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In this paper, we present the results of our analysis of the growth and decay of black holes possibly

produced at the Large Hadron Collider, based on our previous study of black holes in the context of the

warped brane-world scenario. The black hole mass accretion and decay is obtained as a function of time,

and the maximum black hole mass are obtained as a function of a critical mass parameter. The latter

occurs in our expression for the luminosity and is related to the size of extra-dimensional corrections to

Newton’s law. Based on this analysis, we argue against the possibility of catastrophic black hole growth at

the LHC.
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I. INTRODUCTION

The hypotheses [1,2] that there exist extra spatial di-
mensions with length scales large enough to be probed by
the Large Hadron Collider (LHC) lead to the possibility
that quantum gravity can be investigated via the production
and detection of microscopic black holes [3–5]. In particu-
lar, in the Randall-Sundrum (RS) brane-world of Ref. [2],
our world is a four-dimensional brane (with coordinates
x�;� ¼ 0; . . . ; 3) embedded in a five-dimensional mani-
fold whose metric, without other sources present, is given
by

ds2 ¼ e��jyjg��dx
�dx� þ dy2; (1)

where y parametrizes the fifth dimension. In the above, � is
a deformation parameter, with units of inverse length,
determined by the brane tension (for bounds on �, see,
e.g., [6] and references therein). It also relates the four-
dimensional Planck mass Mp to the five-dimensional

gravitational mass Mð5Þ and one can, thus, have Mð5Þ ’
1 TeV=c2. This, in turn, allows for the existence of black
holes with mass in the TeV range. In order to be phenom-
enologically viable, the brane must also have a thickness,
which we denote by L, below which deviations from the
four-dimensional Newton law occur. Current precision
experiments require thatL & 44 �m [7]. In the analysis
below, the parameters � and L are assumed to be indepen-
dent of one another.

Describing black holes in the presence of extra dimen-
sions (for some reviews, see Ref. [5]) has proven a rather
difficult and stimulating topic. In fact, to date, only ap-
proximate black hole metrics are known on the brane [8,9].
Since the standard model interactions are confined to the
brane, and gravity is the only force which acts in the bulk as
a whole, when a black hole decays, the decay products are

confined to the brane except for gravitons. In a previous
publication [4], we showed that, using the metric of
Ref. [8], and depending upon the choice of parameter
values, black hole lifetimes can be very long. If the RS
model is a valid representation of the physical world, then
the black holes created on the brane can live long enough to
escape the LHC and penetrate into Earth. As they travel
through matter, the black holes can accrete by absorbing
nuclei, electrons, or any other matter which comes within
their capture radii [10]. A conjecture has been made [11]
that, for the longer-lived black holes predicted by the
model discussed in [4], accretion by the black holes might
bring them to rest within Earth and allow them to grow to
sizes at which their radiation would be catastrophic. This
conjecture was criticized in Ref. [10], where it was argued
that the black hole energy release conjectured in [11] was
greatly overestimated. In this paper, we analyze this con-
jecture by solving the system of equations which describes
the mass of a black hole and its momentum as functions of
time for various initial conditions and various values of the
parameters which occur in the model developed in Ref. [4].
Based on the results of these calculations, we comment on
the possibility of catastrophic black hole growth on Earth
within the RS scenario.
We shall use units with 1 ¼ c ¼ @ ¼ Mp‘p, where

Mp ’ 2:2� 10�8 kg and ‘p ’ 1:6� 10�35 m are the

Planck mass and length related to the four-dimensional
Newton constant GN ¼ ‘p=Mp. The corresponding con-

stants in D ¼ 4þ d dimensions are denoted by MðDÞ and
‘ðDÞ, respectively. In our analysis, we shall consider only

the D equals five-dimensional RS scenario with Mð5Þ ’
Mew ’ 1 TeV ( ’ 1:8� 10�24 kg), the electroweak scale,
and ‘ð5Þ ’ 2:0� 10�19 m.

II. BLACK HOLE DECAY

In order to determine the black hole mass as a function
of time, the accretion and decay rates must be expressed in
terms of the dynamical quantities of the system. The decay
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rate is determined by multiplying the luminosity by the
horizon area. The luminosity is calculated by means of
either the canonical or microcanonical ensemble [4,12,13],
depending upon the relative sizes of the black hole massM
and the energy scale for the emitted particles.

A. Canonical ensemble

If the mass of the black hole is much larger than the
typical energy scale of the emitted particles, one can safely
introduce a black hole temperature TH ¼ ��1

H and the
canonical ensemble is then appropriate to calculate the
luminosity. The luminosity per unit area in D space-time
dimensions in this case is given by

L ðDÞ ’
X

s

Z 1

0
�s

!D�1d!

e�H! � 1
¼ fðDÞTD

H; (2)

where �s denotes grey-body factors and f is a coefficient
which depends upon the number of available particle spe-
cies s with energy smaller than the Hawking temperature
TH. In general, the decay rate of the black hole is then
given by

dM

d�
¼ �AðDÞLðDÞ; (3)

where � is the black hole proper time, AðDÞ ¼ SðDÞRD�2
H

the horizon area, SðDÞ the area of a unit sphere, and RH the

horizon radius in D space-time dimensions. For example,
for a D ¼ 4 Schwarzschild black hole the relevant energy
scale is the Planck massMp and the well-known result [14]

dM

d�
’ fð4Þ

Mp

‘p

�
Mp

M

�
2
; (4)

is obtained when the black hole mass M � Mp.

B. Microcanonical ensemble

When the black hole mass M is on the order of the
energy scale for the emitted particles, the appropriate
ensemble to use is the microcanonical ensemble. The
occupation number density for the Hawking particles in
the microcanonical ensemble is given by [12]

nðDÞð!Þ ¼ B
X½½M=!��

l¼1

expf4�ðM�l!
MðDÞ

ÞðD�2Þ=ðD�3Þg
expf4�ð M

MðDÞ
ÞðD�2Þ=ðD�3Þg ; (5)

where ½½X�� denotes the integer part of X and B ¼ Bð!Þ
encodes deviations from the area law [15] (in the follow-
ing, we shall also assume B is constant in the range of
interesting values of M). In the limit M ! 1, nðDÞð!Þ
mimics the canonical ensemble (Planckian) number den-
sity and Eq. (2) is recovered.

C. Metric for a RS black hole

Since gravity propagates in the bulk, a black hole con-
fined to a brane will produce a backreaction on the brane

itself. This effect can likely be described in the form of a
tidal ‘‘charge’’ q, and the effective four-dimensional metric
for such a system is thus given by [8]

ds2 ¼ �Adt2 þ A�1dr2 þ r2ðd�2 þ sinð�Þ2d�2Þ; (6)

where

A ¼ 1� 2M‘p
Mpr

� qM2
p‘

2
p

M2
ð5Þr

2
; (7)

with Mð5Þ ’ Mew as the fundamental mass scale. A dimen-

sional analysis (and plausibility arguments) shows that the
(dimensionless) tidal charge qmust depend upon the black
hole mass and, at least for M�Mew, it is given by

q�
�
Mp

Mew

�
	 M

Mew

: (8)

In the following analysis, we shall assume that 	 ¼ 0 [16].
Since Mew ’ 1 TeV=c2, the tidal term in the metric domi-
nates over the usual general relativistic 1=r term for black
hole masses up to extremely high values. The range of
values for which the tidal term dominates is determined by
the critical mass parameter, Mc, which is the mass ana-
logue of the length L mentioned in the Introduction and
which we discuss below. In this range of values the outer
horizon radius is given by

RH ’ ‘p
Mp

Mð5Þ

ffiffiffiffiffiffiffiffiffi
M

Mð5Þ

s
; (9)

which, for M>Mð5Þ ’ Mew, is larger than the usual four-

dimensional expression

Rh ¼ 2‘p
M

Mp

: (10)

The number density used to calculate the luminosity is
determined by the effective four-dimensional Euclidean
action [4,17]

SEð4Þ ¼
Mp

16�‘p
4�R2

H ¼ Mp‘pM

4Meff

; (11)

where the effective energy scale Meff is defined by

Meff ¼
�
Mew

Mp

�
2
Mew: (12)

Since Mew � Mp, the effective energy scale is very small

compared to the electroweak energy scale near which the
black holes are created. For black hole masses much larger
than the effective energy scale, the microcanonical and
canonical ensembles give the same expression for the
luminosity.
Using Eq. (11), we showed in Ref. [4] that the decay rate

can be written as
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dM

d�
¼ �C

�
Mp

Mew

�
2 M

Mew

; (13)

where C is a numerical constant which can be obtained by
equating the above decay rate to the four-dimensional
Hawking decay rate (4) for M ’ Mc, that is,

C ¼ geffMp

960�‘p

�
Mew

Mc

�
3
; (14)

where Mc is again the critical mass and geff the number of
degrees of freedom into which the black hole can decay.

The value of Mc depends upon the defining condition
used. One possible choice is to require that the black hole
horizon radius equal the four-dimensional expression (10)
for sufficiently large mass, that is,

Rh ’ L; (15)

for M ’ Mc. In this case, one has

Mc ’ Mp

�
L

‘p

�
� Mh

c : (16)

Another possibility is to require that the effective horizon
radius (9) not exceed L,

RH ’ L; (17)

for M ’ Mc, which yields

Mc ’ Mew

�
LMew

‘pMp

�
2 � MH

c : (18)

Since Mew � Mp and L & 44 �m, this represents a

stronger constraint on the possible value of the critical
mass, namely, MH

c � Mh
c . For example, setting L ’

1 �m and Mew ¼ 1 TeV=c2 gives

MH
c ’ 1026 TeV=c2 ’ 102 kg: (19)

It is important to remark that to a given value of Mc,
there correspond two different critical values of the horizon
radius, namely, RHðMcÞ �

ffiffiffiffiffiffiffi
Mc

p
and RhðMcÞ �Mc. This

means that the horizon radius of an accreting [18] five-
dimensional black hole, necessarily starting with a mass
M<Mc, can first be approximated by RH in Eq. (9) with
M ¼ MðtÞ. If M reaches the critical mass Mc, the black
hole becomes four dimensional and the expression of its
horizon radius afterward changes from RH to Rh given
Eq. (10). The difference RhðMcÞ � RHðMcÞ is always nega-
tive (meaning the horizon should shrink at the transition)
and can be rather large in magnitude. For example, on
using the value of MH

c ’ 102 kg, RHðMH
c Þ ’ 10�6 m �

RhðMH
c Þ ¼ 10�25 m. Such a huge (19 orders of magnitude)

jump in the horizon radius likely signals that we need a
better description of RS black holes near the dimensional
transition scale (that is, for M ’ Mc). However, we shall
show in Sec. IV that M � Mc at all times for black holes
produced at the LHC, and the approximation outlined
above is therefore adequate for the present analysis.

In any case, the radius of the five-dimensional black hole
cannot exceed the current experimental limit on the size of
corrections to Newton law’s, that is, RHðMcÞ � 44 �m,
which, for Mð5Þ ’ Mew ¼ 1 TeV=c2, implies Mc �
103 kg [from Eq. (9)] [19]. In the following, we shall
provide an argument which actually places a stronger
bound on Mc, namely, Mc � MH

c ’ 102 kg.

III. BLACK HOLE ACCRETION

After the black holes are created at the LHC, they can,
depending on the value of Mc, live long enough in the RS
scenario to escape into the atmosphere or into Earth. They
can grow in mass and therefore in horizon radius by
absorbing anything which comes within their capture radii.
There are two basic mechanisms by which the black holes,
in general, might accrete: one due to their collisions with
the atomic and subatomic particles they encounter as they
sweep through matter, and one due to the gravitational
force the black holes exert on surrounding matter once
they come to rest. The latter form is known as Bondi
accretion and is appreciable only when the black holes
have horizon radii greater than atomic size.

A. Capture radius

The accretion rate due to collisions is given by

dM

dt

��������acc
¼ �v
R2

eff ; (20)

where 
 is the density of the material through which the
black hole is moving, and v is the relative velocity of the
black hole and the surrounding matter, while t is the time of
observers at rest with respect to the medium. The effective
radius Reff depends upon the details of the accretion
mechanism and, for the problem at hand, of the extra-
dimensional scenario.
For sufficiently small horizon radius RH, the capture

radius Reff can be determined by simple Newtonian argu-
ments. In particular, we can assume that it is given by the
range over which the gravitational force of the black hole
can overcome the electromagnetic force which binds the
nucleus of an atom to the surrounding medium. For a black
hole in motion through matter, accretion will then occur
when the impact parameter is small enough for the gravi-
tational field of the black hole to overcome the electro-
magnetic binding force.
An expression for the electromagnetic (EM) capture

radius inD dimensions was obtained in Ref. [10] and reads

REM ¼ ‘p
Mp

MðDÞ

�
�DM

MðDÞ

�
1=ðD�1Þ

; (21)

where

�D ¼ ðD� 1ÞD�1

ðD� 2ÞD�2

�kDM
2
ðDÞm

M2
p‘

2
pK

; (22)
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�kD and K are constants and m is the mass of the absorbed
nucleus. For D ¼ 5 and using Eq. (9), we can rewrite the
capture radius as

REM ¼ CEMM
1=4 (23)

in which CEM is a constant which depends on K and m.
Of course, the above expressions are meaningful only if

REM � RH, otherwise the Newtonian argument leading to
Eq. (21) fails. As we shall show in Sec. IVC, black holes
created at the LHC indeed have RH � REM. It will there-
fore be consistent to set Reff ¼ REM in the accretion rate
(20) in Sec. IV.

The above expression for REM also allows us to restrict
the possible values of Mc even further. Since Eq. (21)
follows from a metric of the form (6), it will hold only at
distances shorter than L ’ 44 �m, that is, for

REM � L; (24)

which yields the bound

Mc ’
�

L

CEM

�
4
: (25)

This is a stronger bound than that following from Eq. (17)
for L & C2

EMMew=‘pMp. For example, with L ’ 1 �m,

D ¼ 5, Mð5Þ ’ Mew, �k ¼ 2=3�, K ¼ 224 J=m2, and m ’
9� 10�27 kg, one obtains

CEM ’ 1:1� 10�6 m=kg1=4 (26)

and

Mc ’ 0:6 kg � MH
c : (27)

In order to properly describe accretion, we next need to
consider two relevant length scales, namely, the typical
size of an atom, that is, 1 Å, and the length L & 44 �m
associated with extra-dimensional corrections to Newton’s

law. Since we assume L * 1 �A, a black hole of subatomic
size will always be described as five dimensional.

B. Subatomic accretion

For RH � REM � 1 �A, the relevant accretion rate is
given by Eq. (20) with Reff ’ REM. When such a subatomic
black hole absorbs a nucleus or electrons, it acquires the
charge and spin of the absorbed particles as well as their
masses. In this analysis the assumption is made that the
spins of the absorbed particles are randomly directed so
there is no net angular momentum of the black hole as it
accretes. Also, the charge on the absorbed nuclei is as-
sumed to be neutralized by the absorption of valence
electrons, which will be drawn into the black hole by the
Coulomb force until the black hole is neutralized. A further
assumption is that Earth’s density is uniform, although the
conclusions would not be significantly altered by consid-
ering a more accurate model of Earth’s interior.

For the capture radius REM ’ 1 �A, the mass of the five-
dimensional black hole is on the order of kg’s [from
Eqs. (23) and (26)]. If the black hole were to reach this
size before traversing Earth’s diameter, most likely, it
would have ceased moving and begun accreting by absorb-
ing any matter which came within its horizon radius.
Further, in the RS scenario, a black hole with such a
mass has an horizon radius of RH ’ 10�6 m [from
Eq. (9)], which is on the order of the assumed thickness
of the brane L. The black hole will therefore accrete like a
four-dimensional one beyond this point.

C. Bondi accretion

If a black hole comes to rest inside Earth, it will continue
to accrete according to the same basic formula as in
Eq. (20). Now, however, the relative velocity is due to
the motion of particles in the surrounding medium. A
particle whose velocity v is less than the escape velocity
at a particular distance Reff from the black hole will be
absorbed. The accretion rate can thus be written as

dM

dt

��������acc
¼ 4�
‘2p

v3

�
M

Mp

�
2
: (28)

This type of accretion is known as Bondi accretion (see
[20,21] and references therein) and holds for any massive
object, e.g., a star, which is accreting any surrounding
material which is free to move. As will be shown below,
Bondi accretion never becomes effective for all values of
the critical mass parameter and initial conditions of interest
for the LHC.

IV. BLACK HOLE EVOLUTION

The growth and decay of microscopic black holes cre-
ated at the LHC are described by the expressions given
above for the evaporation rate and the accretion rate along
with the expression for the rate of change of the black
hole’s momentum. The solution of this system of equations
gives the time evolution of the mass and momentum [23].

A. System of equations

The time evolution of the black hole mass is obtained by
summing the evaporation and accretion expressions

dM

dt
¼ dM

dt

��������evap
þ dM

dt

��������acc
: (29)

The decay rate in the reference frame of Earth is obtained
from Eq. (13),

dM

dt

��������evap
’ � 1

�

dM

d�

��������evap
; (30)

where � is the relativistic factor for a point particle of mass
M and three momentum of magnitude p,
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� ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ p2

p

M
: (31)

Inserting this expression for � and that forC in terms ofMc

[see Eq. (14)] into Eq. (30) gives

dM

dt

��������evap
’ � geff

960�‘p

�
Mp

Mc

�
3 M2ðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðtÞ þ p2ðtÞp : (32)

The accretion rate is given in general by Eq. (20). For
subatomic growth and p > 0, the accretion rate is

dM

dt

��������acc
¼ �
vðtÞR2

EM; (33)

where 
 ’ 5:5� 103 kg=m3 is Earth’s mean density and
REM is given by Eq. (23) expressed in terms of a time-
dependent mass M ¼ MðtÞ.

Finally, the time evolution of the momentum in the Earth
frame is described by the equation

dp

dt
¼ pðtÞ

MðtÞ
dM

dt

��������evap

’ � geff
960�‘p

�
Mp

Mc

�
3 MðtÞpðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2ðtÞ þ p2ðtÞp : (34)

The net change of mass with respect to time (29) and
Eq. (34) for the time evolution of the momentum form a
system of equations which can be solved numerically to
obtainMðtÞ and pðtÞ. Note that accretion dominates only if
the momentum is larger than the critical value

pc ¼ geffM
3=2
ew

960�2‘p
C
2
EM

�
Mp

Mc

�
3
�
M

Mew

�
3=2

; (35)

in which we again used Reff ¼ REM.

B. Time evolution of mass and momentum

The solutions to the above system of equations show a
rather simple qualitative behavior: for a given value of the
critical mass Mc, there are initial conditions for which the
black hole never accretes (p < pc from the outset).
Otherwise, it first accretes and then begins to evaporate
since, for large black hole mass, the evaporation rate in the
laboratory frame grows like M whereas the accretion rate

decreases like M�1=2.
A typical example of the first kind of evolution for the

mass and momentum is shown in Fig. 1 for a black hole
with initial mass Mð0Þ ¼ 10 TeV=c2 ’ 1:8� 10�23 kg
and momentum pð0Þ ¼ 5 TeV=c ’ 2:7�
10�15 kgm= sec , with �k ¼ 2=3�, K ¼ 224 J=m2, and

m ¼ 9:0� 10�26 kg [yielding CEM ’ 1:1�
10�6 m=kg1=4, RHð0Þ ’ 6:1� 10�19 m, and REMð0Þ ’
2:3� 10�12 m] andMc ¼ 10 kg [22,24]. With this choice
of parameters, pð0Þ< pcð0Þ and the black hole just evapo-
rate. Note, though, that the mass plot does not resemble the

usual Hawking behavior but rather a more conventional
(quasiexponential) decay, with a much longer decay time
[4].
The second kind of evolution [pð0Þ>pcð0Þ] is dis-

played in Fig. 2 with the same initial mass and momentum
and Mc ¼ 103 kg. The maximum mass Mmax ’ 1�
10�21 kg is reached about 1� 10�9 sec after production
and corresponds to a horizon radius RH ’ 5� 10�18 m
and capture radius REM ’ 7� 10�12 m. Subsequently,
evaporation dominates and the decay time of such a black
hole is about 3� 10�7 sec , corresponding to a traveled
distance of around 7� 10�3 m. Note that the momentum
behaves the same in both cases, but the time scales are
significantly different.

C. Impact of the critical mass scale

Since the choice of the critical mass is not unique, it is of
interest to study the effect of the value of the critical mass
Mc on the essential quantities associated with the time
evolution of a black hole produced at the LHC.
For the same initial conditions Mð0Þ ¼ 10 TeV=c2 and

pð0Þ ¼ 5 TeV=c used in Fig. 2, one can evolve the system
considering different values of Mc (see Figs. 3–5).
Although we showed in previous sections that a reasonable
upper bound for Mc ’ 1 kg, we evolved the system in the
range 1 kg 	 Mc 	 104 kg. One first finds that the black
hole accretes [pð0Þ>pcð0Þ] only whenMc * 102 kg. The
maximum black hole mass then very closely follows the
scaling law (see Fig. 3)

FIG. 1. Mass (in kg; upper panel) and momentum in (TeV=c;
lower panel) of a black hole as a function of time (in sec) when
pð0Þ< pcð0Þ.
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Mmax / M2
c; (36)

for Mc > 102 kg. Note that Mmax � Mc and the black
holes remain five dimensional in all cases considered.
According to Eq. (23), the above scaling law implies that
a similar law also holds for the maximum value of the
capture radius, that is,

REM / M1=2
c : (37)

The decay time t and the time T to reachMmax are shown in
Fig. 4, the total traveled distance s and the distance S
traveled to reach Mmax are shown in Fig. 5. Note that s
grows more slowly with Mc for the cases in which accre-
tion is significant.

D. Impact of the initial conditions

In order to complete our analysis, we next show the
results for different values of Mð0Þ and pð0Þ. In Tables I,
II, and III,Mmax is the maximum value of the mass attained
by the black hole, REM is the value of the electromagnetic
capture radius and RH of the horizon radius when M ¼
Mmax, S is the distance traveled by the black hole when it
reaches Mmax, and T is the time elapsed before attaining

1. 10 9 2. 10 9 3. 10 9 4. 10 9 5. 10 9 6. 10 9

2. 10 22

4. 10 22

6. 10 22

8. 10 22

1. 10 21

1.2 10 21

1. 10 9 2. 10 9 3. 10 9 4. 10 9 5. 10 9 6. 10 9

1

2

3

4

5

FIG. 2. Mass (in kg; upper panel) and momentum (in TeV=c;
lower panel) of a black hole as a function of time (in sec) when
pð0Þ> pcð0Þ.

FIG. 4. Decay time (in sec; left panel, for 1 kg 	 Mc 	 104 kg) and time to mass peak (in sec; right panel, for 102 kg 	 Mc 	
104 kg) as a function of the critical mass Mc (Mð0Þ ¼ 10 TeV=c2 and pð0Þ ¼ 5 TeV=c).

FIG. 3. Black hole maximum mass (in kg; left panel) and maximum capture radius (in m; right panel) as a function of the critical
mass Mc for growing black holes (102 kg 	 Mc 	 104 kg, Mð0Þ ¼ 10 TeV=c2 and pð0Þ ¼ 5 TeV=c).
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Mmax. The computed quantities are displayed with two
digits for convenience, although it is just the order of
magnitude that should be considered.

Comparing the entries between Tables I and II shows
that, within the range of values that could be of interest for
the LHC, these quantities do not depend significantly on
the initial mass. On the other hand, lowering the initial
momentum increases the value of the critical mass above
which the black holes can grow [since pc / M�3

c from
Eq. (35)]. Further, comparing the entries between
Table II and III shows that the maximum black hole mass
actually decreases for decreasing pð0Þ at a given critical
mass.

Since the maximum value of the capture radius REM

stays below 1 Å, even for the physically unreasonable case
of Mc ’ 104 kg, Bondi accretion never becomes effective.
Finally, it is worth noting that, on using the values for the
black hole initial velocity and the maximum values of RH

and REM given in this section, one always obtains RH �
REM for all the allowed initial conditions.

V. CONCLUSIONS

We have studied the evolution in time of microscopic
black holes that could be produced at the LHC based on our
previous paper [4] and the description of brane-world black
holes given in Ref. [8]. With respect to Ref. [4], accretion

FIG. 5. Maximum traveled distance (in m; left panel, for 1 kg 	 Mc 	 104 kg) and traveled distance to the mass peak (in m; right
panel, for 102 kg 	 Mc 	 104 kg) as a function of the critical mass Mc (Mð0Þ ¼ 10 TeV=c2 and pð0Þ ¼ 5 TeV=c).

TABLE I. Data in this table are for initial conditions: Mð0Þ ¼ 1 TeV=c2 ( ¼ 1:8� 10�24 kg)
and pð0Þ ¼ 5 TeV=c.

Mc (kg) Mmax (kg) REM (m) RH (m) S (m) T (sec)

102 1:2� 10�23 2:1� 10�12 5:1� 10�19 3:1� 10�4 1:7� 10�12

103 1:2� 10�21 6:6� 10�12 5:1� 10�18 4:2� 10�3 1:3� 10�9

104 1:2� 10�19 2:1� 10�11 5:1� 10�17 4:3� 10�2 1:3� 10�6

TABLE II. Data in this table are for the initial conditions: Mð0Þ ¼ 10 TeV=c2 ( ¼ 1:8�
10�23 kg) and pð0Þ ¼ 5 TeV=c.

Mc (kg) Mmax (kg) REM (m) RH (m) S (m) T (sec)

102 1:8� 10�23 2:3� 10�12 6:3� 10�19 3:7� 10�5 3:0� 10�13

103 1:2� 10�21 6:5� 10�12 5:0� 10�18 3:9� 10�3 1:3� 10�9

104 1:2� 10�19 2:1� 10�11 5:1� 10�17 4:3� 10�2 1:3� 10�6

TABLE III. Data in this table are for the initial conditions: Mð0Þ ¼ 10 TeV=c2 ( ¼ 1:8�
10�23 kg) and pð0Þ ¼ 1 TeV=c.

Mc (kg) Mmax (kg) REM (m) RH (m) S (m) T (sec)

3� 102 4:3� 10�23 2:9� 10�12 9:7� 10�19 4:1� 10�4 3:6� 10�11

103 4:1� 10�22 5:0� 10�12 3:0� 10�18 2:1� 10�3 1:3� 10�9

104 4:0� 10�20 1:6� 10�11 3:0� 10�17 2:5� 10�2 1:3� 10�6
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has been now included in the analysis and all of the
parameters have been chosen so as to cover a fairly com-
prehensive range of possible outcomes. In particular, our
model contains a critical mass scale, Mc, which is related
to the transition from the five-dimensional behavior, effec-
tively described by the metric (6), to the usual four-
dimensional description of a black hole.

As shown in the previous section, in particular, in
Tables I, II, and III, the maximum black hole mass never
reaches catastrophic size before leaving Earth. The black
hole mass remains at microscopic values for a wide range
of acceptable initial conditions and for a wide range of
critical masses, Mc. In order for the black holes created at
the LHC to grow at all, the critical mass should be Mc *
102 kg. This value is already larger than the maximum
compatible with experimental tests of Newton’s law (and
we further relaxed it to Mc ¼ 104 kg in our analysis). For
smaller values of Mc, the black holes cannot accrete fast
enough to overcome the decay rate. Furthermore, the larger
Mc is taken to be, the longer a black hole takes to reach its
maximum value.

The data in Table III show that, within the warped brane-
world scenario, the maximum masses reached by black
holes produced at the LHC are about 4 orders of magnitude

greater than that of a nucleon. If these black holes or their
remnants come to rest in Earth, they will begin to Bondi
accrete. Assuming the extremal conditions that the ac-
creted matter is mostly free iron nuclei at low energy (T 

300 K), the rate of Bondi accretion is [see Eq. (28)] 1:9�
10�64 kg=s. For a black hole at rest to accrete, even the
mass of a single nucleon would thus require a time interval
many orders of magnitude larger than the age of the
Universe.
We conclude that, for the RS scenario and black holes

described by the metric (6), the growth of black holes to
catastrophic size is not possible. Nonetheless, it remains
true that the expected decay times are significantly longer
than is typically predicted by other models, as was first
shown in Ref. [4].
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