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de Sitter spacetimes with torsion in the model of de Sitter gauge theory of gravity
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In the model of the de Sitter gauge theory of gravity, the empty homogenous and isotropic spacetimes
with constant curvature scalar and nonvanishing homogenous and isotropic torsion must have de Sitter

metrics. The static de Sitter spacetime with static, O(3)-symmetric, vector torsion is the only spherically

symmetric, vacuum solution with the metric of the form g, = diag(A%(r), —B*(r), —r%, —r*sin’6). The
expressions of the torsion for different de Sitter spacetimes are presented. They are different from one to
another. The properties of different de Sitter spacetimes with torsion are also studied.
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I. INTRODUCTION

The astronomical observations show that our Universe is
probably an asymptotically de Sitter (dS) one [1,2]. It
raises the interest on dS gauge theories of gravity. There
is a model of dS gravity,' which was first proposed in the
1970’s [3,4]. The dS gravity can be stimulated from dS
invariant special relativity [5—7] and the principle of local-
ization—the full symmetry of the special relativity as well
as the laws of dynamics are both localized [8—10]—and
realized in terms of the dS connection on a kind of totally
umbilical submanifold (under the dS-Lorentz gauge) and
Yang-Mills—type of action [3,8,10].

It has been shown that all vacuum solutions of Einstein
field equations with a cosmological constant are the vac-
uum solutions of the set of field equations without torsion
[8,9]. In particular, Schwarzschild-dS and Kerr-dS metrics
are two solutions. On the other hand, it can also been
shown that the vacuum solutions of the set of field equa-
tions without torsion must be the vacuum solutions of
Einstein field equations with the same cosmological con-
stant [11]. Therefore, one may expect that the dS gravity
may pass all solar-system-scale observations and experi-
mental tests for general relativity (GR).2 It has also been
shown [10] that the dS gravity may explain the accelerating
expansion and supply a natural transit from decelerating
expansion to accelerating expansion without the help of the
introduction of matter fields in addition to dust.

The present paper aims at finding the dS spacetimes with
torsion in the dS gravity and studying their properties. The
k = 0 de Sitter spacetime with constant torsion [13,14] and
the static de Sitter spacetime with spherical torsion, which
satisfy the double duality ansatz [15,16], have been pre-
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"Hereafter, the model of the dS gauge theory of gravity is
called the dS gravity for short in this paper.
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sented for some gauge theories of gravity. Other de Sitter
solutions with nonvanishing torsion are also given for other
theories [17,18]. But, all of the theories are different from
the dS gravity. We present the de Sitter spacetimes with
homogenous and isotropic torsion for spatial curvature k =
0, =1 and static de Sitter spacetime with static,
O(3)-symmetric, vector torsion. The formers are the only
vacuum solutions in the dS gravity for the empty, homo-
genous, isotropic, constant-curvature-scalar universe. The
latter is the only spherically symmetric, vacuum solution in
the dS gravity for a large class of spacetimes.

The paper is arranged as follows. We first review the
model of the dS gravity in the next section. In the third
section, we study the dS solutions with homogeneous and
isotropic torsion. In Sec. IV, we solve the O(3)-symmetric,
static, vacuum field equations. We shall give some con-
cluding remarks in the final section.

I1. DE SITTER GAUGE THEORY OF GRAVITY

The dS gauge theory of gravity is established based on
the following consideration. The nongravitational theory is
de Sitter invariant special relativity. The theory of gravity
should follow the principle of localization, which says that
the full symmetry, as well as the laws of dynamics, are both
localized, and the gravitational action takes Yang-Mills—
type.

A model of dS gauge theory of gravity has been con-
structed [3,4,8—10] in terms of the de Sitter connection in
the dS-Lorentz frame, which reads®

ab —1,a
(B*B,) = (—119%—1'25 k Oe“) €s0(1,4), (1)
where BA#, = BB, in which 7" is the inverse of
nap = diag(n,,, —1) = diag(1, =1, —1,—1,—1),  and

e’y is the tetrad field. Its curvature is then

*The same connection with different gravitational dynamics
has also been studied (See, e.g. [19-27])
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Fab,ul/ + R—Zeab’uV R_lTa,uv)

(j:ABMV) = ( _R_lTh;w 0

e 30(1,4), (2.2)

- — b b
where e“bw = ey ep, — ehelpy, eqy = Mapey, F7,,, and
T¢,, are the curvature and torsion of the Lorentz connec-

tion:

Q¢ =d9* + 0 A =179, dx* A dx”,

(2.3)
T%,, = 9,68 — d,e% + B, e — B¢,
Qah = dw', + 0 A @, = %Fab,u,vdx'u A dx”,
FabMV = al’«BabV - aVBab,U« + BuC#BCbV - BaL'VBCb/.L,
2.4)
where 9 = e§ dx* is the coframe, and @“, = B“ pudx*

is the connection 1 form.
The action for the model of the de Sitter gauge theory of
gravity with sources takes the form of

St = Soym T Sm (2.5)
where
1
Seym = 1g? [M d*xe(FA8 ,, F gt
1
= — fm d4xe[rg2Fab,uVFabMV - /\/(F - 2A)
~ gTaWTaW:I 2.6)

is the gravitational Yang-Mills action, and S, is the action
of sources with minimum coupling. In Eq. (2.6), g =
(RyX)~"' ~107°" is the dimensionless gravitational cou-
pling constant, e = det(ef,), A = 3/R%, x = 1/(167G),
g 2 =3xA"!, G is the Newtonian gravitational coupling
constant, and F = —1F e  #" is the scalar curvature
of the Cartan connection (¢ = 1, h = 1).

The field equations can be given via the variational
principle with respect to e, B 1

EF =T,
— 87G(Ty,* + Te,”) =0,

L~ Fr,+ %Fe,’f — Ael
2.7)

Yok = Ft"y, = R2(167GSy " + Sgut) = 0.
2.8)

|| represents the covariant derivative defined by the
Christoffel symbol
)
VK

and Lorentz connection B, Ft = —Fub’“’elj, F =
a .
F el
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_1 6SM w 1 SSM
e 8¢’

va” =5 =% 5B,

are the tetrad forms of the stress-energy tensor and spin
current for matter, respectively.

T
TMa

(2.9)

Tt = g’zTFa“ + 2T * (2.10)

is the tetrad form of the stress-energy tensor of the gravi-
tational field, which can be split into the curvature part

Tp,* = e Te(FFAF, ) — Yell Te(FAMF,,) (2.11)
and the torsion part
Ty " = ekT M TP\ — Lei T,AT? . (2.12)
Similarly, the gravitational spin current
Scap" = Seap™ + 2Stap™ 2.13)
can also be divided into two parts:
Seap™ = —€u™"), = YE e Y7 e, (2.14)
Stap® = Tra" esn (2.15)
where
Yr,, =3T1*,,+T,* +T,*, (2.16)

is the contortion.

III. DS SOLUTIONS WITH HOMOGENEOUS AND
ISOTROPIC TORSION

First of all, there is no dS solution with SO(1,4) sym-
metric torsion in the model of the dS gauge theory of
gravity.

For the homogeneous and isotropic universe, the metric
of spacetime takes the Friedmann-Robertson-Walker form

dr?
1 — kr?

s> = di — az(t)l: 26 + sin20d¢2)],

(3.1

where k = 0, 1, and there are 6 Killing vector fields &,
(I =1---6) for each k. To keep the homogeneity and
isotropy of the Universe, the torsion is also required to be
homogeneous and isotropic. In other words, the torsion
should satisfy

L e, T =0, I=1---6. (3.2)
Furthermore, we require that the torsion be invariant under
space inversion. Then, for any k, the torsion always takes
the form [14]
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T° =0,
T'=T.(0)d9° A9,
T> =T, A 9>
T’ =T,09° A,

(3.3)

where 9° =dr, 9 =

a(f)rsinfdde.
The reduced vacuum Einstein-like equations and Yang-
like equations are

7—1a£’])cr2 dr, 9 =alt)rds, 9 =

i a i\, a
a a a a
a’ k3 afai a? kK 3
+{55+25 -5 )T2 +2-(-—-2—5 -2+ 5]T
(5 a? a? Rz) * a(a a? a? R2) *
a* (a? k2 K 2k 2
t5(5+25-S)+5 -5 5+5=0 (34
a <a2 a? R2) a* R*a*> R* 34
i? a i 6\, a
—+<T++2—T+—2—+—2)T+—T1+4—T1
a a a R a
a? k 3 afd a? k 6
4 a a*(a? k 2\ kK 2k 6
Ra a\@ @ B & Rae R
3.5)
.. 1. : (i 12 kK 3
T++3gT+—(2T3—6ET+—E+5a—2+2—2——2>T+
a a a a a R
e ) (3.6)
a a a aa

The trace of Einstein-like equations give rise to
a a\e k2 3/, a
—=—(=) —5+5+2(T, +3-T —T2).
a (a) a’ R? 2( * a " *
(3.7)

A direct calculation shows the curvature scalar in this case
is

.. N2 3 . X
F= 6[9 + (9) S I L 7]. (3.8)
a a a a
In terms of the expression, Eq. (3.6) can be written in a very
simple form,

F+ 2T, (F—9/R?*) =0. (3.9)

In particular, its constant-curvature-scalar solutions require
either 7, = 0 or

F—9/R*=0. (3.10)

The former is the torsion-free case, which has been dis-
cussed in [9]. For the latter case, the combinations of
Eqgs. (3.7) and (3.8) with (3.10) give rise to
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i fay k1

e 3.11

a (a) a> 2R? (.10
3 1

Ty +oT, —T2 +—=0. (3.12)
a R

With the help of Egs. (3.11) and (3.12), Eq. (3.4) reduces to
a’+ k= a*/(4R>?). (3.13)

Equations (3.11), (3.12), and (3.13) constitute a (over-
determinant) system of equations for ¢ and T, .
One can immediately solve Eq. (3.13),

H 'cosh(Hf) fork=1

H et for k=0
H ™ 'sinh(Ht) for k= —1,

a(t) = (3.14)

where H = *=1/2R. They are de Sitter solutions and sat-
isfy Eq. (3.11), too. The remaining task is to solve
Eq. (3.12) for different de Sitter spacetimes, which can
be written in the dimensionless form,
a/
y+3—y—y+4=0, (3.15)
a
where y =T, /H, x = Ht, and a prime represents the

derivative with respect to x.
For k = 0 de Sitter spacetime, Eq. (3.15) reads

y +3y—y>+4=0. (3.16)
It has the general solutions
4+ Ce>* H(4 + cet")
Yoo O T G0

where C is a constant of integration. In particular, when
C=00,y=—1,T, =%5.WhenC=0,y=4,T, =
+ %. Both are constant solutions. They are also the asymp-
totic states at x— *oo for a generic C. When x— — % InC, y
and thus 7', tends to oo. Figure 1 plots the dimensionless
torsion y versus the dimensionless time x for C = 1.

10

10 s 5 10

-5

FIG. 1. The evolution of dimensionless torsion y for £k =0
de Sitter spacetime and C = 1.
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The stress-energy tensors and the spin currents of the
gravitational field are

= 12H*(T? —2HT, —2H*)diag(3,—1,—1,—1)
_ o (6 + 18CeH" + C2e!10HT)

diag(3, —1,—1,—1),

(1 _ CeSHt)Z
(3.18)
T2
T2, = %diag(& -1,-1,-1)
H? (4 + cetin?
-5 mdlag(& -1,—-1,—-1), (3.19)
Skap” = 4810y = _2T+(555(13 — 806)
4 + CceMt
respectively. In particular, they reduce to

A2
Tg), = Ediag(l -1, -1, -1), (3.21)
T4 —édi 3,—-1,—-1,—1) (3.22)

T b 24 ag » » 5 y .
Skap® = 481" = EVA/3(858) — 8087) (3.23)
for the case C = 00, T, = —H = F14/A/3, and

AZ
Ty, = Tdiag(& -1, -1 -1, (3.24)

2A
Ty, = 7diag(3, -1, —1,-1), (3.25)
Seap” = 481" = FAA/3(858) — 8085)  (3.26)

for the case C =0, T, = 4H = *24/A /3, which are all
finite everywhere. For other C, the stress-energy tensors
and the spin currents will be divergent at 1 = — 2 InC.

For the k = +1 de Sitter spacetime, Eq. (3.15) reads
y/'(x) + 3tanh(x)y — y*> = —4. (3.27)

Figure 2 presents the finite, nonoscillatory, numerical so-
lutions y(x) with T, ~ o(H).
The stress-energy tensors of gravitational fields
T, = 12H*[T? — 2H tanh(H1)T
— 2H*]diag(3, —1, —1, —1), (3.28)

LT
T4, = 7d1ag(3, -1, -1, —1), (3.29)

and the spin currents of gravitational fields

PHYSICAL REVIEW D 80, 084033 (2009)

6 4 2

FIG. 2. Finite, nonoscillatory, numerical solution y(x) with
T, ~ o(H).

Skap’ = 481" = —2T+(858) — 8385)  (3.30)
are all finite everywhere.
For the k = —1 de Sitter spacetime, Eq. (3.15) reduces
to
y'(x) + 3coth(x)y — y*> = —4, (3.31)
which has the asymptotical solution y = —1 as x — o0 and
the asymptotical solution

-1
y— 2csch2x{cothx + [log(tanh;—c) — C] sinhx}
(3.32)

when x — 0. Therefore, T, (¢) should be initially huge and
decay to T, = —H as t — oo. Figure 3 sketches out the
numerical solutions for Eq. (3.31).

In this case, the stress-energy tensors of gravitational
fields

T4, = 12H*[T? — 2H coth(H))T, — 2H?]

X diag(3, —1, —1, — 1), (3.33)
20}
15}
10}
sl
05 —t—t5— o~ a— 3

FIG. 3. The numerical solution for Eq. (3.31).
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T2
Iy, = = diag3, =1, =1,-1), (3.34)
and the spin currents of gravitational fields
SFubC = 4STabC = _2T+(6252 - 6252) (3.35)

are all initially divergent.

IV. DS SOLUTIONS WITH STATIC, SPHERICALLY
SYMMETRIC TORSION

To find the static dS solutions, we suppose that the
metric takes the form

ds* = A%(r)dt* — BX(r)dr? — r*dQ>2. 4.1)

On the same reason as the cosmological case above, the
torsion should be static and O(3) invariant, namely,

LeT0=0, I=1---4 4.2)

where &) (I = 1---4) are the timelike Killing vector
fields and three rotation Killing vector fields, and T is
invariant under the space inversion. Generally, the static
spherically symmetric torsion can be taken as the forms in
the papers [28]. Furthermore, the torsion can be irreducibly
decomposed as trace-vector, axial-vector, and tensor pieces
under the Lorentz group. For static and O(3)-symmetric
torsion, the axial-vector piece automatically vanishes. For
simplicity, we consider the trace-vector piece

0 = Ty(N9° A 9!
T'=T,(nd° A 9,!
T? =T,(n° A 9% — Ty(r)9' A 9,2
T3 = T,(N9° A 9 — Ty(r)d' A 9,

where 9° = A(r)dt, 9' = B(r)dr, 9* = rdf, and & =
rsinfddo.

By substituting the coframe and torsion forms into
Egs. (2.7) and (2.8), we can get 9 independent equations,
5 for the Einstein-like equation and 4 for the Yang-like
equation, which are listed in the Appendix for completion.
Below, we can simplify the field equations to get the
de Sitter solutions.

First, £,#¢Y, — Ejte;, = 0 [i.e. (A2) — (A3)] gives rise

(4.3)

to

A(NT,(r) = C, 4.4)

where C is an arbitrary constant with the dimension of the
inverse of length.

Then with the help of Eq. (4.4), Y,,#e), + Yyotes, =0
[i.e. (A7) + (A8)] leads to

1 - B?

LT, B 1\ 1 (B

T, B r B ) “.5)

Additionally, one can obtain from ym“e}L =0 [ie.

PHYSICAL REVIEW D 80, 084033 (2009)

Eq. (A7)],
1 (T, B\ K T Ay 2
T6=—(—1+—)+—0T{-I—B(le—Tg——)——To.
rB Tl B T] 2 r

(4.6)

The trace of Einstein-like equations, namely &£,#ej, = 0,
then gives rise to

4.7)

Then, the system of Egs. (A1)—(A9) reduce to the differ-
ential equation

B A
2r——=—r’B>+ B> -1=0 4.8
"B 4’ (*8)
and the algebraic equation
Ar’B? — 12B> + 12 =0, 4.9)

plus Egs. (4.4), (4.5), (4.6), and (4.7). From Eq. (4.9), one
immediately finds
_ 1

1 — H*r*’
where H> = A/12. It also solves Eq. (4.8) obviously. The
integration of Eq. (4.7) shows

B2 (4.10)

C2H?
T3 = —1 4.11)

1 —H*r%
where C; is a dimensionless, integration constant.

Equation (4.11) is consistent with Eq. (4.5) as it should
be. Further,

=

= e (1 — H?).
1

(4.12)

Without loss of generality, one can choose C? = H>C? =
H?C? by the rescale of the time . Then,

A% = (1 — H*r). (4.13)
Equation (4.6) becomes
o+ 223 ! T2
L I 22 R R 22 YV
4H? 2H?
= — + ¢ . (4.14)
(1 — H22)12 (1 = H22)32
It can be written as
dy 2 —tan’{
— +— 2y +y? = (Psec?’! — 4, 4.15
e g 0T sec”d (4.15)

where y = T/H, r = H 'sin{. The general solution of
the equation is a function of hypergeometric functions with
an integration of constant C. The reality of both y and C,,
requires C, to be zero. Thus, the solution takes the form

084033-5
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Cc?-16 F(65€ 62C 9 gec?
9o =[4- sectg 2 302 f)]t ¢
7 F( T, 7 SeC g)
(4.16)
As a special case, C = 4, the solution reduces to
({) = 4tan or T, M @.17)
y(§) = I :
0 1 — H?*?
which has the asymptotic behavior
CH

V1 — H%p?

as { — /2 or r— H™'. In fact, the general solution
(4.16) also shares the same asymptotic property. The be-
havior of Tj,(r) is shown in Fig. 4, which is not sensitive to
T,(0).

In brief, the static dS space

dr?

Yt 202
T r=d{)

ds* = (1 — H*r?)dr* —
with the static torsion T, and T, given by Eqgs. (4.16) and
(4.11), respectively, is the only solution of the vacuum field
equations for the Ansatz (4.1) and (4.3).
The nonzero tetrad components of the stress-energy
tensor of gravitational fields are

TO—A[T2+T2+2H2— 21 T:I
H?*r
l — 70 _ _
TF 0 TF 1 2TIAAI:TO m];

22-3H7
| R 2 2 2 _
. A[Tl 3T; — 6H —s 22TO]
2
T, =T, = A[Tg — T2+ 2H? + ZTW1 — H2r2],
r

(4.19)

600 ¢
500 ¢

400 ¢

3001

200

100 ¢

0.25 0.5 0.75 1 1.25 15

FIG. 4. y thus T, is divergent at { = 7/2 or r = H ..
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1
TTOO = E(TS + 3T12),
TTIO = _TTOI = 2TOT1,

1 (4.20)
Tl = ——(3Tg +T?),

TT22 = TT 3 (T2 )

The spin currents of gravitational fields are
Skar” = 4Stap’
= —27(858) — 8385) + 2T4(8;5), — 5155).

(4.21)
The straightforward calculation shows that
42 —3H*r?
ap — 4 4 272 4 7 3
Fo, Bt 4(3T0 + T7 —4T;TT + WTO
_4 1 —2H?r 2TT2+ 2 3—2H2r2T2_2H2
m 0t T2 g2,2 0
2—H*r? 8H? 2 —3H*r?
X 2 Ty + 93H4)
N T
(4.22)
b H'rt V1 2,2 4 4
P {(1 7 2)2( — H?r? = 3)T§ + 3T}
B Y R ey
r
4
X [2T3 — (1 = 2H*P)T?]T, + —>

X [2H2(2 = 3H?r?) — H*PT3T,
2 [3-2H%°
+ 1— H2r2 r2 TO

H4
- H* (2~ H2r2)T12] ~ B H2r2}.

(4.23)
Obviously, they are divergent when r — 1/H.

V. CONCLUDING REMARKS

The vacuum equations of the dS gravity have been
solved, and several important dS solutions have been ob-
tained. The k = 0 dS spacetime with constant torsion and
k = +1 dS spacetime have no singularity in whole space-
times. In contrast, the k = 0 dS spacetime with varying
torsion, k = —1 dS spacetime, and the static dS spacetime
have singularity.

The most important feature of our solutions is that the
different de Sitter metrics describe different geometries
because of the existence of the nonzero torsions and their
dependence on different coordinates in different manners.
Although the metric admits 10 Killing vector fields for
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each case, the torsion does not possess as high of symme-
try. For different metrics, the torsion has different symme-
try. Even for the 3 homogeneous and isotropic cases, the
symmetries are different. When k = 0, %1, the torsion is
ISO(3), SO(4), SO(3,1)symmetric, respectively. Therefore,
they are not equivalent to each other.

Another important feature of our solutions is that for the
static de Sitter spacetime with torsion, the horizon is no
longer a coordinate singularity. Since the torsion, gravita-
tional stress-energy tensor, and invariant curvature scalars
become divergent at singularities, these singularities are
intrinsic ones in the dS gravity. In GR, the horizon singu-
larity is a kind of coordinate singularity which can be
removed by coordinate transformation. Here, these singu-
larities at horizon are not coordinate singularities and
cannot be removed, so the Riemann-Cartan spacetime

can not be extended to pass through the horizon. Some
|

;A

AII [1 AII

A'B A
A A8 BT T
Al2 A ( 0 )]

BT} —
: = (

3
2 1 2A 2 6
+pT12+r4 273 AZ)

A 1 N 2
n B(T\ Ty — ToT}) — - T} + B°T\(T,
r

1 1 1
— S ABT{ + BTO<B(T1T{) —ToT}) = Tj + BzT1<T02 -T2+ 5A) +ZBTT, — ETI) =0,

(BTO +

lAIIZ A// A (B’ , A/2 1Bl2 , 5 1 5 5 2 1
-2+ 5~ BTo) = BTy) =" (5 5 — ToB' = B(370 — 17 = BT —

+3 BT’—EBT —3A—/BzT T’+2BT2—2BT2+ET 1! 6B'T, — =
P2 0 A o\fo 0 1 ’ 0 ’ 0

4 3
+ EBZT(’)(T(’) — 4BT? + ~To + 2AB> — 3B>T|(T| — 2BT,T)) + 534(3T;* — T4 —2T3T? + AT} — 3AT? — ﬁTg

1
—W%@ﬁ+ﬁ—A)+ﬁW@m—3ﬁ

A 1
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properties about horizon in GR, like Hawking radiation
and horizon entropy, should be reconsidered in this kind of
theory of gravity.
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APPENDIX: EXPLICIT FIELD EQUATIONS FOR
STATIC, SPHERICALLY SYMMETRIC ANSATZ

The explicit expressions of the field equations for Ansatz
(4.1) and (4.3) are as follows. The independent Einstein-
like equations (7, /“’”V w T o) are (ab:) 00, 10, 01, 11,

and 22 component equations. They are

1(B) 1 (A")? 3 2
2 Bz - p) + 3 A2 (B/ - EBZT() - ;B)T()
3 (B')? 6 1
( ) + 2ABB’) + —B’<BT12 - —TO)
r r r

2

3 3 1
— 2 4 A)+ 2 (4BTy+ ) =0, (Al
P2 ) 2r3< 0 r) (AD)

1B
- le) + ;BTITO - ; §T1>

2 1 B
(A2)

A 2 1 B
+ E) + *BToTl - = *T]) = O, (A3)
r

r B

2 A> A\A\B A2 \2 B2 2
A'((B'_, ) sy oo A 4_,  2A 1B% 2 o1
+BZ ETO_BTOTO—FﬁTO +2B T0<T0_T1 +§ +B rT +§ _r BZ+ B TO BT] +;To

3 2 3
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The independent Yang-like equations (F ab’“’llyez + ---)are (abc:) 010, 011, 202, and 122 component equations.

A//I A// A/ B/ 2 BII A/ AIZ Bl A/ B/ Bl 2
— = (43 - BTy =) -+ 5 (% — BTy )+ (3~ — BT, — =
A A\A B r B A A°\B A B\ B r
A_/ ! _ 272 22_% _E I _ Rl % i 3 2 _ 2_é _% l:
+— (BT, — 2BT} + 2B?T} — =BT, — — ) + BT} — B'T}, + =BT} + 2B3T\( T} — T} BT,(2BT, + 0,
A r r r 2 r r
(A6)
2(7T! / 2 ! / 3 2 2 1 4 2
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1 4
- 2B3T| (T% - T(% - EA) + *BzToTl = 0, (AS)
r
A”? 1 Al 1 1B 1/B" B"? 1 2
_ _ 272 _ p272 _ _ _ _ _
P(BT0 + ;> K(BT() 2B°T5 = BT} + BT, ?E) + ?(F 3?) (BT{; BTy~ —B'Ty + ;BT(’))
2 ! 3 2 2 1 1 2 2 1 3 1
r r r r r

(1]

(2]

(31

(4]
(5]

(6]

(71

A.G. Riess et al., Astron. J. 116, 1009 (1998); S.
Perlmutter et al., Astrophys. J. 517, 565 (1999); A.G.
Riess et al., Astrophys. J. 536, 62 (2000); 560, 49 (2001).
C.L. Bennett et al., Astrophys. J. Suppl. Ser. 148, 1
(2003); D.N. Spergel et al., Astrophys. J. Suppl. Ser.
148, 175 (2003).

Y.-S. Wu, G.-D. Li, and H.-Y. Guo, Kexue Tongbao (Chin.
Sci. Bull.) 19, 509 (1974); Y. An, S. Chen, Z.-L. Zou, and
H.-Y. Guo, ibid. 21, 379 (1976); H.-Y. Guo, ibid. 21, 31
(1976); Z.L. Zou et al., Scientia Sinica 22, 628 (1979); H.-
Y. Guo, Kexue tongbao (Chin. Sci. Bull.) 24, 587 (1979);
Acta Phys. Sin. 33, 1377 (1984); Acta Phys. Sin. 33, 1386
(1984) (all in Chinese).

P.K. Townsend, Phys. Rev. D 15, 2795 (1977); A.A.
Tseytlin, Phys. Rev. D 26, 3327 (1982).

K.-H. Look (Q.-K. Lu), “Why the Minkowski metric must
be used?”’ (unpublished); K.-H. Look, C.-L. Tsou (Z.-L.
Zou), and H.-Y. Kuo (H.-Y. Guo), Acta Phys. Sin. 23, 225
(1974); Nature (Shanghai, Suppl.), Mod. Phys. 1, 97
(1980); H.-Y. Guo, Kexue Tongbao (Chin. Sci. Bull.) 22,
487 (1977) (all in Chinese).

H.-Y. Guo, in Proceedings of the 2nd Marcel Grossmann
Meeting on General Relativity, edited by R. Ruffini
(North-Holland, Amsterdam, 1982), p. 801; Nucl. Phys.
B, Proc. Suppl. 6, 381 (1989); C.-G. Huang and H.-Y.
Guo, in Proceddings of the VII Asia-Pacific International
Conference, edited by J. M. Nester, C.-M Chen, and J.-P.
Hsu (World Scientific, Singapore, 2007), p. 260.

H.-Y. Guo, C.-G. Huang, Z. Xu, and B. Zhou, Mod. Phys.
Lett. A 19, 1701 (2004); Phys. Lett. A 331, 1 (2004); Sci.

(8]

(91

[10]

[11]

[12]

[13]

[14]

084033-8

China, Ser. A Math. phys. astron. technol. sci. 51, 568
(2008); H.-Y. Guo, C.-G. Huang, Y. Tian, Z. Xu, and B.
Zhou, Acta Phys. Sin. 54, 2494 (2005) (in Chinese); M. L.
Yan, N.C. Xiao, W. Huang, and S. Li, Commun. Theor.
Phys. 48, 27 (2007); H.-Y. Guo, C.-G. Huang, and B.
Zhou, Europhys. Lett. 72, 1045 (2005); Z. Chang, S.X.
Chen, and C.-G. Huang, Chin. Phys. Lett. 22, 791 (2005);
Z. Chang, S.-X. Chen, C.-B. Guan, and C.-G. Huang,
Phys. Rev. D 71, 103007 (2005); S.-X. Chen, N.-C.
Xiao, and M.-L. Yan, Chin. Phys. C 32, 612 (2008).
H.-Y. Guo, C.-G. Huang, Y. Tian, H.-T. Wu, and B. Zhou,
Classical Quantum Gravity 24, 4009 (2007); H.-Y. Guo,
Phys. Lett. B 653, 88 (2007); arXiv:0707.3855 [Scin.
Chin. (to be published)].

H.-Y. Guo, C.-G. Huang, Y. Tian, and B. Zhou, Front.
Phys. China 2, 358 (2007).

C.-G. Huang, H.-Q. Zhang, and H.-Y. Guo, J. Cosmol.
Astropart. Phys. 10 (2008) 010; Chin. Phys. C 32, 687
(2008).

C.-G. Huang and M.-S. Ma, Front. Phys. China 4, 525
(2009).

Z.-L. Zou et al., Acta Astronomica Sinica 17, 147 (1976);
S. Chen et al., Scientia Sinica 19, 35 (1976) (both in
Chinese).

P. Baekler and F.W. Hehl, in Proceedings of the
International ~ Symposium on Gauge Theory and
Gravitation (g & G), edited by K. Kikkawa, N.
Nakanishi, and H. Nariai (Springer-Verlag, Berlin,
1983), p. 1.

A.V. Minkevich, Phys. Lett. A 80, 232 (1980); 95, 422



DE SITTER SPACETIMES WITH TORSION IN THE ...

[15]

[16]

(17]

[18]

[19]

(1983); F. Miiller-Hoissen, Phys. Lett. 92A, 433 (1982).
P. Baekler, F. W. Hehl, and E. W. Mielke, in Proceedings
of the 2nd Marcel Grossmann Meeting on the Recent
Progress of General Relativity, edited by R. Ruffini
(North-Holland, Amsterdam, 1982), p. 413; P. Baekler,
F. W. Hehl, and H.-J. Lenzen, in Proceedings of the 3rd
Marcel Grossmann Meeting on the Recent Progress of
General Relativity, edited by N. Hu (Science Press,
Beijing, 1983), p. 107.

P. Baekler, Phys. Lett. 99B, 329 (1981); Phys. Lett. 96A,
279 (1983).

R. Aldrovandi and J.G. Pereira, An Introduction to
Teleparllel Gravity, 2007, http://www.ift.unesp.br/gcg/
tele.pdf.

de Vega, Larsen, and Sanchez, Phys. Rev. D 58, 026001
(1998).

S.W. MacDowell and F. Mansouri, Phys. Rev. Lett. 38,

[20]
(21]
[22]
(23]

[24]
[25]
[26]
(27]

(28]

084033-9

PHYSICAL REVIEW D 80, 084033 (2009)

739 (1977); 38, 1376(E) (1977).

K.S. Stelle and P. C. West, Phys. Rev. D 21, 1466 (1980).
F. Wilczek, Phys. Rev. Lett. 80, 4851 (1998).

L. Freidel and A. Starodubtsev, arXiv:hep-th/0501191.

J. Armenta and J. A. Nieto, J. Math. Phys. (N.Y.) 46,
112503 (2005).

M. Leclerc, Ann. Phys. (N.Y.) 321, 708 (20006).

D. K. Wise, arXiv:gr-qc/0611154.

P. Mahato, Mod. Phys. Lett. A 17, 1991 (2002); Phys. Rev.
D 70, 124024 (2004); Int. J. Theor. Phys. 44, 79 (2005);
Int. J. Mod. Phys. A 22, 835 (2007).

R. Tresguerres, Int. J. Geom. Methods Mod. Phys. 5, 171
(2008).

R.-S. Tung, C.-H. Chang, D.-C. Chern, and J.M Nester,
Prog. Theor. Phys. 88, 291 (1992); J.-K. Ho, D.-C. Chern,
and J. M. Nester, Chin. J. Phys. (Taipei) 35, 640 (1997).



