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We present both analytically and numerically a consistent analysis of the dynamics from the Affleck-

Dine (AD) mechanism to the subsequent semiclassical evolution in both gravity-mediated and gauge-

mediated models. We obtain analytically the elliptic motions in the AD dynamics as the analogy of the

well-known Kepler-problem, and by solving the equations of motion on a lattice, we find that the

semiclassical evolution goes through three distinct stages as a nonequilibrium process of reheating the

Universe: prethermalization, bubble collisions and thermalization. We report that the second stage of our

case lasts rather long compared to the second stage of the reheating case, and the thermalization process is

unique due to the presence of ‘‘thermal Q-balls’’.
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I. INTRODUCTION

The present baryon asymmetry in the Universe is one of
the most mysterious problems in cosmology and particle
physics (for a review see [1]). Within the standard model
(SM), electroweak baryogenesis was suggested as a way to
explain the inequality between the baryon and antibaryon
number, and recent developments have shifted into con-
structing a theory of reheating the Universe [2].
Electroweak baryogenesis satisfies the well-known
Sakharov’s three conditions required for successful baryo-
genesis [3], namely, baryon number production, C=CP
violation, and the process taking place out-of-equilibrium;
however, the predicted CP violation in electroweak baryo-
genesis is too small to explain the present observed baryon
number. By satisfying the above three conditions, the
Affleck-Dine (AD) baryogenesis [4], which was proposed
in the theoretical framework beyond the SM, namely, the
minimal supersymmetric standard model (MSSM), is a
more successful scenario to tackle this puzzle, since it
may solve problems of gravitino and moduli overproduc-
tion and give rise simultaneously to the ordinary matter and
dark matter in the Universe. The MSSM has many gauge-
invariant flat directions along which R parity is preserved.
The flat directions are lifted by supersymmetry (SUSY)
breaking effects arising from nonrenormalizable terms,
which give a U(1) violation through A-terms. In the origi-
nal scenario of the AD baryogenesis, one can parametrize
one of the flat directions in terms of a complex scalar field
known as an AD field (or AD condensate which consists of
a combination of squarks and/or sleptons fields). The AD
field evolves to a large field expectation value during an
inflationary epoch in the early Universe. After inflation, the
orbit of the AD field can be kicked along the phase direc-
tion due to the A-terms which generate the U(1) charge
(baryon/lepton number), and then the A-terms become
negligible, where the AD field rotates towards the global

minimum of the scalar potential. Hence, the generated
global U(1) charge is fixed and the orbit of the AD field
rotates around the origin of the complex field-space, cf. the
anomaly mediated models [5]. After the AD condensate
decays into the usual baryons and leptons, AD baryogen-
esis becomes complete.
The trajectory of the AD field is identical to the plane-

tary orbits in the well-known Kepler-problem as we will
show later, replacing the Newtonian potential by an iso-
tropic harmonic oscillator potential [6]. This coincidental
classical-mechanics reduction was noted for the orbits of a
probe brane in the branonium system [7,8]. As general
relativity predicted that planetary orbits precess by adding
the relativistic correction to the Newtonian potential, we
will see similar events occur for the orbits of AD fields,
which are disturbed by quantum and nonrenormalizable
effects.
By including quantum corrections [9,10] and/or thermal

effects [11] in the mass term of the standard AD scalar
potentials, the AD condensate is classically unstable
against spatial perturbations due to the presence of nega-
tive pressure [12], and fragments to bubblelike objects,
eventually evolving into Q-balls [13]. Lee pointed out
[14] that Q-balls may form due to bubble nucleation
(first-order phase transition) [15], even in the case that
the condensate is classically stable against the linear spatial
perturbations.
AQ-ball is a nontopological soliton [16] whose stability

comes from the existence of a continuous global or local
charge Q (for a review see [17] and references therein).
Tsumagari et al. [18,19] showed previously the complete
stability analysis of Q-balls at zero-temperature in both
polynomial potentials and MSSM flat potentials. Laine
et al. [20] investigated the stability of Q-balls in a thermal
bath. The stability of the thermal SUSYQ-balls is different
from the one of the standard ‘‘cold’’ Q-balls, since they
suffer from evaporation [20], diffusion [21], dissociation
[22], and decays into light/massless fermions [23].
Therefore, most SUSY Q-balls are generally not stable*ppxmt@nottingham.ac.uk
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but long-lived, and may thermalize the Universe by decay-
ing into baryons on their surface [24], which could solve
the gravitino and moduli overproduction problems without
fine-tuning. The SUSY Q-balls in gravity-mediated (GRV-
M) models are quasistable decaying into the lightest SUSY
particles (LSP dark matter), and the fraction of the baryons
from the Q-balls may give the present baryon number,
which can explain the similarity of the energy density
between the observed baryons and dark matter [22,25].
The SUSY Q-balls in gauge-mediated (GAU-M) models,
however, can be extremely long-lived so that those Q-balls
are candidates for cold dark matter [25,26] and may give
the present observed baryon-to-photon ratio [20].

The dynamics and formation of Q-balls have been in-
vestigated numerically. With different relative phases and
initial velocities, the authors [27] found a charge transfer
from one Q-ball to the other and interesting ring formation
after the collision. It has been found [28] that similar
ringlike solutions are responsible for the excited states
from the ground state (Q-ball) by introducing extra degrees
of freedom: spatial spins [29] and twists [30]. The forma-
tion of Q-balls after inflation have been investigated in
both GRV-M models [31] and GAU-M models [32,33], in
which SUSY is broken by either gravity or gauge inter-
actions. As we will show, the Q-ball formation involves
nonequilibrium dynamics, which is related to reheating
problem in cosmology.

The reheating process after the inflation period involves
nonlinear, out-of-equilibrium, and nonperturbative phe-
nomena so that it is extremely hard to construct a theory
for the whole process, see the 2 particle irreducible effec-
tive action as a remarkable approach [34]. In the first stage
of reheating (preheating), it is currently well-known that
the fluctuations at low momenta are amplified, which leads
to explosive particle production. After preheating, the sub-
sequent stages towards equilibrium are described by the
wave kinetic theory of turbulence; Micha et al. [35] re-
cently estimated the reheating time and temperature. These
turbulent regimes appear in a large variety of nonequilib-
rium processes, and indeed, the evolution of Q-ball for-
mation experiences the active turbulence at which stage,
many bubbles collide as observed in the next stage of
tachyonic preheating [36]. During this bubble-collision
stage within the reheating scenario, it is believed that
gravitational waves may be emitted from the stochastic
motion of heavy objects [37,38]. The problem of gravita-
tional wave emissions has been discussed only in the
fragmentation stage of Q-ball formation so far [39], but
not in the collision stage as opposed to the preheating
cases. Furthermore, the preheating effects in the AD baryo-
genesis have been considered in [40].

In this paper, we show analytically and numerically that
in GRV-M and GAU-M models the approximate trajectory
of the AD fields is, respectively, either a precessing spiral
or shrinking trefoil due to quantum, nonrenormalizable,

and Hubble expansion effects. Moreover, we explicitly
present an exponential growth of the linear spatial pertur-
bations in both models. By introducing 3þ 1 (and 2þ 1)-
dimensional lattice simulations, we identify that the evo-
lution in Q-ball formation involves nonequilibrium dy-
namics, including turbulent stages. Following the
pioneering work on the turbulent thermalization by
Micha et al. [35], we obtain scaling laws for the evolution
of variances during the Q-ball formation.
The paper is divided as follows. We explore both analyti-

cally and numerically the dynamics of the AD field in
Sec. II. In Sec. III, we study the late evolution of the AD
fields and the process of Q-ball formation, introducing
detailed numerical lattice results. Finally, we conclude
and discuss our results in Sec. IV. Two appendixes are
included. We obtain the equations of motion and their
perturbed equations for multiple scalar fields in a fixed
expanding background in Appendix A. In Appendix B, we
find elliptic forms for the orbits of AD fields.

II. THE AFFLECK-DINE DYNAMICS

In this section we investigate an equation for the orbit of
an AD condensate, which coincides with the well-known
orbit equation in the center force problem in classical
dynamics, i.e. planetary motions so that we sometimes
call the AD condensate, ‘‘AD planet’’. For the bound
orbits, the effective potential should satisfy the condition
where the curvature at the minimum of the effective po-
tential should be positive. In the presence of the Hubble
expansion, the effective potential depends on time; thus,
the full solution of the orbit equations can be obtained
numerically except for the case that the AD field is trapped
by a quadratic potential when it can be solved analytically.
In Appendix B, we obtain the exact orbit in this exceptional
case when the Hubble expansion is assumed to be small
and adiabatic. The orbit of the AD planet, or more pre-
cisely an eccentricity of the elliptic motion in the complex
field-space, is determined by the initial charge and energy
density. In order to obtain analytic expressions of the orbit
in more general potential cases in which we are more
interested, we restrict ourself to work in Minkowski space-
time and on the orbit which should be nearly circular. In
this case, we also obtain the perturbed orbit equation and
necessary conditions for closed orbits where the orbits
come back to their original positions after some rotations
around the minimum of the effective potential. In
Bertrand’s theorem [41], there are only two allowed po-
tential forms for closed orbits: isotropic harmonic force
and the inverse-squared force. Each of the central forces
gives dynamical symmetries, namely, the Fradkin tensor
[42] and Runge-Lenz vector [43], respectively. These dy-
namical charges are obtained both classically by the alge-
bra of Poisson bracket [44] and quantum-mechanically by
the corresponding Lie algebra in the Abelian case [45] as
well as non-Abelian case [46]. By approximating phenom-
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enologically motivated models that appear in the MSSM
and using the results in Appendix B, we present, in this
section, analytic motions of the nearly circular orbits and
the pressure of the AD planets. Further, we check these
analytic results with full numerical solutions.

Let us consider a motion of AD fields in an expanding
universe with scale factor aðtÞ and Hubble parameter H ¼
_a=a, where an over-dot denotes the time derivative. We
investigate the AD field after they start to rotate around the
origin of the effective potentials and the value of the U(1)
charge �Q is fixed due to negligible contributions from A-

terms. By decomposing the complex (AD) field � as

�ðtÞ ¼ �ðtÞei�ðtÞ, where � and � are real scalar fields, the
equations of motion for �ðtÞ and �ðtÞ (see Eqs. (A8) and
(A9) in Appendix A) are

€�þ 3H _�þ dVþ
d�

¼ 0; (1)

€�þ 3H _�þ 2

�
_� _� ¼ 0 , d�Q

dt
¼ 0; (2)

where the conserved comoving charge density is defined

by �Q � a3�2 _�, and the effective potentials are V� ¼
Vð�Þ � �2

Q

2a6�2 . Note that we will use V� shortly. From

Eq. (A10), the energy density �E and pressure p are given
by

�E ¼ 1

2
_�2 þ Vþ; p ¼ 1

2
_�2 � V�: (3)

With various values of the charge density �Q, Fig. 1 shows

typical effective potentials Vþ in Minkowski spacetime

where we set a ¼ H ¼ 1. The potentials shown in Fig. 1
will be used later.
Given an initial charge and energy density (or equiva-

lently initial momenta and position), the AD field oscillates
around the value �cr, which is defined by

dVþ
d�

���������cr

¼ 0; (4)

where the orbit becomes circular when it starts from there,
i.e. �ð0Þ ¼ �cr, _�ð0Þ ¼ 0. This orbit is bounded when the
curvature is positive

W2 � d2Vþ
d�2

���������cr

>0: (5)

For example, given a power-law potential such that V ¼
�1�

l where �1 is a dimensionful coupling constant and l is
a real power of the homogeneous field �, the condition
given by Eq. (5) implies that bound orbits exist for l <�2,
0< l if �1 > 0 and for �2< l < 0 if �1 < 0, where we
used Eq. (4). Another example is the case that a scalar
potential is logarithmic, i.e. V ¼ �2 ln� where the cou-
pling constant �2 is positive. In this case, Eq. (5) is auto-
matically satisfied. We investigate these two cases in more
detail in appendix B.

Let us rescale the field �ðtÞ as �ðtÞ ¼ ð a0aðtÞÞ3=2 ~�ðtÞ where
a0 is the value of aðtÞ at an initial time. It follows that the
equations of motion in Eqs. (1) and (2) are
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FIG. 1 (color online). We show the effective potentials, Vþ � Vð�Þ þ �2
Q

2�2 , against � in two types of potentials which we call the
gravity-mediated model (GRV-M model) on the left and the gauge-mediated model (GAU-M model) on right. The potential in the
GRV-M model has the following form, Vð�Þ ¼ 1

2�
2ð1� jKj ln�2Þ þ b2��6, where, we set jKj ¼ 0:1 and b2� ¼ jKj

4e � 9:20� 10�3. The

potential in the GAU-M model is Vð�Þ ¼ lnð1þ �2Þ þ b2�6, where we set b2 � 10�30. We choose the following values of �Q: red-

solid line for �Q � 2:36� 10�5 and green-dashed line for �Q ¼ 1=e� 3:68� 10�1 in the GRV-M model and red-solid line for

�Q � 1:40� 101 and green-dashed line for �Q � 1:41� 102 in the GAU-M model.
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€~��
�
3

4
H2 þ 3

2

€a

a

�
~�� ~�2

Q

~�3
þ
�
a

a0

�
3 dVð�Þ

d~�
¼ 0;

d~�Q

dt
¼ 0;

(6)

where we defined ~�Q � ~�2 _� ¼ a�3
0 �Q, and the terms in-

volvingH2 and €a=a are negligible under the assumption of
an adiabatic Hubble expansion, i.e. H2 � 1, €a � a.

By introducing a new variable, ~uðtÞ � 1= ~�ðtÞ, and using
the second expression in Eq. (6), the first expression in
Eq. (6) becomes the well-known orbit equation in the
center force problem such that

d2~u

d�2
þ ~u ¼ � 1

~�2
Q

�
a

a0

�
3 dV

d~u
� Jð~u; tÞ: (7)

Notice that Jð~u; tÞ depends on time caused by the Hubble
expansion, whereas the time dependence in J vanishes
when the potential V is given by a quadratic mass term,
1
2M

2�2, where M is a mass of the AD field, �. We discuss

this case in Appendix B in more detail.

A. Model A and model B for MSSM flat potentials

Let us introduce two models that appear in the MSSM in
which SUSY is broken due to either gravity or gauge
interactions, and approximate their models in order to
obtain approximate orbit forms. The former case, the so-
called gravity-mediated (GRV-M) model, has a scalar po-
tential

V ¼ 1

2
m2�2

�
1þ K ln

�2

M2�

�
þ �2

mn�4
pl

�n; (8)

where m is of order of the SUSY breaking scale, which
could be the gravitino mass scale m3=2 evaluated at the

renormalization scale M� [10]. Also, � is a coupling con-
stant for the nonrenormalizable term, which is suppressed
by a high-energy scale, e.g. the Planck scale mpl �
1018 GeV. Here, K is a factor from the gaugino-loop
correction, whose value is typically K ’ �½0:01–0:1�
when the flat direction does not have a large top quark
component [9,47]; thus, we concentrate on the case of K <
0 from now on. The power n of the nonrenormalizable term
depends on the flat directions. As examples of the direc-
tions involving squarks, the ucdcdc direction has n ¼ 10,
while the ucucdcee direction is n ¼ 6. For jKj � Oð1Þ, the
first two terms in Eq. (8) can be approximated by
m2M2jKj

�
2 �2�2jKj, we then find that

Vð�Þ ’ M2

2
�l þ �2

mn�4
pl

�n for n > l (9)

which we call ’model A’, where we setM2 � m2M2jKj� and
M has a mass-dimension, 4�l

2 ’ 1, since l � 2� 2jKj for
jKj � Oð1Þ. For small values of �, we confirm that the

power l is not approximately 2� 2jKj, so we will find a
value of l numerically in that case later.
In another scenario in which SUSY is broken by gauge

interactions, the so-called gauge-mediated (GAU-M)
model, the scalar potential has the curvature with the
electroweak mass at a low energy scale, while it grows
logarithmically at the high-energy scale [which means that
the potential is nearly flat similar to the case of l ¼ 0 in
Eq. (9)]. The scalar potential in this scenario is

V ’ m4
� ln

�
1þ

�
�

Ms

�
2
�
þ �2

mn�4
pl

�n; (10)

where Ms is the messenger scale (� 104 GeV) above
which the potential grows logarithmically and m� is the

same scale as Ms. We, thus, set Ms ¼ m� for later conve-

nience. Then, the scalar potential at high-energy scales is
approximately given by [25]

V ’ m4
� ln

�
�

m�

�
2 þ �2

mn�4
pl

�n: (11)

In what follows we assume the orbit of the AD condensate
is determined by the high-energy scale where �cr 	 m�,

calling this case, Eq. (11), ’model B’.
Using the results in Appendix B, we obtain the following

quantities, W, � and hwi in Minkowski background by
assuming that the dominant contribution in model A and B
is, respectively, either a power-law or logarithmic term,
each of which corresponds to the first term in Eqs. (9) and
(11), respectively. Here, we have defined � as a phase
difference when the radial field � goes from the minimum
value through the maximum one and back to the same
minimum point, see Eq. (B30); in addition, hwi is given
by a value of the equation of state averaged over a rotation
of the orbit, see Eq. (B21). Note that we have defined an
averaged value for a quasiperiodic quantity X over the
rotation, namely hXi � 1

�

R
�
0 dtXðtÞ. The subdominant

terms (nonrenormalizable terms) perturb the orbits by in-
troducing infinitesimally small quantities �A;B where the

subscripts correspond to the names of models introduced
above. Thus, the main contributions are either Eqs. (B31)
and (B32) or Eqs. (B34) and (B35).

1. Model A—Vð�Þ ¼ M2

2 �l þ �2

mn�4
pl

�n

By recalling Eq. (5), we obtain the following relations
for n > l in model A in Minkowski spacetime:

W2 ¼ lðlþ 2ÞM2�l�2
cr

2
ð1þ �AÞ; (12)

where we have defined a positive parameter, �A � nðnþ2Þ
lðlþ2Þ �

2�2

M2mn�4
pl

�n�l
cr � 1, which is assumed to be infinitesimally

small. We also obtain �2 ’ ðlþ 2Þð1þ n�l
nþ2 �AÞ> 0, where

� is defined in Eq. (B24). Substituting � into Eqs. (B30)
and (B21), we obtain � and hwi:
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� ’ 	ffiffiffiffiffiffiffiffiffiffiffi
lþ 2

p
�
1þ l� n

2ðnþ 2Þ �A
�
; (13)

hwi ¼ ðl� 2Þð1þ �A
lðlþ2Þðn�2Þ
nðnþ2Þðl�2ÞÞ

ðlþ 2Þð1þ �A
l
nÞ

’ l� 2

lþ 2

�
1þ �A

4lðn� lÞ
nðnþ 2Þðl� 2Þ

�
: (14)

From Eq. (13), the orbits for l ¼ 2� 2jKj ’ 2 are nearly
closed, but it is perturbed by the nonrenormalizable term
involved with �A. The result is that the periapsis appears to
precess where the precession rate can be obtained from
Eq. (12). The reader should notice that the denominator of
the term involving �A in the second expression of Eq. (14)
has l� 2 ’ �2jKj � Oð1Þ, which implies that it would be
possible to have the non-negligible contribution from the
term, even though �A � Oð1Þ. From now on, we restrict
ourself to regions where this is not the case; therefore, the
dominant contributions are the leading orders in Eqs. (12)–
(14), which correspond to Eqs. (B31)–(B33). From
Eq. (14) with �A ’ 0, our results recover the result pub-

lished in [9], i.e. hwi ’ � jKj
2 .

2. Model B—Vð�Þ ¼ m4
� lnð�=m�Þ2 þ �2

mn�4
pl

�n

By introducing another infinitesimally small positive

parameter, �B � nðnþ2Þ�2�n
cr

4m4
�
mn�4

pl

� 1, we find in model B in

Minkowski spacetime:

W2 ’ 4m4
�

�2
cr

ð1þ �BÞ;

� ’ 	ffiffiffi
2

p
�
1� n

2ðnþ 2Þ �B
�
� 2	

3
;

(15)

hwi ¼
1� 2 lnð�cr

m�
Þ þ 2ðn�2Þ

nðnþ2Þ �B
1þ 2 lnð�cr

m�
Þ þ 2

n �B
* �1: (16)

Since we are working in the high-energy regime, �cr 	
m�, the pressure of the AD condensate is likely to be

negative, see Eq. (16). From the second expression
Eq. (15) for �, the orbits are not closed and it should
look like the trefoil, see Eq. (B34).

In an expanding universe, the above orbits for models A
and B suffer from the Hubble damping so that the orbits are
naively expected to be precessing spiral or shrinking trefoil
in the field-space, respectively.

B. Numerical results

In this subsection we present numerical results to check
the analytic results, which we found in the previous sub-
section. To do so, we use the full potentials, Eqs. (8) and
(10), instead of Eqs. (9) and (11), and then solve Eq. (1)
numerically in Minkowski spacetime as well as in an

expanding universe. We adopt the 4th order Runge-Kutta
method with various sets of initial conditions, such as �Q

and "2. Since our analytical work holds as long as "2 �
Oð1Þ, we are concerned with the two cases: a nearly
circular orbit with "2 ¼ 0:1 and a more elliptic orbit with
"2 ¼ 0:3. First of all, we parametrize Eqs. (8) and (10) by

introducing dimensionless variables: �

 ¼ �=M�, b2� ¼

�2Mn�2�
mn�4

pl
m2 ¼ jKje�1=4, t


 ¼ mt, x

 ¼ mx in the GRV-M model

and �

 ¼ �=Ms, b

2 ¼ �2Mn�4
s

mn�4
pl

, t

 ¼ Mst, x


 ¼ Msx in the

GAU-M model. Since we know that m� 102 GeV, M� �
1010 GeV, mpl � 1018 GeV; hence, we can set b2� �
9:20� 10�3 �Oð10�2Þ in the GRV-M model, where we
choose jKj ¼ 0:1. Notice that these choices are the same as
the ones used in [19]. On the other hand, we know that
m� �Ms � 104 GeV; hence, we can set b2 � 10�30 in the

GAU-M model, where we choose �� 10�2 as used in the
GRV-M case. Notice that we can obtain the rescaled charge

density �


Q and energy density �



E, such that �Q ¼

mM2��


Q, �E ¼ m2M2��



E in the GRV-M model and �Q ¼

M3
s�


Q, �E ¼ M4

s�


E in the GAU-M model.

Therefore, our rescaled potentials in GRV-M and GAU-
M models for a flat-direction with n ¼ 6 are, respectively,

V ¼ 1

2
�2ð1� 2jKj ln�Þ þ b2��6; (17)

V ¼ lnð1þ �2Þ þ b2�6; (18)

where we omit over-rings for simplicity. The reader should
notice that the variables that appear within the rest of this
subsection are dimensionless. We can also obtain the ratio
defined by an energy density relative to a mass multiplied
by a charge density, where the mass corresponds to m or
Ms in either the GRV-M or GAU-M model, respectively.
In order to obtain appropriate initial values of �ð0Þ, _�ð0Þ

and _�ð0Þ satisfying the conditions �A, �B � Oð1Þ and not
giving too small charge densities, we shall show that we
need to choose only the initial values of _�ð0Þ in both GRV-
M and GAU-M models. First, by ignoring the nonrenor-
malizable term in Eq. (17) for the GRV-M model, we
obtain �cr ¼ expð� 1

2jKj ð _�2ð0Þ þ jKj � 1ÞÞ :¼ �ð0Þ from

Eq. (4), where we set �cr :¼ �ð0Þ, which implies that we
are setting the initial phase to be 3	=2. Since _� has the

maximum value at � ¼ �cr, we can set _�ð0Þ :¼ "2�ð0Þ�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_�2ð0Þ � jKj=2

p
from Eq. (B14), which implies that �A �

12b2��4ð0Þ from the definition. We notice that �ð0Þ 	
Oð1Þ for _�ð0Þ � Oð1Þ; hence, it breaks the condition,
�A � Oð1Þ. We can also see that �ð0Þ � Oð1Þ for _�ð0Þ 	
Oð1Þ, so the charge density is suppressed exponentially.
Therefore, we are concerned with the following two cases:
_�ð0Þ ¼ ffiffiffi

2
p

and 1.0, which give, respectively, �A � 1:20�
10�11, �Q � 2:36� 10�5 and �A � 1:58� 10�2, �Q �
3:68� 10�1. Similarly, in the GAU-M model, we choose
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that �cr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

_�2ð0Þ � 1
q

:¼ �ð0Þ, _�ð0Þ :¼ "2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

4
_�2ð0Þ

q
and �B ¼ 12b2�6ð0Þ from the definition of �B. Here, we
also set the initial phase is 3	=2 due to �cr :¼ �ð0Þ. With
this fact and the approximation, �cr 	 Oð1Þ, we need to
have _�ð0Þ � Oð1Þ. In addition, we should have �ð0Þ<
Oð105Þ due to the condition, �B <Oð1Þ. Therefore, we
choose _�ð0Þ ¼ ffiffiffi

2
p � 10�1 and

ffiffiffi
2

p � 10�2 which gives,
respectively, �B � 1:16� 10�23, �Q � 1:40� 101 and

�B � 1:20� 10�17, �Q � 1:41� 102.
Using the above initial conditions, we initiate the nu-

merical simulations with 8 different sets of the initial
values in the GRV-M model and the GAU-M model sum-
marized in Table I, where we call each of the parameter-
sets ’SET-1, SET-2,. . ., and SET-8’. In Fig. 1, we also
show, with the various charges which we introduced above,
the effective potentials Vþ for the GRV-M potential given
by Eq. (17) in the left panel and for the GAU-M potential
given by Eq. (18) in the right panel. Our time-step, dt, in
the numerical simulations is dt ¼ 1:0� 10�4 in the GRV-
M case and dt ¼ 1:0� 10�3 in the GAU-M case.

1. The orbit of an Affleck-Dine ‘‘planet’’ in Minkowski
spacetime

First, we present numerical results in Minkowski space-
time in order to check our analytical results. We then give
the Ansätze, which are motivated by our analytic solutions,
in an expanding universe in the next subsection.

The motion of �2ðtÞ In Fig. 2, we show the numerical
solutions using the GRV-M potential with Eq. (17) (left)
and using the GAU-M potential with Eq. (18) (right), and
compare them with the corresponding analytic solutions
which are given by Eq. (B16). Using the initial values
whose parameter sets can be seen in Table I, we plot the
numeric and analytic solutions in Fig. 2. In the top-left
panel, the numerical plots (red-plus dots for SET-1 and
blue-cross dots for SET-2) have the same amplitudes as the
analytical ones (green-dashed line for SET-1 and purple-

dotted-dashed line for SET-2), we, however, can see the
significant differences for the frequencies of each oscilla-
tion. We notice that these discrepancies come from the
artifact of our choice with l ¼ 2� 2jKj in Eq. (9), since
the choice is not appropriate for � � Oð1Þ, recalling
�ð0Þ � 4:09� 10�3 in SET-1 and SET-2. Shortly, we
will obtain numerically this power l, and show that the
semianalytic solutions match with the numerical ones.
With SET-3 and SET-4, we can see that �ð0Þ is not so
small as opposed to the previous cases, i.e. �ð0Þ � 6:07�
10�1; thus, in the left-bottom panel of Fig. 2 we can see a
nice agreement between the numerical plots (red-plus dots
for SET-3 and blue-cross dots for SET-4) and the analytic
plots (skyblue-dotted-dashed line for SET-3 and black-
dotted line for SET-4).
Similarly, we show the numerical and analytic plots for

the GAU-M potential in the right-panels of Fig. 2 using the
parameter-sets: for SET-5 and SET-6 in the right-top panel
and for SET-7 and SET-8 in the right-bottom panel. By
changing the values of the third eccentricity "2 (see
Table I), the numerical plots deviate slightly from our
analytic lines in the right-top and right-bottom panels of
Fig. 2 as we can expect, in particular, we can see that our
analytic values of both the frequencies and amplitudes of
�2ðtÞ are larger than the numerical ones, and this difference
can be significantly reduced when the orbits of the AD
planets is nearly circular with "2 ¼ 0:1.
As we have seen in the left-top panel of Fig. 2, our

analytic value, l ¼ 1:8, in Eq. (9) are not good enough to
reproduce the numerical solutions since �ðtÞ � Oð1Þ.
Therefore, we set a trial function, fð�Þ ¼ 1

2�

 þ b2��6,

where a numerical value 
 is found by using the ’fit’
command in the numerical software called ’gnuplot’. We
find that
 ¼ 1:86002 :¼ l is the best value of
, where we
fitted this trial function fð�Þ onto the numerical full po-
tential in Eq. (17) for the range of � 2 ½1:0� 10�2 �
1:0� 10�3�, recalling �ð0Þ � 4:09� 10�3 in SET-1 and
SET-2. Using this value of 
 as the value of l instead of

TABLE I. We show 8 different parameter sets in both the GRV-M and GAU-M cases, where we call each of the parameter-sets ’SET-
1, SET-2,. . ., and SET-8’. The initial parameters of �ð0Þ and _�ð0Þ can be obtained by the values of _�ð0Þ. We also set �ð0Þ ¼ 3	

2 in all

cases, and show the values of �A for the GRV-M model and the values of �B for the GAU-M model. By substituting these values and
choosing the values of the third eccentricity "2 ¼ 0:1 and 0.3, we obtain the dimensionless energy-to-(mass multiplied by charge)
ratios, �E=�Q.

SET Model _�ð0Þ �ð0Þ �Q �A or �B "2 �E=�Q

1

GRV-M

0.1 1.46

2
ffiffiffi
2

p �4:09� 10�3 �2:36� 10�5 �1:20� 10�11 0.3 1.51

3 0.1 1.06

4 1.0 �6:07� 10�1 �3:68� 10�1 �1:58� 10�2 0.3 1.09

5

GAU-M

0.1 4:00� 10�1

6
ffiffiffi
2

p � 10�1 �9:95 �1:40� 101 �1:16� 10�23 0.3 4:03� 10�1

7 0.1 7:22� 10�2

8
ffiffiffi
2

p � 10�2 �1:00� 102 �1:41� 102 �1:20� 10�17 0.3 7:25� 10�2
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l ¼ 1:8, we plot the semianalytic evolution for �2ðtÞ in
Fig. 3 (green-dashed line for SET-1 and purple-dotted-
dashed line for SET-2) against the corresponding numeri-
cal plots (red-plus dots for SET-1 and blue-cross dots for
SET-2). Now, our semianalytic solutions match with the
numerical solutions.

The average values of wðtÞ Using Eqs. (14) and (16), we
show both numerical values hwnumi and (semi-)analytical
values hwanai of the averaged equation of state in Table II.
For all cases, the AD condensate has a negative pressure
and one can say that the numerical values are of the same
order as analytic values.

The values of� In Table III, we show the numerical and
(semi-)analytic values of � in both the GRV-M model and
the GAU-M model, which are analytically obtained in
Sec. II A. Our analytical values agree well with the nu-
merical values. These values suggest that the orbits in the
GRV-Mmodel and GAU-Mmodel are nearly either elliptic
or trefoil, respectively.
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FIG. 2 (color online). Using the parameter sets summarized in Table I, we plot the numerical evolution for �2ðtÞ in both the GRV-M
model (left) and the GAU-M model (right). In all of the panels except the case for the left-top panel, the numerical plots (red-plus dots
and blue-cross dots) agree well with the corresponding analytic lines, which are obtained from Sec. II A. The disagreements between
the numerical and analytic plots in the left-top panel come from the artifact that the analytical estimated value, l ¼ 1:8, in Eq. (9).
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FIG. 3 (color online). Substituting the numerical value, l ¼
1:86002, into Eq. (9), we plot the semianalytic evolution for
�2ðtÞ. Our semianalytic solutions agree with the numerical
solutions.
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2. The orbit of an Affleck-Dine ‘‘planet’’ in an expanding
universe

We carry out our numerical simulation in an expanding
universe when the inflaton field, which is trapped by a
quadratic potential, starts to coherently oscillate around
the vacuum during the reheating era. Then the evolution
of Hubble expansion, HðtÞ, and scale factor, aðtÞ, follows
as a ordinary nonrelativistic (zero-pressure) matter, see

Eq. (B33). For l ¼ 2, we find H ¼ 2
3ðtþt0Þ and aðtÞ ¼

a0ðtþt0
t0
Þ2=3, where a0 is given by the value of aðtÞ at t ¼ 0

and we set a0 ¼ 0:1. We also set the initial time as t0 ¼
4� 102 for the GRV-M model and t0 ¼ 4� 104 for the
GAU-M model. Notice that with this choice of t0 our
simulation starts from the same physical time because we
rescaled the time by either m� 102 GeV or Ms �
104 GeV, respectively. We again solve the equation of
motion, Eq. (1), numerically using the 4th order Runge-
Kutta method and compare them with the following
Ansätze we will introduce. In order to see the significant
effects from the Hubble expansion, we use SET-3 in the
GRV-M model and SET-7 in the GAU-M model as the
initial parameters.

In an expanding spacetime, one can guess that our
analytical results in Minkowski spacetime should be
changed. In particular, the amplitude of �ðtÞ may decrease
due to the Hubble damping as we saw in the quadratic case
in Appendix B 1, and similarly the frequency W in Eq. (5)
should be changed. Hence, the orbit of the AD planet can
be a precessing spiral or shrinking trefoil in either the
GRV-M or the GAU-M model as one can see [48]. Let us
give an ansatz for �2ðtÞ,

�2ðtÞ ¼
�

t0
tþ t0

�

1

~�2

�
1þ "2 cos

�
~W �

�
t0

tþ t0

�

2

� tþ 3	

2

��
: (19)

Here, we use the Minkowskian values of ~� and ~W, and will
obtain the possible values of 
1;2 in both models. From

Eqs. (4) and (5) by ignoring the nonrenormalizable term

and recalling aðtÞ ¼ a0ðtþt0
t0
Þ2=3, we can find the following

proportional relations: �crðtÞ / ðtþ t0Þ�4=ðlþ2Þ ’
ðtþ t0Þ�2=ð2�jKjÞ and WðtÞ / ðtþ t0Þ�ð2ðl�2Þ=lþ2Þ ’
ðtþ t0Þð2jKjÞ=ð2�jKjÞ in model A, where we used l ¼ 2�
2jKj. In model B, we obtain �cr / ðtþ t0Þ�2 and WðtÞ /
ðtþ t0Þ2. Therefore, we set 
1 ¼ 4

2�jKj , 
2 ¼ � 2�jKj
2jKj in

model A, and 
1 ¼ 4, 
2 ¼ �2 in model B. We believe
that our Ansätze are valid as long as the nonrenormalizable
term does not play a role, and the frequency of the coherent
rotation, OðWðtÞÞ, is rapid compared to the Hubble expan-
sion rate, OðHÞ. The latter restriction implies that the
rotation time scale is much shorter than the time scale of
the Hubble expansion, i.e. W�1ðtÞ 	 H�1 [49].
The motion of �2ðtÞ In Fig. 4, we plot the evolution of

�2ðtÞ with the numerical data (red-plus dots) for the GRV-
M model (left) and for the GAU-M model (right) and with
the analytic data (green-dotted lines) using our Ansätze
Eq. (19). The readers should compare the Minkowskian
cases of SET-3 (left-bottom panel) and SET-7 (right-
bottom panel) in Fig. 2 with the corresponding expanding
background cases. For both potential cases, the amplitudes
of �2ðtÞ decrease in time as we expected, and our analytic
plots excellently agree with the corresponding numerical
results. In the left panel of Fig. 4, the difference between
the analytic line and the numeric plots arises in the late
time. We believe that this comes from the artifact of the
approximation on l ¼ 2� 2jKj in the GRV-M model,
Eq. (17), since the values of �2ðtÞ decrease to the region
where the above approximation does not hold, i.e. for � �
Oð1Þ as we saw in the left-top panel of Fig. 2.
The motion of the equation of state: wðtÞ ¼ pðtÞ=�E In

Fig. 5, we plot the numerical values of the equation of state,
which is given by wðtÞ � pðtÞ=�E, where pðtÞ and �E in

TABLE II. Using Eqs. (14), (16), we show the both numerical values hwnumi and analytical values hwanai for the averaged equations
of state. The values of hwanai in SET-1 and SET-2 are semianalytically obtained by substituting l ¼ 1:86002 into Eq. (9). For all cases,
the AD condensate has a negative pressure, and these analytic estimates are reasonable against the numerical values.

hwi GRV-M Model v.s. Model A GAU-M Model v.s. Model B

SET-1 SET-2 SET-3 SET-4 SET-5 SET-6 SET-7 SET-8

hwnumi �2:42� 10�2 �4:47� 10�2 �4:45� 10�2 �6:43� 10�1 �6:45� 10�1 �8:00� 10�1

hwanai �3:63� 10�2 �5:00� 10�2 �6:43� 10�1 �8:04� 10�1

TABLE III. We show the numerical and (semi-)analytic values of � in both the GRV-M model and the GAU-M model, which are
analytically obtained in Sec. II A.

� GRV-M Model v.s. Model A GAU-M Model v.s. Model B

SET-1 SET-2 SET-3 SET-4 SET-5 SET-6 SET-7 SET-8

�num 1.591 1.590 1.605 1.604 2.210 2.206 2.221 2.217

�ana 1.612 (analytic) or 1.599 (semianalytic) 1.605 2.221 2.221
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Eq. (3) are the pressure and energy density of the AD
condensate. The averaged pressure over the rotations
seems to be negative in the GRV-M model, see the left
panel; whereas, the pressure in the GAU-M model is al-
ways negative, see the right panel. The frequencies of the
rotation for wðtÞ in both cases are, respectively, similar as
the corresponding frequencies of �2ðtÞ, see Fig. 4; how-
ever, the phases are different from the phases of �2ðtÞ
approximately by 	.

In summary, we have analytically obtained the nearly
circular orbits for both the GRV-M model and the GAU-M
model in Eqs. (17) and (18) approximated by models A and
B as in Eqs. (9) and (11). We then checked that the semi-
analytic results in Eqs. (12), (13), (15), and (16) and our
Ansätze in Eq. (19) agree well with the corresponding
numerical results obtained by solving Eqs. (1) and (B12)
numerically. In the rest of this paper, we investigate the late

evolution for the AD condensates once the spatial pertur-
bations generated by quantum fluctuations or thermal noise
from the early oscillation [11] become non-negligible due
to the negative pressure presented in Table II and Fig. 5.

III. Q-BALL FORMATION AND THE
THERMALIZATION IN MINKOWSKI SPACETIME

In this section we analyze the late evolution of the AD
condensates in both GRV-M and GAU-Mmodels, in which
we find that the spatial perturbations are amplified expo-
nentially due to the presence of the negative pressure, and
the presence of negative pressure supports the existence of
nontopological solitons, i.e. Q-balls. As a process of re-
heating the Universe, the dynamics of theQ-ball formation
is nonequilibrium, nonperturbative, and nonlinear process,
and it includes three distinct stages: prethermalization
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FIG. 4 (color online). We plot the evolution of �2ðtÞ with the numerical data (red-plus dots) for the GRV-M model (left) and for the
GAU-M model (right) and with the analytic data (green-dotted lines) by using our Ansätze introduced in Eq. (19).
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(linear perturbation), driven turbulence (bubble collisions),
and thermalization towards thermal equilibrium. As op-
posed to the reheating process, we find that the driven
turbulence stage lasts longer and the subsequent thermal-
ization process is different, which is caused by the presence
of nontopological soliton solutions. During the turbulent
stages, we find scaling laws for the variances of fields and
for the spectra of the charge density. In addition, we adopt
numerical lattice simulations to solve classical equations of
motion in Minkowski spacetime, where our numerical
code is developed from LATfield [50], and we present
the detailed nonlinear and nonequilibrium dynamics
(some videos are available [51]).

A. Linear evolution—Prethermalization

The late evolution, after the AD condensate forms,
depends on the properties of the models. In the standard
AD baryogenesis scenario [4], the condensate governed by
the quadratic potential, Eq. (B1), decays into thermal
plasma that may provide our present baryons/leptons in
the Universe. By including quantum and/or thermal cor-
rections in the mass term as in Eqs. (8) and (10), the
subsequent evolution may be different from the standard
AD scenario since the AD condensate has a negative
pressure. The negative pressure, which causes the attrac-
tive force among particles in the condensate, amplifies the
linear spatial fluctuations exponentially. We see this expo-
nential growth for the linear perturbations in nearly circu-
lar orbit cases with the growth rate _Sm, and obtain the most
amplified wave-number km, each of which gives a rough
estimate on the nonlinear time tNL and the radii of bubbles
created just after the system enters into a nonlinear regime.
As long as the perturbations are much smaller than the
background field values, we call this initial linear pertur-
bation stage, ’prethermalization’.

1. Arbitrary and circular orbits

Let us consider the linear spatial instability for an AD
condensate in Minkowski spacetime. First, we perturb the
AD field � with the linear fluctuations, �� and ��.
Equations of motion for �� and �� are given by
Eqs. (A11) and (A12),

€��� ðr2 þ _�2 � V00Þ��� 2� _� _�� ¼ 0; (20)

€��þ 2 _�

�
_���r2��þ 2 _�

�2
ð� _��� _���Þ ¼ 0: (21)

Let us rescale �� and �� in the following form

��� ��0e
SðtÞþik�x; ��� ��0e

SðtÞþik�x: (22)

Notice that both of the exponents SðtÞ should be the same
in each expression for �� and �� in terms of a function of
the wave-number k, because we are concerned only with
linear perturbations. Substituting Eq. (22) into Eqs. (20)

and (21), we obtain

€Sþ _S2 þ k2 � _�2 þ V 00 �2 _� _S
2 _�ð _S� _�

�Þ _S2 þ 2 _� _S
� þ k2

 !
��
���

� �
’ 0;

(23)

where V 00 � d2V
d�2 and we ignore the terms €S, assuming that

the linear evolution is adiabatic, i.e. _S2 	 €S (WKB ap-
proximation). Notice that this assumption is violated only
at the beginning of this linear evolution as we will see in
the numerical subsection, Sec. III C. The nontrivial solu-
tion for _S can be obtained by taking the determinant of the
matrix in Eq. (23), namely

Fð _SðkÞ; k2Þ � _S4 þ 2 _�

�
_S3 þ ð2k2 þ 3 _�2 þ V 00Þ _S2

þ 2 _�

�
ðk2 � 3 _�2 þ V 00Þ _S

þ k2ðk2 � _�2 þ V00Þ ¼ 0: (24)

Notice that the terms involving _� vanish if the orbit of the
AD field is exactly circular. By looking for the most
amplified mode k2m, which is defined by @F

@k2
jk2m ¼ 0 from

Eq. (24), it implies that

k2m ¼
_�2 � V 00

2
� _S

�
_Sþ _�

�

�
> 0; (25)

where the inequality comes from the reality condition for
km. By considering this mode in Eq. (25) and solving
Fð _SðkÞ; k2mÞ ¼ 0 in Eq. (24), the solution of the quadratic
equation for _Sm � _Sðk ¼ kmÞ is

_S m ¼
_�
� ð5 _�2 �V 00Þ � 2 _�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð _�2 �V 00Þ2 þ 2ð _�

�Þ2ð3 _�2 �V 00Þ
q
2ð4 _�2 �ð _�

�Þ2Þ
;

(26)

in which we are interested in the growing mode, i.e.
Reð _SmÞ> 0. Substituting Eq. (26) into Eq. (25), we may
obtain the most amplified mode. Although it is rather hard
to analytically solve Eq. (24), we know that only one
instability band exists for exactly circular orbits where
_� ¼ 0;

0< k2 < _�2 � V00ð�Þ; (27)

where _� and � ¼ �cr are time-independent due to the
circular orbits.
In addition, we can estimate a possible nonlinear time

tNL when the spatial averaged variance, Varð�Þ, becomes
comparable to the corresponding homogeneous-mode �.

Here, we have defined Varð�Þ � ð�̂ðx; tÞ � �Þ2, and a hat
and a bar denote an original field and a spatial average of
the field, respectively. Notice that the nonlinear time in
[22,52] is defined by the time when the linear fluctuation
�� for the most amplified mode becomes comparably
large to the homogeneous-mode; however, our definition
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is better as we will see in the numerical subsection,
Sec. III C. The nonlinear time with our definition can be
given by

Varð�Þ � ��2
0 expð2Nh _Si�Þ � ��2

0 exp

�Z tNL

t�
2h _Smi

�
� �2

0; (28)

, tNL � t� þ 1

h _Smi
ln

�
�0

��0

�
: (29)

Here, we have approximated that h _Si � h _Smi and that the
orbits over N rotations with the period �, Eq. (B17), can be
expressed by the integral form as shown in Eq. (28). As we
assumed, the spatially averaged variance of this field is not
fully developed over all modes except k ¼ km until t� t�,
where t� is a typical time scale when the variance starts to

grow with the growth rate h _Smi.
Our main interest in this prethermalization stage is the

evolution of the number of particles in terms of modes, so
that we consider �Q as the particle number here. For a free

field theory, both of the positive and negative charged
particle occupation numbers develop equally. The present
case, however, gives different consequences due to the
presences of nonlinear interactions and the initial inequal-
ity of a charge density (baryon asymmetry). Without loss
of generality, we can focus on the case where the positive
charge is initially present. Since the charge density is given

by �Q ¼ �̂2 _̂�, we can approximately obtain the evolution

in the linear regime using Eqs. (1) and (2),

_�Q ’ �2ðtÞr2��: (30)

Hence, the charge density evolves due to the linear fluc-
tuation of the phase field. Let n�k ðtÞ be the amplitude of

Fourier-transformed positive and negative charge density,
n�ðx; tÞ, which are defined through the following decom-
position, �Q ¼ nþðx; tÞ � n�ðx; tÞ. Notice that the

Fourier-transformed functions, n�k , are related to, but are

potentially different from the corresponding quantum-

mechanical expressions, ~nþk � ayk ak, ~n
�
k � byk bk and Q ¼R

d3x�Q ¼ R
d3k

ð2	Þ3=2 ð~nþk � ~n�k Þ. Here, ~n�k are occupation

numbers for positive and negative charged particles in a

free field theory, and ak, a
y
k , bk and b

y
k are the annihilation/

creation operators for both of the particles, respectively.
Since we are interested in the growing mode for the posi-
tive charge density nþk ðtÞ in Eq. (30) which is initially zero
except the zero-momentum mode, it implies that using
Eq. (22)

nþk ðtÞ ’ k2j��0j
Z t

t0

d~t�2ð~tÞeh _SðkÞi~t;

� k2j��0j�2
cr

eh _Siðt�t0Þ

h _Si / eh _Siðt�t0Þ; (31)

where t0 is found numerically and we assumed �2ðtÞ �
�2

cr, going from the first line to the second one. Therefore,
the evolution of the positive charged particle number for a

mode k is proportional to eh _SðkÞiðt�t0Þ.
Summarizing our results, Eqs. (25) and (26) are general-

izations of the known results [33,53], in which the orbit of
the AD field was assumed to be exactly circular. We also
obtained the nonlinear time tNL in Eq. (29) and the ex-
ponential growth of the particle number in Eq. (31).

2. Nearly circular orbits in model A and B

Using the results obtained in the previous subsection, we
can compute the most amplified mode hk2

mi and the grow-
ing mode h _Smi averaged over one rotation of the nearly
circular orbits for the models introduced in Sec. II A, i.e.
model A and model B. We shall confirm that these values
are the same as the cases when the orbits are exactly
circular, which implies that the instability band, Eq. (27),
could exist even for the present nearly circular orbit cases.
Model A: Substituting the expressions, _�=�, _�2 and V 00

[c.f. Eqs. (12), (B16), and (B18)], into Eq. (26), we obtain
the averaged growing factor and the most amplified mode
for model A where M2 > 0:

h _Smi ’ � ð2� lÞM
4

ffiffiffiffiffiffiffiffiffiffiffiffi
l�l�2

cr

2

s �
1þ ðlþ 2Þð2n� l� 2Þ

2ðnþ 2Þðl� 2Þ �A

�
;

(32)

hk2
mi ’ M2lð2� lÞðlþ 6Þ�l�2

cr

32

�
�
1þ ðlþ 2Þð4n� 12� l2 þ 2nlÞ

ðnþ 2Þðl� 2Þðlþ 6Þ �A

�
; (33)

where we substituted Eq. (32) into Eq. (25) to obtain hk2
mi

and these results are consistent with the case for the exactly
circular orbit. In order to satisfy hk2

mi> 0, we should have
l <�6; 0< l < 2, and Eq. (32) implies that the conden-
sate is unstable against spatial fluctuations when the pres-
sure is negative with 0< l < 2, see Eq. (B32).

We can recover the results [53] that h _Smi ’ mjKj
2 ð1þ jKj

2 Þ
and hk2

mi ’ m2jKjð1� jKj
4 Þ by setting l ¼ 2� 2jKj in

Eqs. (32) and (33) and ignoring the nonrenormalizable

term as done in [53], i.e. h _Smi ’ jKjM
2 ð1� jKj

2 Þ��jKj
cr and

hk2
mi ’ jKjM2ð1� 5jKj

4 Þ��2jKj
cr . These are of the same order

as their results, recalling that ��2jKj
cr �Oð1Þ due to jKj �

Oð1Þ.
Model B: Similarly, we can also obtain the averaged

growing factor and the most amplified mode for model B
from Eq. (15)
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h _Smi ’
m2

�ffiffiffi
2

p
�cr

�
1� n� 1

nþ 2
�B

�
;

hk2
mi ’

3m4
�

2�2
cr

�
1� 2ðn� 3Þ

3ðnþ 2Þ �B
� (34)

which to leading order reproduces the results [33] where
the AD orbit was assumed to be exactly circular and the
nonrenormalizable term was ignored.

Before we finish this subsection, let us remark upon the
classical and absolute stability of AD condensates. Lee
found [14] the dispersion relation for the waves of linear
fluctuations from Eq. (24) when the orbits of the AD field
are bounded. In the long wavelength limit, there exists one
massive and one massless mode. The massless mode can
be interpreted as the sound wave whose sound speed
should be real for the classical stability reason, and the
squared value of the sound speed is related to the value of
hwi in Eq. (B21). Therefore, this stability condition for the
sound waves corresponds to the sign of the pressure in the
AD condensates. In other words, the AD condensate has a
negative pressure if the sound speed is imaginary; equiv-
alently, it is classically unstable against spatial fluctuations.
The zero-pressure AD condensate whose energy density is
minimized with respect to any degrees of freedom is
equivalent to the Q-matter phase as Coleman discussed
in [13], where the absolutely stable Q-matter can be ex-
cited by classically stable sound waves.

B. Nonlinear evolution and nonequilibrium dynamics

1. Driven (Stationary) and free turbulence

Even when the perturbations are fully developed to
support the nonlinear solutions, the system is still far
from thermal equilibrium. Indeed, the system enters into
more stochastic stages, ’turbulence regimes’, where the
strength of the turbulent behavior depends on the
‘‘Reynolds’’ number [54]. As a theory of reheating the
Universe, a general nonequilibrium system goes through
two different turbulence, going from driven turbulence to
free turbulence. A major energy transfer from the zero
mode takes place during driven turbulence. Garcia-
Bellido et al. [38] observed that bubbles form and collide
during this stage in tachyonic preheating, and proposed
that the bubble collisions can be an active source of gravi-
tational waves [55]. In the usual reheating scenarios, this
stage terminates when the energy left out in the zero-mode
becomes smaller than the energy stored in other modes
(created particles). Since the energy exchange between
zero-mode and other modes becomes negligible, the parti-
cle distribution is self-similar in time (free turbulence) and
evolves towards thermal equilibrium. In the free turbulence
stage, the quantum effects change the late time evolution
significantly, and the created particles are distributed fol-
lowing Bose-Einstein statistics rather than in a classical
manner. As long as an active and stable energy source

exists in momentum space, we expect that the driven
turbulence stage lasts for a long time. In the case of
Q-ball formation, we expect that this active energy source
corresponds to the excited states of Q-balls; hence, the
driven turbulence stage may last longer compared to the
linear perturbation regime as opposed to the usual reheat-
ing Universe scenarios. Note that during this thermaliza-
tion stage the transition from the classical to quantum
regime becomes important [35]; in the rest of this paper
we concentrate on the case where the system is governed
by classical evolution all the time.
In turbulent stages, the scaling law can be found [35]:

Var ð�Þ / tp; (35)

where the power p depends on the parameters of the
models, e.g. the relativistic values of p are p ¼ 1

2m�1 in

the driven turbulence regime and p ¼ � 2
2m�1 in the free

turbulence regime. Here, m is the number with which
particles mainly interact. For the free turbulence regime,
the particle number distribution follows a scaling law from
the time tfree when the free turbulence turns on, namely

nkðtÞ ¼ t�ð4=2m�1Þnk� ðt ¼ tfreeÞ; (36)

where k� � kt�ð1=2m�1Þ.

2. Thermal equilibrium state in the presence
of nontopological solitons

In this subsection, we show that the condition of the
negative pressure is the same as the existence condition of
Q-balls, known in [13]. This does not always mean that the
spatially unstable condensate evolves towards Q-balls;
with given initial conditions, the condensate may evolve
into other thermodynamically favored states in which the
free energy is minimized.

The ansatz of nonthermal Q-balls claims that
_̂�, which

corresponds to the ‘‘chemical potential’’ !, is constant,
and that the radial field �̂ should be time-independent and

depend on the radius r of the Q-ball, i.e. �̂ ¼ �̂ðrÞei!t.
Hence, the existence condition of Q-balls at zero-
temperature is

min

�
2V

�̂2

�
� !2 <

d2V

d�̂2

���������̂¼0
: (37)

This condition implies that the potential should grow less
quickly than a quadratic term; thus, it is equivalent to the
fact that the AD condensate has a negative pressure for l <
2 in Eq. (9), see Eq. (B32). Notice that this condition only
tells us that Q-balls may appear after an unstable AD
condensate fragments. The evolution to the thermal equi-
librium state is rather hard to compute analytically, and it is
related to stability problems of the Q-balls [19,20].
Therefore, we conduct numerical lattice simulations that
give the entire processes of nonlinear as well as out-of-
equilibrium evolution.
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C. Numerical results

In this subsection, we present detailed numerical results
involved with lattice simulations for both GRV-M and
GAU-M models with the parameter sets, SET-3 and SET-
7 shown in Table I; we then check our analytical results
obtained in the previous sections. In order to solve the

second-order partial differential equations, d2�̂
dt2

�r2�̂þ
dV
d�̂y ¼ 0, with the potentials introduced in Eqs. (17) and

(19), we use the following appropriate parameters: dx ¼
0:2, dt ¼ 0:02 in the GRV-M model and dx ¼ 5:0, dt ¼
0:2 in the GAU-M model, which minimize the numerical
errors. Here, dx is the fundamental lattice space and dt is
the time step. Note that the variables in this subsection are
normalized by appropriate energy scales as in Sec. II B. We
then conduct 3þ 1 (and 2þ 1)-dimensional lattice simu-
lations with 5123 (and 5122) lattice units, imposing a
periodic boundary condition. Our initial conditions are,

�̂0 ¼ �0 þ ��0 and
_̂
�0 ¼ _�0 þ � _�0, where the initial

fluctuations, ��0 and � _�0, are of a Gaussian noise, which
are responsible for ‘‘quantum’’ fluctuations. Their fluctua-

tions, ��0 and � _�0, are of order 10
�5 in the GRV-M case

and of order 10�3 in the GAU-M case. In order to visualize
these detailed evolution, we use a 3D software, ’VAPOR’
[56], and some videos of our numerical results are avail-
able in [51].

1. Prethermalization

The initial evolution—Nonadiabaticity: In the top two
panels of Fig. 6, we plot the amplitude of nþk ðtÞ, where we
took the average of nþk ðtÞ over the axes of k. We show the

amplitudes of nþk ðtÞ for the GRV-M model in the left panel

and for the GAU-M model in the right panel with two
different time steps. In the panels, we indicate the analyti-
cal values of the most amplified modes km obtained from
Eqs. (33) and (34) with black-dashed vertical lines. In the
GRV-M model, the amplitude with t ¼ 30 (green-dashed
line) is a little noisy to see the first peak k1 in terms of k.
Our analytical estimate, km � 2:88� 10�1, is located at a
more infrared region than the point k ¼ k1 � 3:40� 10�1,
and the periodic structure can be seen in the higher-
momentum space. In the GAU-M model, on the other
hand, we can confirm that our analytical value, k ¼ km �
1:22� 10�2, agrees with the numerical value, k1 � 1:70�
10�2, in the green-dashed line; however, the analytical
value appears in a slightly more infrared region. We also
observe the periodic structure in the higher-momentum
modes as was reported in [33]. In the middle panels (the
GRV-M model on the left and the GAU-M model on the
right), we compare both the zero mode, ��2 (red-solid
lines), and the homogeneous field, �2 (green-plus dots),
shown in the bottom panels of Fig. 2. The middle panels in
both cases show that the zero mode does not decay quickly,
and it oscillates around �2 ¼ �2

cr. We can also check that

our numerical parameters are appropriate, minimizing nu-
merical errors. In the bottom panels of Fig. 6, we plot the
evolution of nkðtÞ for the modes both km (red-solid lines)
and k1 (green-dashed lines). In the left-bottom panel, we
can see the exponential growth of the amplitude in the
GRV-M model for both modes, and steplike particle pro-
duction exists at the beginning of the evolution as broad
resonant preheating [2] [c.f. Eq. (30)], and it begins to
create the particles exponentially afterwards. The particles
are produced quickly when the zero-mode �2ðtÞ increases
in time at the beginning, see the middle panels. This is the
different feature of the evolution compared to the case of
resonant preheating, where particle production for the
broad resonance occurs nonadiabatically when the zero
mode (inflaton field) crosses the zero axis. In the right-
bottom panel, we can see more clearly the steplike particle
creations for both modes, and then this steplike evolution
smooths out, which leads to the exponential particle pro-
duction as in the GRV-M case. We believe that the adia-
batic condition, €S � _S2, is ‘‘softly’’ violated only in this
initial stage since we can not see the clear exponential
growth at the beginning of this evolution. In the next
paragraph, we discuss the late linear evolution when this
nonadiabatic evolution ceases, and show that our analytics
results agree much better with our numerical ones.
Up to the nonlinear time: In Fig. 7, we show the evolu-

tion of the various physical quantities in the late stage of
linear perturbations: nþk , ��2 and Varð�Þ. The top panels

plot the amplitude of nþk with various times in both the

GRV-Mmodel (left) and the GAU-Mmodel (right). Notice
that we plot them against the logarithmic scale of k as
opposed to the linear scale shown in the top panels of
Fig. 6. For all time steps shown there, our analytical values
of km (in black-dashed vertical lines) agree well with the
first peak mode k1, at which the amplitudes are most
amplified. Notice that the zero-momentum mode does
not decay in both cases. After the first peak of the ampli-
tude is well developed, the second peak appears in the
spectra, and later the third peak can be barely observed.
Roughly speaking, the nth peaks appear around the values
which are km multiplied by n. These higher peaks are
suppressed by rescattering processes in which a particle
from the first peak transfers some of its momentum to a
particle from the zero-momentum modes (AD conden-
sates) [57]. Later, all modes of the particle spectra, nþk ,
develop quickly, but the first peak is still visible. The
middle panels illustrate the evolution of a zero-mode field
��2 and the variance of the field Varð�Þ up to the nonlinear
time t ¼ tNL. As we saw in the top panels, the zero mode
does not decay even after the nonlinearity comes in, while
the variance of the field develops exponentially from t�
140 in the GRV-M model (left) and from t� 600 in the
GAU-M model (right). This delay of the exponential
growth comes from the fact that the other modes do not
evolve initially except the mode km; thus, we can set
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these times as t� defined in Eq. (29). We fit a function,
/ expð2 _Snumðt� t�ÞÞ, against the exponential evolution for
the variations, where we obtain _Snum � 4:45� 10�2 in the
GRV-M model and _Snum � 6:72� 10�3 in the GAU-M

model, which match satisfactorily with the analytical
ones in Eqs. (32) and (34), where we computed as h _Smi �
4:20� 10�2 in the GRV-Mmodel and h _Smi � 7:07� 10�3

in the GAU-M model. From the middle panels, the non-
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FIG. 6 (color online). In the top two panels, we plot the amplitude of nþk ðtÞ with two different time steps for the GRV-Mmodel in the
left-panel and the GAU-M model in the right-panel, where we took the average of nþk ðtÞ over the axes of k. The black-dashed vertical

lines indicate the analytical values of the most amplified modes km obtained from Eqs. (33) and (34). In the middle panels (GRV-M
model on the left and GAU-M model on the right), we compare the zero-mode ��2 (red-solid lines) and the homogeneous field �2

(green-plus dots) obtained in the bottom panels of Fig. 2. In the bottom panels of Fig. 6, we plot the evolution of nþk ðtÞ for both analytic
values km (red-solid lines) and numerical values k1 (green-dashed lines) of nþk shown in the top two panels.
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linear time is approximately both tNL � 420 in the GRV-M
model and tNL � 2200 in the GAU-M model, and these
values agree well with our analytic estimates in Eq. (29),
where the analytical values are tNL � 262þ 140� 422 in

the GRV-M model and tNL � 1628þ 600� 2228. In the
bottom panels, we plot the evolution of the amplitude nþk
for the first peak mode (red-plus dots), second peak mode
(green-cross dots) and the analytical most amplified modes
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FIG. 7 (color online). The top panels plot the amplitude of nþk with various times in both the GRV-M model (left) and the GAU-M
model (right). The analytical value of the most amplified mode km in black-dashed vertical lines agrees with the first peak, k1, of the
spectra in both cases. The middle panels show the evolution of zero-mode field, ��2 (red-plus dots), and the variance of the field, Varð�Þ
(green-cross dots), up to the nonlinear time t ¼ tNL, where we can set tNL � 420 in the GRV-M model and tNL � 2200 in the GAU-M
model. In the bottom panels, we plot the evolution of the amplitude nþk for the first k1 (red-plus dots), second peak k2 (green-cross dots)
modes and the analytical most amplified modes km (purple squared-cross dots).
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(purple squared-cross dots). The numerical values of the
exponents for the most amplified modes km in blue long-
dotted lines, ( _Snum � 4:55� 10�2 in the GRV-M model
and _Snum � 7:11� 10�3 in the GAU-Mmodel) match with
the analytical ones in Eqs. (32) and (34). The second peaks
k2 in black short-dotted lines start to grow at t� 220 in
GRV-M model and at t� 1300 in the GAU-M model, and
we can set these values as t0 defined in Eq. (31). The initial
behavior of the amplitude of second peak of nþk seems to be

quasiperiodic, which implies that hSi for the mode, k2, is
pure imaginary, see Eq. (22) [c.f. the bottom panels of
Fig. 5 in [8]]. Surprisingly, the growth rates for the second
peaks are about twice as large as the values of both h _Smi
and _Snum for Varð�Þ and k1. Note that the initial evolution
is not adiabatic, so that the growth rates are not strictly
exponential as we have seen in the bottom panels of Fig. 6.
For example, the growth of the first peaks, km (or k1), in the
GAU-M model is not exponential initially, but it becomes
exponential as the growth of the second peak mode k2.

Bubbles pinched out of filaments: In Fig. 8, we show
snapshots of the positive charge density nþðxÞ for the
GRV-M model (left panels) and the GAU-M model
(right-panels) around t� tNL, where ’Time-step’ in the
panels denotes the actual time divided by 10 in the GRV-
M model and the actual time divided by 102 in the GAU-M

model. The color bars illustrate the values of the positive
charge density. We can see long-wavelength objects
(sometimes called ’filaments’) in both cases, and the
charge in some regions is compactified into spheres, see
bottom panels. These filaments and bubbles correspond to
nonlinear solutions, which may be nontopological strings
[58] and the excited states of Q-balls, respectively. The
radii of these bubbles are of the same order as the wave-
length which corresponds to the most amplified modes, km.
As we will see in the next subsection, these bubbles grow
by colliding and merging each other. Note that this bubble
creation is nothing to do with bubble nucleation in first-
order phase transition as opposed to the case in [14], in
which case the AD condensate is classically stable against
spatial perturbations, but not quantum mechanically.

2. Nonlinear evolution

Bubble collisions and mergers: In Fig. 9, we show snap-
shots of the positive charge density for the GRV-M model
in different time steps up to t ¼ 6000, where ’Timestep’ in
the figure denotes the actual simulation time divided by 102

and the color bars illustrate the values of the positive
charge density. After the system goes into a nonlinear
regime, we can see a few lumps in the first few panels of
the snapshots, and those lumps merge into larger lumpy

FIG. 8 (color online). In the top and bottom panels, we show snapshots of the positive charge density nþðxÞ for the GRV-M model
(left panels) and the GAU-M model (right panels) around t� tNL, where ’Timestep’ in the panels denotes the actual time divided by 10
in the GRV-M model and the actual time divided by 102 in the GAU-M model, and the color bars illustrate the values of the positive
charge density. After the nonlinearity is fully developed, many bubbles form, which are pinched out of ‘‘highly’’ charged filaments.
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objects. Finally, we can see a large cluster, which consists
of a complicated inner structure, see the last snapshot.
Recall that we are using the periodic boundary condition.

Figure 10 shows the detailed evolution of the positive
charge density for the GAU-M model in different time
steps up to t ¼ 60000, where ’Timestep’ in the figure
denotes the actual simulation time divided by 103 and the
color bars illustrate the values of the positive charge den-
sity. A large number of small bubbles can be observed, and
nearby bubbles collide and merge into larger bubbles. In
the final panel, there are smaller number of bubbles left
(compare to the first panel). We believe that this time arrow
is followed because the total energy of large bubbles is
smaller than the total energy of smaller bubbles, cf. fission
stability of Q-balls in [18]. These large bubbles are able to
carry a large amount of charge inside of them as we saw in
the left panel of Fig. 9 in [19] in the ‘‘thin-wall’’ Q-ball
limit.

The differences of the evolution between GRV-M and
GAU-M models come from a number of facts, e.g. differ-
ent initial conditions, stability conditions and momentum
fluxes due to asymptotic profiles at a large distance from
the cores.

Distributions of the negative charge density: We show
snapshots of the negative charge density for the GRV-M
model (left-panel) at t ¼ 6000 and the GAU-M model
(right-panel) at t ¼ 1:0� 105 in Fig. 11, where the color
bars illustrate the values of the negative charge density.

These times correspond to the same physical times as in the
final snapshots of Figs. 9 and 10. The values of charge
density in both models are much smaller than the values of
positive charge density in Figs. 9 and 10. This implies that
we are observing the plots of thermal plasma rather than
charged (nonlinear) lumps. Their distributions are quite
different from each other. The negative charge density
for the GRV-M model is surrounded by the large positive
charged cluster seen in the last panel of Fig. 9, and it is
distributed all over the lattice; whereas, for the GAU-M
model the distributions of the negative charged plasma are
highly concentrated only around the surface of the lumps
(compare the last panel of Fig. 10).
Driven turbulence: The top panels of Fig. 12 show the

evolution of the zero mode (red-solid lines) and the varia-
tions for � (dotted-dashed purple lines), whose latter evo-
lution are fitted by a function, / t�1 , (black-dashed lines),
where �1 is a numerical value as the power of Eq. (35). For
both models (the GRV-M model on the left panel and the
GAU-M model on the right panel), the asymptotic evolu-
tion after the linear perturbation regime is overlapped by
the function, where �1 � 0:121 is for the GRV-M model
and �1 � 0:235 is for the GAU-M model. Our analytic
values can be matched by setting p� 0:111 with m ¼ 5
in the GRV-M model and p� 0:250 with m ¼ 3 in the
GAU-M model, see Eq. (35). Hence, we could identify this
regime as driven (stationary) turbulence, and the main
dynamics in each model is caused by either a ‘‘five-

FIG. 9 (color online). We show snapshots of the positive charge density for the GRV-M model in different time steps (t ¼ 1000,
2000, 3000, 4000, 5000 and 6000), where ’Timestep’ in the figure denotes the actual simulation time divided by 102 and the color bars
illustrate the values of the positive charge density. A few created lumps collide and merge into a large cluster in the end.

AFFLECK-DINE DYNAMICS, Q-BALL FORMATION, . . . PHYSICAL REVIEW D 80, 085010 (2009)

085010-17



particle’’ interaction or ‘‘three-particle’’ interaction, re-
spectively. Note that our nonrenormalization term has a
�6 term in both models. In the middle and bottom panels of
Fig. 12, we plot, respectively, the amplitudes of nþk and n�k
at different times for the GRV-M model (left panels) and
the GAU-M model (right panels). For n�k of the GRV-M

model, the amplitudes of the high momentum modes grow
in time, while the lower momentum modes do not decay

completely and stay for a long time. We fit a function,
/ k��2 , (yellow-dotted lines) where �2 is a numerical
value onto the spectra at t ¼ 6700 for the region where
the function is fitted as shown in black-dashed lines. We
find that �2 � 1:62 for the nþk case and �2 � 0:37 for the

n�k case. In the right middle and bottom panels, we plot the

amplitudes of n�k for the GAU-M model in various times.

The amplitudes of the high momentum modes decrease as

FIG. 11 (color online). We present snapshots of the negative charge density for the GRV-M model (left panel) at t ¼ 6:0� 103 and
the GAU-M model (right panel) at t ¼ 6:0� 104, where the color bars illustrate the values of the negative charge density. The negative
charge density for the GRV-M model is surrounded by the large positive charged cluster; however, the distribution spreads out over the
lattice space, whereas the negative charge density for the GAU-M model is concentrated around the positive charged lumps (compare
them to the last panels of Figs. 9 and 10).

FIG. 10 (color online). We illustrate the detailed evolution of the positive charge density for the GAU-M model in different time
steps (t ¼ 10000, 20000, 30000, 40000, 50000 and 60000), where ’Timestep’ in the figure denotes the actual simulation time divided
by 103 and the color bars illustrate the values of the positive charge density. There are smaller number of bubbles left in the end.
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opposed to the GRV-M case, and the slopes of the spectra
for n�k at t ¼ 63000 in yellow-dotted lines are steeper than
the GRV-M case, where we fit the numerical spectra by the
following values shown in black-dashed lines: �2 � 3:95
for the nþk case and �2 � 1:74 for the n�k case.

3. From driven turbulence to near equilibrium—
Thermalization

In order to significantly reduce the simulation time, we
carry out 2þ 1-dimensional lattice simulations with the
same initial conditions as used in the 3þ 1-dimensional
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FIG. 12 (color online). Left panels (GRV-M model) and right panels (GAU-M model): the top panels show the evolution of zero-
mode (red-solid lines) and the variations for � (dotted-dashed purple lines), whose latter evolution are fitted by a function, / t�1 ,
(black-dashed lines) where �1 is a numerical value as the power of Eq. (35). In the middle and bottom panels, we plot, respectively, the
amplitudes of nþk and n�k in different times for both models, and we fit them by a function of / k��2 where �2 is a numerical value.

AFFLECK-DINE DYNAMICS, Q-BALL FORMATION, . . . PHYSICAL REVIEW D 80, 085010 (2009)

085010-19



cases, where our lattice units are reduced from 5123 to
5122. In the top panels of Fig. 13 (GRV-Mmodel in the left
panels and GAU-Mmodel in the right panels), we illustrate
the evolution of the zero mode and the variances of �, and
in the bottom panels we plot the energy density (at t ¼
3:5� 105 in the left-bottom panel and at t ¼ 1:7� 107 in
the right-bottom panel) instead of the charge density to
compare with the Q-ball profiles at zero-temperature,
which we obtained in Fig. 3 and Fig. 7 in [19]. The color
bars in the bottom panels of Fig. 13 illustrate the values of
energy density. Note that we are using the same parameters
for the GRV-M model as the ones used in [19], while the
potential for the GAU-M model used there is a generalized
version of our present potential Eq. (10), so the profiles of
the Q-balls in GAU-M model should look similar only
qualitatively, but not quantitatively. From the top panels,
we can also see, in particular, the GRV-M model, the
scaling exponent evolution during the driven turbulence
stage after the prethermalization ends as confirmed in the
top panels of Fig. 12. The subsequent evolution, however,
is different between each other and also unique apart from

a characteristic free turbulence stage. These features of the
thermalization process are caused by stable nonlinear so-
lutions, namely, ‘‘Q-balls’’; in the GRV-M model (left
panels), the variance does not evolve that much after the
driven turbulence stage ends and we can see thin-walled–
like charged lumps in the end, see the left-bottom panel. In
the GAU-Mmodel (right panels) the variance has a steplike
evolution, at which stage we confirmed that two (or some-
times more) charged lumps collide and merge into a larger
lump. The collision rate is very low since the motions of
these ‘‘heavy’’ bubbles are nonrelativistic, but we expect
that there will be only one single Q-ball left ultimately as
similar as the GRV-M case. Generally, we observe that
almost all of the total energy is trapped into these lumps,
where we also confirm that the total charge is absorbed into
these lumps, as reported in [31,32]. As the ‘‘thin-wall’’
Q-balls in the GAU-M model do not have an extremely
thin-wall thickness [19], the profiles seen in the right-
bottom panel do not have such a thin-shell thickness.
Note that the ‘‘thick-wall’’ Q-balls in the GAU-M model
may suffer from classical instability and fission against
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FIG. 13 (color online). Left panels (GRV-M model) and right-panels (GAU-M model) in 2þ 1 dimensions: the top panels show the
evolution of zero-mode (red-solid lines) and the variations for � (dotted-dashed purple lines). In the bottom panels, we plot the energy
density (at t ¼ 3:5� 105 in the left-bottom panel and at t ¼ 1:7� 107 in the right-bottom panel) instead of the charge density to
compare theQ-ball profiles seen in Fig. 3 and Fig. 7 of [19] where the color bars illustrate the values of energy density. We can see that
almost all of the charge is trapped into bubbles which may be ‘‘thin-wall’’ Q-balls, recall that we are imposing a periodic boundary
condition.
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spatial perturbations around the Q-ball solutions, and de-
cay into smaller Q-balls as opposed to the case of ‘‘thick-
wall’’Q-balls in the GRV-Mmodel. The reader should also
notice that the potential for the GAU-M model in the
present case is different from Eqs. (40) and (41) in [19],
which may change the classical stability of the Q-balls in
the ‘‘thick-wall’’ limit. Furthermore, the stability of
Q-balls is related to their own charge Q so that the initial
ratio, E=ðmQÞ, can also cause the different evolution.
Therefore, we believe that the evolution is very sensitive
to the parameters of the models used and the initial con-
ditions. It is worth mentioning, in the left-bottom panel,
that the value of charge density within the charged cluster
is slightly larger than the value of the thin-wall Q-balls in
the zero-temperature case (compare to right-bottom panel
of Fig. 3 in [19]). We believe that this is because this
charged cluster appears in the thermal background, in
which the thermal effects change their profiles.

Let us recap our findings in this section. We have shown
in both GRV-M and GAU-M models that the AD conden-
sate that has a negative pressure is generally unstable
against linear fluctuations, and the fluctuations evolve ex-
ponentially. The condition for the presence of a negative
pressure corresponds to the existence condition of Q-balls,
and under our initial conditions shown in Table I, we
observed that almost all of the total charge is trapped
into a single (and a few) spherical lump(s) (‘‘thermal
Q-balls’’) by the end of our numerical simulations. In the
intermediate regions between the initial exponential am-
plification stage and thermalization stage in the presence of
the nonlinear solutions, we identified that the driven turbu-
lence is active; we then found the scaling exponent evolu-
tion for the variance of �, and we saw that this stage lasts
relatively much longer than the case of tachyonic
reheating.

IV. CONCLUSION AND DISCUSSION

In this paper we have discussed both analytically and
numerically two main issues: Affleck-Dine (AD) dynamics
and their subsequent nonequilibrium dynamics in the pres-
ence of nonlinear solutions. We showed that the AD dy-
namics has the same features as the orbital motions of
planets, replacing the gravitational force by an isotropic
harmonic oscillator force. As the relativistic correction to
the Newtonian potential gives a precession for the plane-
tary orbit, the orbits of AD fields are disturbed by the
nonrenormalizable and quantum correction terms. Note
that the essential origin of these corrections is physically
different. In the presence of a negative pressure of the AD
condensate, we have shown that the condensate is classi-
cally unstable, and the evolution of the system is similar to
the dynamics of reheating of the Universe, i.e. pretherm-
alization, bubble collisions and thermalization. Adopting
lattice simulations, we found that the thermalization pro-
cess occurs in the presence of charged lumps, which merge

into a single (or a few) ‘‘thermal thin-walled Q-ball(s)’’,
absorbing most of the homogeneous charge distributed
initially in the lattice.
In Sec. II, we introduced two phenomenological models

motivated by the MSSM, i.e. gravity-mediated (GRV-M)
model and gauge-mediated (GAU-M) model. We obtained
the frequencies of the rotation for the nearly circular orbits,
and showed that the condensate can have a negative pres-
sure in both cases, see Sec. II A. Furthermore, we checked
numerically our analytic results with the various cases in
both a nonexpanding and expanding universe.
Our analytic expressions have a number of advantages.

In the existing literature on preheating for complex scalar
fields [59,60], the motion of the complex scalar field is
assumed to be of an elliptical form, but their ansatz does
not hold [compare our expressions in Eqs. (19), (B5), and
(B16) and their ansatz]. In the multi-flat-direction cases,
our analytic expressions of the AD field give the exact
Mathieu equation if the interaction term between the AD
field � and another field  that parametrizes another flat
direction, is given by g2j�j2jj2, where g is a coupling
constant between them. The previous literature [59] sug-
gested that the resonant SUSY preheating for nearly cir-
cular orbits is not effective since the characteristic
dimensionless quantity q is much less than unity, recalling
that broad resonant preheating (nonadiabatic evolution)
occurs for q 	 1. This statement also holds for our case
when the orbit of the AD field is nearly circular because of
q / "2 where "2 is the third eccentricity of the orbits,
recalling that nearly circular orbits correspond to the case
of "2 � 1.
We obtained the successful Ansätze, Eq. (19), for nearly

circular orbits in an expanding universe (see also the top
panels in Fig. 4), but our analytical expressions could be
improved by the action variable technique as a real scalar
field case [61]. These issues on understanding analytic
forms of the orbits are related to the dynamics of spinning
scalar fields, which can be responsible for the early- and
late- time exponential expansions of the Universe (spin-
flation [62] and spintessence [63]) since the AD condensate
can possess a negative pressure, which can satisfy the
condition of slow-roll inflation, w<�1=3. It has been
discussed in [64] about an oscillating field responsible
for dark energy (see a recent review [65]), and it gives a
constraint on the power of a power-law potential in order to
obtain the attractor solutions [66]. As in the case of real
scalar fields, a complex scalar field has been investigated,
see for example [67]. Following our analytical work, one
can investigate the further analysis on dark energy for a
complex scalar field and their late evolution in order to
place constraints on parameters of the models, avoiding
Q-ball formation.
In Sec. III, we explored the late time evolution of AD

fields in Minkowski spacetime in both GRV-M and GAU-
M models. As the usual nonequilibrium dynamics, we
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proposed that the dynamics of the Q-ball formation goes
through three distinct regimes: prethermalization, bubble
collision (driven turbulence) and thermalization. We
showed analytically that the AD condensate is unstable
against spatial perturbations if the condensate has a nega-
tive pressure, and the perturbations grow exponentially.
The presence of the negative pressure satisfies the exis-
tence of Q-balls as well as the fact that the sound wave of
the perturbation has an imaginary value of the sound speed.
Assuming the adiabatic linear evolution, we have analyti-
cally shown that the perturbations for the most amplified
mode k ¼ km in Eq. (25) grow with the exponent _Sm in
Eq. (26), which we obtained by taking the average over one
rotation of the orbits of the AD field. In the previous
literature [33,53], these values were obtained by ignoring
the nonrenormalizable term and by assuming that the orbit
is circular. By including the nonrenormalizable term and
considering more general elliptic orbits, we recovered their
results as the leading order term of our solutions in
Sec. III A 2. We also showed that the nonlinear time is
delayed compared to the time which the authors in [22]
obtained, since the other modes are not well developed
when the most amplified mode starts to grow exponen-
tially. With our 3þ 1-dimensional numerical lattice simu-
lations, which were run for a much longer time with much
larger simulation sizes than the past lattice simulations in
[31–33,39,53], our analytic results were shown to be ro-
bust. In addition, we found that the adiabatic condition is
violated at the beginning stage of the linear perturbations
as seen in broad resonant preheating. In the driven turbu-
lence stage, we observed that many bubbles form and
collide/merge into larger bubbles in both GRV-M and
GAU-M models. Note that these bubbles are nothing to
do with the bubbles due to first-order phase transition. By
concerning the variance of the radial field �, we have seen
that the evolution follows a scaling exponent law as a
signature of the driven turbulence [35]. As opposed to
the case of tachyonic preheating, this driven turbulence
stage, in our case, lasts for a longer time, which may be
caused by the presence of classical nonlinear solutions, i.e.
‘‘Q-balls’’. We saw in our 2þ 1-dimensional numerical
results that a thermalization stage actually exists where the
evolution for the variance of a field has a different scaling
law from the one which appears in the driven (first) turbu-
lence stage. We believe that quantum effects should be
non-negligible in this late turbulence stage, and the classi-
cal thermalization process, in our case, should be different
from the corresponding quantum-mechanical thermaliza-
tion. Since thermalization process is generally extremely
long, a lattice simulation in an expanding background
encounters serious problems in the ultraviolet limits;
thus, we ignored Hubble expansion in this paper. By con-
sidering the quantum-mechanical effects as well as Hubble
expansion, it is worth examining the cosmological conse-
quences as our future work.

In the context of a (p)reheating scenario, it has been
suggested [38] that the collision of bubbles during the
driven turbulence stage can be an effective source of
gravitational waves, which can be detected by LIGO [68]
and LISA [69] in the near future. We noticed that this
analysis should be applicable to the same driven turbulence
stage of theQ-ball formation, which was initially proposed
in [18]. The problem of gravitational waves emitted in the
fragmentation stage has been discussed [39], while the
analysis of the gravitational wave emissions in the driven
turbulence stage of Q-ball formation still remains to be
done.
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APPENDIX A: PERTURBATIONS ON MULTIPLE
SCALAR FIELDS

In this appendix we obtain Euler-Lagrange equations for
multiple scalar fields ’̂a with a symmetric field-space
metric Gabð’̂Þ ¼ Gbað’̂Þ, following the notations in
[70,71]. Our aim is to obtain equations of motion for the
background homogeneous (zero-mode) fields’aðtÞ and the
perturbed fields �’aðt;xÞ in a fixed unperturbed back-
ground (Friedmann-Robertson-Walker) metric, g�� ¼
diagð�1; aðtÞ; aðtÞ; aðtÞÞ where aðtÞ is scale factor of the
Universe and H ¼ _a=a is the Hubble parameter. Here, an
over-dot denotes the time-derivative. As the simplest non-
trivial example of the multiple scalar fields, we find equa-

tions of motion for a complex scalar field �̂ � �̂ei�̂ where

�̂ and �̂ are real scalar fields and the system possesses a
U(1) symmetry.
Let us start off with the following action

S ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
� 1

2
g��Gabð’̂Þ@�’̂a@�; ’̂

b � Vð’̂Þ
�
;

(A1)

where g � detðg��Þ and Vð’̂Þ is a potential for ’̂. By

applying the action principle, we obtain the Euler-
Lagrange equation for ’̂
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1ffiffiffiffiffiffiffi�g
p @�ð ffiffiffiffiffiffiffi�g

p
g��Gcb@�’̂

bÞ ¼ 1

2
g��Gab;c@�’̂

a@�’̂
b

þ V;c; (A2)

and the energy momentum tensor

T�� ¼ Gab@�’̂
a@�’̂

b þ g��

�
� 1

2
g��Gab@�’̂

a@�’̂
b

� Vð’̂Þ
�
: (A3)

Here, we defined Gab;c � dGab

d’̂c , and so on. The energy

density and pressure can be given by T�� [71]

�E ¼ � 1

2
g��Gab@�’

a@�’
b þ Vð’Þ; (A4)

p ¼ � 1

2
g��Gab@�’

a@�’
b � Vð’Þ: (A5)

By perturbing the fields as ’̂a ¼ ’aðtÞ þ �’aðt;xÞ where
j’j 	 j�’j, the homogeneous part gives, from Eq. (A2),

D

dt
_’a þ 3H _’a þGabV;b ¼ 0; (A6)

where the covariant derivative,D=dt, can be defined by the
‘‘Christoffel symbols’’ �a

bc � 1
2G

ad � ðGdc;b þGdb;c �
Gbc;dÞ; thus, D

dt _’a � d
dt _’a þ �a

bc _’b _’c. On the other

hand, we can obtain the equations of motion for the per-
turbed fields �’ from Eq. (A2)

D2

dt2
�’a þ 3H

D

dt
�’a �

�r
a

�
2
�’a � �a

bcd _’b _’c�’d

þ ðV;aÞ;d�’d ¼ GabGbc;dG
ceV;e�’

d; (A7)

where we used D
dt �’

a ¼ � _’a þ �a
bc _’b�’c, defined the

‘‘Riemann tensors’’ as �a
bcd � �a

bd;c � �a
bc;d þ �a

ce�
e
bd �

�a
de�

e
bc, and denoted the covariant derivative as the usual

notion ‘;’. Notice that we used V;b � @V
@’̂b ð’̂Þ ’ @V

@’̂b ð’̂Þj’ þ
�’c @2V

@’̂b@’̂c j’ þ . . . .

When the system has aOð2Þ �Uð1Þ symmetry for ’̂a ¼
ð�̂; �̂Þ and a flat field metric is Gab ¼ diagð1; �̂2Þ, we can
obtain �1

22 ¼ ��̂; �2
12 ¼ �2

21 ¼ 1=�̂. We then induce
Eq. (A6) with a potential Vð�Þ to

€�þ 3H _�� � _�2 þ dV

d�
¼ 0; (A8)

€�þ 3H _�þ 2

�
_� _� ¼ 0: (A9)

Here, the third term in Eq. (A8) corresponds to the ‘‘cen-
trifugal force’’ due to a spin in the field space, and the third
term in Eq. (A9) corresponds to the ‘‘Colliori force’’. In
addition, the energy density and pressure can be given by
from Eqs. (A4) and (A5)

�E ¼ 1

2
ð _�2 þ �2 _�2Þ þ V; p ¼ 1

2
ð _�2 þ �2 _�2Þ � V:

(A10)

Furthermore, Eq. (A7) gives

€��þ 3H _���
��r

a

�
2 þ _�2 � d2V

d�2

�
��� 2� _� _�� ¼ 0;

(A11)

€��þ
�
3H þ 2 _�

�

�
_���

�r
a

�
2
��þ 2 _�

�2
ð� _��� _���Þ ¼ 0:

(A12)

We use Eqs. (A8) and (A9) to concern the orbits of AD
condensates in Sec. II, and use Eqs. (A11) and (A12) to
investigate the linear spatial instability of the condensates
in Sec. III.

APPENDIX B: THE ORBIT OFAN AFFLECK-DINE
‘‘PLANET’’

In this appendix, we obtain an exact orbit form in a
quadratic potential case when the Hubble expansion is
assumed to be small and adiabatic. The orbit of an AD
field, or more precisely an eccentricity of the elliptic
motion in the complex field-space, is determined by the
initial charge and energy density. In order to obtain ana-
lytic expressions of the orbit in more general potential
cases in which we are more interested, we restrict ourself
to work in Minkowski spacetime and on the orbit which
should be nearly circular. We then obtain the perturbed
orbit equation and necessary conditions for closed orbits,
where the orbits come back to their original positions after
some rotations around the minimum of the effective po-
tential. By including the effects of the Hubble expansion,
in Sec. II B we shall introduce Ansätze, which are inspired
by our solutions obtained in Minkowski spacetime. Our
numerical results support the Ansätze, assuming that the
rotation frequency W is always much greater than the
Hubble expansion H [49].

1. The exact orbit in an expanding universe

The exact orbit expressions of an AD field in an expand-
ing universe can be obtained with a quadratic potential,

V ¼ M2

2
�2 ¼ M2

2

�
a0
a

�
3
~�2; (B1)

where M is a mass of the field � and we have rescaled the

field �, �ðtÞ ¼ ð a0aðtÞÞ3=2 ~�ðtÞ. From now on, we solve the

orbit equations, Eq. (6), for ~�ðtÞ at first, and then solve
them for ~uð�Þ, replacing the time-dependence ~�ðtÞ by a
phase variable �. We then show that the orbits for ~�ðtÞ and
~uð�Þ are of the usual elliptic forms with a third eccentricity
"2.
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a. The orbit for ~�ðtÞ
In this subsection we obtain an expression for the orbit

~�ðtÞ with the quadratic potential Eq. (B1) by solving
Eq. (6). Substituting Eq. (B1) into Eq. (6) and ignoring
the terms involving H2 and €a=a, we obtain

€~�� ~�2
Q

~�3
þM2 ~� ¼ 0 , d~�E

dt
¼ 0; (B2)

where ~�E � 1
2 ðd~�dt Þ2 þ 1

2M
2 ~�2 þ ~�2

Q

2~�2 � a�3
0 �E, which is

approximately conserved. Since 1
2

d2

dt2
ð~�2Þ ¼ _~�2 þ ~� €~� ¼

2~�E � 2M2 ~�2, Eq. (B2) leads to a harmonic oscillator
form,

d2

dt2
ð~�2Þ ¼ �4M2

�
~�2 � ~�E

M2

�
(B3)

whose solution is

~� 2ðtÞ ¼ ~�E

M2
þ A cos½2Mðtþ t0Þ�; (B4)

¼ ~�E

M2
ð1þ "2 cos½2Mðtþ t0Þ�Þ: (B5)

Here, B is some constant value and we set t0 as a time when
the AD field starts to rotate. We have also defined a third

eccentricity "2 � AM2

~�E
¼ ~�2

max� ~�2
min

~�2
maxþ ~�2

min

, where the apocentral

and pericentral points are, respectively, given by ~�2
max �

~�E

M2 þ A and ~�2
min � ~�E

M2 � A. Notice that the circular orbit

case corresponds to "2 ¼ 0, which implies that ~�2
max ¼

~�2
min, and also note that the eccentricity is real and has a

value between 0 and 1 in the present quadratic potential
[72].

We can obtain the period � of this orbit,

� ¼ 	

M
: (B6)

Substituting Eq. (B4) into ~�E, we obtain A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~�2
E�M2 ~�2

Q

p
M2 .

From the above expressions for "2 and A, we can obtain
M~�Q

~�E
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "4

p
. Using this and Eq. (B4), it ends up with

_�ðtÞ ¼ ~�Q

~�2
¼ M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� "4

p

1þ "2 cos½2Mðtþ t0Þ�
: (B7)

For the circular orbits with "2 ¼ 0, _� is time-independent
as we can expect, and the ratio, ~�E=ðM~�QÞ, is unity. While

for the radial orbits with "2 ¼ 1, we obtain _� ¼ 0 as we
can also expect, and we can find ~�E=ðM~�QÞ 	 1.

b. The orbit for ~uð�Þ ¼ ~��1ð�Þ
What follows is that we express ~�ðtÞ as a function of �

by using the second expression in Eqs. (6) and (B4). We
then obtain

tanð�� �0Þ ¼ ~�min

~�max

tanðMðtþ t0ÞÞ; (B8)

where �0 is an integration constant and we used the

following integral formula,
R

dx
a1þa2 cosx

¼
2ffiffiffiffiffiffiffiffiffiffi

a2
1
�a2

2

p Arctanðða1�a2Þ tanðx2Þffiffiffiffiffiffiffiffiffiffi
a2
1
�a2

2

p Þ with some real values a1 and

a2. Without loss of generality, we can choose t0 ¼ �0 ¼
0, which implies that the orbit at t ¼ 0; �=2 gives, respec-
tively, � ¼ 0, 	=2, recalling Eq. (B6). By comparing
Eq. (B4) to Eq. (B8), we obtain

~� 2ð�Þ ¼ ~�2
max ~�

2
min

~�2
mincos

2�þ ~�2
maxsin

2�
; (B9)

, ~u2ð�Þ ¼ 1

~�2
¼ cos2�

~�2
max

þ sin2�

~�2
min

; (B10)

¼ ~�2
max þ ~�2

min

2 ~�2
max ~�

2
min

ð1� "2 cosð2�ÞÞ: (B11)

Hence, we can see that � ¼ 0 when ~� ¼ ~�max and � ¼
	=2when ~� ¼ ~�min. Finally, we obtain the expressions for
the orbits as the usual elliptic forms in Eqs. (B5) and (B11).
For the circular orbits "2 ¼ 0, we can obtain ~u2 ¼ const
from Eq. (B11) as expected.

2. The nearly circular orbits in Minkowski spacetime

Without Hubble expansion, we can investigate a nearly
circular bounded orbit of an AD field in general potentials
which satisfy Eq. (5). From this reason, we concentrate on
the case of a nonexpanding background in this subsection,
and obtain a time-dependent expression for the nearly
circular orbits as in Eq. (B5). We then find the expression
that depends on the phase � as in Eq. (B10). Moreover we
obtain conditions for closed orbits, in which the perturba-
tions are expanded up to 1st order (for the complete proof
of the condition up to 4th order, see Bertrand’s theorem
[41]).

a. The orbit for �ðtÞ
In Minkowski spacetime, we can find an expression for

the orbit �ðtÞ in a general potential Vð�Þ as in Eq. (B5).
Notice that the tilde variables are the same as un-tilde ones
in the present nonexpanding background. Recall the equa-
tion of motion, Eq. (1), in Minkowski spacetime,

€�þ dVþ
d�

¼ 0: (B12)

Suppose that the orbit that is nearly circular as �ðtÞ ¼
�cr þ �ðtÞ, where �cr 	 j�j, recalling �cr is defined by
Eq. (4). Substituting this expression for � into Eq. (B12)
and keeping � terms up to 1st order, we obtain a harmonic
oscillator form
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€�þW2� ¼ 0; (B13)

where the reader should recall the condition, Eq. (5), for
the bound orbits, andW is constant since we are working in
Minkowski spacetime.

Thus, the solution of Eq. (B13) is

�ðtÞ ¼ �crB cosðWtÞ; (B14)

where B is a small positive dimensionless constant, i.e.
B � 1 due to �cr 	 j�j, and we have set the differentia-
tion constant to be 0 to ensure that �ð0Þ ¼ �max. We find
that �max ¼ �crð1þ BÞ, �min ¼ �crð1� BÞ, and
�max�min ’ �2

crð1þOðB2ÞÞ. These give B ¼ �max��min

�maxþ�min
,

�cr ¼ �maxþ�min

2 , and 2B ’ �2
max��2

min

�2
maxþ�2

min

¼ "2, where we have

used the definition of the third eccentricity. We can check
that the condition, 2B ’ "2 � 1, is consistent with the fact
that the orbit is nearly circular. Since _�max ¼ _�min ¼ 0 and
�E is constant, we can equate B with �E and �Q using

Eqs. (5) and (B14):

B ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�E � Vþð�crÞÞ

W2�2
cr

s
¼ �cr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�E � Vþð�crÞÞ
ð�4V00Þj�cr

þ 3�2
Q

vuut
’ "2

2
� 1; (B15)

where a prime denotes the differentiation with respect to�.
Finally, we obtain

�2ðtÞ ¼ �2
crð1þ "2 cosðWtÞ þOð"4ÞÞ; (B16)

whereW is given by Eq. (5) [compare with Eq. (B5)]. Now,
we can define the period �

� ¼ 2	

W
; (B17)

which reproduces Eq. (B6) as the case with W ¼ 2M.
Using Eqs. (2) and (4), we can also find

_� ’
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0=�j�cr

q
1þ "2 cosðWtÞ : (B18)

Using Eq. (3), let us compute the pressure of this AD
condensate whose orbit is described by Eq. (B16). By
expanding V�ð�Þ around � ¼ �cr and using Eq. (B16),

we obtain V�ð�Þ ’ V�ð�crÞ þ "2�2
Q

�2
cr

cosðWtÞ þ "4�2
cr

8 ðW2 �
6�2

Q

�4
cr
Þcos2ðWtÞ þ . . . , where we have assumed that the

higher order terms in V� are negligible. Therefore,

p ’ W2�2
cr"

4

8
ð1� 2cos2ðWtÞÞ � Vð�crÞ

þ �2
Q

2�2
cr

�
1� 2"2 cosðWtÞ þ 3

2
"4cos2ðWtÞ

�
;

, hpi ’ �Vð�crÞ þ
�2
Q

2�2
cr

: (B19)

Here we have defined an averaged value over one rotation
in the orbit, Eq. (B16), namely hXi � 1

�

R
�
0 dtXðtÞ where X

is some quasiperiodic quantity and � is determined by
Eqs. (5) and (B17). The result, Eq. (B19), can be easily
understood by the fact that the averaged pressure corre-
sponds to the value at � ¼ �cr since the orbit oscillate
around �cr and _�cr ¼ 0, c.f. a real scalar field case [49].
Similarly, we can obtain the averaged energy density

h�Ei ’ Vð�crÞ þ
�2
Q

2�2
cr

þW2�2
cr"

4

16
; (B20)

where we have kept the contribution from the term involv-
ing "4. Hence, the averaged equation of state is given by

hwi � h p
�E

i ¼
�2
Q

2�2
cr
� Vð�crÞ

�2
Q

2�2
cr
þ Vð�crÞ þW2�2

cr"
4=16

: (B21)

b. The orbit for uð�Þ ¼ ��1ð�Þ
In order to obtain a �-dependent expression of the orbit

as Eq. (B10), let us switch the variable � to uð�Þ �
1=�ð�Þ. In Minkowski spacetime, where we can again
drop the tilde variables here, the orbit equation Eq. (7) is

d2u

d�2
þ u ¼ � 1

�2
Q

dV

du
� JðuÞ: (B22)

Let u0, which is independent of �, be the value of a circular
orbit (i.e. u0 � 1=�cr). We then consider an orbit uð�Þ that
deviates slightly from u0 with a fluctuation �ð�Þ, i.e. u ¼
u0 þ �, where u0 	 j�j. Since du0

d� ¼ 0 ¼ d2u0
d�2

, Eq. (B22)

implies that u0 ¼ Jðu0Þ. By expanding JðuÞ around u ¼
u0, we obtain JðuÞ ’ u0 þ � dJ

du ju0 þ . . . , where we are

evaluating the derivatives at u0. Hence, we can obtain the
perturbed orbit equation for �ð�Þ

d2�

d�2
þ �2� ¼ 0; (B23)

where �2 � 1� dJ
du ju0 which should be positive for

bounded orbits. Note that this condition, �2 > 0, is equiva-
lent to the previous condition, Eq. (5), since

�2 ¼ �4
cr

�2
Q

W2 ¼ 3V 0 þ �V00

V0

���������cr

; (B24)
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where we used the fact V 0 ¼ �2
Q

�3 at � ¼ �cr from Eq. (4).

The solution of Eq. (B23) is

� ¼ u0C cosð��þ �0Þ; (B25)

where C and �0 are constants, and 0<C � 1 due to the
fact that u0 	 j�j. We can then show C ¼ B by equating
the value of C with �Q and �E. Substituting u into �E and

expanding VðuÞ around u ¼ u0 up to second order, we can
find

C ¼ 1

u0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð�E � Vþð1=u0ÞÞ
d2Vð1=uÞ

du2
ju0 þ �2

Q

vuut ¼ B ’ "2

2
; (B26)

where we used dVþðuÞ
du ju0 ¼ dVðuÞ

du ju0 þ �2
Qu0 ¼ 0 from

Eq. (4). The relation, C ¼ A, is obtained by changing the
variable u back to � [compare Eq. (B26) with Eq. (B15)].

Let us choose �0 ¼ 	 in Eq. (B25), then we obtain

u ¼ u0ð1� C cosð��ÞÞ; (B27)

u2 ’ u20½1� 2C cosð��Þ þOðC2Þ�: (B28)

Notice that 0<C � 1 which is consistent with the con-
dition for nearly circular orbits "2 � 1, as we have seen in
appendix B 2 a and Eq. (B26). We can also find that
�max ¼ �cr

1�C for �� ¼ 0 and �min ¼ �cr

1þC for �� ¼ 	.

To show that the orbit uð�Þ in Eq. (B28) has a
similar form as Eq. (B11), let us compute the following
relations: �2

max þ �2
min ’ 2�2

crð1þOðC2ÞÞ, �2
max �

�2
min ’ 4�2

crCð1þOðCÞÞ and �2
max�

2
min ’ �4

crð1þ
OðC2ÞÞ. Hence, we obtain u20 ’ �2

maxþ�2
min

2�2
max�

2
min

and 2C ’ "2,

which imply that Eq. (B28) is of similar orbit form as
Eq. (B11). As we computed going from Eq. (B10) to
Eq. (B11), where for this case we deduce Eq. (B11) from
Eq. (B10), we finally obtain

u2 ’ cos2 �
2 �

�2
max

þ sin2 �
2 �

�2
min

: (B29)

In the next subsection, we obtain the conditions for closed
orbits using Eq. (B29) [73].

c. Conditions for closed orbits and equations of state

Let us define an angle �, which is the phase difference
as the orbit goes from � ¼ u0C to � ¼ �u0C,

� � 	

�
¼ 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V0

3V 0 þ �V00

���������cr

s
; (B30)

where we used Eq. (B24). For closed orbits, the angle must
have the value that is	multiplied by a rational number, i.e.
� ¼ 	 r

q where q, r 2 Z; therefore, � should be the ra-

tional number. In order to obtain the �-independent value

for �, the potentials can be of the forms, M2�l

2 ðþconstÞ,
m4

� lnð�=m�Þ2ðþconstÞ, and etc. Here, M and m� are

constant real values, and we should have l <�2, 0< l
for bound orbits, whereas we may have �2< l < 0 for
bound orbits whenM2 < 0, recalling Eq. (5). The constant
terms in the potentials add an extra energy for the orbits,
and it does not play a significant role, so that we consider
the potentials without the constant terms. The former

power-law potential case, V ¼ M2�l

2 , gives

� ¼ 	ffiffiffiffiffiffiffiffiffiffiffi
lþ 2

p ; (B31)

which implies that the closed orbits exist for l ¼
ð�1Þ; 2; 7; . . . . Using Eqs. (5), (B19), and (B20), we obtain

hpi ’ ðl� 2ÞM2�l
cr

4
; h�Ei ’ ðlþ 2ÞM2�l

cr

4
;

W2 ¼ lðlþ 2ÞM2�l�2
cr

2
;

(B32)

which implies that the bound orbits of the AD condensate
has a negative pressure for l < 2. In the computation of �E,
Eq. (B20), we safely ignored the "4 term. We notice that
the bound orbits for l ¼ ð�1; Þ 2 are closed. For the qua-
dratic potential case l ¼ 2, the averaged pressure is zero, in
which the AD condensate corresponds to an example of
nonrelativistic cold dark matter [49]. In addition, using
Eqs. (B21) and (B32) we can find

hwi ’ l� 2

lþ 2
: (B33)

On the other hand, the latter logarithmic potential case,
m4

� lnð�=m�Þ2, leads to

� ¼ 	ffiffiffi
2

p � 2	

3
; (B34)

which corresponds to the former power-law case with l ¼
0. Similarly, using Eqs. (5), (B19), and (B20), we obtain

hpi ’ m4
�

�
1� 2 ln

�cr

m�

�
; h�Ei ’ m4

�

�
1þ 2 ln

�cr

m�

�
;

W2 ¼ 4m4
�

�2
cr

; (B35)

which implies that the AD condensate has a negative
pressure for �cr >m� expð12Þ. In the computation of �E,

Eq. (B20), we safely ignored the "4 term again. Using
Eqs. (B21) and (B35), we obtain

hwi ’
1� 2 lnð�cr

m�
Þ

1þ 2 lnð�cr

m�
Þ : (B36)

In Eq. (B35), we cannot clearly see the correspondence
with the case for l ¼ 0, but we can find W2 ’ 0 and hwi ’
�1 for m� � �cr as the case with l ¼ 0.

Let us comment on the pressure when the AD orbit is
exactly radial, which corresponds to the zero-charge den-
sity case as for real fields [49]. In this case, the field �ðtÞ
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coherently oscillates around the vacuum if the potential
follows a power-law, i.e. V / �l for l > 1, and hwi has the
same expression as Eq. (B33), but it gives a negative
pressure for 1< l < 2. Note that the lower bound of l
ensures to be a coherent oscillation for the radially oscil-
lating AD fields and real scalar fields.

In summary, we have obtained analytically the explicit
expressions, Eqs. (B5) and (B11), for the orbit of the AD
fields in a quadratic potential under an expanding universe,
and approximately obtained the elliptic orbit expressions,
Eqs. (B16) and (B29), for nearly circular orbits in
Minkowski spacetime in potentials which satisfy the con-
dition Eq. (5) for bound orbits.
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