Þ :

The integral over the imaginary time can be performed analytically. In the zero-temperature limit (� ! 1), one obtains

i�
th;�1;�2;�3;�4
4;0L ðk1; k2;k3; k4Þ ¼

� ��
!k1

þ!k2
þ!k3

þ!k4

for �1 ¼ �2 ¼ �3 ¼ �4 ¼ �;

0 else:
(A3)

Altogether, a diagrammatic expansion of the matrix ele-
ment of the thermal density matrix in terms of perturbative
Feynman diagrams has been developed as suggested in
Ref. [44]. This allows to explicitly calculate thermal cor-
relation functions order by order in the quartic coupling
constant. The lowest-order perturbative result (A2) may be
compared to the nonperturbative 2PI result (35).

APPENDIX B: DERIVATION OF THE
CONNECTION IN THE 2PI CASE

In this appendix, we generalize Eq. (23) to the 2PI
formalism. Before we consider the complete thermal
propagator, we find it helpful to take an intermediate step
by first considering a mixed thermal propagator, which is
identical to the complete thermal propagator on the imagi-
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nary branch of the thermal time contour, and which obeys
the free equation of motion on the real branches.

1. Mixed thermal propagator

It is straightforward to define projectors on the parts C
and I of the thermal time contour

1 I ðx0Þ ¼
�
0 if x0 2 C
1 if x0 2 I

and

1 Cðx0Þ ¼
�
1 if x0 2 C
0 if x0 2 I

:

Of course, they fulfill the relation

1 I ðx0Þ þ 1Cðx0Þ ¼ 1 for all x0 2 Cþ I :

The mixed thermal propagator is defined by the following
equation of motion:

G�1
m;thðx; yÞ ¼ iðhx þm2Þ�CþI ðx� yÞ

� 1I ðx0Þ1I ðy0Þ�thðx; yÞ; (B1)

where x0, y0 2 Cþ I . Here, �thðx; yÞ is the complete
thermal self-energy. The mixed propagator can be decom-
posed into statistical and spectral components

Gm;thðx; yÞ ¼ Gm;Fðx; yÞ � i

2
signCþI ðx0 � y0ÞGm;�ðx; yÞ:

The equation of motion for the mixed propagator can
equivalently be written as

ðhx þm2ÞGm;thðx; yÞ ¼ �i�CþI ðx� yÞ � i1I ðx0Þ
�

Z
I
d4z�m;thðx; zÞGm;thðz; yÞ:

Each of the two time arguments of the propagator can
either be real or imaginary, which yields four combinations

GCC
m;th, G

CþI
m;th , G

IC
m;th, G

II
m;th. The mixed propagator evaluated

with two imaginary time arguments is identical to the
complete thermal 2PI propagator

GII
m;thðx; yÞ ¼ GII

th ðx; yÞ for x0; y0 2 I ; (B2)

whereas the mixed propagators evaluated with one or two

real-time arguments GCþI
m;th ðx; yÞ and GCC

m;thðx; yÞ fulfill the
equation of motion of the free propagator

ðhx þm2ÞGCþI
m;th ðx; yÞ ¼ 0;

ðhx þm2ÞGCC
m;Fðx; yÞ ¼ ðhx þm2ÞGCC

m;�ðx; yÞ ¼ 0:
(B3)

At the initial time x0 ¼ y0 ¼ 0, the propagators on all
branches of the thermal time path agree. Using Eq. (B2),
one obtains

GP 1P 2

m;th ðx; yÞjx0¼y0¼0 ¼ Gthðx; yÞjx0¼y0¼0

for P i 2 fC; Ig. Thus, the initial value of the mixed propa-
gator at x0 ¼ y0 ¼ 0 is given by the complete thermal
propagator.
For the mixed propagator with one imaginary and one

real time, the equation of motion, transformed to spatial
momentum space, reads

ð�@2	 þ k2 þm2ÞGIC
m;thð�i	; y0; kÞ

¼ �
Z �

0
d	0�II

th ð�i	;�i	0; kÞGIC
m;thð�i	0; y0;kÞ:

Next, a Fourier transformation with respect to the imagi-
nary time is performed, using in particular

Z �

0
d	 expð�i!n	Þ@2	GIC

m;thð�i	; y0; kÞ
¼ �!2

nG
IC
m;thð!n; y

0; kÞ þ discði!nG
IC
m;th þ @	G

IC
m;thÞðy0; kÞ;

where !n ¼ 2��n is a Matsubara frequency. It is impor-
tant to take the contribution from boundary terms into
account,

disc ði!nG
IC
m;th þ @	G

IC
m;thÞðy0; kÞ

¼ ½ði!nG
IC
m;th þ @	G

IC
m;thÞð�i	; y0; kÞ�	¼�

	¼0 :

Thus, the Fourier-transformed equation for the mixed
propagator reads

ð!2
n þ k2 þm2ÞGIC

m;thð!n; y
0; kÞ

¼ ��II
th ð!n;kÞGIC

m;thð!n; y
0; kÞ

þ discði!nG
IC
m;th þ @	G

IC
m;thÞðy0; kÞ: (B4)

The boundary terms have to fulfill the equation of motion

ð@2
y0
þ k2 þm2Þ discðGIC

m;thÞðy0;kÞ ¼ 0;

ð@2
y0
þ k2 þm2Þ discð@	GIC

m;thÞðy0;kÞ ¼ 0;

which follows using GIC
m;thð!n; y

0; kÞ ¼ GCþI
m;th ðy0; !n; kÞ

and the equation of motion (B3) for GCþI
m;th . Furthermore,

the initial conditions at y0 ¼ 0 are fixed by the periodicity
relation of the thermal propagator as well as the equal-time
commutation relations,

discðGIC
m;thÞð0; kÞ ¼ 0; @y0 discðGIC

m;thÞð0; kÞ ¼ i;

discð@	GIC
m;thÞð0; kÞ ¼ 1; @y0 discð@	GIC

m;thÞð0; kÞ ¼ 0:
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The statistical and spectral components GCC
m;Fð0; y0; kÞ and

GCC
m;�ð0; y0; kÞ of the mixed propagator are two linearly

independent solutions of the free equation of motion.
Since it is a second order differential equation, any solution
can be expressed as a linear combination, especially

discðGIC
m;thÞðy0; kÞ ¼ �iGCC

m;�ð0; y0; kÞ;

discð@	GIC
m;thÞðy0; kÞ ¼

GCC
m;Fð0; y0; kÞ
Gthð0; 0;kÞ :

Inserting this result into Eq. (B4) and using the Fourier-
transformed Schwinger-Dyson Eq. (30) for the complete
thermal propagator yields

GIC
m;thð!n; y

0; kÞ ¼
�
GII

th ð!n; kÞ
Gthð0; 0;kÞ

�
GCC

m;Fð0; y0; kÞ

� ði!nG
II
th ð!n; kÞÞGCC

m;�ð0; y0; kÞ:

Finally, the upper relation can be rewritten in the form

GIC
m;thð!n; y

0; kÞ ¼
Z
C
dz0�mð!n; z

0; kÞGCC
m;thðz0; y0;kÞ;

(B5)

where a mixed connection has been introduced,

Furthermore, the transposed connection is defined as
�T

mðz0; !n; kÞ ¼ �mð!n; z
0; kÞ. Equation (B5) for the

mixed propagator is the generalization of Eq. (23) for the
free propagator. Thus, the mixed propagator evaluated with
one real and one imaginary time can be written as the
convolution of the mixed connection, which involves the
complete 2PI propagator, and the real-real mixed propa-
gator, which obeys the free equation of motion.

2. Complete thermal propagator

Using the equation of motion (B1) of the mixed propa-
gator, the self-consistent equation of motion (30) of the
complete propagator can be rewritten as

G�1
th ðx; yÞ ¼ G�1

m;thðx; yÞ � ½1� 1I ðx0Þ1I ðy0Þ��thðx; yÞ

for x0, y0 2 Cþ I . By convolving this equation with Gth

from the left and with Gm;th from the right, the integral

form of the Schwinger-Dyson equation is obtained:

Gthðx; yÞ ¼ Gm;thðx; yÞ þ
Z
CþI

d4u
Z
CþI

d4vGthðx; uÞ
� ½1� 1I ðu0Þ1I ðv0Þ��thðu; vÞGm;thðv; yÞ:

(B7)

Evaluating it for x0 2 C and y0 2 I , and performing a
Fourier transformation with respect to the relative spatial
coordinate x� y as well as the imaginary time y0 gives

GCI
th ðx0; !n; kÞ ¼ GCI

m;thðx0; !n; kÞ þ
Z
CþI

du0
Z
C
dv0Gthðx0; u0; kÞ�thðu0; v0; kÞGCI

m;thðv0; !n; kÞ

� i
Z
C
du0GCC

th ðx0; u0; kÞ�thðu0; !n;kÞGII
m;thð!n;kÞ:

Next, GCI
m;thðx0; !n;kÞ and GCI

m;thðv0; !n; kÞ are replaced using Eq. (B5) with interchanged arguments. Furthermore, it is
used that GII

m;thð!n; kÞ ¼ GII
th ð!n; kÞ [see Eq. (B2)]

KADANOFF-BAYM EQUATIONS WITH NON-GAUSSIAN . . . PHYSICAL REVIEW D 80, 085011 (2009)

085011-25



GCI
th ðx0; !n; kÞ ¼

Z
C
dz0GCC

m;thðx0; z0; kÞ�T
mðz0; !n;kÞ

þ
Z
C
dz0

Z
CþI

du0
Z
C
dv0Gthðx0; u0; kÞ�thðu0; v0;kÞGCC

m;thðv0; z0; kÞ�T
mðz0; !n; kÞ

� i
Z
C
du0GCC

th ðx0; u0; kÞ�thðu0; !n; kÞGII
th ð!n; kÞ

¼
Z
C
dz0

�
GCC

th ðx0; z0; kÞ �
Z
C
du0

Z
I
dv0ðGCC

th ðx0; u0; kÞ�thðu0; v0; kÞGIC
m;thðv0; z0;kÞÞ

�
�T

mðz0; !n; kÞ

� i
Z
C
du0GCC

th ðx0; u0; kÞ�thðu0; !n; kÞGII
th ð!n; kÞ

¼
Z
C
dz0GCC

th ðx0; z0; kÞ
�
�T

mðz0; !n; kÞ � i�thðz0; !n;kÞGII
th ð!n; kÞ

�
Z
C
du0

Z
I
dv0�thðz0; v0; kÞGIC

m;thðv0; u0; kÞ�T
mðu0; !n; kÞ

�
:

In the second step, the Schwinger-Dyson Eq. (B7) eval-
uated for x0, z0 2 C was used again. In the third step the
complete real-real propagator was factored out by inter-
changing the integration variables u0 $ z0 in the second
and third term. The last line can be simplified by Fourier
transforming with respect to the imaginary time v0, and
performing the integral over C using Eq. (B6):

Z
C
du0

Z
I
dv0�thðz0; v0; kÞGIC

m;thðv0; u0; kÞ�T
mðu0; !n; kÞ

¼ �iT
X
l

�thðz0; !l; kÞGIC
m;thð!l; 0; kÞ�s

mð!n; kÞ

¼ �iT
X
l

�thðz0; !l; kÞGII
th ð!l; kÞG

II
th ð!n; kÞ

Gthð0; 0; kÞ :

Finally, a decomposition of the complete thermal 2PI
propagator evaluated with one real time and one
Matsubara frequency is obtained,

GCI
th ðx0; !n; kÞ ¼

Z
C
dz0GCC

th ðx0; z0;kÞ�Tðz0; !n; kÞ;

where the complete connection was introduced,

�Tðz0; !n; kÞ ¼ �T
mðz0; !n; kÞ

� iT
X
m

�thðz0; !m;kÞDð!m;!n; kÞ;

(B8)

with �ð!n; z
0; kÞ ¼ �Tðz0; !n; kÞ. Compared to the mixed

connection, the complete connection contains an addi-
tional term, which is the convolution of the thermal self-
energy, evaluated with one real time and one Matsubara
frequency, with the propagator Dð!m;!n; kÞ. This propa-
gator is given by

Dð!n;!m;kÞ ¼ �n;m

T
GII

th ð!n; kÞ

�
Z
C
dw0

Z
C
dz0�ð!n;w

0; kÞ
�Gthðw0; z0; kÞ�Tðz0; !m; kÞ

¼ �n;m

T
GII

th ð!n; kÞ

�GII
th ð!n;kÞGII

th ð!m; kÞ
Gthð0; 0; kÞ : (B9)

In the last line

Z
C
dw0

Z
C
dz0Xð!n;w

0;kÞGthðw0; z0;kÞ�thðz0;!m;kÞ ¼ 0

was used, where X 2 f�;�thg. The propagator D has the
properties

Dð!n;!m;kÞ ¼ Dð!m;!n;kÞ;
T
X
m

Dð!n;!m;kÞ ¼ 0:

From the last property it can be inferred that only the
nonlocal part of the thermal self-energy �thðz0; !m;kÞ ¼
�loc

th þ�nl
th ðz0; !m; kÞ contributes in Eq. (B8), since the

local part is independent of the Matsubara frequency.
By applying an inverse-Fourier transformation with re-

spect to imaginary time, using in particular

Dð�i	;�i	0;kÞ ¼ T2
X
n;m

ei!n	�i!m	
0
Dð!n;!m;kÞ;

the complete thermal 2PI propagator with one imaginary
and one real time can be decomposed as
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and

where the complete connection is given by

and

The coefficients �s;að�i	; kÞ are given by

�sð�i	; kÞ ¼ GII
th ð�i	; 0; kÞ
Gthð0; 0; kÞ ; �að�i	; kÞ ¼ 2@	G

II
th ð�i	; 0; kÞ: (B12)

Equations (B10)–(B12) constitute the nonperturbative generalizations of Eqs. (23) and (24).
The nonperturbative generalization of Eq. (29) is obtained from Eq. (B9),

GII
th ð�i	;�i	0;kÞ ¼ Dð�i	;�i	0; kÞ þ

Z
C
dw0

Z
C
dz0�ð�i	; w0; kÞGthðw0; z0; kÞ�Tðz0;�i	0; kÞ

¼ Dð�i	;�i	0; kÞ þ�sð�i	;kÞGthð0; 0; kÞ�sð�i	0;kÞ: (B13)

Note that only the parts of the connections containing �s contribute to the double integral in the second and third line,
whereas the parts involving �a and �nl

th vanish due to a cancellation of the contributions from the two branches of the
closed real-time path. Using the Feynman rules from above, the upper equation can also be written as

In summary, there are two differences compared to the perturbative case: (i) the free thermal propagatorG0;thð�i	; 0;kÞ
enters the free connection, whereas the complete thermal propagator Gthð�i	; 0; kÞ enters the complete connection, and
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(ii) the free connection �0ð�i	; z0; kÞ is only supported at the initial time z0 ¼ 0�, whereas the complete connection
�ð�i	; z0; kÞ features an additional term containing the nonlocal part of the complete thermal self-energy.
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