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The Kaluza-Klein compactification in the limit of a large number of extra dimensions is studied. The

starting point is the Einstein-Hilbert action plus cosmological constant in 4þD dimensions. It is shown

that in the large D limit the effective four-dimensional cosmological constant is of order 1=D, whereas the

size of the extra dimensions remains finite. A ’t Hooft-like large D expansion of the effective Lagrangian

for the Kaluza-Klein scalar and gauge fields arising from the dimensional reduction is considered. It is

shown that the propagator of the scalar field associated to the determinant of the metric of the extra

dimensions is strongly suppressed. This is an interesting result as in standard Kaluza-Klein theory this

scalar degree of freedom is responsible for the constraint on the gauge fields which makes it impossible to

recover the usual Yang-Mills equations. Moreover in the large D limit it turns out that the ultraviolet

divergences due to the interactions between gauge and scalar fields are softened.
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I. INTRODUCTION

The Kaluza-Klein scenario aiming to recover gauge
fields from pure space-time geometry is one of the most
fascinating ideas of theoretical physics. In the original
proposal, the attempt was to unify four-dimensional gen-
eral relativity (GR) with Maxwell electrodynamics as GR
in five dimensions compactified on a circle. In this way one
gets Einstein’s equations in four dimensions, a gauge field
and also a scalar field. However, a quite serious problem in
trying to make contact with gauge theory arises. The
dynamics of the Maxwell field is not exactly what one
would like because the extra scalar degree of freedom
(which corresponds to the determinant of the metric along
the extra dimension) gives rise to an extra constraint which
prevents one from having both a constant scalar field and
the usual Maxwell equations for the gauge field.

In order to include non-Abelian gauge fields the curva-
ture of the extra dimensions cannot vanish. This is prob-
lematic since the product of four-dimensional Minkowski
space-time with a compact manifold with non-Abelian
isometry group G (the natural ground state of Kaluza-
Klein compactification) is not a solution of higher dimen-
sional GR [1]. A nonvanishing positive cosmological con-
stant may help since solutions which are the product of a
four-dimensional Lorentzian manifold of constant positive
curvature with a compact manifold with non-Abelian

isometry group G exist. However in this case the effective
four-dimensional cosmological constant turns out to be of
the same order of magnitude as the curvature of the com-
pact space. It is therefore difficult to make contact with
phenomenology if one assumes that the compact extra
dimensions are characterized by a scale much smaller
than the macroscopic four dimensions (a bright analysis
of the problem of Kaluza-Klein compactification is in [2];
for updated reviews, see, e.g., [3–5]). Also the problem
already mentioned above remains: namely, the dynamics of
the Yang-Mills field is not exactly what one would like
because the extra scalar degrees of freedom (and, in par-
ticular, the degree of freedom corresponding to the deter-
minant of the metric along the extra dimension) give rise to
an extra constraint absent in Yang-Mills theory. It has been
recently shown [6] that in the context of Lovelock gravities
many of the problems of usual Kaluza-Klein compactifi-
cations can be addressed.
One may also be interested in analyzing the quantum

features of the effective Kaluza-Klein Lagrangian for sca-
lar and gauge fields (thinking of the four-dimensional
metric as a classical background on which the Kaluza-
Klein scalars and the gauge fields propagate).1 Indeed,
such Lagrangian contains nonrenormalizable interactions
between the scalars and the gauge fields which generate
many problems in the ultraviolet (UV) limit.
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1This makes sense if the typical length scale of the extra
dimensions is much smaller than the typical length scale of
the macroscopic four-dimensional metric.
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Here, we propose a framework in which the problems
described above can be treated in a natural way: we will
apply the well-known ’t Hooft largeN expansions [7,8]2 to
the effective Kaluza-Klein Lagrangian for scalars and
gauge fields (thus, in the present case, N will be related
to the number D of extra dimensions).

The first attempts to obtain an expansion similar to the
’t Hooft one in gravity have been performed in [11–13] and
further refined in [14]. In [12] and in [14] the ‘‘small
parameter’’ is 1=d (d being the total number of space-
time dimensions). While in [15,16], it has been proposed to
think of the (Euclidean) four-dimensional GR as a con-
strained gauge theory for the SOð4Þ group and performs an
expansion in which 4 ! N is large (keeping fixed the
number of space-time dimensions, that is d ¼ 4).

For the Kaluza-Klein compactification of GR plus cos-
mological constant in 4þD dimensions, the subject of the
present paper, it is found that already at a classical level
there is a nontrivial largeD expansion whose most remark-
able feature is that the effective four-dimensional cosmo-
logical constant is of the order of 1=D. At a quantum level,
performing the ’t Hooft-like large D expansion, it is found
that the propagator of the scalar field corresponding to the
determinant of the metric of the extra dimensions is
strongly suppressed. This is a nontrivial feature as in
standard Kaluza-Klein theory such scalar degree of free-
dom is responsible for the extra constraint on the gauge
fields mentioned above which makes it impossible to re-
cover the Yang-Mills equations when this field is constant.

Moreover, from the ‘‘large N’’ perspective, the Kaluza-
Klein effective Lagrangian presents new features which are
absent in the large N expansion of QCD or in the large N
expansions of a model with global symmetries (such as the
Gross-Neveu model; for two reviews see [10]). These
novel features allow one to soften the UV problems already
mentioned.3

Indeed, already the classical theory manifests a non-
trivial large D scaling, so one could wonder about the
justification of treating 1=D as a coupling constant. On
the other hand, as it is well known, in quantum mechanics
one reaches the semiclassical regime in the limit of very
high quantum numbers. In quantum field theory, the semi-
classical regime is valid when the vacuum expectation
value(s) of the number operator(s) of the field(s) is (are)
very large (as it happens, for instance, when condensates
appear). Therefore, since in the large D expansion the

number of degrees of freedom grows polynomially with
D, one can treat 1=D as a small parameter for the semi-
classical expansion around the Kaluza-Klein vacuum (in
analogy with what happens in the large N expansion of the
3D Gross-Neveu model). In fact, as in quantum field theory
condensates break some symmetry of the theory, the
Kaluza-Klein vacuum breaks part of the symmetry of the
trivial maximally symmetric vacuum. Furthermore, as will
be shown in the next sections, the large D expansion (at
least partially) solves some consistency problems of the
classical Kaluza-Klein theory.
The structure of the paper is as follows: First the classi-

cal nontrivial features of the large D limit of Kaluza-Klein
compactification which arise at a classical level are dis-
cussed. Then the basic features of the ’t Hooft expansion
and of some nontrivial large D resummations are dis-
cussed. It is found that the two most remarkable features
of this expansion are the suppression of the scalar degree of
freedom corresponding to the determinant of the metric
and the softening of the ultraviolet divergences. In the last
section the conclusions are presented.

II. THE KALUZA-KLEIN SCENARIO: A SHORT
INTRODUCTION

Let us consider the Kaluza-Klein scenario in (4þD)
dimensions whose ground state is a product manifold
M4 � KD (KD being a Euclidean manifold of constant
positive curvature; nice reviews on this subject are
[3,4,17]). Here, we will only consider the Einstein-
Hilbert action with a positive cosmological constant �,

�4þD ¼ �

(in order to have non-Abelian gauge fields) in (4þD)
dimensions. The ground state metric is the following direct
product in which the extra-dimensional manifold is a con-
stant curvature manifold

gð4þDÞ ¼ g��ðx�Þdx�dx� þ ĝabðyaÞdyadyb;
where the coordinates x� are intrinsic to M4 and ya are
D-dimensional coordinates intrinsic to KD. With this an-
satz, the mixed components of the Einstein equation (writ-
ten in the usual second order formalism)4 involving the
mixed components Ga� of the (4þD)-dimensional

Einstein tensor GAB are trivially satisfied. The (4þD)-
dimensional Einstein equations

GAB ¼ �gAB

reduce to a four-dimensional Einstein equations for g��:

Gð4Þ
�� þ�4g�� ¼ 0;

with an effective cosmological constant �4 and to a

2The Veneziano limit [9], in which the ratioN=Nf is kept fixed
(Nf being the number of quarks flavors), was also important to
further clarify several features of quark and mesons dynamics;
two pedagogical reviews are [10].

3This framework is somehow in between the points of view of
Refs. [12,14] (in which a large d expansion was considered) and
the point of view proposed in [15,16] (where d is kept fixed and
‘‘SOð4Þ is enlarged’’ in such a way as to separate the ‘‘internal
indices’’ from the ‘‘space-time indices’’).

4In the next section, the Palatini first order formalism will be
considered.
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D-dimensional Euclidean Einstein equations for ĝab:

GðDÞ
ab þ�Dgab ¼ 0:

As is well known, a non-Abelian algebra of Killing
fields is only compatible with a D-dimensional symmetric
space of positive effective cosmological constant �D: the
effective four-dimensional and D-dimensional cosmologi-
cal constants are, respectively,

�4 ¼ 2

Dþ 2
�;

and

�D ¼ D� 2

Dþ 2
�;

so that

�4

�D

¼ 2

D� 2
:

Therefore, whenD is large,�4 is much smaller than�D:
in particular, at leading order in the large D expansion, �4

vanishes. One then sees that the large D expansion itself is
able to keep separated the macroscopic four-dimensional
scale from the typical extra-dimensional scale without any
extra ingredient. This is indeed a very attractive feature of
the present framework. In the following section, the non-
trivial large D scaling of the classical theory will be
deduced in the first order Palatini formalism which, for
this goal, is more convenient than the second order
formalism.

A. Kaluza-Klein scenarios in the first order formalism

To fully display the D dependence in the large D expan-
sion it is convenient to introduce the following notations
(we will follow [17]): let ta be the Lie algebra generators
corresponding to the Lie group G (which will play the role
of the gauge group of the Kaluza-Klein gauge fields):

½ta; tb� ¼ Cc
abtc; s�1ds ¼ eata; dss�1 ¼ �êata;

s 2 G; eaðYbÞ ¼ �a
b; êaðŶbÞ ¼ �a

b:

Here Ŷa and Yb represent the right and left invariant vector
fields while êa and ea are the corresponding dual one-
forms. To have a consistent Kaluza-Klein scenario one
may consider the case in which the Ya are the Killing
vectors of the full (4þD)-dimensional metric.5 The natu-
ral Kaluza-Klein ground state is a product of a four-
dimensional manifold fulfilling the four-dimensional
Einstein equations (with a small cosmological constant if
D is large) times a coset manifold G=H invariant under the

corresponding non-Abelian algebra of the Killing fields.
The ground state metric (whose Killing vectors are the Ya)
on G=H will be written as

gG=H ¼ ĝabê
aêb: (1)

In the ground state, ĝab does not depend on x: to fix the
idea, one can think at the extra-dimensional manifold
corresponding to the ground state of the Kaluza-Klein
scalars as the D sphere

G

H
¼ SD ¼ SOðDþ 1Þ

SOðDÞ : (2)

At the semiclassical level, the large D expansion corre-
sponds, from the point of view of gauge fields, to a (bit
unusual as we shall see in the next section) ’t Hooft ex-
pansion of the effective Kaluza-Klein Lagrangian for sca-
lars and gauge fields with SOðDÞ as the gauge group.
Eventually, the usual Kaluza-Klein ansatz for the

(4þD)-dimensional metric gð4þDÞ reads

gð4þDÞ ¼ g��dx
�dx� þ ĝabðx�Þðêa þ AaÞðêb þ AbÞ: (3)

The above metric (3) is left unchanged by the following
gauge transformations:

A0 ¼ u�1Auþ du�1; ðĝabÞ0 ¼ ðĝcdÞRðuÞcaRðuÞdb;
where uðx�Þ 2 SOðDÞ, while the matrix RðuÞca is in the
adjoint representation in the sense that the element u 2
SOðDÞ induces the following transformation on generators
ta:

ðtaÞ0 ¼ tbRðuÞba:
As a consequence, since in the ’t Hooft notation the

propagators of the ‘‘SOðDÞ gluons’’ Ab are represented
by a double line (as usual, the Aa fields transform in the
adjoint), the scalar degrees of freedom corresponding to
ĝabðx�Þ [see Eq. (13)] will be represented by four lines as
will be explained in more detail in the next section (a
similar phenomenon also occurs in [15,16]): this is the
origin of the unusual features of the ’t Hooft expansion
of the Kaluza-Klein effective Lagrangian.
In many field theoretical models in which the large N

expansion is available (such as the Gross-Neveu, Yang-
Mills theory, and so on) the nontrivial scaling with N only
appears at a quantum level (see, for instance, [10]).
Namely, only after computing Feynman diagrams with
loops, one can recognize the possibility to perform a large
N expansion which corresponds to a semiclassical expan-
sion. However, in gravity (because of the fact that the extra
dimensions describe in a sense the local gauge symmetry
of Yang-Mills theory), already the classical equations of
motion manifest a nontrivial scaling with D (related to the
dimension of the Kaluza-Klein gauge fields).
Let!AB and eA be the (torsion free) spin connection and

the ‘‘(4þD)-bein,’’ respectively, and the Riemann curva-
ture two form RAB is defined as

5The case can also be analyzed in which the Ya are the Killing
vectors of the metric only when restricted to the extra dimen-
sions [17], but we will restrict the present analysis only to the
case in which the Ya are the Killing vectors of the total metric.
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RAB ¼ d!AB þ!A
C!

CB;

A; B; C; . . . ¼ 1; . . . ;Dþ 4;

�; �; �; � ¼ 1; . . . ; 4;

DeA ¼ TA ¼ deA þ!A
Ce

C ¼ 0;

a; b; c; . . . ; a1; a2; . . . ; i; j; k; . . . ¼ 1; . . . ;D:

The Einstein-Hilbert action plus the cosmological term
in 4þD dimensions in the first order formalism reads

IDþ4 ¼
Z �

c0
4þD

eA1 � � � eA4þD

þ c1
Dþ 2

RA1A2eA3 � � � eA4þD

�
; (4)

where c0 is proportional to the cosmological constant and
c1 to the 4þD Newton constant. At a classical level, no
argument can be invoked which suggests that c0 is negli-
gible with respect to c1 so that the ‘‘bare’’ classical cou-
pling constants c0 and c1 scale with D in the same way:
therefore, in the large D limit, c0=c1 is a nonvanishing

finite constant (let us call such a constant 6�̂
�̂ for future

convenience)

c0
c1

�
D�1

6�̂

�̂
þ oð1=DÞ:

Let us divide the indices into two groups: �; �; �; �; . . .
represent the macroscopic Lorentzian four dimensions (�,
�, �, � ¼ 1; . . . ; 4), while small Latin indices
a; b; c; . . . ; i; j; k; . . . , a1; a2; . . . (which will play the role
of the internal indices of the Yang-Mills fields) represent
the D compact extra dimensions (a; b; c; . . . ; i; j; k; . . . ,
a1; a2; . . . ¼ 1; . . . ;D). Thus, there are three different kinds
of components of the Riemann curvature two form RAB:

R��; R�a; Rab:

Roughly speaking, the components R�� give rise to the
usual four-dimensional gravitational interaction of GR
with a suitable energy-momentum tensor for the gauge
and scalar fields as source, the components R�a are related
to the field strength of the gauge fields (generating the
corresponding equations of motion) while the components
Rab are related to the scalar fields and to the well-known
scalar constraint on the gauge fields (the explicit decom-
position of the Riemann tensor can be found, for instance,
in [3,4,17]). The equations of motion corresponding to the
action in Eq. (4) split as follows:

0 ¼ E�

¼ "����a1���aD

�
c0

ðDþ 3ÞðDþ 2Þ
6

ðe�e�e�ea1 � � � eaDÞ

þ c1DðD� 1Þ
�
Ra1a2

6
ðe�e�e�ea3 � � � eaDÞ

þ R�a1

D� 1
ðe�e�ea2 � � � eaDÞ þ ðea1 � � � eaDe�Þ

ðD� 1ÞD R��

��
;

0 ¼ Ea1

¼ "����a1���aD

�
c0

ðDþ 3ÞðDþ 2Þ
24

ðe�e�e�e�ea2 � � � eaDÞ

þ c1ðD� 2ÞðD� 1Þ
�
Ra2a3

24
ðe�e�e�e�ea4 � � � eaDÞ

þ R�a2

3ðD� 2Þ ðe
�e�e�ea3 � � � eaDÞ

þ ðe�e�ea2 � � � eaDÞ
2ðD� 1ÞðD� 2ÞR

��

��
:

It is then clear that when D is very large the above
equations separate into decoupled equations for the differ-
ent components R��, R�a, and Rab: the reason is that for
largeD the number of scalar field components grows faster
than the number of Kaluza-Klein gauge fields while the
number of four-dimensional gravitational degrees of free-
dom does not change.
We will assume, as is usually done in various types of

largeN expansions, that for very largeD any field� can be
expanded as follows:

� ¼ �ð0Þ þ 1

D
�ð1Þ þ 1

D2
�ð2Þ þ � � � ;

such that8 k,�ðkÞ does not depend onD, where�ð0Þ is the
leading order and the terms�ðiÞ for i > 0 can be considered
as subleading corrections so that no component of RAB is
divergent at largeD. Indeed, such an hypothesis is the most
natural one since the large D expansion itself provides one
with a suitable tool to keep well separated the macroscopic
scale of the four-dimensional directions ð�; �; . . .Þ from the
compactified directions ða1; a2; . . .Þ.
To simplify the notation, it is convenient to define two

rescaled coupling constants �̂ and �̂ in terms of c0 and c1
as follows:

c0 ¼ 6�̂

ðDþ 3ÞðDþ 2Þ ; c1 ¼ �̂

DðD� 1Þ :
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The field equations E� ¼ 0 and Ea1 ¼ 0 now read

0 ¼ E�

¼ "����a1���aD

�
�̂ðe�e�e�ea1 � � � eaDÞ

þ �̂

�
Ra1a2

6
ðe�e�e�ea3 � � � eaDÞ

þ R�a1

D� 1
ðe�e�ea2 � � � eaDÞ þ ðea1 � � � eaDe�Þ

ðD� 1ÞD R��

��
;

(5)

0¼ Ea1

¼ "����a1���aD

�
�̂

4
ðe�e�e�e�ea2 � � �eaDÞ þ �̂

�
1� 2

D

�

�
�
Ra2a3

24
ðe�e�e�e�ea4 � � �eaDÞ þ R�a2

3ðD� 2Þ
� ðe�e�e�ea3 � � �eaDÞ þ ðe�e�ea2 � � �eaDÞ

2ðD� 1ÞðD� 2ÞR
��

��
: (6)

It is easy to see a very nice feature of the present largeD
framework: a priori, one should assume that all the com-
ponents of the full Riemann tensor R��, R�a, Rab have
already at a classical level a nontrivial 1=D expansion:

R�� ¼ R��
ð0Þ þ

1

D
R��
ð1Þ þ � � � ;

R�a ¼ R�a
ð0Þ þ

1

D
R�a
ð1Þ þ � � � ;

Rab ¼ Rab
ð0Þ þ

1

D
Rab
ð1Þ þ � � � :

However, as far as R�� and R�a are concerned, it is
consistent with the field equations to simply consider the
leading terms:

R�� ¼ R
��
ð0Þ ; R�a ¼ R

�a
ð0Þ ;

while as far as Rab is concerned it is enough to consider the
first two terms of the expansion:

Rab ¼ Rab
ð0Þ þ

1

D
Rab
ð1Þ: (7)

Thus, at large D, one gets the following decoupled
equations for Ra1a2

ð0Þ , Ra1a2
ð1Þ , R�a1 , and R��:

"a1���aD

�
�̂

4
ea2 � � � eaD þ �̂

R
a2a3
ð0Þ
24

ðea4 � � � eaDÞ
�
¼ 0; (8)

"a1���aDðea4 � � � eaDÞRa2a3
ð1Þ ¼ 0; (9)

"����a1���aDðe�e�ea2 � � � eaDÞR�a1 ¼ 0; (10)

"����R
��e� ¼ 0: (11)

The Ra2a3
ð0Þ components satisfy Euclidean Einstein equa-

tions with an effective D-dimensional cosmological con-

stant given by 6�̂
�̂ . Thus, no matter how large the actual

(4þD)-dimensional cosmological constant is, the consis-
tency of the large D expansion demands that the effective
four-dimensional cosmological constant is of order 1=D
(indeed, the effective four-dimensional cosmological con-
stant vanishes at leading order in the large D expansion).
The leading correction to Rab in the 1=D expansion
(namely, Rab

ð1Þ) satisfies Euclidean D-dimensional Einstein

equations with a vanishing cosmological constant. The
nontrivial large D scaling already present in the classical
equations of motion is an interesting feature of the present
framework.

III. PROPAGATORS AND ’T HOOFT EXPANSION

In the next section, some large D correction to the
propagators of the scalar fields � and ~� will be analyzed:
in order to achieve this goal, it is convenient to use the
second order formalism. The 4þD-dimensional gravita-
tional action reads

S4þD ¼
Z ffiffiffiffiffiffiffiffiffiffiffi

g4þD

p ðR4þD þ 2�4þDÞ:

The 4þD-dimensional Ricci scalar can be expressed in
terms of the four-dimensional Ricci scalar R4, the Kaluza-
Klein scalars and gauge fields as follows

R4þD ¼ R4 þ RD � g��g��

4
ĝabF

a
��F

b
��

�r�ðtrðĝ�1r�ĝÞÞ � 1

4
trððĝ�1r�ĝÞðĝ�1r�ĝÞÞ

� 1

4
ðtrðĝ�1r�ĝÞÞðtrðĝ�1r�ĝÞÞ; (12)

where it has been introduced as the shorthand notation ĝ
for the scalar Kaluza-Klein fields ĝabðx�Þ and RD is the
Ricci scalar of the extra-dimensional manifold

RD ¼ �ĝij
�
Ck
aiC

a
kj þ

1

2
Ck
liC

l
kj

�
� ĝmnCi

imC
j
jn

� ĝijĝ
kpĝmn

4
Ci
kmC

j
pn:

It is apparent the origin of the UV divergences (men-
tioned in the Introduction) of the Kaluza-Klein Lagrangian
for gauge and scalar fields (in which the four-dimensional
part of the gravitational field is considered as a classical
background). The two most dangerous sources of nonre-
normalizable interactions are the determinant

ffiffiffiffiffiffiffiffiffiffiffi
g4þD

p
of the

metric in the gravitational action6 and the term

6The presence of such term (
ffiffiffiffiffiffiffiffiffiffiffi
g4þD

p
, when � is small, is

proportional to a constant plus �) generates nonrenormalizable
interactions in which � multiplies the kinetic terms of the ~�
scalar fields [defined in Eq. (13)] and of the gauge fields.
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g��g��

4
ĝabF

a
��F

b
��

in the Ricci scalar. Such a term also generates nonrenor-
malizable interactions between the � field and the gauge
fields as well as nonrenormalizable interactions between
the ~� fields [defined in Eq. (13)] and the gauge fields.7 For
the reasons mentioned at the beginning of the next section,
it is not possible to give a complete treatment of the
renormalization of the above Kaluza-Klein action.
However, it is interesting to stress that one of the main
causes of the UV problems is the scalar degrees of freedom
�. If one would find a sound mechanism to suppress the
propagator of � one would also soften many of the UV
divergences of the theory. We will come back to this
important point in the following.

It is convenient the following decomposition of the
scalar fields:

ĝ ¼ expð2�̂1Þ expð ~� � ~tÞ; (13)

where 1 is the identity and ~t are the generators of the
algebra SOðDÞ in the tensor product of the adjoint repre-
sentation with itself, and the matrix ĝ has been decom-
posed into a factor belonging to the group SOðDÞ and its
determinant expð2�̂1Þ. Thus, in the ground state both �̂ and
the ~� vanish so that ĝab ¼ �ab. The fields ~� correspond to
fluctuations which leave the determinant of ĝ unchanged
while the field �̂ corresponds to fluctuations of the deter-
minant of ĝ. The fields ~� belong to the algebra of SOðDÞ
and have two indices in the adjoint representation so that in
the ’t Hooft notation, they will be represented by four lines
while the field �̂ is a singlet under SOðDÞ.

It is worth noting here that �̂ is precisely the analog of
the scalar degree of freedom of the Abelian Kaluza-Klein
framework (in which the reduction from five to four di-
mensions is considered). In particular, this implies that the
extra scalar constraint which prevents one from having
both a constant scalar field and the usual Yang-Mills
equations for the gauge fields in the non-Abelian Kaluza-
Klein framework is related to �̂.

In order to assure a proper behavior of determinant of ĝ
in the large D limit, the �̂ field will be normalized as
follows:

� ¼ 2

DðD� 1Þ �̂ (14)

(where � is a field which is finite in the largeD limit) since,
in this way, when D ! 1 the determinant of ĝ stays finite.

In terms of these fields, the kinetic terms of the scalars
read

� trððr� ~� � ~tÞðr� ~� � ~tÞÞ þ
�
1� 4

ðD� 1Þ2D2

�
r��r��;

where one recognizes, except by a constant factor, the
usual kinetic terms for scalar fields.
The large D scaling suggests that the scalar mode � is

subdominant with respect to the Kaluza-Klein gauge fields
and ~� scalars whose numbers grow with D. This suggests
that the well-known problem which arises in Kaluza-Klein
scenarios when one tries to deal with nontrivial Kaluza-
Klein gauge fields but with constant scalars arises at order
1=D. As we shall explain in the next section, large D
effects strongly suppress the propagator of the � field.

IV. SOME EXAMPLES OF NONTRIVIAL LARGE D
RESUMMATIONS

We will now describe some nontrivial features of the
large D expansion of the Kaluza-Klein gauge and scalar
fields. The ’t Hooft expansion in the Kaluza-Klein
Lagrangian presents novel features due to the appearance
of scalar fields represented by four internal lines in the
usual large N notation. This leads to a resummation which
softens the UV problem of the theory in a quite systematic
way.
We will not try in the present paper to prove the full

renormalizability of the Kaluza-Klein Lagrangian for sca-
lars and gauge fields. As it is well known, for theory with
gauge symmetry, the powerful methods of algebraic renor-
malization based on the Becchi-Rouet-Stora-Tyutin
(BRST) symmetry have been developed (for a detailed
book on these methods, see [18]). These tools allow one
to prove the quantum consistency of the BRST symmetry
to all order in the gauge coupling constant: the proof is
recursive in the coupling constant itself. However, these
techniques cannot be applied in the large D expansion of
the Kaluza-Klein Lagrangian: the reason is that in the usual
case of Yang-Mills theory the dependence of the classical
action plus the gauge fixing term on the coupling constant
is very simple (a polynomial). While, in the present case,
the dependence of the Kaluza-Klein action on the coupling
constant 1=D is quite complicated and very far from being
a simple polynomial: this prevents one from using the
techniques of [18] in the present case.8

7The reason is that when one expands ĝab around the chosen
ground state the expansion contains a term proportional to ��ab

as well as a term proportional to ~� � ~t [where ~� are defined in
Eq. (13) and the ~t are the generators of the algebra of SOðDÞ in
the tensor product of the adjoint representation with itself].

8To the best of the authors’ knowledge, the renormalization
procedure in the large N expansion has been developed only for
theories with global symmetry (such as the Gross-Neveu model
in three dimensions which is renormalizable at large N despite
being nonrenormalizable in the usual perturbative expansion).
When dealing with the large N expansion of QCD one does not
worry about the renormalizability of the theory at large N since
the theory is already known to be renormalizable by other
means. Indeed (unlike the cases with global symmetries like
the Gross-Neveu model), cases of gauge theories which are not
renormalizable in the usual perturbative expansion but can be
renormalized in the large N expansion are not known.
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For these reasons, we will satisfy ourselves by showing
that the largeD expansion leads to a surprising softening of
the UV divergences by considering two simple examples:
since we are considering the UV limit, when computing the
propagators and vertices the background geometry will be
assumed to be flat.

A. Examples of large D corrections to the scalar
propagators

Now we will discuss the simplest correction to the �
propagator due to Kaluza-Klein gauge field loops. We will
consider the expansion of ĝab [defined in terms of the
fundamental fields � and ~� in Eq. (13)] around the natural
ground state ĝabjGS:

ĝ abjGS ¼ �ab

in such a way that the Feynman rules for the fundamental
fields �, ~� and the gauge fields can be read directly from
the Lagrangian equation (12).

In what follows, we will only need the bare propagators
of �, A, and ~� which read

��ðkÞ ¼
�
1� 4

ðD� 1Þ2D2

��1 i

k2
;

�abcd
� ðkÞ ¼ i�ab�cd

k2
; �ab

A��ðkÞ ¼
�i�abg��

k2
;

where the A propagator is in the Feynman gauge and k is
the 4-momentum of the particle.

Here, we will only focus on the analysis of the vertices
which do not appear in the usual Yang-Mills theory: the
ones coming from the ĝabF

a
��F

b
�� term when expanding

ĝab around the ground state. Such vertices describe non-
renormalizable interaction in normal perturbation theory

and its presence could be viewed as problematic in the
usual scheme. Nevertheless, the largeD expansion leads to
a surprising improvement, as we will see in the case of the
‘‘�AA’’ vertex.
We are going to consider the contribution of such a

vertex to the � propagator. As we show in Fig. 1, the
Feynman rule for the nonrenormalizable vertex �AA
(which originates from the term ĝabF

a
��F

b
�� of the

Lagrangian) is

� i�ab	p1 � p2

�
g�� �

p1�p2�

p1 � p2

�
; (15)

where 	 is Newton’s constant,9 p1 and p2 are the 4-
momenta of the gauge fields.
With this propagator, we can construct loop corrections

to the � propagator as shown in Fig. 2.
Each loop contributes with a term given by

��ðpÞ ¼ DðD� 1Þ

�
Z

d4k

�
2½k � ðp� kÞ�2 þ k2 � ðp� kÞ2

k2 � ðp� kÞ2
�
;

where p is the 4-momentum of the �, k is the internal 4-
momentum running in the loop, and the dot represents the
usual Lorentz product. Notice that the integral is highly
divergent but it can be regularized by the usual methods.
The presence of DðD� 1Þ in the expression for ��ðpÞ can
be easily understood by using the ’t Hooft notation.
When we sum up all the terms we obtain the geometric

series and the result reads
��

1� 4

ðD� 1Þ2D2

�
p2 ���ðpÞ

��1
:

Because�� is proportional toDðD� 1Þ, we find that the
propagator of � is suppressed in the large D limit strongly
suggesting the decoupling of this degree of freedom in the
UV. This is an interesting effect since, in this way, all the
‘‘nonrenormalizable’’ loops in which the � field appears
are suppressed as well by such large D resummation.
Therefore, this ‘‘large D resummation’’ leads to a clear
improvement of the UV behavior of the theory.
In a similar way, one can compute the correction to the

propagator of the �ab fields due to gauge field loops. The
Feynman rule for the nonrenormalizable vertex ‘‘�AA’’
(see Fig. 3), which also originates from the term
ĝabF

a
��F

b
�� of the Lagrangian as shown in Fig. 4, is

� i�ac�bd	p � p2

�
g�� �

p1�p2�

p1 � p2

�
; (16)

where, again, p1 and p2 are the 4-momenta of the gauge
fields.

FIG. 2. Corrections to the � propagator due to gluon loops.

FIG. 1. Feynman rule for the �Aa
�A

b
� interaction.

9As it has been already stressed, we are interested in the UV
limit of the theory. Therefore, when writing the Feynman rules,
we will consider a flat background geometry.
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The main difference with the previous case is the ‘‘color
index factor.’’ Being �ab is a ‘‘four line’’ field in t’ Hooft
diagrammatic notation (while the gauge field is a usual
‘‘two line’’ field), at the leading order there are not closed
color lines in the loops as we have in Fig. 4.

Therefore, at the leading order each loop contribution is
independent of D:

� ~�ðpÞ ¼ 2
Z

d4k

�
2½k � ðp� kÞ�2 þ k2 � ðp� kÞ2

k2 � ðp� kÞ2
�
:

Consequently, the ~� propagator is not directly sup-
pressed in the large D limit as in the case of �.

Eventually, since the ghost fields must be in the same
representation of the gauge group as the gauge fields, they
will be represented in the ’t Hooft notation by two internal
lines. Consequently, it can be easily seen that they will
‘‘suffer’’ the same color corrections as the corresponding
gauge fields: therefore the large D corrections to the ghost
propagators will be the same as the large D correction to
the gauge fields. This should be enough to guarantee a
consistent semiclassical expansion.

Indeed, in the present paper only two examples of ‘‘large
D’’ corrections have been considered. However, the quali-
tative effects that one should expect by including other
possible vertices are consistent with the effects discussed

here: the reason is that in the large D limit one can under-
stand which are the dominant contributions by looking at
the ’t Hooft double line notation.10

V. CONCLUSIONS

In the present paper some very interesting features of the
large D expansion of a Kaluza-Klein compactification in
4þD dimensions have been analyzed. First, it has been
found that already at a classical level this model exhibits a
nontrivial large D scaling: in particular, it has been shown
that the four-dimensional effective cosmological �4 con-
stant is of order 1=D (so that, at leading order in the largeD
expansion, �4 vanishes), whereas the size of the extra
dimensions remains finite. At the quantum level some
features of the ’t Hooft large D expansion of the effective
Lagrangian for the scalar and gauge fields have been
studied. It has been shown that the scalar degree of freedom
associated with the determinant of the extra-dimensional
metric (responsible for many UV divergences) is sup-
pressed in the large D limit: this effect strongly indicates
that the UV Kaluza-Klein divergences are softened in the
large D expansion.
As a final remark it is worth pointing out that one could

expect that this mechanism can work better than the usual
perturbative expansion even for a not extremely large value
of D. For instance, in QCD already N ¼ 3 is enough to
trust largeN expansion. On the other hand, it is well known
that in order to encompass the standard model within the
Kaluza-Klein framework we need at least seven extra
dimensions.
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FIG. 3. Feynman rule for the �abAc
�A

d
� interaction.

FIG. 4. First correction to the �ab propagator.

10As a matter of fact, if one looks at the double line structure of
the other vertices, one can easily see, for instance, that generi-
cally largeD effects tend to suppress the � propagator because of
the double line structure shown in Figs. 1 and 2.
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