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We calculate the Casimir energy for scalar fields in interaction with finite-width mirrors, described by

nonlocal interaction terms. These terms, which include quantum effects due to the matter fields inside the

mirrors, are approximated by means of a local expansion procedure. As a result of this expansion, an

effective theory for the vacuum field emerges, which can be written in terms of generalized � potentials.

We compute explicitly the Casimir energy for these potentials and show that, for some particular cases, it

is possible to reinterpret them as imposing imperfect Dirichlet boundary conditions.
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I. INTRODUCTION

Casimir forces are a striking manifestation of the zero-
point energy of the electromagnetic field in the presence of
‘‘mirrors’’ endowed with quite general electromagnetic
properties [1]. In many calculations of the Casimir energies
and forces, the presence of the mirrors is modeled by
appropriate boundary conditions on the interfaces of the
different media, that include macroscopic parameters such
as their electric permittivity, magnetic permeability, con-
ductivity, etc. A first-principles calculation of the Casimir
energy should consider the microscopic degrees of free-
dom associated to the mirrors. This could shed light on
some interesting open questions, the role of dissipation on
the Casimir energy being, perhaps, the most important
among them.

In a previous paper [2], we considered the Casimir effect
for scalar and gauge fields interacting with dynamical
matter on thin mirrors (see also Ref. [3] for a concrete
model realization). More recently, one of us considered the
generalization to the case of finite-width mirrors [4]. The
interaction between the vacuum scalar field and the mir-
rors’ degrees of freedom gives rise, in general, to a non-
local effective action in terms of which the Casimir energy
may be calculated [5]. Moreover, under certain circum-
stances, it is possible to find a formal expression for the
Casimir energy in terms of the parameters that define the
nonlocal kernel [4]. In this paper, we will present an
application of the previously developed formalism for the
Casimir effect with nonlocal boundary interaction terms, to
situations where those nonlocal terms may be expanded in
a series of local ones. In other words, we will perform a
derivative expansion of the nonlocal effective action. One
should expect on physical grounds that, in many relevant
cases, such a local description of the mirrors must be
reliable. We show here how one can indeed find such an
expansion, and then we shall apply it to derive approximate
expressions for the Casimir energy.

The structure of this paper is the following. In Sec. II, we
derive the derivative expansion for the nonlocal effective
action, which will be written in terms of a set of general-
ized � potentials, i.e., terms proportional to Dirac’s �
function and its derivatives. We will illustrate, in concrete
examples, how the coupling between the vacuum field and
the microscopic degrees of freedom, together with the
boundary conditions that confine the microscopic degrees
of freedom inside the mirrors, does determine the different
coefficients in the derivative expansion. In Sec. III we
compute the Casimir energy for the resulting generalized
� potentials. Section IV contains our final remarks.

II. DERIVATIVE EXPANSION OF THE NONLOCAL
EFFECTIVE ACTION

Let us consider a real scalar field ’ in the presence of
two flat mirrors of width � centered at xd ¼ 0; a. This
scalar field interacts with the microscopic degrees of free-
dom inside the mirrors, which in the specific examples
below will be described by a second scalar field �. After
integrating the microscopic degrees of freedom of the
mirrors, the effective action for the scalar field ’ will be
of the form

Sð’Þ ¼ 1

2

Z
ddxkdxdð@’Þ2 þ Sð0ÞI ð’Þ þ SðaÞI ð’Þ; (1)

where Sð0ÞI and SðaÞI are concentrated on the positions of
each mirror. On general grounds we expect these interac-
tion terms to be nonlocal, i.e.,

Sð0ÞI ð’Þ ¼ 1

2

Z þ1

�1
dxd

Z þ1

�1
dx0d

Z ddkk
ð2�Þd ~’�ðkk; xdÞ

� ~V�ðkk; xd; x0dÞ~’ðkk; x0dÞ; (2)

and a similar expression for SðaÞI . Here xk denotes the time

(x0) as well as the d� 1 spatial coordinates parallel to the
mirror (which we shall denote by xk). We have assumed
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translational invariance in the coordinates xk, and therefore
it is useful to write the effective action in terms of the
Fourier transform of the field in these coordinates, ~’, with
the obvious notation kk for the argument of this function.

The nonlocal kernel ~V� may be expanded as follows [4]:

~V �ðkk; xd; x0dÞ ¼
X
m;n

c ð�Þ
m ðxdÞCmnðkk; �Þc ð�Þ�

n ðx0dÞ; (3)

and the functions c ð�Þ
n ðxdÞ depend essentially on the nature

of the boundary conditions for the microscopic fields (i.e.,
those living inside the mirrors) while the coefficients
Cmnðkk; �Þ are obtained by taking into account the (kine-

matic and dynamical) properties of those fields. Equation
(2) results from the assumption that, after integrating the
microscopic fields, the most relevant term in the effective
action is quadratic in the scalar field; in other words, we are
assuming, as usual, that the media can be described by
linear response theory. The particular case in which the
interaction between the thick mirrors and the vacuum field
is approximated by a local effective action [i.e.,
~V�ðkk; xd; x0dÞ ¼ fðkk; xdÞ�ðxd � x0dÞ] has been considered

in Ref. [6].
As we will see, the nonlocal effects can be evaluated

perturbatively by expanding the kernel ~V� in powers of the
� function and its derivatives:

~V�ðkk; xd; x0dÞ ¼ ~�0ðkkÞ�ðxdÞ�ðx0dÞ þ ~�1ðkkÞð�ðxdÞ�0ðx0dÞ
þ �0ðxdÞ�ðx0dÞÞ þ ~�2ðkkÞ�0ðxdÞ�0ðx0dÞ
þ � � � ; (4)

where ~�iðkkÞ depend on the microscopic fields and their

interaction with the vacuum field.
We start our derivation of the expansion with the study

of a simple example, namely, the case in which the micro-
scopic field � is also a real scalar, endowed with a qua-
dratic action, and linearly coupled to ’. As already
mentioned, we denote by � the width of the mirror, which
fills the region ��=2 � xd � �=2. Then, as shown in [4],
the coefficients Cmnðkk; �Þ adopt the diagonal form

Cmnðkk; �Þ ¼ g2

�2
n þ k2k þm2

�mn; (5)

where m is the mass of the microscopic field, �2
n (�n 2 R)

denote the eigenvalues of (� @2d) corresponding to the

eigenvectors c ð�Þ
n ðxdÞ, and g is the coupling constant be-

tween ’ and �.
The precise form of those eigenvalues and eigenvectors

depends of course on the boundary conditions for the
microscopic field. Indeed, for the case of Dirichlet bound-
ary conditions, we have the eigenfunctions

c ð�Þ
n ðxdÞ ¼

ffiffiffi
2

�

s
�
�
sinðn�xd� Þ if n¼ 2k ðk¼ 1;2; . . .Þ;
cosðn�xd� Þ if n¼ 2kþ 1 ðk¼ 0;1; . . .Þ;

(6)

while in the Neumann case, we have instead

c ð�Þ
n ðxdÞ¼ 1ffiffiffi

�
p �

8><
>:
1 if n¼0ffiffiffi
2

p
sinðn�xd� Þ if n¼2kþ1 ðk¼0;1;...Þffiffiffi

2
p

cosðn�xd� Þ if n¼2k ðk¼1;2;...Þ:
(7)

The eigenvalues are then, in both cases, given by the
expression �2

n ¼ ð�n� Þ2, where n ¼ 1; 2; . . . in the

Dirichlet case, while for Neumann boundary conditions
n ¼ 0; 1; 2; . . . .
The essential difference is thus the existence or not of a

zero mode, which is present only in the Neumann case.
One should expect this difference to manifest itself when
one tries to perform a local approximation for the nonlocal
interaction term, under the assumption that � ! 0. Indeed,
note that, in such a case, the zero mode is multiplied by the
�-independent coefficient C00, while all the other Cmn

coefficients are relatively suppressed in such a limit. To
make this statement more precise, let us perform an ex-
pansion of the interaction term, assuming that � is small
(this shall be made more clear below, after introducing the
other length scale to compare it with).
We shall assume, in what follows, Neumann boundary

conditions for the microscopic field. Writing Sð0ÞI more
explicitly:

Sð0ÞI ð’Þ ¼ 1

2
g2
Z ddkk

ð2�Þd
X

m;n¼0

h~’jc ð�Þ
n i 1

�2
n þ k2k þm2

�hc ð�Þ
n j~’i; (8)

where we used the notation hfjgi �Rþð�=2Þ
�ð�=2Þ dxdf

�ðxdÞgðxdÞ.
Let us first consider the leading term in a small-� ex-

pansion, obtained by keeping only the zero mode contri-
bution. This may be written as follows:

Sð0ÞI ð’Þ � 1

2
g2�

Z ddkk
ð2�Þd

1

k2k þm2

�
Z þ1

�1
dxd��ðxdÞ~’�ðkk; xdÞ

�
Z þ1

�1
dx0d��ðx0dÞ~’ðkk; x0dÞ; (9)

where we introduced ��ðxdÞ � �ð�2 � jxdjÞ=�, which works
as an approximant of Dirac’s � function. Then we see that
this leading term may be regarded as a local �-function
term, with a momentum-dependent strength, and affected
by a coefficient g2�. It is convenient to introduce the
product g2� � �, since that is the constant that determines
the strength of the boundary interaction term:
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Sð0ÞI ð’Þ ! 1

2
�
Z ddkk

ð2�Þd
Z þ1

�1
dxd

1

k2k þm2
�ðxdÞ~’�ðkk; xdÞ~’ðkk; xdÞ: (10)

The following terms in the expansion are obtained by expanding the overlaps hc ð�Þ
n j~’i for small �, by using a Taylor

expansion for the vacuum field. Up to the second order in derivatives, we find

hc ð�Þ
n j~’i ¼ ffiffiffi

�
p �

8><
>:

~’ðkk; 0Þ if n ¼ 0;ffiffiffi
2

p
�
�2

2
ð2kþ1Þ2 ð�1Þk½@d ~’ðkk; xdÞ�xd¼0 if n ¼ 2kþ 1 ðk ¼ 0; 1; . . .Þ;ffiffiffi

2
p ð��Þ2 1

ð2kÞ2 ð�1Þk½@2d ~’ðkk; xdÞ�xd¼0 if n ¼ 2k ðk ¼ 1; 2; . . .Þ:
(11)

We see that the assumption that one could use to justify the
expansion a posteriori is that the field inside the mirror
should not change appreciably; more precisely, the length
scale of the spatial variation should be much larger than �.
This means that higher powers of � will be attached to
higher derivatives of the field.

Equipped with the expansion (11), we obtain the corre-

sponding expansion of Sð0ÞI up to the second order in
derivatives:

Sð0ÞI ¼ Sð0ÞI;0 þ Sð0ÞI;2 þ � � � ; (12)

where Sð0ÞI;0 coincides with Eq. (9), while

Sð0ÞI;2 ¼
1

2
g28�

�
�

�

�
2 Z ddkk

ð2�Þd j~’
0ðkk; 0Þj2

�X1
l¼0

1

ð2lþ 1Þ2½ð2lþ 1Þ2ð��Þ2 þ k2k þm2� : (13)

Here the prime denotes derivative with respect to xd.
Performing the sum of the series, we obtain

Sð0ÞI;2 ¼
1

2
g28�3

Z ddkk
ð2�Þd j~’

0ðkk; 0Þj2 1

½!ðkkÞ�2

�
�
1

8
� 1

4�!ðkkÞ tanh
�
�!ðkkÞ

2

��
;

(14)

where!ðkkÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2k þm2

q
. We may again write this term in

a similar fashion to (9):

Sð0ÞI;2ð’Þ �
1

2
�
Z ddkk

ð2�Þd fðkk; �Þ
1

½!ðkkÞ�2

�
Z þ1

�1
dxd�

0ðxdÞ~’�ðkk; xdÞ

�
Z þ1

�1
dx0d�

0ðx0dÞ~’ðkk; x0dÞ (15)

with

fðkk; �Þ ¼ �2
�
1� 2

�!ðkkÞ tanh
�
�!ðkkÞ

2

��
: (16)

We will now summarize the result for the expansion of the
nonlocal term, presenting it in a way which shall be useful

in the derivation of the Casimir energy. Thus, we encode
the results as follows: the expansion for the interaction
action (2) may be interpreted as an expansion for the non-
local potential, so that

~V �ðkk; xd; x0dÞ ¼ ~V�;0ðkk; xd; x0dÞ þ ~V�;2ðkk; xd; x0dÞ þ � � � ;
(17)

where

~V �;0ðkk; xd; x0dÞ ¼ ~�0ðkk; �Þ�ðxdÞ�ðx0dÞ;
~V�;2ðkk; xd; x0dÞ ¼ ~�2ðkk; �Þ�0ðxdÞ�0ðx0dÞ;

(18)

with ~�0ðkk; �Þ ¼ �
½!ðkkÞ�2 and ~�2ðkk; �Þ ¼ �fðkk;�Þ

½!ðkkÞ�2 .
It is worth noting that the derivative expansion of the

effective action for the specific example considered so far
does not include terms containing only one derivative of
the scalar field [i.e., terms proportional to ~�1ðkkÞ; see

Eq. (4)]. This is due to the fact that the eigenfunctions in
Eqs. (6) and (7) have a definite parity in the interval
��=2 � xd � �=2. Therefore, we expect such terms to
show up only if one considered ‘‘nonsymmetric’’ mirrors
in which the boundary conditions that confine the micro-
scopic fields are different on both interfaces xd ¼ 	�=2,
for example, �ð��=2Þ ¼ 0, @d�ð�=2Þ ¼ 0.
Up to here, we considered a microscopic field � linearly

coupled to ’. The expansions presented in Eqs. (17) and
(18) remain valid when the microscopic � field is non-
linearly coupled to ’. To illustrate this fact, we will now
consider a different case; i.e., we shall deal with a g�2’
coupling term for d ¼ 3. In terms of the eigenfunctions

c ð�Þ
n , the second order term in the expansion of the action

SIð’Þ is given by

Sð0ÞI � g2
Z d3kk

ð2�Þ3 j~’ðkk; 0Þj
2
Z d3pk

ð2�Þ3
Z þ1

�1
dxd

Z þ1

�1
dx0d

�X
n;m

c ð�Þ
n ðxdÞc ð�Þ

n ðx0dÞc ð�Þ
m ðxdÞc ð�Þ

m ðx0dÞ
ð�2

n þm2 þ p2
kÞð�2

m þm2 þ ðpk þ kkÞ2Þ
:

(19)

The integrations over normal coordinates (xd and x0d) can
be trivially performed by means of the orthogonality con-

ditions of the eigenfunctions c ð�Þ
n , obtaining
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Sð0ÞI � g2
Z d3kk

ð2�Þ3 j~’ðkk; 0Þj
2
X
n

Z d3pk
ð2�Þ3

� 1

ð�2
n þm2 þ p2

kÞð�2
n þm2 þ ðpk þ kkÞ2Þ

: (20)

After integrating over pk, one sees that the interaction

action becomes

Sð0ÞI � g2

4�

Z d3kk
ð2�Þ3 j~’ðkk; 0Þj

2
X
n

1

kk
arctan

�
kk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
n þm2

p �
;

(21)

whence one can read the coefficient ~�0ðkk; �Þ in Eq. (18):

~� 0ðkk; �Þ ¼ g2

4�

1

kk

X
n

arctan

�
�kk

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�2 þ �2m2

p
�
; (22)

where we have used that �2
n ¼ ðn�� Þ2.

The sum in the last equation runs from 0 for Neumann
boundary conditions, and from 1 for Dirichlet ones.
Equation (22) is divergent for large n, and therefore we
introduce a renormalization term, in order to obtain a finite
coefficient. For a massless field with Dirichlet boundary
conditions we obtain

~� 0ðkk; �Þ ¼ ��0 þ g2

4�

X
n
1

�
1

kk
arctan

�
�kk
2n�

�
� �

2n�

�
;

(23)

where ��0 is a renormalization constant. We note that,
contrary to what happens for the case of a linear coupling,
we obtain a contribution whose strength is independent of
�.

In the case of Neumann boundary conditions

~�0ðkk; �Þ ¼ ��0 þ g2

4�

1

kk
arctan

�
kk
2m

�
þ g2

4�

X
n
1

�
1

kk
arctan

�
�

�kk
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2�2 þ �2m2

p
�
� �

2n�

�
; (24)

which in the case of a massless microscopic field becomes

~�0ðkk; �Þ ¼ ��0 þ g2
�
1

8kk
þ 1

4�

X
n
1

�
1

kk
arctan

�
�kk
2n�

�

� �

2n�

��
: (25)

We note that the previous series can be summed, the exact
result being

~� 0ðkk; �Þ ¼ ��0 � g2

8�kk

�
�	kk
�

þ 2Arg�

�
ikk�
2�

��
: (26)

The computation of ~�2 can be performed along similar
lines, although it is much more cumbersome and we will
not present the details here.

To summarize, in this section we have shown that the
nonlocal interaction between the mirror and the scalar field
admits a derivative expansion of the kind given in Eq. (4),
where the coefficients ~�i depend not only on kk but also on
the width � of the mirror. It is possible to adjust the relation
of the coupling constants and � in such a way that the
leading term is finite in the limit � ! 0, while the non-
leading contributions are suppressed by powers of �.
Potentials proportional to the � function and its derivatives
have been considered previously by other authors (see, for
instance, [7,8]). We have shown here that these potentials
arise naturally, in concrete examples, as the leading terms
in a derivative expansion of the nonlocal effective
interaction.

III. THE CASIMIR ENERGY FOR GENERALIZED
� POTENTIALS

In this section, we compute the Casimir energy that
results from a derivative expansion of the nonlocal effec-
tive action, namely, when the interaction term at xd ¼ 0,
after Fourier transforming the parallel coordinates, has the
local form

Sð0ÞI ð’Þ ¼ 1

2

Z ddkk
ð2�Þd

Z
dxd½ ~�0�ðxdÞj ~’ðkk; xdÞj2

þ ~�1�
0ðxdÞj ~’ðkk; xdÞj2

þ ~�2�ðxdÞj ~’0ðkk; xdÞj2�; (27)

where ~�0, ~�1, and ~�2 are arbitrary real (in Euclidean
spacetime) functions of kk and �. Note that Eq. (27)

proceeds from a nonlocal action in coordinate space:

Sð0ÞI ð’Þ ¼ 1

2

Z
ddxk

Z
ddyk

Z
dxd½�0�ðxdÞ’ðxk; xdÞ

� ’ðyk; xdÞ þ�1�
0ðxdÞ’ðxk; xdÞ’ðyk; xdÞ

þ�2�ðxdÞ’0ðxk; xdÞ’0ðyk; xdÞ�; (28)

where now �0, �1, and �2 depend on xk � yk. The inter-
action term for the remaining mirror, SðaÞI , is obtained by a
simple shift.
The terms containing derivatives of the � function are

expected to be suppressed by powers of �; however, for the
sake of generality, wewill first compute the Casimir energy
for the above interaction terms exactly, performing the
expansion in powers of � afterwards. One of the reasons
for this procedure is that the knowledge of the exact
Casimir energy for (28) may be useful in other circum-
stances, not necessarily related to the effective models we
are considering here.
Introducing the matrix

M ¼ �0 ��1

��1 �2

� �
(29)

(a function of xk � yk), we can write (28) as follows:
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Sð0ÞI ð’Þ ¼ 1

2

Z
ddxk

Z
ddykð’ðxk; 0Þ; ’0ðxk; 0ÞÞT

�Mðxk � ykÞð’ðyk; 0Þ; ’0ðyk; 0ÞÞ; (30)

and a similar expression for SðaÞI .

Then, we introduce two sets of auxiliary fields �ð0Þ
1 , �ð0Þ

2

and �ðaÞ
1 , �ðaÞ

2 , in order to write

expf�SIð’Þg ¼ 1

N

Z
D�ð0Þ

1 D�ð0Þ
2 D�ðaÞ

1 D�ðaÞ
2

� exp

�
� 1

2

Z
ddxk

Z
ddyk½�ð0ÞTðxkÞ

�M�1ðxk � ykÞ�ð0ÞðykÞ þ �ðaÞTðxkÞ
�M�1ðxk � ykÞ�ðaÞðykÞ�
þ i

Z
ddþ1x½Jð0ÞðxÞ þ JðaÞðxÞ�’ðxÞ

�
; (31)

with

Jð0ÞðxÞ ¼ �ð0Þ
1 ðxkÞ�ðxdÞ � �ð0Þ

2 ðxkÞ�0ðxdÞ;
JðaÞðxÞ ¼ �ðaÞ

1 ðxkÞ�ðxd � aÞ � �ðaÞ
2 ðxkÞ�0ðxd � aÞ;

(32)

andN an irrelevant constant. Note that the representation
(31) makes sense when all the eigenvalues ofM are greater
than zero (they are real, since the matrix is Hermitian).

Using Eq. (31), we may write the generating functional
as follows:

Z¼
Z
D’D�exp

�
�S0ð’Þ�1

2

Z
ddxkddykð�ð0ÞTM�1�ð0Þ

þ�ðaÞTM�1�ðaÞÞ
�
exp

�
i
Z
ddþ1xðJð0Þ þJðaÞÞ’

�
; (33)

where we omitted, for the sake of clarity, writing all the
arguments.
After integrating the field ’ we get

Z
Z0

¼
Z

D� exp

�
� 1

2

Z
ddxkddyk½�ð0ÞTM�1�ð0Þ

þ �ðaÞTM�1�ðaÞ�
�
expf� 1

2

Z
ddþ1x

Z
ddþ1yðJð0ÞðxÞ

þ JðaÞðxÞÞ�ðx; yÞðJðaÞðyÞ þ JðaÞðyÞÞ
�
; (34)

where

Z 0 ¼
Z

D’e�S0ð’Þ and �ðx; yÞ ¼ hxjð�@2Þ�1jyi:
(35)

We first evaluate the term quadratic in the currents more
explicitly:

Q ¼ 1

2

Z
ddþ1xddþ1yðJð0ÞðxÞ þ JðaÞðxÞÞ�ðx; yÞðJð0ÞðyÞ þ JðaÞðyÞÞ

¼ 1

2

Z
ddxkddyk½�ð0Þ

1 ðxkÞ�ðxk; 0; yk; 0Þ�ð0Þ
1 ðykÞ þ �ð0Þ

2 ðxkÞ@d@0d�ðxk; 0; yk; 0Þ�ð0Þ
2 ðykÞ

þ �ð0Þ
1 ðxkÞ@0d�ðxk; 0; yk; 0Þ�ð0Þ

2 ðykÞ þ �ð0Þ
2 ðxkÞ@d�ðxk; 0; yk; 0Þ�ð0Þ

1 ðykÞ þ �ðaÞ
1 ðxkÞ�ðxk; 0; yk; 0Þ�ðaÞ

1 ðykÞ
þ �ðaÞ

2 ðxkÞ@d@0d�ðxk; 0; yk; 0Þ�ðaÞ
2 ðykÞ þ �ðaÞ

1 ðxkÞ@0d�ðxk; 0; yk; 0Þ�ðaÞ
2 ðykÞ þ �ðaÞ

2 ðxkÞ@d�ðxk; 0; yk; 0Þ�ðaÞ
1 ðykÞ

þ �ð0Þ
1 ðxkÞ�ðxk; 0; yk; aÞ�ðaÞ

1 ðykÞ þ �ðaÞ
1 ðxkÞ�ðxk; a; yk; 0Þ�ð0Þ

1 ðykÞ þ �ð0Þ
1 ðxkÞ@0d�ðxk; 0; yk; aÞ�ðaÞ

2 ðykÞ
þ �ð0Þ

2 ðxkÞ@d�ðxk; 0; yk; aÞ�ðaÞ
1 ðykÞ þ �ðaÞ

1 ðxkÞ@0d�ðxk; a; yk; 0Þ�ð0Þ
2 ðykÞ þ �ðaÞ

2 ðxkÞ@d�ðxk; a; yk; 0Þ�ð0Þ
1 ðykÞ

þ �ð0Þ
2 ðxkÞ@d@0d�ðxk; 0; yk; aÞ�ðaÞ

2 ðykÞ þ �ðaÞ
2 ðxkÞ@d@0d�ðxk; a; yk; 0Þ�ð0Þ

2 ðykÞ�; (36)

and then, introducing Fourier transforms in the parallel coordinates, we can show that

Q ¼ 1

2

Z ddkk
ð2�Þd

�
~�ð0Þ�
1

1

2kk
~�ð0Þ
1 þ ~�ð0Þ�

2 �ðkkÞ~�ð0Þ
2 þ ~�ðaÞ�

1

1

2kk
~�ðaÞ
1 þ ~�ðaÞ�

2 �ðkkÞ~�ðaÞ
2 þ ~�ð0Þ�

1

e�kka

2kk
~�ðaÞ
1 � ~�ð0Þ�

2

kk
2
e�kka ~�ðaÞ

2

þ ~�ðaÞ�
1

e�kka

2kk
~�ð0Þ
1 � ~�ðaÞ�

2

kk
2
e�kka ~�ð0Þ

2 � ~�ð0Þ�
1

e�kka

2
~�ðaÞ
2 þ ~�ð0Þ�

2

e�kka

2
~�ðaÞ
1 þ ~�ðaÞ�

1

e�kka

2
~�ð0Þ
2 � ~�ðaÞ�

2

e�kka

2
~�ð0Þ
1

�
; (37)

where �ðkkÞ � 1
� � kk

2 . To compute �ðkkÞ we used that

@d@
0
d�ðxk; 0; yk; 0Þ ¼ �ðxk � ykÞ�ð0Þ �

Z ddkk
ð2�Þd

� kk
2
eikkðxk�ykÞ; (38)

and we approximated �ð0Þ � 1=�. This follows from re-
calling how we obtained the derivative expansion: an ap-
proximant of the � was replaced by its limit. A Fourier
transformation of the above then yields the expression used
for �ðkkÞ.
On the other hand, the first derivatives of the free propa-

gator are ill-defined at xd ¼ x0d. In order to obtain Eq. (37),
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we have used a symmetric limit regularization so that @d�ð0; 0Þ ¼ @0d�ð0; 0Þ ¼ 0.
We can now compute the vacuum energy E0 as follows:

E 0 ¼ � lim
T;L!1

1

TLd
ln

�
Z
Z0

�
¼ 1

2

Z ddkk
ð2�Þd ln detðAðkkÞÞ; (39)

where

A ðkkÞ ¼

ð ~M�1Þ11 þ 1
2kk

ð ~M�1Þ12 e
�kka
2kk

� e
�kka
2

ð ~M�1Þ21 ð ~M�1Þ22 þ�ðkkÞ e
�kka
2 � kk

2 e
�kka

e
�kka
2kk

e
�kka
2 ð ~M�1Þ11 þ 1

2kk
ð ~M�1Þ12

� e
�kka
2 � kk

2 e
�kka ð ~M�1Þ12 ð ~M�1Þ22 þ�ðkkÞ

0
BBBBBB@

1
CCCCCCA � A11 e�kkaA12

e�kkaA21 A22

� �
; (40)

where Aij are four 2� 2 block matrices and ~M is the
Fourier transform of the matrix M defined in Eq. (29).

Finally, the subtracted (i.e., without self-energies) en-
ergy can be written as

~E 0 ¼ 1

2

Z ddkk
ð2�Þd ln det½I � e�2kka�ðkkÞ�; (41)

where

� ðkkÞ ¼ ðA11Þ�1A12ðA22Þ�1A21; (42)

and

A 11 ¼ A22 ¼
ð ~M�1Þ11 þ 1

2kk
ð ~M�1Þ12

ð ~M�1Þ21 ð ~M�1Þ22 þ�ðkkÞ

 !
;

(43)

A 12 ¼ AT
21 ¼

1

2

1
kk

�1

1 �kk

 !
: (44)

Equation (41) is the main result in this section; it gives
the exact Casimir energy for the generalized � potentials,
as a function of the coefficients that determine the effective
interaction term. It is interesting to emphasize that the
structure of the vacuum energy in Eq. (41) is similar to
the Lifshitz formula for the electromagnetic field in the
presence of anisotropic materials, in which it is necessary
to introduce 2� 2 reflection matrices to take into account
the mixing between TE and TM modes [9]. Here the 2� 2
matrices come from the introduction of two auxiliary fields
on each mirror to describe the effective action [see
Eq. (31)].

The presence of a divergence, when � ! 0, in �ðkkÞ
does not introduce any divergence in the Casimir energy.
Indeed, the inverses of the matrices A11 and A22 are finite
in that limit � ! 0. Computing explicitly the determinant
in Eq. (41), the final expression becomes

~E 0 ¼ 1

2

Z ddkk
ð2�Þd ln½1� e�2akkFðkk; �Þ � e�4akkGðkk; �Þ�;

(45)

where F and G depend on kk and � explicitly and also

implicitly through the coefficients ~�i. Although it is pos-
sible to obtain general expressions for F andG, the result is
a rather lengthy expression, which is not very illuminating.
Thus we will analyze two interesting particular cases.
Let us first consider the calculation of the Casimir

energy in the framework of the derivative expansion in-
troduced in the previous section. As already mentioned, on
general grounds we expect the terms containing higher
derivatives to be suppressed by powers of �. To make
this point explicit, we write ~�0 ¼ �0, ~�1 ¼ ��1 and ~�2 ¼
�2�2, where �i are of the same order of magnitude in the
limit � ! 0. We then evaluate the determinant in Eq. (41)
exactly, and expand the result in powers of �. After a long
but nevertheless straightforward calculation, the expansion
for the Casimir energy adopts the form

~E 0 ¼ 1

2

Z ddkk
ð2�Þd ln½1� e�2akk ðf0 þ �f1 þ �2f2

þOð�3ÞÞ�; (46)

where

f0 ¼ �2
0

ð2kk þ �0Þ2
; f1 ¼ �4�0�

2
1

kk
ð2kk þ �0Þ3

;

f2 ¼ 4�2
1kk

ð2kþ �0Þ4
�
�0ð�0�2 � �2

1Þ

þ kk
�
2�0�2 þ �2

0

2
þ �2

1

�
þ k2k�0

�
: (47)

The coefficients �i, depending on kk, encode all the infor-
mation about the interaction between the vacuum field and
the microscopic degrees of freedom living on the mirrors.
The outcome is dominated by the usual �-potential result,
but with a kk-dependent strength. It is worth noting that, up
to this order, there are no terms proportional to e�4akk in the
Casimir energy. These terms do appear in the fourth order.
In order to illustrate the kind of corrections induced by

the finite width of the mirrors, let us assume that the
coefficients �i are approximately constants. Then the
Casimir energy for d ¼ 3 can be written, to first order in
� as follows:
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~E 0 ¼ � 1

a3

�
I1ð�0aÞ þ �

a

�
�1

�0

�
2
I2ð�0aÞ

�
þOð�2Þ; (48)

where we introduced the coefficient functions Ii, which can
be easily evaluated numerically. They are plotted in Figs. 1
and 2. Both of them are monotonic and positive definite
functions, interpolating between 0 and a finite value for
�0a ! 1. The leading term reproduces the Casimir result
for perfectly conducting mirrors in this limit, while the
second one introduces a correction that falls off faster (with
an extra power of the distance).

As a second example, we now consider the vacuum
energy for the generalized � potentials, assuming that the
coefficients ~�i do not depend on �. In this situation we
obtain

~E 0 ¼ 1

2

Z ddkk
ð2�Þd ln

�
1� ð ~�0 ~�2 � ~�2

1Þ2e�2akk

½ð2kk þ ~�0Þ ~�2 � ~�2
1�2
�

¼ 1

2

Z ddkk
ð2�Þd ln

�
1� ~�2

effe
�2akk

½2kk þ ~�eff�2
�
; (49)

where ~�eff ¼ ð ~�0 ~�2 � ~�2
1Þ= ~�2. It is interesting to note

that the Casimir energy is well defined only when the
parameters �i are such that the coefficient that multiplies
e�2akk is less than 1, and this is the case if ~�eff > 0. This
condition have been found before, albeit in a different
looking but equivalent form; indeed, we have seen that,
for the auxiliary field representation (31) to make sense,
positivity of the eigenvalues of the matrixM is a necessary
(and sufficient) condition. From a physical point of view,
this condition can be interpreted as follows: the interaction
term at each mirror may be diagonalized, to look like the
sum of two decoupled quadratic interaction terms, each
one involving a mixture of the field and its normal deriva-
tive at the mirror. For the vacuum to be stable, one must
have therefore non-negative eigenvalues, since they are the
coefficients that affect each decoupled term. Vanishing

eigenvalues, on the other hand, are not forbidden physi-
cally; rather, one should represent them with just one
auxiliary field. Otherwise the redundancy pops up in the
form of a zero mode.
It is remarkable that Eq. (49) corresponds to the Casimir

energy for a usual � potential (i.e., without derivatives of
the � function) with an effective coefficient given by ~�eff .
However, it is also worth stressing that this equation has
been derived assuming a particular regularization for
�ðkkÞ. While this regularization is well justified in the

case of the derivative expansion, a formal calculation
which started from the generalized � potentials could
give different, regularization-dependent results, without
any immediate physical reason to chose one from another.
For example, in the framework of dimensional regulariza-
tion one would obtain �ðkkÞ ¼ 
� k

2 , with 
 an arbitrary

constant.
Different regularizations of this object correspond,

physically, to imposing different boundary conditions for
the propagator of the vacuum field at the mirror. If the
concrete model for the finite-width mirror is unknown, this
lack of information manifests itself in the fact that one has
many regularizations available, and they give rise to differ-
ent values of the energy. However, one knows that what
makes sense physically is not the regularization used;
rather, it is the boundary condition it produces on the
propagator. Then, one may regard the boundary condition
for the propagator as a renormalization condition which
hides the ignorance on the details of the model into a bare
coefficient function [10].

IV. DISCUSSION

We have shown, in concrete examples, how the nonlocal
induced action which results from the integration of the
microscopic fields (that represent the media composing the
mirrors) can be expanded to produce a local action, i.e.,
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FIG. 1 (color online). Coefficient function I1 as a function of
x ¼ �0a. This function reproduces the Casimir result for perfect
conducting plates in the limit x ! 1, I1ðxÞ ! �2=1440.
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FIG. 2 (color online). Coefficient function I2 as a function of
x ¼ �0a. This function approaches 0.0366 in the limit x ! 1.
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one that has pointlike support. This means that it may be
written as terms involving the � function and its
derivatives.

Equipped with the general form of that local action, we
then derived the Casimir energy for the vacuum scalar
field. A conceptually interesting point is that the presence
of derivatives of the � function, in the effective action,
produces a final result for the Casimir energy that can be
written in the form of the Lifshitz formula for the electro-
magnetic field with 2� 2 reflection matrices. This analogy
is a by-product of the representation of the effective action
in terms of two auxiliary fields

When the coefficients from that local action come from
a microscopic model, we have shown that the result may be
consistently expanded in powers of the width of the mir-
rors, producing a result which may be interpreted as a
Dirichlet-like energy plus subleading corrections. It would
be interesting to generalize these results to the realistic
case of the electromagnetic field coupled to Dirac fields
describing charges on the mirrors.

Besides, we considered also the case when the coeffi-
cients are assumed to be independent of the width of the
mirrors. In this case, the exact result adopts a quite simple
form: the vacuum energy coincides with the one given by
the usual � potential, with an effective coupling. That is to
say, the effect of the terms proportional to derivatives of the
� function in the effective action is to renormalize the
coupling of the usual � potential. The last result depends,
in principle, on the particular regularization used to handle
these (highly singular) potentials. However, when one
abandons the description in terms of the coefficients for
those terms, in favor of another in terms of the boundary
conditions on the propagator, the apparent ambiguity dis-
appears [10].
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