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In the context of a microscopic model of string-inspired foam, in which foamy structures are provided

by brany pointlike defects (D-particles) in space-time, we discuss flavor mixing as a result of flavor

nonpreserving interactions of (low-energy) fermionic stringy matter excitations with the defects. Such

interactions involve splitting and capture of the matter string state by the defect, and subsequent re-

emission. As a result of charge conservation, only electrically neutral matter can interact with the D-

particles. Quantum fluctuations of the D-particles induce a nontrivial space-time background; in some

circumstances, this could be akin to a cosmological Friedman-Robertson-Walker expanding-universe,

with weak (but nonzero) particle production. Furthermore, the D-particle medium can induce an

Mikheyev-Smirnov-Wolfenstein-type effect. We have argued previously, in the context of bosons, that

the so-called flavor vacuum is the appropriate state to be used, at least for low-energy excitations, with

energies/momenta up to a dynamically determined cutoff scale. Given the intriguing mass scale provided

by neutrino flavor mass differences from the point of view of dark energy, we evaluate the flavor-vacuum

expectation value (condensate) of the stress-energy tensor of the 1=2-spin fields with mixing in an

effective-low-energy quantum field theory in this foam-induced curved space-time. We demonstrate, at

late epochs of the Universe, that the fermionic vacuum condensate behaves as a fluid with negative

pressure and positive energy; however, the equation of state has wfermion >�1=3 and so the contribution

of the fermion-fluid flavor vacuum alone could not yield accelerating universes. Such contributions to the

vacuum energy should be considered as (algebraically) additive to the flavored boson contributions,

evaluated in our previous works; this should be considered as natural from (broken) target-space

supersymmetry that characterizes realistic superstring/supermembrane models of space-time foam. The

boson fluid is also characterized by positive energy and negative pressure, but its equation of state is, for

late eras, close to wboson ! �1, and hence overall the D-foam universe appears accelerating at late eras.

DOI: 10.1103/PhysRevD.80.084046 PACS numbers: 04.62.+v, 14.60.Pq

I. INTRODUCTION

During recent years it has been suggested that a certain,
mathematically consistent treatment of flavor mixing in
quantum field theory could have implications at a cosmo-
logical scale [1]. Specifically, adopting a Fock-space quan-
tization formalism for the ‘‘flavor’’ states [2,3], one can
define a new vacuum state which, in the thermodynamic
limit, is orthogonal to the mass-eigenstate vacuum. This
orthogonality, in fact, extends to the entire set of Fock-
space states constructed out of the flavor vacuum, relative
to those constructed out of the mass-eigenstate vacuum. It
has been claimed [4] that the flavor-vacuum formalism,
although mathematically consistent, nevertheless leads to
no physically different predictions from the conventional
formalism. However, the authors of [5] have argued that
probability conservation is only realized within the flavor
state vacuum in quantum field theories with mixing; more-
over the oscillation probability among flavors is modified,
compared to the traditional formalism, by extra terms
which, although small, nevertheless are in principle experi-
mentally detectable. In this sense, they postulated that in
such cases the flavor vacuum is the physical vacuum.

It has then been demonstrated [1] that the vacuum
condensate due to fermion particle mixing, evaluated in

the (physical) flavor vacuum seems to behave as a source of
dark energy, in the sense of yielding a nontrivial flavor-
vacuum energy density. In a series of papers [6], following
the initial work of [1], it has also been argued that the fluid
of flavor fermions behaves as an ideal one, in the cosmo-
logical sense, with a simple equation of state, which de-
pends on the Universe’s epoch.
However, these calculations have been performed in the

context of a Minkowski space-time quantum field theory,
despite the fact that flavor mixing gives rise to a nontrivial
space-time cosmological background. A consistent treat-
ment therefore requires consideration of the Fock-space
vacuum in the presence of such cosmological space-times,
where nontrivial particle production takes place.
Moreover, the presence of nonzero vacuum energies, and,
in general, of nonvanishing tensor components of the stress
tensor of the fermion fluid, indicates breaking of Lorentz
invariance, except in the case of de Sitter (or anti-de Sitter)
vacua, with an equation of state between pressure p and
energy density � of the form p ¼ ��. For the flavor
vacuum, as shown in [6], and mentioned above, the fer-
mion field theory with mixing leads to equations of states
that depend on the Universe era, with w ! �1 approxi-
mately only at late eras. We should note that, in our
opinion, this latter statement has only been argued but
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not rigorously proved in [6] since the relevant calculations
have been performed in Minkowski flat space-time. A first
such step toward the construction of microscopic models
that would provide mathematically and physically consis-
tent realizations of the flavor vacuum has been performed
in [7], in the context of the so-called D-particle foammodel
[8], a string/brane inspired model of space-time foam.
According to this model, our universe, after perhaps ap-
propriate compactification, is represented as a three brane,
propagating in a bulk space-time punctured by D0-brane
(D-particle) defects. As the D3-brane world moves in the
bulk, the D-particles cross it, and for an observer on the
D3-brane the situation looks like a ‘‘space-time foam’’
with the defects ‘‘flashing’’ on and off (‘‘D-particle
foam’’). The open strings, with their ends attached on the
brane, which represent matter in this scenario, can interact
with the D-particles on the D3-brane universe in a topo-
logically nontrivial manner, involving splitting and capture
of the strings by the D0-brane defects, and subsequent re-
emission of the open-string state (see Fig. 1). However, the
flavor of the re-emitted state may not be the same as that of
the incident one, thereby leading to vacuum-induced flavor
oscillations and mixing. It should be emphasized that, due
to electric charge conservation, only electrically neutral
matter interacts nontrivially with the D-particle ‘‘foam,’’
which is transparent to charged matter [9,10].

In such a model, the flavor vacuum is regarded as an
effective description of the vacuum state for low-energy
string modes with mixing, as a result of the breaking of
Lorentz symmetry locally in space-time, due to D-particle
recoil during the string-D-particle interactions.
Nevertheless, Lorentz symmetry is preserved on the aver-
age, in the sense that the appropriate vacuum expectation

values (VEV) of the relevant Lorentz-breaking observables
vanish. However, this is not the case for the quantum
fluctuations of those observables, which may be nontrivial.
We consider the first-quantized string-theory framework,
that describes (perturbatively) the physics of (matter) open
strings either stretched between the D-particle and the D3-
brane world, with both their ends attached to the D3-brane
(cf. Fig. 1); quantum fluctuations of target-space back-
ground fields, in which the string propagates, are induced
by appropriate summation over world-sheet surfaces with
higher topologies (genera). In this sense, a quantum fluc-
tuating D-particle in the foam will be described by such
stretched open strings, with at least one of their ends
attached to it.
The structure of the article is as follows: in the Sec. II,

we review briefly the D-particle foam model and discuss
the formalism that leads to an induced space-time metric of
the form of a conformally flat expanding universe, as a
result of the space-time fluctuating D-particle background.
In Sec. III, we discuss a gravitational Mikheyev-Smirnov-
Wolfenstein (MSW) effect as a result of the existence of the
D-foam, that leads to gravitational-medium-induced flavor
mixing and mass differences. We also present in that
section plausibility arguments for the role of the flavor
Fock vacuum and the corresponding excitation states as
the physical states in the problem. In Sec. IV, in the context
of a low-energy field-theory limit, we discuss the contri-
butions of bosonic degrees of freedom to the dark energy of
the brane universe, defined as the appropriate vacuum
expectation value of the stress-energy tensor between
flavor-Fock vacuum states. In Sec. V, we repeat the con-
struction for the fermionic low-energy degrees of freedom,
and evaluate the relevant contributions to the dark energy
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FIG. 1. Schematic representation of a D-particle space-time foam model. The figure indicates also the capture/recoil process of a
string state by a D-particle defect for closed (left picture) and open (right picture) string states in the presence of D-brane world. The
presence of a D-brane is essential due to gauge flux conservation since an isolated D-particle cannot exist. The intermediate composite
state at t ¼ 0, which has a lifetime within the stringy uncertainty time interval �t, of the order of the string length, and is described by
world-sheet logarithmic conformal field theory, is responsible for the distortion of the surrounding spacetime during the scattering, and
subsequently leads to induced metrics depending on both coordinates and momenta of the string state. These results on modified
dispersion relations for the open-string propagation in such a situation [8], leading to nontrivial optical properties (refractive index
etc.) for this spacetime.
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of the brane. An important issue arises regarding the choice
of the appropriate normal ordering that should lead to the
physically correct subtraction of the (field theoretic) ultra-
violet divergences, in a way consistent with the gravita-
tional MSW effect. This is discussed in detail in Sec. VI.
The reader’s attention is called, at this point, to the fact that
in string theory there are no actual ultraviolet momentum
divergencies. These are artifacts of the low-energy local
effective field theory, which is defined up to energies of the
order of the string scale Ms or better the Planck scale
(defined as the ratio of Ms=gs, with gs the string coupling,
assumed weak gs < 1). Thus by definition, any momentum
integral will be cutoff at that scale automatically. The
subtraction procedure we are applying to the bosonic or
fermionic stress-energy tensors in this field-theoretic con-
text defines the appropriate effective field theory degrees of
freedom, accessible to a low-energy observer, and is con-
sistent with the fact that any contributions to the vacuum
energy should vanish in the absence of D-particle foam
effects. In Sec. VII, we discuss the emergence of a mo-
mentum cutoff much lower than the Planck scale that arises
from statistical arguments related to particle production
that characterizes our expanding background. This is not a
sharp cutoff, but rather defines the appropriate physical
degrees of freedom that lead to significant contributions to
the brane-world vacuum energy. We also discuss in this
section the equation of state of the fermionic vacuum
condensate and demonstrate that, for late eras of the
Universe, it behaves as a fluid with negative pressure and
positive energy; however, the equation of state has
wfermion >�1=3 and so the contribution of the fermion-
fluid flavor vacuum alone could not yield accelerating
universes. However, on taking into account the contribu-
tions to the vacuum energy coming from flavored bosons,
which are natural from the point of view of the (broken)
target-space supersymmetry that characterizes realistic su-
perstring/supermembrane models of space-time foam, and
which should be considered as (algebraically) additive to
the fermion contributions, one may obtain the conditions
for late-era acceleration of the Universe. Indeed, the boson
fluid is also characterized by positive energy and negative
pressure, but its equation of state is, for late eras, close to
wboson ! �1 and hence overall the D-foam universe ap-
pears accelerating at late eras. Finally, Sec. VIII contains
our conclusions and outlook.

II. D-PARTICLE FOAM-INDUCED METRIC

The target-space quantization of the recoil velocity of a
D-particle ui during its interaction with a matter open
string is achieved [11] by a genus summation on the world
sheet, which, in the case of a bosonic �-model with a D-
particle recoil deformation, can be cast in a closed form
[11,12]. This yields a stochastic Gaussian distribution of
the recoil velocities ui, around a zero average, with a
variance �2 that depends at most on target time, and not

on the position of the D-particle:

huii ¼ 0; huiuji ¼ �2�ij; �2 � g2st
2
0; (1)

where the time t0 extends over the capture time of the
string by the fluctuating D-particle. As discussed in
[10,12], for a matter string with total energy p0, the capture
time is of the order oftc � �0p0. Moreover in [12],we also
argued, and shall review below, that there is a dynamically
imposed upper bound scale (cutoff) for the momenta of the
particle excitations interacting with the D-particles, which
is of order of the mass of the particles, essentially [cf. (34),
below]. Even if one considers sneutrinos, their masses (as a
result of supersymmetry breaking) may be assumed of a
few TeV in phenomenologically interesting models, which
is still much smaller than a Planck-scale mass of a D-
particle. Hence the capture time t0 is small for our flavored
cases examined here. One has to average the relevant
expressions yielding pressure and energy density of the
particle fluid in the flavor vacuum over such time scales.
Because the time scales involved are small, such time
averages may be replaced, at a good approximation, by
the value of the relevant quantity to be averaged over a time
scale t0. This means that on a global scale, on the D3 brane
universe, the quantum-fluctuating D-particles will fluctuate
with an average variance �2ðt0Þ � 1. On using a dilute gas
approximation, we can take a statistical average over pop-
ulations of D-particles whose density does depend on the
cosmological era of the Universe; the D-particle foam
could then produce an isotropic and homogeneous (cos-
mological type) space-time background, with nontrivial
particle production, in which flavor mixing takes place in
a self-consistent way [7], as we shall review below.
For the benefit of the reader, we feel it would be in-

structive to first review, briefly, the mathematical formal-
ism underlying the quantum-fluctuating D-particle
‘‘foamy’’ space time. The world-sheet boundary operator
V D, describing the excitations of a moving heavy D0-
brane, is given in the tree approximation by

V D ¼
Z
@D
ðyi@nXi þ uiX

0@nX
iÞ �

Z
@D

YiðX0Þ@nXi;

(2)

where @D denotes the boundary of the world sheet D with
the topology of a disk, to the lowest order in string-loop
perturbation theory, ui and yi are the velocity and position
of the heavy (nonrelativistic) D-particle, respectively, and
YiðX0Þ � yi þ uiX

0. To describe the capture/recoil, we
need an operator which has nonzero matrix elements be-
tween different states of the D-particle and is turned on
‘‘abruptly’’ in target time. One way of doing this is to put
[13] a�ðX0Þ, the heavyside function, in front ofV D which
models an impulse whereby the D-particle starts moving at

X0 ¼ 0. This impulsiveV D, denoted byV
imp
D , can thus be

represented as
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V imp
D ¼ 1

2��0
Xd
i¼1

Z
@D

d�uiX
0�ðX0Þ@nXi; (3)

where d in the sum denotes the appropriate number of
spatial target-space dimensions. For a recoiling D-particle
confined on a D3 brane, d ¼ 3.

Since X0 is an operator, it will be necessary to define
�ðX0Þ as a regularized operator using the contour integral

�"ðX0Þ ¼ � i

2�

Z 1

�1
d!

!� i"
ei!X0

with " ! 0þ;

(4)

where " is a regulator, which, as discussed in [13] and will
be reviewed below, is linked with a running cutoff scale on
the world sheet of the string, on account of the requirement
of the closure of the (logarithmic) conformal algebra.
Hence we can consider

D"ðX0Þ ¼ X0�"ðX0Þ ¼ �
Z 1

�1
d!

ð!� i"Þ2 e
i!X0

: (5)

The presence of a recoil deformation leads to local dis-
tortions in the neighboring space-time geometry, which can
be found as follows: let one write the boundary recoil/

capture operatorV imp
D (3) in the Dirichlet picture as a total

derivative over the bulk of the world sheet by means of the
two-dimensional version of Stokes theorem (omitting from
now on the explicit summation over repeated i-index,
which is understood to be over the spatial indices of the
D3-brane world of Fig. 1)

V imp
D ¼ 1

2��0
Z
D
d2z���@

�ð½uiX0��ðX0Þ@�XiÞ

¼ 1

4��0
Z
D
d2zð2uiÞ���@�X0½�"ðX0Þ

þ X0�"ðX0Þ�@�Xi; (6)

where �"ðX0Þ is an "-regularized �-function. This is
equivalent to a deformation describing an open-string
propagating in an antisymmetric B	
-background corre-

sponding to an external constant in target-space ‘‘electric’’
field,

B0i � ui; Bij ¼ 0; (7)

where the X0�ðX0Þ terms in the argument of the electric
field yield vanishing contributions in the large time limit
" ! 0, and hence are ignored from now on. We remark for
completeness at this stage that, upon a T-duality canonical
transformation of the coordinates [14], the presence of the
B-field leads to mixed-type boundary conditions for open
strings on the boundary @D of world-sheet surfaces with
the topology of a disc

g	
@nX

 þ B	
@�X


j@D ¼ 0; (8)

with B given by (7). Absence of a recoil-velocity ui-field

leads to the usual Neumann boundary conditions, while the
limit where g	
 ! 0, with ui � 0, leads to Dirichlet

boundary conditions.
As discussed in detail in Refs. [15,16], there is also an

induced open-string effective target-space-time metric. To
find it, one should consider the world-sheet propagator on
the disc hX	ðz; �zÞX
ð0; 0Þi, with the boundary conditions
(8). Upon using a conformal mapping of the disc onto the
upper half plane with the real axis (parametrized by � 2 R)
as its boundary [15], one then obtains

hX	ð�ÞX
ð0Þi ¼ ��0g	

open;electric ln�

2 þ i
�	


2
�ð�Þ; (9)

with the noncommutative parameters �	
 given by

½X1; t� ¼ i�10; �01ð¼ ��10Þ � � ¼ 1

uc

~u

1� ~u2
;

(10)

where t is the target time; for definiteness, the recoil can be
assumed to be along the spatial X1 direction, i.e. 0 � k1 �
k k u1, k2 ¼ k3 ¼ 0. �ð�Þ is the step function having value
�1 for � < 0 and 1 for � > 0. The quantity ~ui � ui

uc
and

uc ¼ 1
2��0 is the Born-Infeld critical field. Since the space

and time coordinates are world-sheet fields, this commu-
tator is calculated [15] using the appropriate first-quantized
string commutation relations on the world sheet. The ef-
fective Finsler-type open-string metric [17], due to the
presence of the recoil-velocity field ~u (whose direction
breaks target-space Lorentz invariance), is given by

gopen;electric	
 ¼ ð1� ~u2i Þ�	
; 	; 
 ¼ 0; 1

g
open;electric
	
 ¼ �	
; 	; 
 ¼ all other values:

(11)

There is, moreover, a modified effective string coupling
[15,16]

geffs ¼ gsð1� ~u2Þ1=2: (12)

It should be mentioned here that such metrics have been
suggested in the context of a T-dual Neumann picture [11]
of the D-particle recoil process in Ref. [8].
The presence of a critical electric field is associated with

a singularity of both the effective metric as well as the
noncommutativity parameter and there is also an effective
string coupling, which vanishes in that limit (12). This
reflects the destabilization of the vacuum when the electric
field intensity approaches the critical value, which was
noted in [18]. Since in our D-particle foam case, the role
of the electric field is played by the recoil velocity of the D-
particle defect, the critical field corresponds to the relativ-
istic speed of light. This accords with special relativistic
kinematics, which is respected in string theory, by con-
struction. The critical recoil velocity is of the order of one,
which in turns sets the highest order of magnitude of
energies of the stretched strings to the mass of the D-
particle, Ms=gs, as announced previously. In this sense,
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the variances (1) are characteristic constants, depending on
microscopic parameters, such as the mass of the D-
particles.

In the absence of any special knowledge, the most
natural choice is to consider isotropic cases of foam, in
which the induced Finsler metric assumes the conformal
form

g
open;electric
	
 ¼ ð1� ~u2i Þ�	
; (13)

for all 	; 
 ¼ 0; . . . 3. This is the case we shall henceforth
concentrate on.

Stochastic quantum fluctuations of the recoil velocity ui,
induced by the summation over genera on the world sheet
[11], imply, on account of (1), a constant metric of the
form:

g	
 ¼ ð1� �2Þ�	
: (14)

In addition to the quantum fluctuations of the metric as a
result of a single D-particle fluctuation considered hitherto,
one should consider the effects of a statistical population of
D-particles, which characterizes realistic cases of D-
particle foam. Denoting such statistical averages over pop-
ulations of D-particles (as opposed to quantum averages
over fluctuations of a single quantum D-particle) by hh. . .ii,
one should bear in mind that, in general, in situations like
in Fig. 1, the density of D-particles in the bulk, which
essentially the statistical average depends upon, may vary
with the cosmological time scale, in the sense that their
bulk distribution may not be uniform. Hence, on taking the
statistical average of the metric (14) over populations of D-
particles, we obtain, in general, a time dependent induced
metric

hhg	
ii � gstat	
 ¼ ð1� hh�2iiðtÞÞ�	
; (15)

where hh�2iiðtÞ depends, in general, on the cosmological
time t for reasons stated above. In fact, from the conformal
nature of the induced cosmological metric (15), we see that
the time t that appears naturally in our construction is the
so-called conformal time � in standard cosmology, and
indeed the metric gstat	
 acquires the standard cosmological

form in the conformal time frame

gstat	
 ¼ Cð�Þ�	
; (16)

where the scale factor of the D-foam universe is Cð�Þ ¼
1� hh�2iið�Þ. Slightly expanding universes are obtained
for cases in which the D3 brane moves toward a region in
the bulk space (cf. Fig. 1) characterized by a depletion of
D-particles. Notice that in our construction of small recoil
velocities juij � 1 for which our perturbative �-model
treatment of strings suffices, the induced metrics are only
slightly deviating from Minkowski spacetime, and as such
they constitute good candidates to describe late eras in our
universe’s expansion. This is the case we shall restrict
ourselves on in this paper.

III. D-PARTICLE FOAM AND GRAVITATIONAL
MSW EFFECT

Apart from the induced background space time (15) and
(16), the presence of a D-particle foam has other interest-
ing consequences for matter flavored states propagating on
the D3 brane world. Specifically, as advocated in [19], the
presence of a fluctuating ‘‘medium’’ of defects in the
background space-time, may lead to induced mixing of
flavored states, and as a consequence to gravitationally-
induced mass differences, analogous to the celebrated
MSW effect [20]. When neutrinos pass through ordinary
matter media such as the Sun, the mass differences and
mixing angles acquire parts proportional to the (electronic)
density of the medium according to the MSW effect. The
difference in the (quantum) gravitational case is that the
induced mass differences and mixing will now be propor-
tional to the product of the density of fluctuating defects in
space-time and Newton’s constant GN (which expresses
the coupling constant of gravity at an effective theory
level). In terms of MP, the four-dimensional Planck
mass, we have GN ¼ 1

M2
P

(in units @ ¼ c ¼ 1). To be pre-

cise, it is argued in [19], that the gravitationally-induced
mass differences among flavor states will be of order

�m2
foam �GNhndefectip; (17)

where hndefecti is an ‘‘effective’’ number density of the
space-time defects (D-particles), probed by matter of mo-
mentum p � j ~pj. A measure of the weakness of the space-

time foam is given by the smallness of the ratio
�m2

foam

�m2

where �m is a typical mass scale of the flavored states.
Indeed, for situations in which one has an effective number
N ? defects per Planck volume

�m2
foam �N ?

�
p

MP

�
M2

P: (18)

The value of N ? takes into account scattering cross
sections of matter with the D-particles and so is much
smaller than the number of D-particles per Planck volume.
In the context of the string models we are considering, the
four-dimensional Planck mass MP may be different from

the string mass scale Ms ¼ 1=
ffiffiffiffiffi
�0p
, which is essentially a

free parameter to be constrained by phenomenology, ac-
cording to the modern approach to string theory.
To ensure �m2

foam has realistically small mass differ-

ences among neutrino flavors, i.e. do not exceed the ob-
served values of order at most 10�3 eV2, one should have
sufficiently diluted D-particle foams, such that N ? � 1.
This will be assumed throughout this work. A plausible
assumption made in [19], which, we shall also adopt here,
is that the induced mass differences are essentially inde-
pendent of the momentum of the probe since the effective
density of defects decreases with the momentum p (the
faster the probe, the less time it has to interact with the
foam in the MSW framework). One should notice, how-
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ever, that such an assumption is strictly necessary only if
the foam-induced mass differences are to account for the
entire observed mass differences, which are indeed inde-
pendent of the momentum of the neutrinos. This is unnec-
essary in the case here since the foam-induced mass
differences are only a tiny part of the experimentally
measured ones, as required by the currently accepted ex-
perimental facts [19]. Nevertheless, due to the smallness of
�m2

foam compared to the typical neutrino mass scales �m, it

is convenient to ignore such momentum dependence since
it suffices to effect the order-of-magnitude estimates in this
article. This will be assumed from now on.

It is important to note that the gravitational MSW effect
pertains to flavor mixing induced by the medium and does
not induce any distortion of space-time per se. According
to our discussion in the previous section, it is the recoil of
the fluctuating defect that induces the background (15).
This is an important distinction that should be used later
on, when we discuss ultraviolet subtractions in our effec-
tive low-energy theory of string matter interacting with the
defects. However, both effects are affected by the density
of defects.

In our model, the flavor mixing originates from the fact
that, during the capture process of an open-string (matter)
state by the D-particle, the mass m of the re-emitted state
might be different from the incident one. In this sense, the
D-particle medium will induce flavor oscillations and mix-
ing, and as a consequence the flavor Fock space vacuum is
appropriate for quantization of those states, since the flavor
states are the appropriate physical states in this context [7].
Unfortunately, at present, our understanding of such a
mechanism from a superstring model, such as type II B
string theory, discussed by Li et al. in [10], is inadequate
due to the nonperturbative nature of the process of D-
particle-induced mass flips, in a region of strong gravity.
Such processes require knowledge of the dynamics of D-
particles per se, and, unlike the simple recoil/capture pro-
cesses that do not involve mass changes, cannot be simply
described by means of (perturbative) world-sheet methods.
Nevertheless, the time scale involved in such a mass flip
can be estimated, using stringy uncertainty relations that
are independent of the details of the underlying micro-
scopic string model. We first note that when a D-particle
interacts with a pair of open-string states stretched between
the defect and the D3-brane, representing the capture and
splitting process (as in Fig. 1), there is an induced repulsive
short-range potential V , calculated by means of appropri-
ate world-sheet annulus graphs in [21], following tech-
niques developed in [22]. The relevant parts of the
potential for our discussion in this paper are of the form

V 3 ���0

12

u2

r3
; (19)

where u is the relative four velocity [i.e. u2 ¼ v2

1�v2 in units

of the speed of light in (Minkowski) vacuo c ¼ 1 and v is

the 3 velocity] between the D-particle and the D3-brane
and r is the distance between the defect and the brane along
the transverse directions to the brane world (cf. Fig. 1;
there is no potential for D-particle motion parallel to the
brane [22]).1 In our case, with a fundamental string
stretched between the two, the order of this distance can

vary typically from that of the string length
ffiffiffiffiffi
�0p ¼ 1=Ms to

a (much smaller) characteristic minimum one Lmin �
�m�0 � ffiffiffiffiffi

�0p
where �m is a typical mass scale of the

stretched light string state representing the flavored states
[21,22]. The corresponding magnitudes jV j are jV j �
Msu

2 and jV j � ðMs

�m Þ3Msu
2. In this work, we will restrict

our attention to the simple case of two dominant mass
eigenstates, with masses mi, i ¼ 1, 2; one may then take
�m� 1

2 ðm1 þm2Þ. It will be convenient to collectively rep-

resent the effects of these two extreme cases for the poten-
tial in a single formula:

jV j �
�
Ms

�m

�
q
Msu

2; (20)

with q ¼ 0ð3Þ for the former (latter) case.
A D-particle induced mass flip of a flavored matter

string state, such as a neutrino, will be between masses
separated by terms of order (17) and (18) in our scenario.
Since the recoil contribution of the D-particle cancels out
on average, one has correspondingly a momentum conser-
vation for the neutrino state interacting with the defect. In
the nonrelativistic limit of the D-particle recoil velocities
juj ’ jvj � 1 energy conservation and in a first quantized
weakly coupled gs < 1 string-theory framework, energy
conservation implies

MD þ hhðp2 þm2
1Þ1=2ii ¼ hhðp2 þm2

2Þ1=2ii þMD

þ 1

2
MDhhu2ii þOðu4Þ; (21)

where MD ¼ Ms

gs
�MP is the D-particle mass (assumed to

be of order of the four-dimensional Planck massMP). This
allows us to estimate the recoil-velocity fluctuations during
a mass-flip process. The above relation expresses an aver-
age over both quantum fluctuations of the recoil velocity at

1In the supersymmetric model of [21], the brane is a D8-brane,
from which a D3-brane can be obtained by appropriate compac-
tification. The form of the (repulsive) short-range interaction,
and, in particular, the dependence on u and r, are insensitive to
such compactification details, but do depend on the dimension-
ality of the interacting branes [22]. On the other hand, the precise
form of the numerical coefficient depends on the details of the
construction and on the presence of other branes and orientifold
planes (the latter ensuring dynamical compactification of the
bulk space in the model). However, for our order-of-magnitude
estimates such issues are not relevant. Moreover, the presence of
orientifold planes in the construction of [21] can cancel velocity
independent terms in the potentials. Such terms are also irrele-
vant since we are only interested in potential fluctuations in-
duced by the velocity fluctuations, see Eq. (23) below.
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the individual D-particle level and over D-particle foam
populations. This averaging is denoted by hh. . .ii. On de-
noting the neutrino energy difference by �E, one may
estimate from (21),

Mshhu2ii � 2gs�E: (22)

Hence, the recoil-velocity fluctuation accompanying a
mass flip induces in turn a fluctuation in the potential

(19) of order [for r� ð �m ffiffiffiffiffi
�0p Þq0 ffiffiffiffiffi

�0p
, with q0 ¼ 0 or 1,

corresponding to the two characteristic scales of the inter-
mediate string states discussed above]

�V � 2

�
Ms

�m

�
q
gs�E: (23)

In the laboratory frame from the saturation of the
energy-time uncertainty relation an energy fluctuation
will imply a lifetime �tqmass-flip for the intermediate string

state associated with the mass flip. It suffices to consider
the low-energy quantum mechanical version of this uncer-
tainty, which yields (in units @ ¼ 1)

�tqmass-flip �
1

�V
�

�
�m

Ms

�
q 1

2gs�E
; q ¼ 0; 3: (24)

We will denote by �tcapture the time during which an

intermediate string state, stretched between the D-particle
and the D3-brane world, grows from zero size to its maxi-
mal one permitted by the stringy time-space uncertainty
relations, and back to zero size. To have the possibility of
mass flip in string theory,�tqmass-flip must be longer than the

time involved in capture,�tcapture. As discussed in [10], the

capture time is of order

�tcapture � �0p0

1� u2
; (25)

where u2 is the D-particle recoil velocity, and p0 � ðp2 þ
�m2Þ1=2 is the energy of the incident string state.
The delays (25) are consistent with the time-space un-

certainty relation �t�X � �0, characteristic of string the-
ory [23] and actually saturate it. They can be computed
rigorously within superstring theory in D-particle back-
grounds by evaluating the relevant scattering amplitudes
and looking at backward scattering contributions [10,16].
In what follows, we shall only be interested in contribu-
tions to leading order in small quantities, and so, when
using (25), the recoil-velocity u will be ignored. The
capture time (25) does not involve mass flip, and it is
associated simply with capture and re-emission of an
open-string state by the D-particle.

We reiterate that, in order for the mass-flip process to be
feasible within a string-theory model, it is necessary that
the capture time (25), which saturates the stringy time-
spaced uncertainties, is shorter than or at most equal to the
mass-flip time (24). Otherwise, mass flip does not take
place. Such a requirement, then, implies an upper bound

for the spatial momenta of the states that can possibly
undergo mass flip, i.e. for the momenta associated with
the Fock-type flavor vacuum [2,7]
First, let us consider the case q ¼ 0. It is easy to see from

(24) and (25) that for all momenta that define an effective-
low-energy theory, i.e. momenta smaller than the Planck
scale p <Ms=gs, the condition

�tqmass-flip >�tcapture (26)

is comfortably satisfied since to violate it requires energy
scales

E>
Ms

gs

Ms

2�E
� MP � Ms

gs
: (27)

For a ratio  of typical neutrino mass scale �m to momenta,
with  either small or large, compared to unity, this in-
equality can only be satisfied for mass differences �m2 �
jm2

1 �m2
2j>M2

s=gs. This requirement is physically ab-
surd, and thus yields no physically sensible constraint on
the neutrino mass differences for the case q ¼ 0.
However, on taking into account the case q ¼ 3, the

condition (26) is satisfied for all momenta smaller than the
cutoff scale Ms=gs provided

�m2 � �m2

�
�m

gsMs

�
; (28)

which is a strong constraint for the foam-induced mass
differences.
The bound (28) leads to very small foam-induced mass

differences for large string mass scales Ms close to the
Planck scaleMP, while one can get mass differences of the
order of the observed ones for Ms of the order of TeV, and
gs � 10�16, such that Ms=gs ¼ MP � 1019 GeV.
Compactification details, of course, in phenomenologically
realistic string/brane models may affect such estimates
seriously. The reader should notice that in the bound (28)
there is a theoretical uncertainty at most of order Oð10Þ
due to the uncertainty in the numerical coefficients in the
potential (19), which depend on the details of the micro-
scopic model, as already mentioned.
Hence mass-flip processes, at least from the point of

view of stringy uncertainties, are consistent physical pro-
cesses that can take place for neutrino energy differences
of physical relevance. A microscopic understanding of
these processes in detailed realistic superstring/supermem-
brane models is, of course, still pending, and hence we can
only give here plausibility arguments on the existence of
such processes.
It should also be noticed that, for small masses over

momenta, and on assuming, for concreteness, only a D-
foam-induced mass difference (18) among flavors, one
may estimate from (21) the average stochastic fluctuations
of the D-particle foam recoil velocities
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hhu2ii ¼ hh�2ii ’ gs
�m2

foam

Msp
’ N ? � 1: (29)

Here, we should remember that N ? denotes the effective
number of D-particle defects contained in a Planck vol-
ume. The reader should then notice the form similarity of
(29) with the gravitational MSW-like relation (17) conjec-
tured in Ref. [19]. The order of the estimate, of course, may
change significantly if the induced mass differences among
neutrino flavors due to the foam constitute only a small
percentage of the physically observed one (as is most likely
the case) even if the D-particle foam is physically relevant
[19].

IV. LOW-ENERGY BOSONIC FIELD-THEORY
MIXING AND FLAVOR VACUA

In this article, we shall discuss mixing of field-theory
excitations, induced on both bosonic [7] and fermionic
excitations of strings by D-particles, during their topologi-
cally nontrivial interactions (splitting/capture/re-emission)
with strings. However, the mixing will be discussed in the
presence of a slightly expanding universe (15), induced on
global scales by time varying populations of quantum-
fluctuating D-particles, as discussed above. The presence
of both fermionic and bosonic ‘‘flavored’’ field-theory
excitations of strings, finds a natural application in the
case of superstrings and super-D-branes, which is the
ultimate physical theory we have to consider. Indeed,
even if supersymmetry is eventually broken in target space,
the partners (e.g. sneutrinos) do exists, and in the case of
flavor, their mass differences might be of the same order as
the original particles (corresponding to flavored neutrinos
in our example), despite the fact that the mass differences
between particles and their supersymmetry partners might
be at least a few TeV due to the broken supersymmetry.
The only caveat in our mathematical construction is that it
is based on bosonic string theory, where the resummation
of leading modular divergencies in the case of recoil-
velocity deformed �-models is possible [11].
Unfortunately in the supersymmetric case, which would
necessitate world-sheet supersymmetry as well, such a
resummation is not possible at present [24]. Thus for the
(realistic) case of (broken) supersymmetric D-foam, we
could only assume that the conclusions drawn from the
bosonic case, regarding stochastic fluctuations properties
of the foam, are sufficiently robust to be extendable here.

We commence our discussion with a review of the
bosonic case. The (1þ 1)-dimensional bosonic case has
been discussed in detail in [7] and will not be repeated
here, apart from pertinent information needed for com-
pleteness of our discussion. It has been shown there that
the vacuum condensate in the case of scalar fields, taken as
a representative example, behaves as a fluid with w � �1
once the MSW effect is taken into account. The mixing/
expansion is considered in a (1þ 1) dimensional frame-

work since the recoil of the D-particle has been taken
parallel to the motion of the bosonic excitations, assumed
along one spatial direction, say X1 [cf. (11)]. In view of our
isotropic foam situation, considered here, (13) and (15) our
findings should carry forward to the full (3þ 1) dimen-
sional case.
For a scalar field �, the stress-energy tensor is

Tbos
	
 ½�� ¼ 1

2
ðD	�D
�þD
�D	�Þ � g	
L: (30)

The 1þ 1 dimensional version [with g	
 ¼ Cð�Þ�	
] in

the conformal frame [cf. (11)] was considered in [7], where
it was shown that the only nontrivial components are the
diagonal ones:

Tbos
00 ½�� ¼ ð@��Þ2 þ ð@x�Þ2 þ Ceffð�Þm2�2

Tbos
ii ½�� ¼ ð@x�Þ2 þ ð@��Þ2 � Ceffð�Þm2�2:

(31)

The reader should have noticed that we used the symbol
Ceff in the mass term for the scalar field and not simply
Cm2�2. The quantity Ceff contains both the effects of the
expansion and the MSW effect and plays the role of an
effective scale factor; this is in a similar spirit to standard
effective field theories of inflation [25] with interactions of
massive dark matter particles to the inflaton field. The
dispersion relations of such massive particles, and the
associated stress tensor components, include the effective
scale factors, as above. We shall come back to this point
with more details when we discuss the fermionic case,
where an entirely analogous situation applies.
The expressions (31) readily generalize to 3þ 1 dimen-

sions as follows:

Tbos
00 ½�� ¼ ð@��Þ2 þ X3

j¼1

ð@xj�Þ2 þ Ceffð�Þm2�2

Tbos
ii ½�� ¼ ð@��Þ2 þ X3

j¼1

ð@xj�Þ2 � Ceffð�Þm2�2

þ 2ð@xi�Þ2;

(32)

where the sums over spatial three-dimensional indices are
explicitly denoted for clarity. Since the form of this term
does not change when we go from the 1þ 1 dimensional
analysis to the 3þ 1 one, the conclusion is that w � �1 is
valid. As discussed in [7], the appropriate normal ordering
(subtraction) in our case of D-particle foam has to remove
any terms that do not vanish in the limit where the variance
of the D-particle fluctuations vanishes, hh�2ii ! 0. We
further assume that at late eras of the universe, the D-
particle fluctuations are weak, so only leading order terms
in an expansion in powers of hh�2ii are kept.
Hence, after the appropriate subtraction, discussed fur-

ther in [7], one arrives at
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fh0 j :Tbos
00 ½�̂�: j 0if ¼

f
h0 j :Ceffð�Þm2�̂2: j 0iff

h0 j :Tbos
ii ½�̂�: j 0if ¼ �fh0 j :Ceffð�Þm2�̂2: j 0if:

(33)

Any extra contributions acquired due to the higher (ð3þ1Þ)
dimensionality, as compared to the (1þ 1)-dimensional
case of Ref. [7], are common to the two components;
therefore the equation of state w��1 holds also in the
3þ 1 dimensional bosonic field case.

To recapitulate, for weak D-particle foam, the energy
density of the bosonic fluid in the flavor-vacuum formalism
is positive, while the pressure is negative, and the equation
of state is consistent with a cosmological constant. There
is, however, an important issue to be addressed here. The
expressions in (33), which involve integration over mo-
menta, are formally ultraviolet divergent [7]. Hence in the
low-energy field-theory limit, the momentum integrals
need a momentum scale cutoff kmax. It should be empha-
sized that in string theory there are no actual ultraviolet
momentum divergencies. As already mentioned in the
Introduction, these are artifacts of the low-energy local
effective field theory which is defined up to energies of
the order of the Planck scale Ms=gs. Thus, by definition
any momentum integral will be cutoff at that scale auto-
matically. The appropriate effective field-theory degrees of
freedom, accessible to a low-energy observer, are defined
by the subtraction procedure that we are applying to the
bosonic or fermionic stress-energy tensors in this field-
theoretic context. Moreover, any such contributions to
the vacuum energy should vanish in the absence of D-
particle foam effects. It is in this sense that a cutoff kmax

is used in the model.
In [7], such a cutoff scale, which is, however, much

smaller than the Planck mass, was determined dynami-
cally, by considering particle production. The result of
the (1þ1)-dimensional case of [7] has yielded the cutoff
scale

kmax �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þm2
2

2

s
; (34)

where mðiÞ, i ¼ 1, 2 are bosonic eigenstate masses. This is

a result of the fact that the particle production falls off with
the momentum, in such a way that the vacuum is populated
significantly by flavored bosons for momentum scales
below (34), and thus it is in such regimes of four-momenta
that the condensate becomes significant. For small mass
differences, compared to masses, which we assume
throughout our works,2 we may use the parametrization [7]

mð	Þ ¼ �m	 �m

2
; mþ � m1; m� � m2

kmax � �mþ 1

8

ð�mÞ2
�m

; �m ¼ m1 �m2 � �m:

(35)

Upon inserting the cutoff in the momentum integrals and
performing the appropriate subtractions (33), based on the
metric (15), we arrive at the estimate for the boson-induced
flavor-vacuum energy density

�bosons � sin2�hh�2ðt0Þiið�m2Þ2; (36)

in the case of predominant two-flavor mixing, which we
restrict ourselves, here, for concreteness and brevity. The
estimate requires time averaging of (33) over small capture
times t0, which in our model has been estimated to be close
to zero [7]. This fact makes oscillatory terms, that may
appear in the components of the stress tensor, negligible.
Notice in our case the extra suppression factor hh�2iiðt0Þ,
which for the cases of weak gravitational foam is smaller
than 1, as compared to the flat-space-time flavor-vacuum
case of [1,6]. In view of (36), bounds on hh�2iimay then be
imposed by cosmological considerations, given the order
of magnitude of the dark energy at present eras of the
Universe, observed today. It is important to note that, in
our approach, we assume that the relative motion of D3-
brane worlds in the bulk at present eras is such that the
associated supersymmetry breaking due to brane motion
and the pertinent contributions to vacuum energy are neg-
ligible compared to the flavor-vacuum ones (36). This is an
assumption that holds also for the fermionic contributions.

V. LOW-ENERGY FIELD-THEORY MIXING AND
FERMIONIC FLAVOR-VACUA

IN (3þ 1)-DIMENSIONS

As we shall discuss below, as far as the equation of state
is concerned, a crucial difference appears when one con-
siders fermionic low-energy field-theory excitations in the
context of flavor vacua. When the normal ordering proce-
dure is applied, the resulting equation of state is of the form
0>w>�1=3, a range insensitive to the cutoff. Thus
fermions alone, cannot lead to a present-epoch acceleration
of the Universe through this mechanism. However, in our
D-particle supersymmetric foam, where, for reasons stated,
one has both bosons and fermions as a result of broken
target-space supersymmetry, the contributions to the equa-
tion of state of the flavor vacuum from flavored bosons
(e.g. sneutrinos) can lead to a current era acceleration, by
affecting the equation of state appropriately.
Before presenting the details of our calculation, let us

briefly summarize the formalism for the mixing of two
fermionic (spin 1=2) flavors in a Minkowski space-time
background: two flavored fermions c eðxÞ and c 	ðxÞ can
be constructed from two free Dirac fields c 1ðxÞ and c 2ðxÞ
with definite masses m1 � m2, by means of the relation

2We remark that, even if the bosons refer to sneutrinos, which
have heavy masses due to target-space supersymmetry breaking,
the relative mass differences between mass eigenstates may be
assumed sufficiently small since the mass differences are inde-
pendent on supersymmetry, especially if, according to our D-
particle foam model, these mass differences originate from
foamy interactions, and hence are quantum gravitational in
origin.
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c eðxÞ ¼ c 1ðxÞ cos�þ c 2ðxÞ sin�
c 	ðxÞ ¼ �c 1ðxÞ sin�þ c 2ðxÞ cos�:

(37)

It has been shown [2] that in quantum field theory (QFT), it
is possible, in a finite volume, to define rigorously a unitary
operator that behaves as the generator of the mixing trans-
formation for fields:

ĉ eðxÞ ¼ Ĝy
� ðtÞĉ 1ðxÞĜ�ðtÞ

ĉ 	ðxÞ ¼ Ĝy
� ðtÞĉ 2ðxÞĜ�ðtÞ:

(38)

This can be written as

Ĝ �ðtÞ ¼ exp

�
�
Z

d~xðĉ y
1 ðxÞĉ 2ðxÞ � ĉ y

2 ĉ 1ðxÞÞ
�
; (39)

thus allowing the definition of a flavor vacuum as the state

j 0if � Ĝy
� ðtÞ j 0i (40)

with j 0i the mass-eigenstate vacuum used in the quantiza-

tion of the field theory of ĉ 1ðxÞ and ĉ 2ðxÞ. We should
recall that in the thermodynamic, infinite-volume limit, as
in the bosonic case, the vacuum states j 0i and j 0if are

orthogonal. Indeed, this is the case for all the Fock-space
excited states constructed out of these vacua [2,3].
However, as discussed in [7] and also below, in our
string-inspired effective theory, flavor boson or fermion
states, constructed out of j 0if, will exist up to a dynami-

cally determined momentum cutoff scale. Above that
scale, the pertinent states will be constructed out of the
mass-eigenstate vacuum j 0i. This is one way that our
microscopic approach differs from that of [2,3].

We wish now to study how the flavor vacuum expecta-
tion value of the stress-energy tensor varies in a weakly
curved space-time background. For our model of D-
particle foam, this is crucial since the mixing phenomenon
and a nontrivial, Robertson-Walker type, space-time back-
ground (15) are induced as a result of the quantum fluctua-
tions of the D-particles. Thus self consistency requires an
analysis of the flavor vacuum in the presence of a nontrivial
curved space-time, where particle production takes place.
To this end, it is of interest to first consider a free theory of
two fields of definite mass in a curved space-time that will
be regarded as a classical background. Then, under the
assumption [7] that the metric is asymptotically flat at
early times, one can introduce the mixing (and therefore
the flavor vacuum) at t ! �1 in the way presented in the
literature [2]. In our model of D-particle foam (cf. Fig. 1),
the assumption of asymptotically flat spacetimes at early
times t ! �1 can be justified in a scenario in which the
D3-brane worlds at t ! �1 finds itself in a bulk region
depleted of D-particles. As the cosmological time elapses,
the D3-brane world may move into a densely populated
bulk regions of D-particles, and subsequently exit them at
asymptotically long times in the future t ! 1, in such a
way that an interpolating cosmological space-time be-

tween �1 and þ1 may be induced as a result of such
D-particle configurations. For current eras of the Universe,
we may assume that the density of D-particles is low
enough so that there are only slight deviations from the
Minkowski vacuum.
Adopting the Heisenberg picture [2,7], one can study the

vacuum condensate induced by the mixing. Hence the
flavor-vacuum expectation value (VEV) of the stress-
energy tensor operator is evaluated for a time-independent
flavor-vacuum state and a stress-energy tensor that evolves
with time. Therefore we are going to construct the stress-
energy tensor operator for a theory with two free fermions
in a curved background and evaluate its VEV, considering
the flavor vacuum defined in (39) and (40) as the vacuum
for t ! �1.
As has been well explained in the literature [26], the

classical theory for fields with spinorial structure is gener-
alized in curved space-time through the vierbein formal-
ism. The expression for the stress-energy tensor for a free
1=2-spin field reads

T	
ðc Þ ¼ �g	
Lþ 1

2
ð �c ~�ð	D
Þc �Dð
 �c ~�	Þc Þ;

(41)

where L denotes the Lagrangian of our theory, ~�	 are the

generalized �-matrices defined by f~�	; ~�
g ¼ 2g	
, D	 is

the gravitational covariant derivative and �c � ic�0, and
�0 is the temporal component of the ordinary �-matrices in
the tangent plane (defined by f�a; �bg ¼ 2�ab, a; b ¼
0; . . . 3 tangent plane indices in the vierbein formalism).
The stress-energy tensor for two free fields is simply
T	
ðc 1; c 2Þ ¼ T	
ðc 1Þ þ T	
ðc 2Þ therefore we can fo-

cus just on T	
ðc Þ. Assuming that the flavor mixing does

not affect the homogeneity and the isotropy of the
Universe, we can consider a Friedmann-Robertson-
Walker (FRW) metric in conformal co-ordinates f�; ~xg,
g	
 ¼ Cð�Þ�	
, with Cð�Þ> 0. In this case, adopting

the convention �	
 ¼ diagf�1; 1; 1; 1g, the stress-energy

tensor becomes

T	
ðc Þ ¼ �C�	
Lþ �c

� ffiffiffi
C

p
2

�ð	@
Þ

þ C0

16
ffiffiffi
C

p �ð	½�0; �
Þ�
�
c þ H:c: (42)

An important remark on notation should be made at this
point: from now on (i.e. in all subsequent formulae) the
contraction of the space-time indices	; 
 . . . is understood
with respect to the Minkowski part of the metric, i.e.
A	B	 � �	
A	B
, since the scale factor Cð�Þ has

been factored out appropriately. The notation regarding
the contraction of tangent-space indices a; b . . . remains,
as before, the contraction involving the tangent-space
Minkowski metric �ab.
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The quantization of this theory has been specifically
carried out by [27] and discussed more generally by [28].
According to [27], the quantized spinor field can be written
as

ĉ ð�; ~xÞ ¼
�

1

L
ffiffiffiffiffiffiffiffiffiffi
Cð�Þp �

3=2 X
~p

a; b ¼ 	1

âða;bÞð ~p; �Þ


 vða;bÞð ~p; �Þeiað ~p� ~x�
R

!ð�Þd�Þ; (43)

where L is the parameter that enters the periodic boundary
condition c ð�; ~xþ ~nLÞ ¼ c ð�; ~xÞ ( ~n being a vector with

integer Cartesian components), !ð�Þ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2Cð�Þp

,

vða;bÞð ~p; �Þ is a spinor defined by

vða;bÞð ~p; �Þ � vða;bÞð ~p=
ffiffiffiffiffiffiffiffiffiffi
Cð�Þ

q
Þ

ð�ia
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

q
�0 þ ia ~� � ~pþmÞ


vða;bÞð ~pÞ ¼ 0

vða;bÞyð ~pÞvða0;b0Þð ~pÞ ¼ �a;a0�b;b0 (44)

and âða;bÞð ~p; �Þ are operators such that

fâða;bÞð ~p; �Þ; âða0;b0Þyð ~q; �Þg ¼ �a;a0�b;b0� ~p; ~q. In order to in-

troduce the mixing at early times, we first have to define
our Fock space for � ! �1. The relevant operators are

Âða;bÞð ~pÞ � âða;bÞð ~p;�1Þ with fÂða;bÞð ~pÞ; Âða0;b0Þyð ~qÞg ¼
�a;a0�b;b0� ~p; ~q. Starting with these operators, we can define

a Fock space for � ! �1, following the usual prescrip-
tions of Minkowskian quantum field theory . Moreover, if
we assume that for our conformal scale factor behaves as
Cð�1Þ ! 1, we can introduce the mechanism of the mix-
ing in the way that has been explained above.

Therefore the flavor vacuum will be defined by

j 0if � Ĝy
� ð�1Þ j 0i; (45)

keeping in mind that, since the space-time is asymptoti-

cally flat at early times, the fields ĉ behave in the usual
relativistic way

ĉ ð�; ~xÞ ¼ 1

L3=2

X
~p

a; b ¼ 	1

Âða;bÞð ~pÞvða;bÞð ~pÞ


 eiað ~p� ~x�
ffiffiffiffiffiffiffiffiffiffiffi
p2þm2

p
�Þ; (46)

for � ! �1. (N.B. the mass-eigenstate index i is being
omitted here for brevity.) We want now to evaluate the
evolution in (conformal) time of the flavor-vacuum expec-
tation value of the stress-energy tensor. Noticing that the
flavor vacuum has been defined in (45) by means of the

operators Âða;bÞð ~pÞ, whereas the fields ĉ i are defined at any

time in terms of the operators âða;bÞð ~p; �Þ, we have to find
explicit relations between these two sets of operators that

hold at any time �. This can be achieved by noticing [27]
that

â ða;bÞð ~p; �Þ ¼ X
a¼	c

Da
cðp;�ÞÂðc;abcÞðac ~pÞ; (47)

with Da0
a ðp;�Þ defined through the equation

DðaÞ
ða0Þðp;�Þ ¼ �a

a0 þ a0
Z �

�0

d�0 1
4

C0ð�0Þffiffiffiffiffiffiffiffiffiffiffi
Cð�0Þp


 mp

!ð�0Þ2 e
2ia0

R
!ð�0Þd�0

DðaÞ
ð�a0Þðp;�0Þ; (48)

with a, a0 ¼ �1, 1. Hence, at any time �, the solution of
the equation of motion (43) can be written as

ĉ ð�; ~xÞ ¼
�

1

L
ffiffiffiffiffiffiffiffiffiffiffi
Cð�Þp �

3=2 X
~p

a; b; c ¼ 	1

Âða;bÞð ~pÞDa
cðp;�Þ


 vðc;abcÞðac ~p; �Þeia ~p� ~x�ic
R

!ð�Þd�: (49)

The functions Da
bðp;�Þ encode the features of curved

space-time, but an explicit solution of Eq. (48) for a
generic conformal scale factor Cð�Þ is not known. In the
rest of the work, we will keep them in their implicit form,
with the understanding that explicit formulae have to be
evaluated case by case. In particular, in our case of D-
particle foam, in which for late eras of the Universe the
conformal scale factor of the induced metric (15) is close to
1, for small variances hh�2ii � 1 of the D-particles, we
can evaluate approximately such functions, in an appropri-
ate expansion in powers of hh�2ii.
These tools are sufficient to show that, in the continuous

limit (L ! 1), we have

fh0 j Tiiðĉ 1; ĉ 2Þ j 0if ¼ h0 j Tiiðĉ 1; ĉ 2Þ j 0i þ sin2�



Z kmax

0
dp½V2ðpÞðT iið�; p;m1Þ

þT iið�; p;m2ÞÞ� þOðsin3�Þ
(50)

and

fh0 j T00ðĉ 1; ĉ 2Þ j 0if ¼ h0 j T00ðĉ 1; ĉ 2Þ j 0i þ sin2�



Z kmax

0
dp½V2ðpÞðT 00ð�;p;m1Þ

þT 00ð�;p;m2ÞÞ� þOðsin3�Þ;
(51)

with all the other components vanishing. Above we used
the notation
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T iið�;p;mÞ � 1

3

8

ð2�Þ2
p4

ffiffiffiffiffiffiffiffiffiffi
Cð�Þp

!ð�Þ
�
ð1� jD�1

1 j2 � jD1�1j2Þ

þ 2m
ffiffiffi
C

p
p

Re½e�2i
R

!ð�Þd�D�1
1 D�1��1 �

�

T 00ð�;p;mÞ � 8

ð2�Þ2p
2!ð�Þ

ffiffiffiffiffiffiffiffiffiffi
Cð�Þ

q
ð1� jD�1

1 j2 � jD1
�1j2Þ
(52)

and

V2ðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

q
� p2 �m1m2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2 þm2
1

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

2

q : (53)

As in the boson case [7], we have also introduced a cutoff
kmax in the four-momenta since all expressions are affected
by ultraviolet divergences.

Before discussing these divergences, let us stress that in
case of � ¼ 0 and/or m1 ¼ m2 (i.e. in the absence of

mixing), the function V2ðpÞ vanishes and therefore fh0 j
T	
ðĉ 1; ĉ 2Þ j 0if ¼ h0 j T	
ðĉ 1; ĉ 2Þ j 0i, consistently

with what we would expect if we set ĉ 1 ¼ ĉ 2 in (39) and
(40) [2]. It is important to remark once more that, in the
context of the Heisenberg picture we have adopted here,
the flavor-vacuum condensate VðpÞ2, which encodes the
structure of the flavor vacuum in terms of Fock states in the
mass representation [2], has been computed in the asymp-
totic past (� ! �1), when the induced space-time (15) is
assumed flat (assuming a uniform D-particle background at
� ! �1, with no significant curvature effects. It is under-
stood that such assumptions are highly model dependent,
and hence the considerations here are specific to the initial
conditions). In our Heisenberg picture, the term VðpÞ2 does
not evolve with time, and as such, its contribution will not
be involved in any normal ordering.

VI. NORMAL ORDERING

Let us now focus on the ultraviolet divergences. These
infinities, in local field theories, are conventionally re-
moved by renormalization. In flat space-time this has
been achieved by a suitable normal ordering. In the case
of a conventional local field theory in a time dependent
metric background, the renormalization [28] would involve
state dependent counter terms which, in a covariant proce-
dure, can be tensorially constructed from the metric tensor.
As already mentioned, in the present field-theory model,
which is the low-energy limit of a string-theory involving
D-particle capture of stringy matter [7] (cf. Fig. 1), the
procedure of normal ordering is dictated by the underlying
microscopic physics; the subtraction procedure, in particu-
lar, has to be such that in the limit of the absence of D-
particles and their fluctuations, hh�2ii ! 0 the mixing
phenomenon should disappear. Moreover in our D-particle
foam model, one needs to distinguish two effects, as far as

the structure of the underlying space-time is concerned.
The first effect concerns a background space-time, over
which propagation of low-energy matter excitations (fer-
mions or bosons) takes place. The background space-time
in our case of D-particle foam has been argued to be
obtained from quantum fluctuations of individual D-
particles, which in the case of first quantized string frame-
work are due to a summation over world-sheet topologies
[11], upon (statistically) averaging over populations of D-
particles on the D3-brane world (cf. Fig. 1). This leads to a
background space-time metric of the form (15).
The individual MSW interactions of the flavored matter

excitations with the D-foam background [19], produce
extra backreaction local fluctuations on the space-time
structure. They do not cause metric distortions, as already
mentioned, but affect the particle mode’s energy-
momentum dispersion relations. This parallels and is in a
similar spirit to the standard result when one considers
particle production at the end of inflation [25]. Hence in
the effective quantum field theory, we have to take into
account interactions of the neutrinos and the D-particle
medium. In this respect, the scale factor Cð�Þ appearing in
the above formulae for the fermions should be considered
as representing the background space-time. The energies
!, on the other hand. will contain an ‘‘effective’’ scale
factor

C effð�Þ ¼ Cð�Þ þ�Cð�Þ � Cð�Þ
�
1þ�Cð�Þ

Cð�Þ
�
: (54)

In the dispersion relation

!eff ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2Ceffð�Þ

q
’

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2Cð�Þ

q
þ m2�Cð�Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2Cð�Þp (55)

to leading order in the approximation j�Cj � 1. The �C is
the MSW contribution. For the MSW scenario [cf. (18) and
(29)], one has the estimate

m2�Cð�Þ � Cð�Þ�m2
foam ’ Cð�ÞN ?MPp� Cð�Þ


 hh�2iig�1
s Msp: (56)

Such dispersion relations, that take proper account of the
nontrivial interactions of the matter probes with the D-
particles in the foam, should replace the free-particle dis-
persion relations considered in [27] and used so far.
Notice that in our model, in general�C would depend on

both momenta and position of the mode. For the purposes
of this work, we are only interested in an order-of-
magnitude estimate of the induced dark energy contribu-
tions. We do not need to specify the precise form of the
induced distortion �C, apart from the fact that in the
context of our model we know that this will be proportional
to the stochastic fluctuations of the recoil velocity �2ð�Þ at
the time of the interaction. For sufficiently small hh�2ii,
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one may ignore the momentum dependence of �Cð�Þ in
(56). On this basis, one can replace ! in Eq. (52) by !eff

(55), leaving the initial-time condensate VðpÞ2 intact. In a
similar vein, Eq. (48), becomes

DðaÞ
ða0Þðp; �Þ ¼ �a

a0 þ a0
Z �

�0

d�0
� ffiffiffiffiffiffiffiffiffiffiffi

Cð�0Þ
q p

2meffð�0Þ


 !0ð�0Þ
!ð�0Þ e

2ia0
R

!ð�0Þd�0
DðaÞ

ð�a0Þðp;�0Þ
�
; (57)

with a, a0 ¼ �1, 1 and !ð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

effð�ÞCð�Þ
q

, and

m2
effCð�Þ � m2Ceffð�Þ.
After these necessary preliminaries, we are now in a

position to discuss our subtraction (normal ordering) pro-
cedure. The latter, will be defined in such a way that in the
absence of any MSW interaction of the fermion matter
with D-particles, the stress tensor should vanish. Notice
that the MSW interactions, which are proportional to the
density of defects, are disentangled from the space-time
background Cð�Þ, in the sense that they contribute to mass
shifts but they do not induce space-time distortions.
However, in view of (29), in our picture, the induced
mass shifts are also proportional to the stochastic fluctua-
tions of the recoil velocity of the D-particles, which affects
the space-time background, cf. (15). Hence by subtracting
the MSW-like terms from the stress tensor, no further
subtraction would be necessary in order to ensure that in
a Minkowski spacetime the stress tensor would vanish.
Replacing, then, ! by !eff in Eq. (52), one should use
(55) to leading order in a small-�Cð�Þ expansion to deter-
mine the energy density and pressure of the fermion fluid.

Since in our D-particle case, the change �C is propor-
tional to the variance �2ð�Þ � 1 of the recoil-velocity
fluctuations in our weak space-time foam background [cf.
(29)], only leading order contributions proportional to �2

should be taken into account. We observe that the terms

involving Da0
a operators become irrelevant to this leading

order, and so the latter should be replaced by their flat-
space-time counterpart, which vanish [cf. (48) and (57)].
As a result, Eq. (52) becomes

:T iið�; p;mÞ: � � 4
ffiffiffiffiffiffiffiffiffiffi
Cð�Þp

p4

3ð2�Þ2 �Cð�Þ


 X2
i¼1

m2
i

ðp2 þm2
i Cð�ÞÞ3=2

:T 00ð�; p;mÞ: � 4
ffiffiffiffiffiffiffiffiffiffi
Cð�Þp

p2

ð2�Þ2 �Cð�ÞX2
i¼1

m2
i

ðp2 þm2
i Cð�ÞÞ1=2

;

(58)

where the approximate sign indicates leading orders in�C.
Since, to leading order in �2, it is expected, rather generi-
cally, that hh�Cð�Þii / hh�2ð�Þii, the background scale
factors Cð�Þ in the above relation can be replaced by
constants (i.e. flat space-time). Moreover, upon taking the

statistical average hh. . .ii of (58) over D-particle popula-
tions, to a good approximation for the weak space-time
foam situations of interest, any momentum dependence of
hh�Cð�Þii disappears; hence the latter quantity can be
taken out of the momentum integrals in (50) and (51).
This will be understood in what follows.
On recalling that for a relativistic fluid T00=Cð�Þ repre-

sents the energy density, and Tii=Cð�Þ the pressure, we can
easily see from (50), (51), and (58) that our fermionic
vacuum condensate behaves as a fluid with negative pres-
sure, and positive energy density, with an equation of state
that satisfies �1=3<w< 0. This is the result of the op-
posite powers of ! (and hence !eff , according to our
discussion above) appearing in a specific way in the pres-
sure and energy expressions (50)–(52).

VII. EQUATION OF STATE, VACUUM ENERGY
ESTIMATES, AND DYNAMICAL MOMENTUM

CUTOFF

To determine the precise value of both the energy den-
sity and pressure, and hence the equation of state, it is
necessary to have knowledge on the momentum ultraviolet
cutoff kmax used to regulate ultraviolet infinities in flat
space-time. To leading order in the small expansion
�Cð�Þ, such flat space-time approximation for the evalu-
ation of the cutoff function proves sufficient. As discussed
in [7], a dynamical cutoff function appears if one considers
particle production due to the flavor vacuum. In flat space-
times, the particle number is given by

fh0 j N̂eð ~pÞ j 0if ¼ sin2��ðpÞð1� cos½ð!1 þ!2Þ��Þ
þOðsin3�Þ þOð�2Þ; (59)

with

�ðpÞ ¼ ðð!2 �m2Þðw1 þm1Þ � p2Þ2
2!1!2ð!2 �m2Þðw1 þm1Þ (60)

and !i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þm2

i

q
, i ¼ 1, 2.

The p dependence is essentially determined by the
behavior of �ðpÞ. For large p (compared to masses), the
function falls off with an inverse forth power of momentum
(for a plot of this function vs momentum, p, see Fig. 2):

�ðpÞ � 1

2

ðm2
1 �m2

2Þ2
p2

� ðm1 �m2Þ2ððm1 þm2Þ2 þ 2ðm2
1 þm2

2ÞÞ
8p4

(61)

and so there is a scale (determined by the ratio of the two
terms in the above)

k0 � 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m2

1 þ 2m1m2 þ 3m2
2

q
; (62)

which is a plausible cutoff scale in momenta p. Thus
although there is no sharp cutoff, nevertheless, the flavor
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vacuum is populated significantly by fermionic models
below this scale, and hence the latter serves as our cutoff
kmax, appearing in (50) and (51). A similar situation char-
acterized the [(1þ 1)-dimensional] boson case in [7]. The
reader is invited to compare the order of magnitude of (62)
with that of (35).

It is easy to show that

fh0 j :T00ðĉ 1; ĉ 2Þ: j 0if � sin2�
�m2ð�mÞ2
�2

�Cð�ÞIðkmaxÞ;
(63)

where

IðkmaxÞ ¼
Z kmax

0
dp

p4

ðp2 þ �m2Þ5=2 (64)

and we have considered �m � �m.

Similarly, fh0 j :Tiiðĉ 1; ĉ 2Þ :j 0if is given by

fh0 j :Tiiðĉ 1; ĉ 2Þ: j 0if

� �sin2�
�m2ð�mÞ2
3�2

�Cð�ÞJðkmaxÞ; (65)

where

JðkmaxÞ ¼
Z kmax

0
dp

p6

ðp2 þ �m2Þ7=2 : (66)

Representing kmax in units of the characteristic neutrino
mass scale �m, i.e.

kmax � � �m; � > 0; (67)

it is easy to show that

Ið� �mÞ ¼ logð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
Þ � �ð3þ 4�2Þ

3ð1þ �2Þ3=2

Jð� �mÞ ¼ logð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
Þ � �ð15þ 35�2 þ 23�4Þ

15ð1þ �2Þ5=2 :

(68)

Because of (56), we may write (63) as

fh0 j :T00ðĉ 1; ĉ 2Þ: j 0if

� sin2�
ð�m2Þ2
�2

�m2
foam

�m2
Cð�ÞIðkmaxÞ: (69)

The reader is invited to compare this expression with the
corresponding one for the boson case (36) upon taking (56)
into account. Upon making the simplifying assumption
that the foam is responsible for the whole of the experi-
mentally observed mass differences of light neutrino spe-
cies, we observe that the factor multiplying sin2�IðkmaxÞ is
of order ð�m2Þ3

�m2 Cð�Þ. For late eras, Cð�Þ � 1 (in units of the

present-epoch scale factor of the Universe). For the biggest
of the mass differences observed today [29] �m2

23 �
0:0027 eV2 (in conventional notation), this factor is of
order 7
 10�118M4

P. Moreover, the observed mixing
sin2�23 contributes factors slightly smaller than 1 [the
current experimental data [29] indicate sin2ð2�23Þ> 0:87
at 68% confidence level], and, for the ranges of cutoffs
considered above, the cutoff factors IðkmaxÞ are of order
Oð10Þ, at most. The accepted magnitude of the vacuum
energy, claimed to have been observed today in the form of
a positive cosmological constant � is �� 10�122M4

P

(MP � 1019 GeV). In order to reproduce such a value,
one needs

sin 2�
�m2

foam

�m2
� 1:4
 10�4:

This is compatible with other phenomenological tests of
space-time foam using neutrinos [19]. The reader is also
invited to compare this result with the bound (28), derived
from stringy uncertainty considerations, in the case of a
string mass scale Ms ¼ OðTeVÞ, upon taking proper ac-
count of the theoretical uncertainties due to model depen-
dence, as discussed there.
The equation of state of this fermionic fluid in the flavor

vacuum is approximately determined by

wF ¼ � 1

3

Rkmax

0 dpV2ðpÞP2
i¼1

m2
i

ðp2þm2
i Þ3=2Rkmax

0 dpV2ðpÞP2
i¼1

m2
i

ðp2þm2
i Þ1=2

: (70)

From (70) to leading order in �m, we can deduce that wF

lies in the range �1=3<wF < 0 since

wF ¼ � 1

3

�
1� �5

5gð�Þð1þ �2Þ5=2
�
; (71)

where gð�Þ is a non-negative function given by

FIG. 2 (color online). The function�ðpÞ is plotted in the range
p 2 ½0; 10� for the valuesm1 ¼ 1 andm2 ¼ 2 (in arbitrary units,
just for illustration purposes). Notice that there is a maximum
[2], corresponding to the point

ffiffiffiffiffiffiffiffiffiffiffiffi
m1m2

p ¼ ffiffiffi
2

p
, in our arbitrary

units.
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gð�Þ ¼ logð�þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �2

p
Þ � �ð3þ 4�2Þ

3ð1þ �2Þ3=2 : (72)

The asymptotic approach of wF to � 1
3 as � ! 1 is loga-

rithmic with the cutoff and can be shown to be

wF ¼ � 1

3

�
1� 1

logð�Þ
�
1

5
þ 7

8�4
� 1

2�2

��
: (73)

For the cutoff of (62), wF ’ �:17. As � is changed fromffiffiffi
2

p
the value of wF rapidly asymptotes to � 1

3 , e.g. with

� ¼ ffiffiffiffiffiffi
20

p
, wF ’ �:27.

In 3þ 1-dimensions, for the fermionic case, the relative
factor of 3 in the denominator of the spatial components of
the stress tensor (50) [as compared to the temporal com-
ponent (51)] is due exclusively to the spatial dimension-
ality. In the bosonic case, by contrast, the dimensionality of
space is not relevant when evaluating the equation of state
wB in terms of the appropriately normal ordered compo-
nents of the corresponding stress tensor. Hence, in the latter
case, we obtain wB ’ �1, for late eras.

VIII. DISCUSSION AND OUTLOOK

In this work, we have evaluated above the contributions
from (3þ 1)-dimensional low-energy fermions to the
flavor-Fock-space vacuum energy and pressure on a brane
world punctured by D-particle defects. We have found that
the pertinent liquid is not describing a cosmological con-
stant vacuum. The equation of state lies in the range 0>

w>� 1
3 . This does not lead to acceleration of the

Universe, which requires w<� 1
3 .

Of course, in a D-brane setting, as that of Fig. 1 exam-
ined here, there are many other contributions to the D3-
brane world, some of which are notably attributed to bulk
D-particles [21]. At late eras (relative to the time of the
cosmically catastrophic brane collision corresponding to a
big bang), there are also bulk contributions to the brane
dark energy, which are due to strings stretched between D-
particle defects and the D3 brane world. The reader should
recall [21] that the contributions to the vacuum energy
from the above processes are due to the perpendicular
components of the relative velocity of the D-particle with
respect to the D3-brane world in the bulk; the motion of a
D-particle on the D3 brane world, parallel to its uncom-
pactified components does not lead to any contribution.
Hence, it is plausible that these contributions are subdo-
minant since in late epochs the motion of the D3 brane in

the bulk is extremely slow. It is in this sense that the
dominant contributions to the D3-brane vacuum energy
could come from the above-described processes of captur-
ing and splitting of flavored string states on the brane,
corresponding to the flavor-Fock-space vacuum contribu-
tions evaluated above.
To ensure that the flavor-vacuum contributions to the

dark energy leads to accelerating universes at late epochs,
as the current phenomenology indicates, one should have
bosons simultaneously present with fermions. In fact, the
bosonic and fermionic contributions to the vacuum energy
and pressure are algebraically additive. In the case of D-
particle foam, only electrically neutral particles interact
nontrivially with the D-particle defects.
In the context of supersymmetric low-energy field theo-

ries, such as those derived in the low-energy limit of super-
strings, the relevant bosons may be the sneutrinos, the
supersymmetric partners of neutrinos, which have large
masses due to target-space supersymmetry breaking.
However, the relative mass differences between mass ei-
genstates may be assumed sufficiently small, since the
mass differences are independent of supersymmetry, espe-
cially if, according to our D-particle foam model, they are
quantum gravitational in origin. Hence, even if the partners
have a much greater mass due to supersymmetry breaking,
we may assume that, among different flavors, the same
small mass differences that characterize the fermionic ex-
citations also characterize the bosonic superpartner flavors.
In this sense, one has contributions to the vacuum energy
density and pressure from the bosons, which are of the
same order as those of fermions. In realistic supersymmet-
ric models, the total equation of state may be complicated,
as it depends on the various fluids that participate in the
flavor-vacuum structure. Nevertheless, it is possible to
have an equation of state that guarantees a late-era accel-
eration of the Universe.
However, technically the extrapolation of the above

results to supersymmetric cases is not a trivial task. A
supersymmetric theory is, by construction, typically an
interacting theory, while above the quantization procedure
adopted was based on free excitations. We hope to come
back to this important issue in a forthcoming publication.
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