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In this paper we initiate the study of spontaneous symmetry breaking in 3þ 1 dimensional rotating,

charged, asymptotically AdS black holes. The theory living on their boundary, R� S2, has the

interpretation of a 2þ 1 dimensional rotating holographic superconductor. We study the appearance of

a marginal mode of the condensate as the temperature is decreased. We find that the transition temperature

depends on the rotation. At temperatures just below Tc, the transition temperature at zero rotation, there

exists a critical value of the rotation, which destroys the superconducting order. This behavior is analogous

to the emergence of a critical applied magnetic field and we show that the superconductor in fact produces

the expected London field in the planar limit.
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I. INTRODUCTION

Over the past year or so, there has been considerable
activity in the field of AdS/CMT, which attempts to bring a
phenomenological approach to the AdS/CFT correspon-
dence to bear on problems in condensed-matter physics [1–
8]. The scope of this program is broad, dealing with such
diverse problems as the Nernst effect at a superfluid-
insulator transition, the quantumHall effect and cold atoms
in the unitarity limit.

In [9], Gubser suggested that spontaneous Uð1Þ symme-
try breaking by bulk black holes—specifically Reissner-
Nordström-AdS black holes—can be used to construct
gravitational duals of the transition from normal state to
superconducting state in the (not further specified) bound-
ary theory. This can be done by studying the dynamics of a
minimally coupled complex scalar field with Lagrangian
density

Lffiffiffiffiffiffiffi�g
p ¼ � 1

4
F2 � 1

2
jD�j2 �m2

�j�j2; (1.1)

where D�� ¼ ð@� � ieA�Þ� and the scalar field mass

respects the Breitenlohner-Freedman (BF) bound [10]

m2
�L

2 � �9=4: (1.2)

In the remainder of this paper, we only consider scalar
masses at or above the conformal value of m2

� ¼ �2. In
the first instance one works in the approximation where the
scalar does not backreact on the geometry. This approxi-
mation to the full system is however sufficient for an exact
determination of the transition temperature of the holo-
graphic superconductor.

Gubser showed numerically that for sufficiently large
charge e of the condensate the scalar field on the black hole
background allows a marginal mode. This is indicative of
an instability towards a ‘‘hairy’’ black hole solution with a
finite charged condensate outside the horizon. The scalar
hair breaks the Uð1Þ gauge symmetry in the bulk space

time. Hartnoll, Herzog and Horowitz [11] brought this idea
to fruition by numerically constructing the state with bro-
ken symmetry. They were able to show that the electrical
resistance in the dual field theory indeed drops to zero in
the broken phase by studying the fluctuations of the
Maxwell field around the state of broken symmetry.
In subsequent works, these authors, and others [11,12],

verified a number of other physical properties of these
backgrounds and accumulated evidence that these are
gravitational duals of a type II superconductor. This is
despite the fact that a local bulk Uð1Þ symmetry is a priori
associated to a global symmetry of the boundary theory,
and hence one would expect to find the physics of a
charged superfluid [13]. However one may weakly gauge
the boundary Uð1Þ and in this regime the material is
described by the London theory [11] of superconductivity.
In this paper we aim to explore another feature of super-

conductors, the London moment, and by doing so, extend
the present framework of holographic superconductors to
the case of rotating black holes in the bulk. At first sight,
this also seems to be a hopeless task, since the holographic
superconductor does not have a dynamical photon.
However, the work of [11] showed that it nevertheless
produces the screening currents necessary e.g. for the
Meissner effect. Thus we may also be optimistic about
being able to observe the London moment.
At zero angular momentum, the system studied here

reduces to a subset of those considered in [9], with spheri-
cal horizon, where the transition to a superconducting state
is already known to occur. We thus expect the marginal
mode to exist for small values of the rotation parameter. An
interesting question is whether this mode always persists
for larger values. Physical intuition tells us that it should
not: we know from previous studies [12] that a holographic
superconductor exhibits a critical magnetic field, above
which it is energetically favorable to be in the normal
phase. We also know that a rotating superconductor dy-
namically generates a magnetic field, the so-called London
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field [14]. Intuitively this arises because the rotation in-
duces a lag between charge carriers close to the surface and
the charged superfluid in the bulk of the superconductor.
Thus we should expect a given marginal mode at zero
rotation to disappear at some critical rotation. Or, in other
words, we expect the critical temperature to drop as the
angular momentum of the dual black hole is raised. We
shall demonstrate this behavior.

The paper is organized as follows. In Sec. II we intro-
duce the dual gravity background, the Kerr-Newman-AdS
black hole and explain the influence of the bulk rotation on
the boundary theory. In Sec. III we study the angular and
radial behavior of marginal modes of a charged complex
scalar field in this background and construct the phase
diagram of the holographic superconductor. For a ta-
chyonic scalar in the planar limit, i.e. close to the poles,
we compute the London field explicitly. Section IV is
devoted to a discussion and Appendixes A and B contain
details on the separation of the wave equation as well as the
numerical methods employed in this paper.

II. ROTATION AND ADS/CMT

In this section we introduce the gravitational back-
ground, which we argue is dual to a two-dimensional
material living on the surface of a sphere, exhibiting super-
conductivity at sufficiently low temperature. The study of
rotation in the AdS/CFT context was initiated in [15] (see
also [16]).

A. AdS4 backgrounds with angular momentum

The desire to introduce rotation into the AdS/CMT story
leads us to consider the four-dimensional Kerr-Newman-
AdS solution, originally found by Carter [17], who was
interested in finding space times in which the Hamilton-
Jacobi equation would separate. In Boyer-Lindquist coor-
dinates, the metric is

ds2 ¼ ��r

�2

�
dt� a

�
sin2�d�

�
2 þ �2dr2

�r

þ (2.1)

�2d�2

��

þ��sin
2�

�2

�
adt� r2 þ a2

�
d�

�
2

(2.2)

with gauge field field

A ¼ � qer

�2

�
dt� asin2�

�
d�

�
; (2.3)

and

�r :¼ ðr2 þ a2Þð1þ r2L�2Þ � 2Mrþ q2e;

�� :¼ 1� a2L�2cos2�;

�2 :¼ r2 þ a2cos2�;

� :¼ 1� a2L�2:

(2.4)

There is some confusion in the literature as to how exactly

the parameters a and M are related to the physical angular
momentum and mass energy of the black hole, respec-
tively. This confusion is cleared up in the work [18] (see
also [19]), by careful thermodynamic considerations, and
we adopt their definitions

E ¼ M

�2
; J ¼ Ma

�2
(2.5)

for the energy E and angular momentum J of the back-
ground. Note that both E and J diverge as aL�1 approaches
unity. However, J is always strictly bounded above by EL,
as expected for a rotating black hole. Finally, we quote the
result for the Hawking temperature of the black hole [20],

TH ¼ rþð1þ a2L�2 þ 3r2þL�2 � ða2 þ q2eÞr�2þ Þ
4�ða2 þ r2þÞ

; (2.6)

which, in the usual way, is identified with the temperature
of the dual field theory living on the conformal boundary of
the AdS black hole spacetime. The boundary has topology
R� S2, so we are considering a two-dimensional super-
conductor living on the surface of a sphere. The quantity
rþ is the horizon radius, defined to be the largest real root
of the equation �r ¼ 0.

B. Rotation and the boundary theory

Massive rotating bodies exhibit the frame-dragging ef-
fect: an inertial reference frame outside the body is set into
rotational motion. This effect diminishes as the distance to
the rotating body increases. For the original Kerr black
hole, which is asymptotically flat, this effect vanishes at
infinity. However, for the Kerr-AdS family, it does not [18].
Its boundary metric is in the conformal class of the Einstein
static universe

ds2 ¼ �dt2 þ L2ðd�̂2 þ sin2�̂d�̂2Þ; (2.7)

where the new angular coordinates satisfy

� ¼ �̂� a

L2
t; tan� ¼

ffiffiffiffiffi
�

p
tan�̂:

From the first of these we see that the angular velocity of
the boundary theory is

�1 ¼ a

L2
: (2.8)

We learn that the local speed of rotation at the equator of
the boundary S2 of radius L reaches the speed of light when
a ¼ L. In fact the gravitational background becomes sin-
gular at that point. We therefore restrict to a < L in this
paper.

III. SUPERCONDUCTING INSTABLITY

We now turn to the main objective of this work, which is
to identify an instability under perturbations of a charged
scalar field propagating on the background. We rely on the
separation properties of this equation, but relegate the de-
tails of the separation procedure to Appendix A. It is not
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necessary to follow these in order to understand this paper,
but we have included them for the interested reader.

A. Radial equation

As is well known from a classical result due to Carter
[17], the Klein-Gordon equation is separable on the back-
ground of the Kerr-AdS black hole in 3þ 1 dimensions.
This result can be extended to the case of a complex
(charged) scalar field on the Kerr-Newman-AdS back-
ground above. We assume that �ðt; r; �;�Þ �
e�i!t�im�RðrÞSð�Þ, and look for a marginal mode, for
which m ¼ ! ¼ 0. As in [9,11], it is consistent to seek
real solutions RðrÞ and Sð�Þ. However, since the complex
scalar� is not a gauge-invariant quantity, this is essentially
a choice of gauge, the details of which are explained in
Appendix A. For later convenience, let us define the hori-
zon function

r2hðrÞ ¼ �rðrÞ: (3.1)

Then we obtain the radial equation�
@rr

2hðrÞ@rþ e2q2e
hðrÞ ð1� rÞ2�ða2þ r2Þm2

���

�
RðrÞ ¼ 0;

(3.2)

where we have set the horizon radius to unity,1 and � is the
separation constant between Sð�Þ and RðrÞ. In the
Schwarzschild-AdS limit (a ! 0) it reduces to the familiar
value ‘ð‘þ 1Þ, ‘ 2 Z being the principal eigenvalue of the
spherical harmonics. Sometimes we shall find it useful to
label the values of � by the corresponding integer ‘ to
which they reduce. While there exists no analytical ex-
pression for �, it is possible to determine the numerical
value of this separation constant by treating the � equation
as an eigenvalue problem for �.

To gain a more intuitive understanding of the physics
involved in finding the marginal mode, let us manipulate
expression (3.2) into the form of a Schrödinger equation.
Then the question of finding the gravitational mode is
reexpressed in terms of finding a marginal bound state of
the corresponding quantum-mechanical problem. To this
end, define the tortoise coordinate

r� ¼
Z dr

hðrÞ : (3.3)

Outside the horizon at r ¼ 1, r� is real and takes values
2

r� 2 ð�1; 0Þ. Then the function ZðrÞ ¼ rRðrÞ satisfies the

Schrödinger equation of a zero-energy particle in a poten-
tial:

d2Z

dr2�
� V½r�ðrÞ; ��Zðr�Þ ¼ 0: (3.4)

The potential is given implicitly by

Vðr; �Þ ¼ hðrÞ
�
m2

� � e2q2e
hðrÞ

�
1

r
� 1

�
2 þ ðhðrÞÞ0

r

þ �þ a2m2
�

r2

�
; (3.5)

where the prime indicates differentiation with respect to
the original radial coordinate r. Since we cannot invert
r�ðrÞ analytically to get the potential as a function of r, we
cannot give an explicit functional form of the potential as a
function of the tortoise coordinate r�. It is however easy to
obtain plots of the potential, numerically or otherwise,
which are sufficient to develop the intuition we wish to
achieve. Before proceeding to obtain these plots, we must
first return to the problem of the separation constant and
the angular equation. In the process we will gain insight
into the nature of the condensate.

B. Angular equation and localization

Without further ado, here is the angular equation for our
marginal mode:

�
��

@�ðsin�
ffiffiffiffiffiffi
��

p
@�Þ

sin�
ffiffiffiffiffiffi
��

p þ ffiffiffiffiffiffi
��

p ð@�
ffiffiffiffiffiffi
��

p Þ@�

þ a2sin2�m2
� þ �

�
Sð�Þ ¼ 0: (3.6)

Again, a detailed derivation is given in Appendix A. For
the sake of terminology, let us refer to the solutions of the
angular equation (3.6) as AdS spheroidal harmonics. The
deviation of the AdS spheroidal harmonics from being
spherical harmonics is measured by the ratio of specific
angular momentum of the black hole to the AdS length, so
we introduce the deformation parameter � ¼ a

L .

The eigenvalues of the deformed spheroidal equation
(3.6) are then labeled �ð‘;�;a2m2

�Þ. Solutions to

Eq. (3.6), much like the associated Legendre functions,
have definite parity, which allows us to develop a simple,
iterative, shooting technique to solve both for the eigen-
function and the eigenvalue to high accuracy. The details
are relegated to Appendix B. There we also list a range of
eigenvalues �, corresponding to various values of the
deformation parameter �.
An interesting feature of the AdS spheroidal harmonics

is that, unlike their French cousins, the Legendre functions,
the lowest mode is not constant. Rather it has a nontrivial
profile over the sphere, controlled by the deformation
parameter � causing even the lowest mode to be localized
either near the poles or near the equator. They are localized

1This can always be done because of scaling symmetry present
in the background. However, physically, this is nothing but a
choice of units in which we measure lengths in multiples of the
horizon radius.

2The upper bound can be seen from the neat identityP
roots

1
Q0ðxiÞ ¼ 0 for any polynomial QðxÞ at least quadratic in

x. A simple proof [21] can be given via contour integration of the
function fðzÞ ¼ 1

QðzÞ defined by analytically continuing Q into
the complex plane.
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near the poles if m2
� < 0 and near the equator if m2

� > 0.
This is illustrated in Fig. 1, which shows density plots of
the lowest mode on the unit S2. For the special case of
m� ¼ 0 they are constant.

We now have all the ingredients needed to obtain the
critical behavior of the rotating superconductor. We start
by exhibiting marginal modes of the charged scalar field.

C. Marginal modes

1. Qualitative considerations

Evidently, Eq. (3.4) cannot have bound-state solutions,
unless the potential Vðr�Þ develops a negative well in a
certain range of parameters. Therefore we will expect the
lowest marginal mode to lie in the sector with ‘ ¼ 0.
Figure 2(a) illustrates this point. The occurrence of a
negative potential well is closely related to the fact, pointed
out by Gubser [9], that the effective mass of the scalar field

m2
eff

:¼ m2
� � e2q2e

hðrÞ
�
1

r
� 1

�
2

(3.7)

gets a contribution due to the coupling to the background
gauge potential that can make this sufficiently negative for
a sufficiently long interval outside the horizon.

The criterion for instabilty can be illustrated by consid-
ering the toy model of the semi-infinite square well of
depth U and width w. The system will be stable if the
potential admits negative-energy bound-state solutions and
will become unstable once the last of these bound states
(i.e. the ground state) acquires positive energy and be-
comes non-normalizable. Elementary quantum mechanics
tells us that the condition that there exists at least one
bound state is

w

ffiffiffiffiffiffiffiffiffiffiffi
2mU

p
@

� �

2
;

where we have briefly reinstated units of @. Thus if the
potential well becomes too shallow or too narrow, no
bound state can exist. We interpret this as the transition
point for the condensation of the order parameter.
With this simple picture in mind, let us return to the

physics of the holographic superconductor. Keeping the
system at a fixed temperature T below its transition tem-
perature for zero rotation, T0, the potential well becomes
more and more shallow as the specific angular momentum
a is increased. In Fig. 3 this can be seen as the decrease in
depth of the potential well, as one increases the rotation a
in units of the AdS length. We see that the well becomes
both less deep and more narrow as the rotation is increased.
Hence the expectation is that the zero-energy mode will
cease to exist at some point.
This section has illustrated the physical mechanism

behind the suppression of superconductivity with rotation,
but because of the complicated shape of the potential (3.5),
it is necessary to analyze the marginal mode in detail, in
order to gain a quantitative understanding of the phenome-
non. The issue of stability of AdS black holes under scalar
field perturbations is an interesting subject in its own right.
For recent mathematical results on (real) scalar fields in
AdS black hole backgrounds, see [22].

2. Numerical solutions

We will now embark on a study of the behavior of the
marginal mode as a function of the parameter �. It should
come as no surprise to the reader that the only successful
quantitative approach to solving the radial equation is the
numerical one. Already in the much simpler case of
Reissner-Nordström-AdS black holes, no analytical solu-

FIG. 1 (color online). Lowest angular AdS spheroidal harmonics. Regions with high density of the condensate are shown lighter and
regions of low density are shown darker. Both panels correspond to a rotation parameter of � ¼ 0:9. On the left panel, we have chosen
a positive mass-squared term, while on the right the mass-squared term is negative.
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tions are known for the marginal mode, much less for the
broken phase.

In order to facilitate the numerical analysis, let us trans-
form to the variable z ¼ r�1. Then the question of the
marginal mode is transformed into a boundary value prob-
lem on the interval (0, 1). We wish to solve the equation

d

dz

�
hðzÞdR

dz

�

þ
�
e2q2eðz� 1Þ2

z4hðzÞ �m2
�ða2z2 þ 1Þ

z4
� �

z2

�
RðzÞ ¼ 0 (3.8)

subject to certain boundary conditions. We see that both
the horizon at z ¼ 1 and asymptotic infinity at z ¼ 0 are
regular singular points of this equation. Near the AdS

boundary at z ¼ 0, the solutions take the familiar form

RðzÞ ��1z
�þ þ�2z

�� ; (3.9)

where �� is the conformal weight of the dual operator,
given by the root of the indicial equation

�ð�� 3Þ ¼ m2
�L

2: (3.10)

Unitarity requires that � � 1
2 . Depending on the bulk

scalar mass, either or both of the operators

hO1i ¼
ffiffiffi
2

p
�1; hO2i ¼

ffiffiffi
2

p
�2 (3.11)

may condense. We have chosen the same normalization for
the bulk-boundary coupling as [11]. The indicial equation
at the horizon tells us that the solution there behaves as

RðzÞ � Rð0Þ þ Rð1Þ lnðz� 1Þ (3.12)

and regularity demands that Rð1Þ ¼ 0.
In order to solve (3.8), we set either of �i ¼ 0, corre-

sponding to either hO1i or hO2i condensing. Thus we
develop the solution in a Frobenius series around infinity

RðzÞ ¼ z�
�
�i þ

X
n

anz
n

�
; i ¼ 1 or 2: (3.13)

This can be done to very high order using a symbolic
algebra package to solve recursively for the coefficients.
Similarly the expansion around the horizon takes the form

RðzÞ ¼ 1þX
n

bnðz� 1Þn; (3.14)

i.e. we have chosen to normalize Rð0Þ ¼ 1. As remarked in

[9] it would be more proper to treat Rð0Þ as a small pa-

rameter that allows us to justify neglecting the backreac-
tion, but in the end this is a mere rescaling of the mode.

(a)

30

20

10

5

2 1

(b)

FIG. 2. (a) Plot of effective potential barrier around Kerr-Newman-AdS black hole for charged scalar waves with m2
� ¼ 4. In the

chosen coordinates, the horizon is at r� ¼ �1 and asymptotic infinity is on the right at r� ¼ 0. (b) Square well toy model. The depth
of the well is U and its width is w. AdS boundary conditions are equivalent to putting a reflecting barrier at the origin.

5

−5

−1

FIG. 3. Plot of effective potential barrier for the � value
corresponding to ‘ ¼ 0 and eL ¼ 10, m2

� ¼ 4. The potential

is given as a function of the deformation parameter � ¼ aL�1 at
constant temperature T0. We clearly see that the potential well
disappears as one increases the rotation.
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We use numerical integration to match the two series
solutions at some intermediate point by adjusting the co-
efficient�i. This shooting technique can be implemented3

very efficiently using a numerical root finder and looping
over initial conditions.

However, after matching the value of the function, there
is no guarantee that the first derivatives will also match at
this point. This is because there is only a marginal mode at
certain specific values of the background parameters.
Evaluating TH, given in Eq. (2.6), at the critical values
for which the mode first appears gives us the critical
temperature. An illustration of several marginal modes is
given in Fig. 4.

The family of backgrounds we are interested in depends
on the parameters L, a, qe, rþ and the scalar field has mass
m� and charge e. We have chosen units such that rþ ¼ 1
and analyze the equation for fixed values of e andm�. This
results in a curve of critical points in the ð�; qeÞ plane. For
concreteness we fix qe ¼ 1 to extract a value for Tc. Thus
we are looking at projections of the full phase diagram. It
would be interesting to extend this analysis to explore the
entire phase diagram.

D. Phase diagram

In order to find the critical temperature at a given value
of background parameters, we follow the example of [23]
and focus on the condensation of O1 for different parame-
ter values. This is convenient because it always corre-
sponds to a normalizable solution, as long as m2

� � � 9
4 .

Quantitatively, this only gives a lower bound on the critical
temperature, since in the mass range where bothO1 andO2

are normalizable, O1 may in fact condense first. However,

in this paper we are not so much concerned with the actual
value of Tc, but rather its behavior as a function of aL�1.
We find that in all cases Tc decreases as the angular

momentum of the superconductor is increased. This means
that at a temperature slightly below T0, the critical tem-
perature at zero rotation, there always exists a critical value
of aL�1 above which the material is forced back into its
normal phase.
However, for some choices of parameters, such as in

Fig. 5(a), one can choose the temperature low enough, that
no amount of rotation will force the material back into its
normal state. Recall that for aL�1 ¼ 1 the rotation speed at
the equator equals the speed of light. However, as we have
seen in Fig. 1, the condensate may be localized away from
the equator, close to the poles, where the local speed of
rotation is arbitrarily small. Thus, it is plausible, that in
these cases, enough of the condensate recedes far enough
away from the areas of the S2, where the rotation would
destroy the superconducting order.

E. Planar limit and London moment

Let us consider what happens if we concentrate on a
small region around the north pole of the boundary S2. To
this end, we introduce the coordinate

u ¼ L�; (3.15)

and consider the regime u � L, with � ¼ a
L held constant.

In other words we zoom in on the physics close to the north
pole on scales much smaller than the AdS length. In this
regime the curvature of the sphere is negligible and we are
effectively dealing with a flat horizon rotating with angular
velocity� ¼ a

L2 . Note that the local speed of rotation is of

order OðuL�1Þ, small compared to the speed of light. The
angular equation (3.6) simplifies to give

S00ðuÞ þ 1

u
S0ðuÞ þ a2m2

�u
2

�L4
SðuÞ ¼ � �

�L2
SðuÞ: (3.16)

Compare this with the equation of a planar holographic
superconductor immersed in a magnetic field, viz.,

S00ðuÞ þ 1

u
S0ðuÞ �

�
euB

2

�
2
SðuÞ ¼ �~�SðuÞ; (3.17)

for a different separation constant of mass dimension two,
as defined in [11]. This equation was studied in [11,12],
where it was shown to lead to superconducting droplets
that are exponentially confined near the origin (in our case
the north pole). This behavior is consistent with our find-
ings for operators that are dual to tachyonic bulk scalars.
We conclude that in these cases, the rotating superconduc-
tor is equivalent to a static superconductor, immersed in a
magnetic field of magnitude

BL ¼ 2mffiffiffiffiffi
�

p
e
�1; (3.18)

where �1 is the angular momentum of the boundary

FIG. 4. Examples of lowest (i.e. no nodes) marginal modes for
condensation of O1. We take eL ¼ 8, m2L2 ¼ 4 and � ¼ 0, 0.7,
0.9 for the solid, dashed and dot-dashed modes, respectively. In
the Schrödinger representation these are the radial wavefunc-
tions of the zero-energy bound states.

3As with all numerical procedures described in this paper, I
shall make MATHEMATICA

TMnotebooks available upon request.
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theory and m ¼ jm�j. Again, this field is weak, of order
OðL�1Þ, in the limit we are considering. Furthermore, in
the nonrelativistic regime a2L�2 � 1, it reduces to the
relation between angular momentum and magnetic field
first obtained by F. London [14], by considering his phe-
nomenlogical theory for a rotating superconductor. The
work of [24] studied the case where one adds linear mo-
mentum to the system. It would be interesting to see if their
results can be seen in the present framework by zooming in
on the equator of the solutions.

IV. DISCUSSION

In this paper we have demonstrated that finite-
temperature gravitational backgrounds with nonzero angu-
lar momentum exhibit spontaneous symmetry breaking
much like their static limits. Furthermore we have seen
that the additional dependence on rotation causes phe-
nomena akin to those found in studies of superconductors
in magnetic fields.

An important difference to this case is that there always
exists a critical magnetic field Bc, even at very low tem-
perature, above which the superconducting order is de-
stroyed. We have seen that this is not always the case for
the rotating superconductor on a sphere. This can be ex-
plained by noting that the local speed of rotation decreases
as one moves away from the equator, and thus there can be
regions of material, where the superconducting order is
present, even when the equator moves at the speed of light.
Near the poles we have seen that the field produced is
precisely that predicted by F. London on the basis of his
phenomenological theory of superconductors. The field is
parametrically weak, of order OðL�1Þ, so at low tempera-
tures, it is not strong enough to destroy the superconduct-
ing order. This fact is also borne out in the full numerics, as
exemplified in Fig. 5(a).

The London field is often written in terms of the dressed
mass m� of the condensate, rather than the bare mass m. In
our case, we find that m� ¼ mffiffiffi

�
p . Thus the dressed mass

corresponds to the relativistic mass of a particle of mass m
at the equator of the boundary sphere.
We have seen that even the lowest angular eigenfunction

localizes the condensate in a droplet close to the equator
for positive mass squared of the dual scalar field, and in a
ring around the equator for negative mass squared. It is
interesting that the localization behavior of the condensate
is qualitatively different for the case of positive bulk mass
compared to negative mass (squared) and only in the latter
case have we offered an explanation in terms of the mate-
rial’s London moment. It would clearly be an interesting
question to understand what the different localization prop-
erties mean from the point of view of the boundary super-
conductor. It would appear that in one case the instablitity
is towards forming a vortex antivortex pair localized on the
antipodes, while in the other case we have a pair of lumps
of superconducting material on the two poles.
Our analysis was done to first order in the small con-

densate. At the level of approximation of this paper, the
model does not allow for dynamically generated screening
currents. However, [11,12] argue that going to higher order
in the condensate will generate the screening currents
necessary to confine the normal phase in vortex cores
whose centers will allow magnetic flux to penetrate. Thus
our results confirm the expectation that the rotating holo-
graphic superconductor has a London moment generating a
London field.
This paper has focused on a bulk-gravity analysis of the

rotating superconductor. However, we may still deduce
some aspects of the field-theory story from the behavior
found in the present work. From the boundary field-theory
point of view, the rotating black hole corresponds to con-
sidering the field theory in a state, whose energy-
momentum tensor describes rotating matter, corresponding
to a rotating condensate. Then, the results of this paper
show that a relevant condensate, corresponding to a
negative-mass scalar in the bulk, is destroyed by the rota-
tion, whereas an irrelevant condensate, corresponding to a
positive-mass scalar in the bulk, appears to remain intact.

(a) (b)

FIG. 5. Critical temperature for the condensation of O1 at qe ¼ 1 as a function of � ¼ a=L. Left panel for m2
�L

2 ¼ �2 and right
panel for m2

�L
2 ¼ 4. Superconductivity is increasingly suppressed as the rotation is increased.
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While outside the scope of the present paper, it would be
interesting to further illuminate the boundary theory of the
rotating superconductor transition.

It would be very interesting to extend the computations
presented in this work to include the effects of backreac-
tion of the scalar, both on the Maxwell field and on the
gravitational background in order to understand the for-
mation of vortices from the localized droplets in our sys-
tem and to directly see the London field.

Independently of any holographic interpretation, the
results of this paper indicate the existence of a new branch
of stationary black hole solutions. Here we have found a
marginal mode of the stationary asymptotically AdS black
hole, which preserves axial symmetry. Just like in the static
case, where the existence of a static marginal mode pre-
serving the full spherical symmetry indicates the existence
of a new branch of charged static solutions, here we expect
the existence of a new branch of charged stationary solu-
tions. Clearly these last two issues are numerically more
involved and will require more sophisticated methods than
the ones discussed in this paper.
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APPENDIX A: SEPARATION OF VARIABLES

While it can be shown by direct computation that the
charged scalar field allows separable solutions, this proce-
dure is as tedious as it is inelegant. We shall instead use the
dyadic index formulation of Newman and Penrose [25]
which is well suited to the present problem. A suitable
Newman-Penrose tetrad is via the differential operators

D ¼ ‘�@� ¼ 1

�r

ððr2 þ a2Þ@t þ �r@r þ a�@�Þ;

� ¼ n�@� ¼ 1

2�2
ððr2 þ a2Þ@t � �r@r þ a�@�Þ;

� ¼ m�@� ¼
ffiffiffiffiffiffi
��

p
ffiffiffi
2

p
��

�
ia sin�

��

@t þ @� þ i csc�

��

�@�

�
;

�� ¼ �m�@� ¼
ffiffiffiffiffiffi
��

p
ffiffiffi
2

p
���

�
� ia sin�

��

@t þ @� � i csc�

��

�@�

�
;

(A1)

where all quantities are as defined in the main paper and in
addition

�� ¼ rþ ia cos�: (A2)

As ever, the metric takes the form

ds2 ¼ 2ðm 	 �m� ‘ 	 nÞ (A3)

in terms of the one-forms dual to (A1). A simple represen-
tation of the nonvanishing spin coefficients is given by

�¼� �� ln ���; �¼D ln ���; 	¼ � ln ���;

�¼��ln ���; 
¼�1

4
� lnða2sin2���Þ;

�¼ 1

2
�� ln

�
a sin�

ffiffiffiffiffiffi
��

p
�r

ð ���Þ2
�
; �¼ 1

2
�ln

�
a sin�

ffiffiffiffiffiffi
��

p
�r

ð ���Þ2
�
;

(A4)

where, in keeping with the notation introduced by Newman
and Penrose, we also use the letter � for one of the complex
spin coefficients. Finally, the charged scalar field obeys the
equation

�ðaÞðbÞðrðaÞ þ ieAðaÞÞðrðbÞ þ ieAðbÞÞ� ¼ m2
��; (A5)

where we use Chandrasekhar’s notation of putting indices
that refer to the NP tetrad in brackets. Let us introduce the
family of differential operators:

D n ¼ @r � iK

�r

þ n@r ln�r;

Dy
n ¼ @r þ iK

�r

þ n@r ln�r;

Ly
n ¼ @� þ H

��

þ n@� lnsin�
ffiffiffiffiffiffi
��

p
;

Ln ¼ @� � H

��

þ n@� lnsin�
ffiffiffiffiffiffi
��

p
;

(A6)

where acting on functions of the form

�ðt; r; �; �Þ ¼ e�ið!tþm�Þ�ðr; �Þ; (A7)

the constants K and H are

K ¼ ðr2 þ a2Þ!þ am�; (A8)

H

��
¼

�
!a sin�þ m�

sin�

�
: (A9)

It is then straightforward to show in a few steps that the
charged scalar equation simplifies to the expression�
�r

2�2

��
D1 � ieqer

�r

��
Dy

0 þ
eiqer

�r

�

þ
�
Dy

1 þ
ieqer

�r

��
D0 � eiqer

�r

��

þ
ffiffiffiffiffiffi
��

p
2�2

ðLy
1

ffiffiffiffiffiffi
��

p
L0 þL1

ffiffiffiffiffiffi
��

p
Ly

0 Þ
�
� ¼ m2

��:

(A10)
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Now, notice that the operators D0;1 and their Hermitian

conjugates are purely radial, while the operators L0;1 and

their Hermitian conjugates are purely angular. Thus the
equation is separable upon multiplying by �2, resulting in
the two equations�
�rðD1D

y
0 þDy

1D0Þ þ 2ieqerðD0 �Dy
0 Þ

þ 2
e2q2er

2

�r

� 2ðr2 þ a2Þm2
� � 2�

�
RðrÞ ¼ 0 (A11)

and

½ð ffiffiffiffiffiffi
��

p
L1

ffiffiffiffiffiffi
��

p
Ly

0 þ ffiffiffiffiffiffi
��

p
Ly

1

ffiffiffiffiffiffi
��

p
L0Þ

þ 2a2sin2�m2
� þ 2���ð�Þ ¼ 0: (A12)

Substituting the definitions of the differential operators
L0;1 and D0;1 results in the radial and angular equations

quoted in the main text modulo a gauge choice, on which
we now elaborate.

APPENDIX B: DETAILS ON NUMERICAL
METHODS

This appendix contains details on the gauge choice used
in Eq. (3.2) and gives details on the numerical algorithms
used to compute the separation constants used in the bulk
of the paper.

1. Gauge choice and regular solutions

The potential contribution to the radial equation contains
an effective mass-squared term proportional to the square
of the gauge field. This term seemingly blows up at the
horizon unless the gauge field A goes to zero there. Notice
however, that the function RðrÞ that we are solving for is
itself not a gauge-invariant quantity. In particular, it has a
gauge-dependent phase. Thus if we choose the radial func-
tion to be

eie’ðrÞRðrÞ; (B1)

we can remove the apparent singular behavior of the
potential at the horizon with a particular gauge choice for
’ðrÞ. A computation shows that the function

’ðrÞ ¼ qe
rþ

Z dr

hðrÞ ¼
qer�
rþ

; (B2)

which we recognize as the tortoise coordinate (3.3), re-
moves the apparent singular behavior at the horizon. With
this choice of phase, the gauge-invariant part of the radial
function satisfies the Eq. (3.2).

2. Angular eigenvalues and eigenfunctions

The separated equations are coupled through the sepa-
ration constant �. It is thus important to have precise
numerical methods to determine it. With x ¼ cos�
Eq. (3.6) reads

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2x2

p d

dx

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��2x2

p
ð1� x2ÞdS

�
‘m

dx

�
��2xð1� x2Þ

� dS�‘m
dx

þ
�
�þ a2m2

�ð1� x2Þ �m2ð1��2Þ
1� x2

�
S�‘mðxÞ ¼ 0;

(B3)

where we have briefly reinstated the azimuthal quantum
numberm. In the limit L ! 1, Eq. (B3) goes over into the
spheroidal equation and the eigenfunctions S�‘mðxÞ are the

spheroidal harmonics [26]. In many references on spheroi-
dal harmonics the parameter a2m2

� is called �2. In the limit

a ! 0 it becomes the associated Legendre equation.

In this paper, we only consider S��‘m ðx; �Þ for m ¼ 0,
which is all we need in determining the critical tempera-
ture. Note, however, that the angular eigenvalue of the
(AdS) spheroidal equation depends on m, unlike the
more well-known case of the spherical harmonics (i.e.
the Legendre polynomials). However, our procedures
work equally well for nonzero values of m.

a. Numerics

We now describe the numerical procedure used to ex-
tract the eigenvalues � from this equation. It is evident that
solutions of Eq. (B3) are either even or odd functions. We
will make use of this crucial fact, which makes it easier to
use a simple shooting method:
(1) Obtain series expansions of S�‘m at x ¼ �1. There is

a regular branch and a logarithmic branch of solu-
tions. As usual we select the regular branch. We set
the following boundary conditions

S�‘mð�1Þ ¼ S�‘mð1Þ ¼ 1; S�‘mðxÞ is even;
S�‘mð�1Þ ¼ �S�‘mð1Þ ¼ 1; S�‘mðxÞ is odd.

(B4)

The choice of the magnitude of the eigenfunctions at
either end of the interval is clearly just a choice of
normalization.

(2) Numerically integrate inwards to the origin from
both ends for a fine grid of values of the eigenvalue
� in order to match the Frobenius expansions at
either end of the intervals. This gives rise to a series

of functions S��‘m ðx; �Þ, where the � refers to the

numerical integration from �1.

(3) For odd functions the first derivatives of S��‘m ðx; �Þ
are guaranteed to coincide at the origin. Thus we
define the function

Oð�Þ ¼ S�;þ‘m ð0; �Þ � S�;�‘m ð0; �Þ
by interpolating the values of the discrete grid of
values of �. For even eigenfunctions, we are guar-

anteed that the value of S��‘m ðx; �Þ matches at the

origin. Thus we define
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Eð�Þ ¼ ðS�;þ‘m Þ0ð0; �Þ � ðS�;�‘m Þ0ð0; �Þ:

(4) Find the zeroes of Eð�Þ and Oð�Þ. Every root cor-
responds to an eigenvalue of the angular equation.

We now tabulate (a subset of) the � values that were used
to find the critical temperatures displayed in Fig. 5. Table I

lists a representative sample of eigenvalues to five signifi-
cant digits that were used in obtaining the phase curves of
critical temperature versus rotation. Our numerical algo-
rithms in fact allow a far higher accuracy, but it would be
impractical and of little value to list more significant digits
here.
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