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I. INTRODUCTION

Discussions of the dynamics of general relativity often
begin with the ADM 3þ 1 evolution equations [1]. These
equations describe the second time derivatives of the spa-
tial metric in terms of other quantities such as the lapse
function and the extrinsic and Riemann curvatures. If by
some means we happen to have a local solution (in time) of
those equations then we could imagine computing the
arclength for short geodesic segments. What then would
we get for the value of the second time derivative of that
arclength? This question has been discussed many times
elsewhere [2,3] but under a different name—the second
variation of arclength. Clearly the second variation of
arclength and the ADM 3þ 1 evolution equations must
be related. The purpose of this paper is to establish that
relationship. The result is not unexpected—the equations
for the second variation of arclength can be used to recover
the standard ADM 3þ 1 evolution equations with zero
shift vector.

There is value in this presentation beyond the purely
pedagogical—the results presented here provide strong
theoretical support for an approach to numerical relativity
being developed by the author [4–7]. This method is known
as smooth lattice relativity and is closely related to the
Regge calculus [8–10]. Both methods use a lattice to
describe the metric but they differ most notably in the
way they treat the curvatures. In the Regge calculus the
metric is piecewise flat with the result that the curvatures
are distributions on the two-dimensional subspaces known
as bones (or hinges) while on a smooth lattice we allow the
metric to vary smoothly in the neighborhood of any vertex.
This allows all the usual tools of differential geometry to be
applied to the smooth lattice. In particular, we can easily
compute the Riemann and extrinsic curvatures in terms of
the geodesic arclengths of the lattice and thus, using
Eqs. (3.3) and (3.4), or (2.5), the second time derivatives
of the leg lengths. This makes the study of dynamics on a
smooth lattice quite simple in principle (though as with any
numerical method in general relativity the practical aspects
are far from trivial). Attempts have been made to adapt the
ADM 3þ 1 equations to the Regge calculus [11,12] but
progress has been slow. A much more promising scheme,
for the Regge calculus, is due to Sorkin [13] with later

development by Barrett et al. [14] and Gentle and Miller
[15].

II. FIRST AND SECOND VARIATIONS

Discussions on the first and second variations normally
arise when asking questions about geodesics such as: Is the
geodesic that joins two points unique? Is it the shortest
geodesic? How far can the geodesic be extended before it
fails to be the shortest geodesic? The mathematical theory
that answers these questions is very elegant and has pre-
viously found its way into general relativity as a tool in
studying the global properties of spacetime [16]. Hawking
and Penrose [17,18] made extensive use of the first and
second variations of nonspacelike geodesics in their singu-
larity theorems. In contrast, our interest in the first and
second variations is that they provide a natural setting in
which to ask different questions of geodesics: How can the
first and second time derivatives (of the arclength) be
computed? And how are they related to the curvature
tensors? As already noted in the Introduction these ques-
tions will lead to the standard ADM 3þ 1 evolution equa-
tions with a zero shift vector. But first we need to introduce
some basic notation and to make clear the class of curves
we will be working with.
Choose a point i and a small neighborhood of i in which

the spacetime is nonsingular. All of the curves we are about
to construct will have a finite length and will lie totally
within this neighborhood. Through i construct a timelike
curve Ci with affine parameter �. From Ci we can con-
struct a nearby curve Cj by dragging Ci sideways a short

distance (i.e. drag Ci along a short spacelike vector field
defined onCi). We now have two nearby timelike curvesCi

and Cj (the point j on Cj can be easily identified—it has

the same � value as i has on Ci). We will assume that the
two curves Ci and Cj are sufficiently close that, for any

given �, we can construct a unique geodesic that joins the
two curves.
Consider now the family of geodesics generated by

allowing � to vary. This family of geodesics (actually,
segments of geodesics) will cover a two-dimensional sub-
space (like a taut ribbon) which we will denote by S. We
will introduce coordinates on S in a rather obvious way.
Consider a point P on S. There will be exactly one space-
like geodesic (of S, by assumption) that passes through P.
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The point P will be located some fraction, �, along the
geodesic from Ci to Cj. Thus the points on Ci will have

� ¼ 0 while those points on Cj will have � ¼ 1. We will

take the other coordinate for P to be the value of � that
identifies this geodesic from all others (in S). The coordi-
nates for P are then taken to be ð�;�Þ. This situation is
displayed in Fig. 1.

Consider now a global coordinate system, x�, for the
spacetime. Then S can also be described by functions of the
form x�ð�; �Þ. We now define a pair of vectors �� and ��

by

�� ¼ @x�

@�
; �� ¼ @x�

@�
; (2.1)

and a pair of unit vectors n� and m� by

�� ¼ 1

N
��; m� ¼ 1

M
��; (2.2)

where N and M are scalar functions that ensure that the
vectors are indeed unit vectors. Clearly the vector �� is
tangent to the � ¼ const curves while �� is tangent to the
� ¼ const curves (and both vectors will, in general, be
neither unit nor orthogonal, despite appearances in Fig. 1).
It is rather easy to show thatM ¼ ds=d� ¼ Lij, where s is

the proper distance along the geodesic and Lij is the length

of that geodesic. Recall that ds=d� is constant along a
geodesic while Lij ¼

R
1
0ðds=d�Þd� and thus Lij ¼ ds=d�.

Next, using the requirement that m� be a unit vector leads
immediately toM ¼ ds=d� ¼ Lij as claimed. Later, when

we specialize to the ADM 3þ 1 formulation in Sec. III we

shall see that N is the usual lapse function associated with
the time coordinate �.
We can now state clearly the equations for the arclength

and their variations.
Arclength:

Lij ¼
Z j

i

�
g��

@x�

@�

@x�

@�

�
1=2

d�: (2.3)

First variation:

dLij

d�
¼ ½m��

��ji ¼
Z j

i
m�m

���
;�ds: (2.4)

Second variation:

d2Lij

d�2
¼ ½��

;��
�m��ji �

Z j

i
R����m

�m�����ds

þ
Z j

i
ð��;��

�
;�m

�m� � ðm�m
���

;�Þ2Þds:
(2.5)

For ease of reference we have included a proof of the above
equations in the Appendixes. See also [2,3] for more
details.

III. THE ADM EVOLUTION EQUATIONS: PART 1

Consider a typical Cauchy surface � and suppose that
the pair of timelike curves Ci and Cj intersect � at the

points i and j, respectively. At i we have two vectors n�,
the unit normal to � and m�, the unit tangent to the
geodesic that connects i to j. If we construct a third unit
vector m0� as a linear combination of n� and m�,

m0� cosh� ¼ m� þ n� sinh�;

we can, by careful choice of the boost angle �, ensure that
m0� is tangent to �. That is, we require � such that 0 ¼
n�m

0�. This arrangement is shown in Fig. 2. In what

follows we will be looking at the behavior of various
expressions in the case where Lij is small. So our present

task is to ask how does � vary with Lij? The first observa-

tion is trivial: � ! 0 as Lij ! 0. Now from 0 ¼ n�m
0� we

FIG. 1. This figure displays the two-dimensional surface S
constructed from the pair of timelike worldlines Ci and Cj.

The curve connecting i to j is a spacelike geodesic with length
Lij. Along these geodesics � ¼ const. Note that the tangent

vectors n� andm� are unit vectors but they need not be mutually
orthogonal.

FIG. 2. In this figure the lower (straight) curve is the geodesic
that joins i to j. The upper curve (which is not shown in Fig. 1)
arises from the intersection of the Cauchy surface with the two-
dimensional surface S. The unit vectors n� and m0� are orthogo-
nal. Note that, in general, � is not constant on each Cauchy
surface.
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have

sinh� ¼ n�m
�;

and thus across the leg we have

½sinh��ji ¼ ½n�m��ji ¼
dLij

d�
:

If we choose Lij to be sufficiently small then we can be

sure that the geodesic (that joins i to j) intersects � only at
i and j (see Fig. 3). From this constraint we observe that �i
and �j must be of opposite signs and thus

j sinh�ij þ j sinh�jj ¼
��������
dLij

d�

��������:

Thus each term on the left must be of order OðdLij=d�Þ,
that is

� ¼ O
�
dLij

d�

�
as Lij ! 0:

A. The first variation

Our aim in this section is to recast the expressions for the
first and second variations in terms of the familiar ADM
data, the lapse, shift, and extrinsic curvatures.

The extrinsic curvature,K��, can be defined in a number

of ways (see [1]), such as

NK�� ¼ �Nn�;� �?ðN;�Þn�;
where ? is the projection operator (?�

� ¼ h�� ¼ ��
� þ

n�n�). Then

��
;� ¼ ðNn�Þ;� ¼ N;�n

� �?ðN;�Þn� � NK�
�;

and thus

m�m�ðNn�Þ;� ¼ m�m�ðN;�n� þ Nn�;�Þ
¼ ðm�N;�Þ sinh�� NK��m

�m�:

This can now be substituted into the integral for the first
variation (2.4)

dLij

d�
¼

Z j

i
m�m���;�ds

¼
Z j

i
ðm�N;� sinh�� NK��m

�m�Þds:

Recall that we are dealing with short geodesic segments.
Thus we can use any of a number of methods to estimate
the integral. To be specific, we will chose a midpoint rule
(see [19]) which leads to

dLij

d�
¼ ðm�N;� sinh�ÞLij � ðNK��m

�m�ÞLij þOðL2Þ;

where each term is evaluated at the midpoint of the geo-
desic. But since � ¼ OðdL=d�Þ, we see that the first term
is of order OðL2Þ and thus

dLij

d�
¼ �ðNK��m

�m�ÞLij þOðL2Þ: (3.1)

Notice that m� is the unit tangent vector at the midpoint of
the geodesic that joins i to j and thus we have

m�Lij ¼ x
�
j � x

�
i þOðL3Þ: (3.2)

So, if we put �x�ij ¼ x�j � x�i we can rewrite (3.1) as

dL2
ij

d�
¼ �2NK���x

�
ij�x

�
ij þOðL3Þ: (3.3)

B. The second variation

Once again we use the basic definition of the extrinsic
curvature to express the terms appearing in the second
variation in an ADM form. We will do the calculations
by splitting our previous expression for the second varia-
tion (2.5) into the following pieces:

d2Lij

d�2
¼ J1 þ J2 þ J3 þ J4;

J1 ¼ ½��
;��

�m��ji ;
J2 ¼ �

Z j

i
R����m

�m�����ds;

J3 ¼
Z j

i
��;��

�
;�m

�m�ds;

J4 ¼ �
Z j

i
ðm�m

���
;�Þ2ds:

1. The second term

We start with this term as it requires very little work. We
simply substitute �� ¼ Nn� and approximate the integral
via a midpoint rule leading to

FIG. 3. This is a situation that we explicitly exclude. In this
case the points i and j are so far apart that the geodesic intersects
the Cauchy surface at points other than i and j. In this case �i and
�j have the same signs, contrary to the assumptions made in the

text.
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J2 ¼ �
Z j

i
R����m

�m�����ds

¼ �N2R����m
�m�n�n�Lij þOðL2Þ:

2. The fourth term

Here we use m�m���;� ¼ �NK��m
�m� þOðLÞ [the

error term arises from the n�m
� ¼ sinh� ¼ OðLÞ terms].

Thus we are led to

J4 ¼ �
Z j

i
ðm�m���;�Þ2ds

¼ �
Z j

i
ð�NK��m

�m� þOðLÞÞ2ds
¼ �ðNK��m

�m�Þ2Lij þOðL2Þ

¼ � 1

Lij

�
dLij

d�

�
2 þOðL2Þ;

where we have used (3.1) in the second-to-last line.
The remaining terms are not so easily dealt with.

3. The third term

For the third term the details are as follows:

J3 ¼
Z j

i
��;��

�
;�m

�m�ds

¼
Z j

i
ðN;�n� þ Nn�;�ÞðN;�n

� þ Nn�;�Þm�m�ds

¼
Z j

i
ð�ðN;�m

�Þ2 þ N2n�;�n
�
;�m

�m�Þds

¼
Z j

i
ð�ðN;�m

�Þ2 þ ð?ðN;�Þn� þ K��Þð?ðN;�Þn�
þ K�

�Þm�m�Þds

¼
Z j

i
ð�ðN;�m

�Þ2 þ N2K��K
�
�m

�m� þOðLÞÞds:

The error termOðLÞ in the last line arises from terms of the
form n�m

� ¼ sinh� ¼ OðLÞ. Now we use the midpoint

rule, once again, to obtain

J3 ¼
Z j

i
��;��

�
;�m

�m�ds

¼ �ðN;�m
�Þ2Lij þ N2K��K

�
�m

�m�Lij þOðL2Þ:

4. The first term

Finally, we turn to the first term ½��
;��

�m��ji . Using the
same substitutions as we have used before and also using
Nn�N;� ¼ dN=d�, we obtain

J1 ¼ ½��
;��

�m��ji ¼
�
1

N

dN

d�
��m�

�
j

i
þ ½NN;�m

��ji :

We choose to write this result as a sum of two terms each of

the form ½� � ��ji so that we can deal with each term sepa-
rately. In the first term we have ð1=NÞdN=d�, which varies
slowly over the short geodesic and thus may be taken as a
constant [plus an error term of order OðLÞ]; thus we have

�
1

N

dN

d�
��m�

�
j

i
¼ 1

N

dN

d�
½��m��ji þ ½��m��jiOðLÞ

¼ 1

N

dN

d�

dLij

d�
þOðL2Þ:

For the second term we use a Taylor series expansion

½NN;�m
��ji ¼

d

ds
ðNN;�m

�ÞLij þOðL2Þ
¼ ðNN;�m

�Þ;�m�Lij þOðL2Þ
¼ ðN;�m

�Þ2Lij þ NN;��m
�m�Lij þOðL2Þ:

The appearance of the term N;�� is encouraging—it re-

minds us of the similar term in the ADM equations. We can
improve on this situation. Notice that m0� ¼ m� þOðLÞ
and thus

N;��m
�m� ¼ N;��m

0�m0� þOðLÞ:
However, m0� is tangent to �; thus we also have

N;��m
�m� ¼ Nj��m0�m0� þOðLÞ

¼ Nj��m�m� þOðLÞ;
where the vertical stroke denotes covariant differentiation
with respect to the 3-metric intrinsic to �.
Combining these two results we obtain our final estimate

for the first term in the second variation

½��
;��

�m��ji ¼
1

N

dN

d�
þ ðN;�m

�Þ2Lij

þ NNj��m�m�Lij þOðL2Þ:
Now we can reassemble the pieces. The result is

d2Lij

d�2
¼ 1

N

dN

d�

dLij

d�
� 1

Lij

�
dLij

d�

�
2

þ N2K��K
�
�m

�m�Lij þ NNj��m�m�Lij

� N2R����m
�m�n�n�Lij þOðL2Þ:

We are almost finished; we just need to do a little bit of
tidying up. We multiply both sides by Lij=N and noting

that

d2L2
ij

d�2
¼ 2

�
dLij

d�

�
2 þ 2Lij

d2Lij

d�2
;

d

d�

�
1

N

dL2
ij

d�

�
¼ � 1

N2

dN

d�

dL2
ij

d�
þ 1

N

d2L2
ij

d�2
;

we can rewrite the above equation as
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d

d�

�
1

N

dL2
ij

d�

�
¼ 2Nj���x�ij�x

�
ij þ 2NðK��K

�
�

� R����n
�n�Þ�x�ij�x�ij þOðL3Þ;

(3.4)

where we have also used �x�ij ¼ m�Lij þOðL3Þ.
For a review, see Eq. (3.3) for the result we previously

obtained for the first time derivative.

IV. THE ADM EVOLUTION EQUATIONS: PART 2

This completes the first stage of the construction. We
have successfully expressed the first and second variations
in terms of the extrinsic and Riemann curvatures. Our
second and final stage will, among other things, introduce
the metric tensor as a replacement for the geodesic ar-
clengths. As we shall soon see, this is not a difficult task.
The most notable change is not in the symbols, from L2

ij to

g��, but in the structure of the equations. We will be

reworking an equation defined over a geodesic segment
into a new equation defined at a point.

Consider a typical geodesic segment with end points i
and j. The timelike worldlinesCi andCj generated by i and

j are, by assumption, orthogonal to the Cauchy surfaces.
Thus we can use these curves to propagate the spatial
coordinates of each Cauchy surface forward in time. This
means that the spatial coordinates of any point on Ci are
constant along Ci and thus 0 ¼ d�x

�
ij=d�.

We now introduce the metric by estimating Lij using a

midpoint rule for
R
ds,

Lij ¼
Z j

i

�
g��

@x�

@�

@x�

@�

�
1=2

Md�

¼
�
g��

@x�

@�

@x�

@�

�
1=2

MþOðL2Þ;

where each term on the right-hand side is evaluated at the
midpoint of the geodesic. But we have previously shown
(2.1), (2.2), and (3.2) that @x�=@� ¼ m�Lij ¼
�x

�
ij þOðL3Þ. We can use this to estimate L2

ij as

L2
ij ¼ g���x

�
ij�x

�
ij þOðL3Þ:

We can go one step further by noting that g�� ¼ h�� �
n�n� and n��x

�
ij ¼ Lij sinh� ¼ OðL2Þ and thus to lead-

ing order in L we have

g���x
�
ij�x

�
ij ¼ h���x

�
ij�x

�
ij þOðL4Þ;

which, when substituted into the above, leads to

L2
ij ¼ h���x

�
ij�x

�
ij þOðL3Þ: (4.1)

It is now just a short step to the finish line. First substitute
(3.3) into (3.4) and then (4.1) into (3.3) and finally take the
�x

�
ij terms out through the time derivatives. Then notice

that the �x�ij are arbitrary and that the coefficients of

�x
�
ij�x

�
ij are symmetric in �� and purely spatial. This

allows us to cancel the �x� from both sides of the equa-
tions after which we can safely let L ! 0 (the details of
this series of substitutions and eliminations are excluded as
they follow very standard lines). As expected the final
result is nothing other than the familiar ADM evolution
equations with a zero shift vector

dh��

d�
¼ �2NK��;

dK��

d�
¼ �Nj�� � NðK��K

�
� � R����n

�n�Þ:

APPENDIX A: THE FIRST VARIATION

We know that the mixed partial derivatives of x�ð�;�Þ
must commute; thus we must have

��
;��

� ¼ ��
;��

�;

and for a symmetric connection (which we are using) we
also have

��
;��

� ¼ ��
;��

�;

which can be reexpressed, in terms of the unit vectors n�

and m�, as

ðNn�Þ;�ðMm�Þ ¼ ðMm�Þ;�ðNn�Þ: (A1)

Finally, as the vectorm� is the unit tangent to an� ¼ const
geodesic, we have

0 ¼ m�
;�m

�;

and

0 ¼ @2x�

@�2
þ ��

��

@x�

@�

@x�

@�
:

Wewill use the above equations frequently in the following
discussions.
Here we consider the geodesic arclength and its first

time derivative,

Lij ¼
Z 1

0

ds

d�
d� ¼

Z 1

0

�
g��

@x�

@�

@x�

@�

�
1=2

d�;

dLij

d�
¼ d

d�

Z 1

0

ds

d�
d� ¼

Z 1

0

@

@�

�
g��

@x�

@�

@x�

@�

�
1=2

d�:

Note that the path x�ð�;�Þ in each of these integrals is a
geodesic and that � is constant along the geodesic. The
second integral in the last equation above can be readily
evaluated using standard techniques (expand the � deriva-
tive, swap orders of mixed derivatives, integrate by parts,
and impose the geodesic equation). The result is

dLij

d�
¼ 1

Lij

�
g��

@x�

@�

@x�

@�

�
j

i
¼ ½m��

��ji ;

where we have taken the small liberty of replacing the
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limits 0 and 1 with the more suggestive labels i and j. This
is an elegant result—it shows that for a geodesic segment,
dLij=d� can be computed from data defined only at the

end points of the geodesic. This may seem simple but it
hides a significant complexity—the data involved can only
be found by solving a two-point boundary value problem.

Despite this compact and elegant form for the first time
derivative, we will now develop an alternative integral
expression that happens to be better suited to our later
calculations of the second time derivative. Consider for
the moment the quantity Q defined by

Q ¼
Z j

i
m�m

�ðNn�Þ;�ds;

with the integration path being, as expected, an � ¼ const
geodesic. We will now show that Q ¼ dLij=d�. We begin

by writing ds ¼ ðds=d�Þ ¼ Md� and using the commuta-
tion relation (A1) to obtain

Q ¼
Z j

i
m��

�ðMm�Þ;�d�:

Now expand the covariant derivative and use 1 ¼ m�m
�

and 0 ¼ m�m
�
;� to obtain

Q ¼
Z j

i
��M;�d� ¼

Z j

i

@

@�

�
ds

d�

�
d�

¼ d

d�

Z j

i

ds

d�
d� ¼ dLij

d�
:

Thus we have shown Eq. (2.4). Our challenge now is to
compute the second time derivative. This proceeds in a
manner similar to Eq. (2.4) though it is a tad lengthy.

APPENDIX B: THE SECOND VARIATION

To compute the second derivative we need only apply
d=d� to (2.4). This leads to

d2Lij

d�2
¼ d

d�

Z j

i
m�m

���
;�ds

¼
Z j

i

@

@�
ðm�m

���
;�MÞd�

¼
Z j

i
ðm��

�
;��

�Þ;���d�

¼
Z j

i
ðm�;��

�
;��

� þm��
�
;�;��

�

þm��
�
;��

�
;�Þ��d�:

Wewill apply various manipulations to the three main parts
of this integral and we will make extensive use of the
geodesic equations, 0 ¼ m�

;�m
�, the commutation rela-

tions, ��
;��

� ¼ ��
;��

�, and the observations that m� is a

unit vector along the geodesic.

We start by splitting the above integral into three pieces

I1 ¼
Z j

i
m�;��

�
;��

���d�;

I2 ¼
Z j

i
m��

�
;�;��

���d�;

I3 ¼
Z j

i
m��

�
;��

�
;��

�d�;

which we will now attempt to simplify.
Integral I1: Put �

� ¼ m�M and m�;�M ¼ ðm�MÞ;� �
m�M;� and then use the commutation rule on ��;��

� to

obtain

I1 ¼
Z j

i
��;��

�
;�m

�m�Md��
Z j

i
m�M;��

���
;�m

�d�:

Consider the second integral in this pair and denote it by I4.
Since m� is a unit vector we can slide a factor of m�m

�

inside M;�, like this

I4 ¼
Z j

i
m�ðm�m

�MÞ;�����
;�m

�d�

¼
Z j

i
m�ðm�;�m

�Mþm�ðm�MÞ;�Þ����
;�m

�d�:

The termm�;�m
� is zero sincem� is a unit vector while the

remaining term is ripe for a commutation operation. This
leads to

I4 ¼
Z j

i
m�m��

�
;�m

�M��
;�m

�d�

¼
Z j

i
ðm�m

���
;�Þ2Md�:

So our final expression for I1 is

I1 ¼
Z j

i
ð��;��

�
;�m

�m� � ðm�m
���

;�Þ2ÞMd�:

Integral I3: We step out of sequence here because one
term arises in this computation that will be useful when we
tackle the second integral I2.
This integral is slightly easier to work with than the first

integral and it will give rise to the Riemann tensor. The
main device used here is to swap the order of the second
partial derivatives on��

;�;� balanced by the addition of the

Riemann tensor. Thus we have

I3 ¼
Z j

i
m��

�
;�;�m

���Md�

¼
Z j

i
m�ð��

;�;� þ R�
	���

	Þm���Md�

¼ I5 �
Z j

i
R����m

�m�����Md�;

where we have introduced a fifth integral,
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I5 ¼
Z j

i
m��

�
;�;�m

���Md�:

Integral I2 þ I5: As we shall soon see, the integrand for
I2 þ I5 can be combined to form a total derivative and thus
the integration is trivial. We start by forming the sum I2 and
I5

I2 þ I5 ¼
Z j

i
ð��;��

�
;�m

�m� þ ��
;�;�m��

�m�Þds;

where ds ¼ Md�. By careful inspection of the integrand,
while noting the geodesic conditions, 0 ¼ m�

;�m
�, it is not

hard to see that the integrand can also be written as
ð��

;��
�m�Þ;�m�. Thus we have

I2 þ I5 ¼
Z j

i
ð��

;��
�m�Þ;�m�ds ¼ ½��

;��
�m��ji :

Our job is done, and all of the integrals have been evaluated
as far as possible—all that remains is to combine the above
results. This leads to Eq. (2.5).This last integral can be
simplified slightly by introducing

v� ¼ �� � �	m
	m�;

which leads to

d2Lij

d�2
¼ ½��

;��
�m��ji �

Z j

i
R����m

�m�����ds

þ
Z j

i
v�;�v

�
;�m

�m�ds:
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