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We generalize Bowen-York black hole initial data to hyperboloidal constant mean curvature slices

which extend to future null infinity. We solve this initial value problem numerically for several cases,

including unequal mass binary black holes with spins and boosts. The singularity at null infinity in the

Hamiltonian constraint associated with a constant mean curvature hypersurface does not pose any

particular difficulties. The inner boundaries of our slices are minimal surfaces. Trumpet configurations

are explored both analytically and numerically.
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I. INTRODUCTION

For asymptotically flat spacetimes, gravitational radia-
tion is well-defined only at future null infinity (Iþ) [1–3].
Consequently, numerical relativists extracting gravita-
tional waves from binary black hole simulations ideally
would like to include Iþ in their computational domains,
so that the Bondi news function [1,4] (which contains the
gravitational wave information) can be computed.
Additionally, extending the simulation to Iþ would make
it unnecessary to deal with gravitational wave extraction at
a finite distance, or with artificial outer boundaries on a
truncated domain, two very complicated aspects of black
hole simulations (see, e.g. [5–14]).

Null infinity can be included in the computational do-
main via a compactified radial coordinate on the null
hypersurfaces of the characteristic initial value problem
[15], but the null hypersurfaces are subject to caustic
singularities, particularly in the strong fields around black
holes. The caustics can be avoided by Cauchy-
characteristic matching, but an appealing alternative is
solving the Cauchy problem on conformally compactified
hyperboloidal spacelike slices. These behave like conven-
tional 3þ 1 slicing in the vicinity of the sources, but
smoothly become asymptotically null as they approach
null infinity at a finite coordinate distance [16–18].
Friedrich [17] derived a system of symmetric hyperbolic
evolution equations based on the Bianchi identities for the
conformal Weyl tensor which are regular at null infinity on
hyperboloidal hypersurfaces provided certain smoothness
conditions are satisfied. This system has been used with
some, but limited, success in numerical calculations (see,
e.g. [19]). More recently, evolution schemes have been
proposed which directly evolve the conformal metric and
the conformal factor through the conformally compactified
Einstein equations on hyperboloidal hypersurfaces [20,21].
They are not manifestly regular at Iþ, but in [21],
Moncrief and Rinne derive regularity conditions based on
the constraint equations which deal successfully with the

singularity of the conformal factor at Iþ and can be
imposed in a numerical implementation.
Numerical evolution schemes on hyperboloidal hyper-

surfaces extending to Iþ require initial data. The initial
value problem on asymptotically null hyperboloidal con-
stant mean curvature (CMC) slices turns out to be remark-
ably similar to the corresponding problem on
asymptotically flat zero mean curvature slices, and can be
attacked similarly to the well-known conformally flat
Bowen-York [22] initial data. (The Bowen-York initial
data presented in [22] also forms the basis of puncture
data [23]1). Therefore, in this paper, we shall refer to the
initial data constructed as hyperboloidal Bowen-York data.
There are four main points to this paper: (i) to lay down

the formalism for constructing hyperboloidal Bowen-York
black hole initial data on CMC slices containing one or
more black holes with arbitrary masses, spins and boosts;
(ii) to give rules for choosing the various free parameters
entering the formalism; (iii) to understand the physical
meaning of the free parameters; and (iv) to discuss the
physical interpretation of the constructed solutions, which
is different for CMC slices than for traditional maximal
slices.
Part of the initial data construction is the numerical

solution of an elliptic equation arising from the
Hamiltonian constraint. On hyperboloidal slices, this equa-
tion is formally singular at the outer boundary Iþ.
Nevertheless, the employed spectral elliptic solver [24]
does not exhibit any problems while computing the
solution.
Our initial data is formulated with a singularity-avoiding

minimal surface boundary condition, on an Einstein-Rosen

1Puncture data differs from inversion symmetric data in the
handling of the black hole singularities; we do not discuss the
puncture treatment of singularities on CMC slices, although all
our results concerning the constraint equations will carry over to
such a treatment.
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bridge connecting two asymptotically flat ends. In the limit
in which the conformal radius approaches zero, a ‘‘trum-
pet’’ configuration is formed in which the Einstein-Rosen
bridge becomes infinitely long in proper distance.
Hyperboloidal slicings that contain trumpets have been
examined in Refs. [25,26]. Trumpet initial data is of inter-
est to numerical relativists using the moving puncture
approach [27,28] because puncture initial data evolve
quickly toward a trumpet configuration [29–31].

The organization of this paper is as follows: Sec. II
presents and analyzes the formalism for constructing hy-
perboloidal Bowen-York initial data. Specifically, Sec. II A
presents the initial value formalism on CMC slices and
Sec. II B gives the particulars in the special case of a
Schwarzschild black hole. Section II C discusses the pa-
rameter space yielding a minimal surface at the inner
boundary of a Schwarzschild black hole in CMC slicing.
Section II D presents the construction of initial data for
single black holes, with and without Bowen-York spin and
boost parameters. The physical interpretation of the
Bowen-York parameters is also discussed. In Sec. II E,
the methods presented for single black holes are general-
ized to multiple black holes. Section II F details the solu-
tion to the Hamiltonian constraint equation when the inner
boundary is a trumpet. Section III presents our numerical
solutions for hyperboloidal Bowen-York initial data.
Specifically, Secs. III A, III B, and III C give solutions for
single black holes that are spherically symmetric, spinning,
or boosted, respectively. Section III D presents numerical
results for two unequal mass black holes with arbitrarily
oriented spins and boosts. Finally, Sec. IV discusses our
results. An Appendix is included, in which conditions are
derived for inversion symmetry on both CMC and maximal
slices.

II. ANALYTICS

A. Initial value formalism on CMC slices

With a standard 3þ 1 decomposition [32,33], the space-
time metric is written as

ds2 ¼ ��2dt2 þ gijðdxi þ �idtÞðdxj þ �jdtÞ; (1)

where gij represents the induced metric on the t ¼ const

hypersurface �t, � the lapse-function and �i the shift-
vector. The extrinsic curvature is defined as

K‘m � 1
2Lð4Þng‘m; (2)

where Lð4Þn is the Lie derivative along the hypersurface

unit-normal ð4Þn�. In Eq. (2), as throughout this paper, we
employ the sign convention of Wald [34], resulting in a
positive mean curvature K � gijK

ij for the cases consid-

ered. This sign convention differs from the conventions of
Misner, Thorne, and Wheeler [35], which are more com-
monly used in numerical relativity (as, for instance, in
Ref. [36]).

Einstein’s vacuum constraint equations are

R þ K2 � KijK
ij ¼ 0; (3)

and

rjðKij � gijKÞ ¼ 0; (4)

whereri is the covariant derivative with respect to gij, and

R is the Ricci scalar associated with gij.

We now perform a conformal transformation which
plays a dual role. On one hand, it allows a conformal
compactification (Penrose [37]), placing Iþ at a finite
value of a compactified radial coordinate, absorbing the
resulting metric singularities into the conformal factor. On
the other hand, it allows the Einstein constraints to be
recast as elliptic equations following the standard proce-
dure of the conformal method [38,39].
The conformal metric ~gij and conformal factor � are

given by

gij ¼ ��2~gij; gij ¼ �2~gij: (5)

The conformal metric is assumed to be regular at Iþ in
compactified coordinates. This implies that � ¼ 0 at Iþ
since, in compactified coordinates, the physical metric is
singular there. Comparing Eq. (5) with the more widely
used definition gij ¼ c 4~gij, we see that � ¼ c�2. The

advantage of the definition (5) is that� is finite at Iþ. The
equations in the rest of this section mirror the standard
conformal method [38,39], with the replacement � $
c�2.
The trace-free extrinsic curvature is defined as

Aij ¼ Kij � 1
3g

ijK; (6)

where Kij ¼ gi‘gjmK‘m. The physical trace-free extrinsic

curvature Aij and its conformal counterpart ~Aij are related
by

Aij ¼ �~Aij; Aij ¼ �5 ~Aij: (7)

Substituting Eq. (6) into Eq. (4) and using the CMC
condition rjK ¼ 0 gives

rjA
ij ¼ 0: (8)

This can be rewritten as

�5 ~rj
~Aij ¼ 0; (9)

where ~ri is the covariant derivative with respect to ~gij.

Because of the CMC condition, the momentum constraint
has decoupled from the Hamiltonian constraint, and can be
solved first. Standard methods for solving the momentum
constraint are given in Ref. [40]. In this paper, we assume a
flat conformal metric ~gij.

Substituting the solution ~Aij of the momentum con-
straint into the Hamiltonian constraint (3) and expressing
it in terms of conformal quantities, one finds
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~r 2�� 3

2�
ð~r�Þ2 þ�

4
~Rþ K2

6�
��5

4
~Aij

~Aij ¼ 0:

(10)

Here ~r2 denotes the covariant Laplacian with respect to ~gij
and ~R is the scalar curvature of ~gij. Note that some terms

in Eq. (10) are singular at Iþ where� ¼ 0. Assuming ~Aij

is finite at Iþ, any regular solution satisfying the boundary
condition

�jIþ ¼ 0 (11)

must also satisfy

ð~r�Þ2jIþ ¼
�
K

3

�
2
: (12)

B. The Schwarzschild black hole in CMC slicing

Let us now discuss this initial value formalism in the
particular case of a Schwarzschild black hole, recasting
already established results [41–43] in our language. In
spherical coordinates ðr; �; �; tÞ, with t constant on CMC
slices and r the areal radius, the metric is given by [41–43]

ds2 ¼ �
�
1� 2M

r

�
dt2 þ 1

f2
dr2 � 2a

f
dtdr

þ r2ðd�2 þ sin2�d�2Þ; (13)

where the functions f ¼ fðrÞ and a ¼ aðrÞ are

fðrÞ ¼
�
1� 2M

r
þ a2

�
1=2

; aðrÞ ¼ Kr

3
� C

r2
: (14)

With these definitions, aðrÞ ¼ ð4Þnr, where ð4Þnr is the

radial component of the hypersurface-normal ð4Þn�. The
constant M is the mass of the black hole. The constant C
represents an additional one-parameter degree of freedom
in the choice of spherically symmetric CMC hypersurfaces
in the Schwarzschild metric. The lapse-function � of the
metric (13) equals f, and the only nonvanishing component
of the shift is �r ¼ �af.

The coordinate transformation between Schwarzschild
coordinates ðr; �; �; TÞ and the CMC coordinates
ðr; �; �; tÞ (again, see [41–43]) is

t ¼ T �
Z aðrÞ

ð1� 2M
r ÞfðrÞ

dr

¼ uþ
Z dr

ð1� 2M
r Þ

�
Z aðrÞ

ð1� 2M
r ÞfðrÞ

dr; (15)

where u is the Eddington-Finkelstein retarded null coor-
dinate. With K > 0, constants of integration can be chosen
so that t ! u as r ! 1.

The hypersurfaces �t of constant coordinate value twill
play a central role in this paper. For K ¼ 0, these hyper-
surfaces extend to spacelike infinity. For K � 0, �t be-
comes asymptotically null for large radius. If K > 0, this

hypersurface intersects future null infinity, because 1=f !
0 and a=f ! þ1 in the limit r ! 1. For K < 0, it inter-
sects past null infinity. We are interested in hypersurfaces
approaching future null infinity, and will therefore require

K > 0 (16)

throughout this paper.
The constant C determines whether the �t hypersurface

intersects the black hole horizon or the white hole horizon.
Considering radial null rays on the horizon, r ¼ 2M, we
find that for

C> 8
3KM

3; (17)

�t intersects the black hole horizon (i.e. ð4Þnr < 0 for r �
2M). If the inequality is reversed, the hypersurface enters
the white hole region, where the light cone is tilted toward
increasing r, and excision is not possible without allowing
causal propagation from the excision boundary to the in-
terior of the computational domain.
As with any spherically symmetric metric, a radial

coordinate transformation r ! R ¼ RðrÞ can be used to
make the spatial sector of Eq. (13) conformally flat, i.e.
��2½dR2 þ R2ðd�2 þ sin2�d�2Þ�. Here,

� ¼ R

r
; (18)

and R is determined by the ordinary differential equation

dR

dr
¼ R

rf
: (19)

Because f� r for large r, R remains finite as r ! 1.
Denoting its limiting value by Rþ, we find

RðrÞ
Rþ

¼ exp

�
�
Z 1

r

dr0

r0fðr0Þ
�
: (20)

As r ! 1 (or equivalently R ! Rþ), � ! 0, in agree-
ment with the boundary condition Eq. (11).
Finally, transforming ðR; �;�Þ to Cartesian coordinates

xi, we can express the space-time metric Eq. (13) as

ds2 ¼ ��2½�~�2dt2 þ �ijðdxi þ ~�idtÞðdxj þ ~�jdtÞ�:
(21)

Here the conformal lapse ~� and conformal shift ~�i are
given by

~� ¼ �f and ~�i ¼ ��ani; (22)

where ni ¼ xi=R. Because �� Rþ=r whereas f� a� r

as r ! 1, ~�, and ~�i are finite at Iþ. Therefore, the
conformal space-time metric inside the square brackets in
Eq. (21) is regular, in addition to its spatial part being flat.
The trace-free extrinsic curvature of the�t hypersurface

in the coordinates ðt; xiÞ takes the form Aij ¼ �5 ~Aij, with

~A ij ¼ C

R3
ð3ninj � �ijÞ: (23)
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The sign difference in Eq. (23) relative to earlier work [e.g.
Eq. (52d) of [36]] arises because of the different sign-
convention for Aij [see the discussion after Eq. (2)]. The

conformal trace-free extrinsic curvature satisfies the mo-
mentum constraint Eq. (9). Indices on conformal spatial

tensors such as ~Aij are raised or lowered with the confor-
mal spatial metric; in our coordinates, this is simply the
Kronecker delta, so the components of such tensors are
identical irrespective of the index location.

We finish this section by noting that Eq. (20) determines
only RðrÞ=Rþ; the freedom remains to rescale R by a real
constant �,

R ! �R: (24a)

This rescaling induces further rescalings,

� ! ��; (24b)

~A ij ! ��3 ~Aij; (24c)

~A ij ! ��3 ~Aij: (24d)

Equations (24) represent a coordinate transformation and
do not affect the physical initial data. For the zero mean
curvature case, K ¼ 0, the hypersurface asymptotes to
spatial infinity, where it is natural to impose the boundary
condition� ! 1, so R=r ! 1 as R ! 1. With K > 0, the
coordinate scale is set by the arbitrary choice of the value
of R at future null infinity, Rþ. Only after the Hamiltonian
constraint is solved can R and � be rescaled to make the
maximum value of� equal one. If K is very close to zero,
this rescaling makes � very close to the K ¼ 0 solution
almost everywhere.

C. Minimal surfaces and trumpets

Later in this paper, we will construct black hole initial
data with minimal surface boundary conditions in the
interior of the black hole(s). As preparation, let us discuss
the presence and location of minimal surfaces in the hyper-
surfaces �t of the metric Eq. (13). Our treatment here
extends earlier similar discussions [41–43].

The sphere r ¼ const is a minimal 2-sphere within �t if
the function f defined in Eq. (14) vanishes. This can be
seen most easily by noting that r is the areal radius, and that
from Eq. (19), dr=dR ¼ fr=R, which vanishes for f ¼ 0.
For any values M> 0, K and C, fðrÞ> 0 for r > 2M.
Furthermore, the inequalities Eqs. (16) and (17) imply
that f is strictly positive, f > 0, at the black hole horizon
r ¼ rH � 2M. Therefore, a minimal surface in �t will
always lie inside the horizon, if it exists.

Vacuum general relativity possesses a rescaling free-
dom, and this freedom will be inherited by the function f
and any equations that describe minimal surfaces. The
most common way to incorporate this freedom is to rescale
all dimensionful quantities by the mass M. In particular,

Eq. (14) can be written in terms of the dimensionless
variables r=M, KM, and C=M2 as

f2 ¼ 1� 2

r=M
þ

�ðKMÞðr=MÞ
3

� C=M2

ðr=MÞ2
�
2
: (25)

Using M to make dimensionless variables is fine for
Schwarzschild, but in the absence of spherical symmetry,
the mass M is not known in advance. On CMC hyper-
surfaces, K is a free parameter and can be used to form an
alternative and more widely applicable set of dimension-
less variables, Kr, K2C, and KM, such that

f2 ¼ 1� 2KM

Kr
þ

�
Kr

3
� K2C

ðKrÞ2
�
2
: (26)

A minimal surface at radius rms satisfies

1� 2KM

Krms

þ
�
Krms

3
� K2C

ðKrmsÞ2
�
2 ¼ 0: (27)

This equation will play a central role in the remainder of
this section.
Figure 1 plots f2 for different values of C=M2 for a fixed

value of KM. For large C=M2 (or equivalently K2C), no
root and no minimal surface exists. At some critical value
CT=M

2
T, f touches zero, indicated by the filled circle. For

C=M2 <CT=M
2
T, minimal surfaces exist at radii rms=M, as

indicated by the open circles in Fig. 1. The critical value
CT=M

2
T delineates the region of parameters for which �t

contains a minimal surface. At this critical point, f varies
linearly in r� rT, passing through zero at rT. From
Eq. (13), the radial proper separation within the slice is
ds ¼ dr=f. Because f vanishes linearly at rT, this point is
an infinite proper distance away from any point r > rT: this
configuration is often called a trumpet [26,29–31]. In con-

321

-0.2

0

0.2

0.4

0.1 0.2 0.3

r/M

K r

C/M
2
=3,  K

2
C=0.03

2,  0.02

1.419,  0.01419

1,  0.01 0.3,  0.003

FIG. 1 (color online). Radial function fðrÞ for different values
of K and C. Plotted is the square f2 for KM ¼ 1=10 and several
different choices for C. Each curve is labeled by its value of
C=M2 and its value for K2C. The bottom axis shows radius in
units of r=M, and the top axis in units of Kr.
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trast, away from the critical point (i.e. at the open circles in
Fig. 1), f approaches zero proportionally to

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� rms

p
, and

the proper distance to the minimal surface is finite.
For trumpets, f2 ¼ 0 and @rf

2 ¼ 0; the parameter val-
ues that lead to trumpets can be written down in terms of
the areal radius of the trumpet, rT:

KTMT ¼ 2rT=MT � 3

ðrT=MTÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrT=MTÞð2� rT=MTÞ

p ; (28a)

CT

M2
T

¼ ðrT=MTÞ2ð3� rT=MTÞ
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðrT=MTÞð2� rT=MTÞ
p ; (28b)

where 3=2< rT=MT < 2.
The preceding discussions determine the region of pa-

rameters M, K, C, for which minimal surfaces exist.
Taking the scaling invariance into account, this region
can be represented on a two-dimensional plot as given in
Fig. 2. The blue solid and red dashed lines in the top panel,
for instance, are given by a parametric plot of Eqs. (28) and
(17). The unshaded wedge-shaped region between these
two lines represents the allowed parameter choices which
lead to a CMC hypersurface containing a minimal surface
and intersecting the black hole.

Alternatively, one can compute trumpet-configurations
using the dimensionless variables indicated in Eq. (26).

From the equations f2 ¼ 0 and @rf
2 ¼ 0, one eliminates

KM to obtain a third order polynomial that relates KTrT
and KTC

1=2
T . This polynomial has only one positive real

root, which for K2
TCT < 2=3 can be written as

ðKTrTÞ2 ¼
3
2K

2
TCT

cos½13 arccosð32K2
TCTÞ�

: (29)

For K2
TCT > 2=3, the trigonometric functions in Eq. (29)

should be replaced by their hyperbolic counterparts. To
find the trumpet solution, substitute KTrT back into
Eq. (26):

KTMT ¼ KTrT
2

�
1þ

�
KTrT
3

� K2
TCT

ðKTrTÞ2
�
2
�
: (30)

Substituting KTrT from Eq. (29), KTMT is a function of
K2

TCT alone. Finally, dividing Eq. (29) by Eq. (30) yields
the value of rT=MT. All these parameters for trumpet
hypersurfaces are plotted in Fig. 3. To make easy contact
with dimensionless quantities normalized by M, the top

horizontal axis of this plot is labeled by KM. For KC1=2 �
1, the data plotted in the lower panel of Fig. 3 is propor-

tional to KTC
1=2
T :

KTrT ¼ 31=4KTC
1=2
T þOððK2

TCTÞ3=2Þ; (31)

KTMT ¼ 2

33=4
KTC

1=2
T þOðK2

TCTÞ: (32)

For given choices K and K2C, minimal surfaces only
exist at radii rms larger than rT given by Eq. (29). This is
indicated by the solid blue line in the lower panel of Fig. 2.

0 0.5 1 1.5
0

1

2

3

4

KM

C
/M

2

no minimal
surface

hypersurface
intersects white hole

0.01 0.1 1

0.01

0.1

1

K C
1/2

K
 r

m
s

no minimal
surface

hypersurface
intersects white hole

FIG. 2 (color online). Parameter choices that result in hyper-
surfaces �t containing a minimal surface. The two panels
correspond to two different choices of dimensionless variables.
Parameter values on the blue solid lines represent trumpet
configurations.

1.2
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0.001 0.01 0.1 1

r
T
 / M

T

C
T
/M

T
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0.001 0.01 0.1 1 10

0.01

0.1
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10
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T
 r

T
K

T
M

T

K C
1/2

K M

FIG. 3 (color online). Properties of the trumpet hypersurfaces,
parametrized by the dimensionless parameter KC1=2.
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To obtain an upper limit on Krms, we recall that all
minimal surfaces must lie inside the horizon, rms < rH ¼
2M. Combining this with Eq. (17) results in

Krms < 2MK < ð3K2CÞ1=3; (33)

which is indicated by the red dashed line in the lower panel
of Fig. 2.

Finally, Fig. 4 presents another view of the two-
dimensional set of ‘‘good’’ parameter choices that we first
indicated in Fig. 2. As in the lower panel of Fig. 2, we shall

use KC1=2 to parametrize the horizontal axis. However, we
use Eq. (20) in the form

ln
Rms

Rþ
¼ �

Z 1=ðKrmsÞ

0

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 � 2KMu3 þ ð13 � K2Cu3Þ2

q
(34)

to convert the vertical axis to the ratio Rms=Rþ of confor-
mal radius of the minimal surface and the conformal radius
of Iþ. Figure 4 shows the following data: First, the thick
black line corresponds to parameters for which the mini-
mal surface coincides with the black hole horizon. Setting
Krms ¼ 2KM in Eq. (27) and solving for Krms shows that
this line is parametrized by

Krms ¼ ð3K2CÞ1=3; (35)

with Krms mapped to Rms=Rþ by Eq. (34). The red dashed
lines are contours of constant values KM. Each of these
lines is obtained by keeping KM fixed and varying Krms

between its lower bound, the trumpet value KTrT [obtained
from inverting Eq. (28a)] and its maximal value 2KM. For
each choice of KM and Kr, Eq. (27) is solved for K2C, and
the resulting data plotted as a parametric plot. Finally, the
thin blue lines in Fig. 4 represent lines of constant ratio
Krms=ð2KMÞ ¼ rms=rH � �, i.e. lines where the areal
radius of the minimal surface is a fixed fraction of the
areal radius of the horizon. Replacing Krms by 2�KM in

Eq. (27), we can solve for KC1=2 as a function of KM. The
thin blue lines are then obtained as a parametric plot

ðKC1=2; KrÞ as KM is varied.
Trumpet initial conditions are obtained from Fig. 4

through the limit Rms=Rþ ! 0, i.e. by going ‘‘down.’’
Note that the red KM ¼ const contours become vertical

in this limit. Their value as a function of KC1=2 is then
given in the lower panel of Fig. 3.
The significance of the axes employed in Fig. 4 is that

both axes represent quantities that are freely specifiable
when constructing CMC hypersurfaces within the initial

0.0001 0.001 0.01 0.1 1

10
-4

10
-2

10
-1

MK = const
r
ms

 / r
H

 = const
R
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/R

AH
=const

K C
1/2

R
m

s / 
R

+

0.3

0.9
99

9

0.03

0.01

0.003

0.1

0.9
9

0.9
99

0.9
5

0.8
0

0.7
7 0.76

0.9

0.5

0.1

0.0
1

0.0
01

FIG. 4 (color online). Properties of CMC hypersurfaces viewed in the Rms=Rþ vs KC1=2 plane. CMC hypersurfaces with a minimal
surface must lie below the thick black line, and as this line is approached, the minimal surface approaches the black hole horizon. The
dashed red lines are lines of constantMK, with values given by the red numbers next to the lines. The thin blue lines represent constant
values of � ¼ rms=rH . The shaded areas are contours of constant value of Rms=RAH; the shade of grey changes, from top to bottom, at
values 0.9, 0.5, 0.1, 0.01, and 0.001. Trumpet hypersurfaces represent the limit Rms=Rþ ! 0.
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value formalism of general relativity. One use of Fig. 4 is to
first pick values of K and M, fixing a particular contour of
KM. One then chooses how trumpetlike the initial con-
ditions should be; that is, how far to go down along the
contour. Alternatively, one can choose a certain ratio � ¼
rms=rH. In either case, one can then read off the corre-

sponding values of Rms=Rþ and K
ffiffiffiffi
C

p
to get the remaining

initial value parameters.

D. CMC initial data for single black holes

The properties of CMC slices of the Schwarzschild
spacetime, as described in Secs. II B and II C, mesh nicely
with the conformal method of solving the Einstein con-
straint equations, which was outlined in Sec. II A. We shall
first discuss the spherically symmetric case, for which
there is a one-to-one correspondence. Subsequently, we
will generalize to a single spinning or boosted black hole.

1. Spherical symmetry

The CMC metric is conformally flat, so we shall use a
flat conformal metric for the initial value problem,

~g ij ¼ fij; (36)

where fij is the flat space metric. The extrinsic curvature of

the CMC metric has the correct scaling with conformal
factor [compare Eqs. (7) and (23)], so we shall adopt
Eq. (23) as the freely specifiable trace-free extrinsic curva-
ture, with the constant C yet to be determined. The radial
coordinate R ranges from a finite value Rþ representing Iþ
to some smaller value, for instance Rms at a minimal
surface (assuming a minimal surface exists), so we shall
adopt a computational domain with inner radius R1 and
outer radius R2. At Iþ, the conformal factor vanishes,
resulting in the boundary condition

� ¼ 0; R ¼ R2; (37)

which identifies R2 with Rþ. At the inner boundary, we
shall impose a minimal surface boundary condition,

d�

dR
¼ �

R
; R ¼ R1; (38)

so that R1 will coincide with Rms.
With the choices Eqs. (36)–(38), we are now left with

choosing the four numbers fK;C; R1; R2g. Solution of the
Hamiltonian constraint Eq. (10) will then result in a com-
plete initial data set with a certain mass M. Figure 4 is
useful for informed choices for the numbers fK;C; R1; R2g.
For instance, we can first decide on a massM (say,M ¼ 1)
and a mean curvature K (say, K ¼ 0:01). This selects one
of the red dashed curves in Fig. 4. We can now choose a
suitable value of rms=rH by considering the intersection of
the red dashed lines with the blue contours (say, rms=rH ¼
0:9), and read off the values for KC1=2 and Rms=Rþ (in our

example KC1=2 ¼ 0:0105, Rms=Rþ ¼ 0:000 554), which

determine the values for C and R1=R2. An overall scaling
of R1 and R2 remains, because the coordinate transforma-
tion r ! R for CMC slices is determined only up to an
overall rescaling [see the discussion after Eq. (20)]. Thus,
we are free to set, for instance, R1 ¼ 1.

2. Single black hole with spin and boost

A relatively simple class of nonspherically symmetric
initial data on maximal slices, with K ¼ 0, was proposed
by Bowen and York [22,44]. It assumes conformal flatness

of the spatial metric and a solution ~Aij of the conformal

momentum constraint Eq. (9) characterized by a ‘‘spin’’
vector Si and two ‘‘boost’’ vectors Pi, Qi. On the asymp-
totically flat maximal slices, with the boundary condition
� ! 1 at spatial infinity, Si is in fact the physical angular
momentum and Pi is the physical linear momentum of the
system, as defined by Arnowitt-Deser-Misner (ADM) sur-
face integrals at spatial infinity [32]. The second boost
vector Qi is introduced to allow for inversion symmetry
about a minimal surface, and can be thought of as the three-
momentum of the black hole as viewed from the asymp-
totically flat space on the other side of the Einstein-Rosen
bridge associated with the minimal surface.
Since Eq. (9) is linear and identical on maximal and

CMC slices, we can add the Bowen-York terms to Eq. (23)
with the result2:

~Aij ¼ C

R3
½3ninj � �ij� � 3

R3
½"ik‘Skn‘nj þ "jk‘S

kn‘ni�

� 3

2R2
½Pinj þ Pjni þ Pknkðninj � �ijÞ�

þ 3

2R4
½Qinj þQjni þQknkð�ij � 5ninjÞ�: (39)

Here ni is a unit three-vector in the outward radial direc-
tion. The coefficient C of the spherically symmetric first
term has been normally taken to be zero in papers on the
initial value problem on maximal hypersurfaces. In this

paper, we refer to ~Aij given above in Eq. (39) as the

generalized Bowen-York solution.

Note that ~Aij is not invariant under the rescaling of R
[see Eqs. (24)]. A scale-invariant effective source term in
Eq. (10) is

R6 ~Aij
~Aij � WðR; �; ’Þ: (40)

The properties of W are important for determining ques-
tions such as the inversion symmetry of the hypersurface
about the minimal surface (see the Appendix). Also, the
invariance of W under the rescaling freedom R ! �R
implies that the parameters must scale as

2The sign differences between Eq. (39) and earlier papers arise
because of the different sign convention for Aij [see Eq. (2)].
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C ! C; Si ! Si; Pi ! ��1Pi; Qi ! �Qi:

(41)

The physical interpretation of the Bowen-York parame-
ters is not necessarily the same on CMC hypersurfaces as
on maximal hypersurfaces. CMC hypersurfaces are not
asymptotically flat. Identification of the physical energy,
linear momentum, and angular momentum of the system
on asymptotically null hypersurfaces is a nontrivial matter,
in general [45]. In particular, the scaling dependence of the
boost parameters means that these cannot be interpreted as
physical momenta.

One can argue that in the limit of smallK and C (KM �
1 and C� ð8M2=3ÞðKMÞ � 1), the geometry in the vicin-
ity of the black hole should be similar to that of solutions of
the zero mean curvature initial value problem found, for
example, by Cook [46,47]. For hyperboloidal slices, the
conformal factor � is generally approximately constant at
intermediate distances, �M � R � �=K. (As can be
seen in Fig. 7, � is smaller near and inside the black
hole, where �� R=M, and decreases toward zero ap-
proaching Iþ, �<KR.) These intermediate distances
are sufficiently close to the black hole that the CMC slice
still resembles a maximal slice, but far enough away to be
considered in the asymptotic regime. If R is rescaled such
that � � 1 in this intermediate regime, then the ADM
formulas for energy, linear momentum, and angular mo-
mentum should be at least roughly valid. Therefore, one
might identify the scaling invariant�maxP

i as a quasilocal
linear momentum and Si as a quasilocal angular momen-
tum. However, these ‘‘quasilocal’’ values may not match
the correct physical values at future null infinity if gravi-
tational radiation is present outside the plateau region. As a
surrogate for the mass of the black hole, we use the
‘‘irreducible mass’’ Mirr, defined in the usual way from
the area of the apparent horizon AAH,

Mirr � AAH

16	

� �
1=2

: (42)

If the initial data is axisymmetric, then the physical
angular momentum can be calculated precisely using stan-
dard techniques. The generalized Bowen-York solution for
a single black hole is axisymmetric provided that the boost
is zero or aligned with the spin vector. Then the coordinates
can be chosen so that only the z components of the spin and
boost vectors are nonzero. The solution for the conformal
factor will be axisymmetric for our minimal surface inner
boundary condition, since the minimal surface is assumed
to be a coordinate sphere. Choose spherical polar coordi-
nates ðR; �; ’Þ in the conformal flat space, so that the axial
Killing vector ! 
 ¼ @=@’. Then the Komar angular
momentum within a coordinate sphere is

J ¼ 1

8	

Z 	

0

Z 2	

0
�

ffiffiffi
g

p

R;td�d’

¼ � 1

8	

Z 	

0

Z 2	

0

~AR
’R

2 sinð�Þd�d’ ¼ Sz: (43)

In much of the earlier work on maximal hypersurfaces,
considerable emphasis has been placed on obtaining
inversion-symmetric solutions of the initial value problem
(see [22,48,49]). Given a minimal surface at R ¼ Rms,
inversion symmetry requires that �ðR; �; ’Þ ¼
ðRms=RÞ2�ðR2

ms=R; �; ’Þ. Solutions of Eq. (10) for �
with minimal surface boundary conditions can be contin-
ued with inversion symmetry to R< Rms if and only if W
as defined in Eq. (40) is inversion symmetric. For C ¼ 0,
the usual story is that the boost terms are inversion sym-
metric if Qi ¼ �R2

msP
i, with only the minus sign appli-

cable if spin is also present. We show in the Appendix that
with C � 0, inversion symmetry requires the plus sign
when only boost is present, and that no inversion symmetry
is possible with both boost and spin unless the boost and
spin vectors are colinear. Inversion symmetry is desirable
primarily for simplifying excision boundary conditions
during evolution. On CMC hypersurfaces, the generic
absence of inversion symmetry requires rethinking how
excision will be handled, and it may be desirable to just
set Qi ¼ 0, as also done in [23].
The location of the apparent horizon relative to the

minimal surface is an important issue. The inner boundary
of the computational domain should be inside the apparent
horizon. In spherical symmetry, the apparent horizon will
always be outside or on the minimal surface, provided that
a solution of the Hamiltonian constraint exists. However, in
the presence of a boost, the apparent horizon can straddle
the minimal surface [47]. Care should be taken in the
choice of Rms as the boost is increased, in order to avoid
this problem.

E. Multi-black hole solutions

The goal of this section is to construct a CMC hyper-
surface with N black holes, with masses (approximately)

M�, Bowen-York parameters ~P� and ~S� at coordinate
locations ~c�. Here � labels the black holes.
The setup for single black holes in Sec. II D can be

generalized by choosing one excision boundary for each
black hole, with radius R� centered at ~c�. Because the
momentum constraint is linear, the extrinsic curvature can
be taken as the superposition of N copies of Eq. (39), each
one centered at the appropriate ~c�,

~A ij ¼
X
�

ð ~A�C
ij þ ~A�P

ij þ ~A�Q
ij þ ~A�S

ij Þ: (44)

If the black holes are sufficiently widely separated, and if
the outer boundary is sufficiently far away, we expect that
close to each of these black holes, the solution is a pertur-
bation of the single black hole case.
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In the asymptotically flat case, the conformal factor is
close to unity, except very close to each black hole.
Therefore, the coordinate distance j ~c� � ~c�j between the

black holes � and � is a convenient and reasonably accu-
rate approximation of the proper separation between the
black hole horizons. Because of the rescaling freedom
discussed in Eqs. (24), � may not be close to unity on
the hyperboloidal slices considered here, and therefore the
coordinate distance may deviate significantly from the
proper separation.

There is only one global value K and one value Rþ for
the whole multiblack hole configuration, whereas each
black hole has its ‘‘own’’ constants C�, R�, as well as
Pi
� and Si�. Therefore, the interesting question arises of

how to use C� and R� to control properties of the individ-
ual black holes, for instance their masses, given fixed
values for K and Rþ. Assuming that the presence of Pi

�

and Si� will only mildly perturb the case of the spherically
symmetric black hole, we can use Fig. 4 to address this
question. A given K and a (desired) value for M ¼ M�

places the solution on a particular KM ¼ const contour.
Given a desired value for � � rms=rH, a unique point in
this figure is determined, and one can read off Rms=Rþ and

KC1=2 and then compute R� ¼ Rms and C� ¼ C.
This procedure can be simplified in the particularly

interesting limit KM � 1. Consider a minimal surface
with 3=4< rms=rH � � < 1, and with a given value of
KM. Substituting KM and Krms ¼ 2�KM into Eq. (27),
one can solve for K2C and compute C. The result is

C � gCð�ÞM2; KM � 1 (45)

with gCð�Þ ¼ 4�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� �2

p
. We also find numerically that

Rms

Rþ
� gRð�ÞKM; KM � 1: (46)

Therefore, if one knows the coefficients gC and gR for the
desired ratio � ¼ rms=rH, one can immediately compute
the values for C and Rms=Rþ from Eqs. (45) and (46).
These coefficients gCð�Þ and gRð�Þ are plotted in Fig. 5.

F. Trumpet inner boundary

In the absence of spherical symmetry, a trumpet solution
of the Hamiltonian constraint equation can be understood
as the limit Rms ! 0. That is, the Hamiltonian constraint
Eq. (10) is solved with the boundary condition @�=@R ¼
�=R at R ¼ 0. The consequence of this boundary condi-
tion is that� ¼ 0 and�=R is finite at R ¼ 0, which in turn
means that the proper distance from finite R to R ¼ 0,R
R
0 dR=�, is infinite. In this section, we show how the

singularities in the equation determine the nonsingular
solution at the trumpet inner boundary and derive the
behavior of the solution close to the trumpet boundary.

Note that a necessary condition for a nonsingular solu-
tion is that the second ‘‘boost’’ vector Qi ¼ 0. Otherwise,
the W source term in the Hamiltonian constraint blows up

atR ¼ 0. This is a very reasonable condition which follows
automatically from inversion symmetry in the limit Rms !
0 (see the Appendix), and reflects the fact that the other
side of the Einstein-Rosen bridge is infinitely far away
from any point with R> 0.
We begin by rewriting Eq. (10) with U � �=R as the

dependent variable. The new form of the equation is

R2 @
2U

@R2
þ 4R

@U

@R
þ 2Uþ �̂U

¼ 3

2U

��
Uþ R

@U

@R

�
2 þ r̂U 	 r̂U�

�
K

3

�
2 þ 1

6
U6W

�
;

(47)

where �̂ is the Laplacian operator and r̂ the gradient
operator on the unit two-sphere, and W is defined by
Eq. (40). We have assumed a conformally flat spatial
metric.
Now let U ¼ U0ð�;’Þ þ R�U1ð�; ’Þ þ . . . and W ¼

W0ð�;’Þ þ RW1ð�; ’Þ þ . . . . From the expression for W
in Eq. (A2), we see that

W0 ¼ 6ðC2 þ 3sin2ðc ÞSiSiÞ (48)

for any boost Pi, where c is the angle with the spin
direction, equal to � if the spin is along the polar axis.
Unless the boost is nonzero,W ¼ W0 at all R andW1 ¼ 0.
In zeroth order, we get

�̂U0 ¼ � 1

2
U0 þ 3

2U0

�
r̂U0 	 r̂U0 �

�
K

3

�
2 þW0U

6
0

�
;

(49)
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FIG. 5 (color online). The functions gC and gR, which are the
asymptotic values of C=M2 and Rms=ðRþKMÞ in the limit
KM ! 0. These functions are useful for choosing excision
radius and C when constructing CMC initial data for black holes
with given K, M, and outer boundary radius Rþ.
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which has a unique solution regular everywhere on the unit
sphere for any K > 0, any value of C> 0, and any spin
vector Si. Uniqueness can be demonstrated using a method
of Moncrief [50] applied to the quasilinear form of the
equation obtained by the change of variable U0 ! 1=V2.

In the absence of spin, U0 is independent of angle and
U2

0 is the solution of the cubic equation

C2ðU2
0Þ3 � 1

3U
2
0 � ðK3Þ2 ¼ 0: (50)

The only positive real root if 3K2C=2 � 1 is

U2
0 ¼

2

3C
cos

�
1

3
cos�1

�
3

2
K2C

��
: (51)

The trigonometric functions are replaced by the corre-
sponding hyperbolic functions if 3K2C=2 
 1.

The next-to-leading terms in Eq. (47) give an equation
for U1:

�̂U1 � 3
r̂U0 	 r̂U1

U0

þ
�
�2 þ 1� 3

2
W0U

4
0 þ

�̂U0

U0

�
U1

¼ 3

2
U5

0W1R
1��: (52)

If W1 � 0, the solution of the inhomogeneous equation
with � ¼ 1 gives the leading contribution to U1. There is
also a unique lowest value of� for which the homogeneous
equation has a nontrivial solution regular everywhere on
the unit sphere. This solution to the homogeneous equa-
tion, times R�, will, with a coefficient undetermined by the
trumpet boundary condition, contribute to U�U0. The
coefficient is fixed by the requirement that the global
solution for � satisfy the � ¼ 0 boundary condition at
future null infinity.

If the spin is zero,W0 ¼ 6C2 and the homogeneous � is
the solution of the algebraic equation

�2 þ 1 ¼ 9C2U4
0 ¼ 4cos2½13cos�1ð32K2CÞ�: (53)

In the range 0 � 3K2C=2 � 1 of most interest, Eq. (53)

implies
ffiffiffi
2

p � � � ffiffiffi
3

p
. For larger K2C, the trigonometric

functions are replaced by hyperbolic functions and � con-
tinues to increase.

In practical terms, there is very little difference between
a solution satisfying the exact trumpet boundary condition
and a solution satisfying the minimal surface boundary
condition with a very small, but nonzero, Rms. Very small
means that Rms=RAH � 1. For the Schwarzschild case,
Rms=Rþ should be far below the heavy black line in Fig. 4.

Finally, all of this discussion has been in the context of
single black holes. With multiple black holes, each trumpet
boundary must be treated separately and matched to the
global solution on a surface surrounding the black hole.
The analysis right at the trumpet boundary is not affected
by the presence of other black holes, since the R6 factor in
W kills the finite contribution of the other black holes to the
conformal traceless extrinsic curvature at R ¼ 0.

III. NUMERICAL RESULTS

In this section, we numerically construct a variety of
hyperboloidal initial data sets using the generalized
Bowen-York solution. These results are obtained with a
pseudospectral elliptic solver that is part of the Spectral
Einstein Code, SpEC. This solver is described in detail in
Ref. [24]. The desired solution is expanded in terms of
spherical harmonics and Chebyshev polynomials.
Truncation at some finite expansion order results in an
algebraic system of equations for the expansion coeffi-
cients or, equivalently, for the values of the solution at
the collocation points. This system is solved with a
Newton-Raphson technique, employing the precondi-
tioned generalized minimal residual method (GMRES)
[51] to solve the linearized system of equations at each
iteration using the software package PETSC [52–54]. The
SpEC elliptic solver has been used on a wide variety of
formulations of the initial value problem (see, e.g. [55,56]),
including puncture initial data [57,58] (which also uses the
Bowen-York extrinsic curvature). Below, we present re-
sults of convergence tests of our initial data.

A. Spherical symmetry

As a first test, we reproduce the analytically known
spherically symmetric solutions discussed in Sec. II B, us-
ing the numerical approach described in Sec. II D 1. We
chooseM ¼ 0:85, K ¼ 0:1, rms=rH ¼ 0:8, and Rþ ¼ 100.
The relations shown in Fig. 4 then imply C ¼ 1:0086 and
Rms ¼ 0:127. From these numbers, only K, C, Rms ¼ R1,
and Rþ ¼ R2 are used in the numerical solution; the other
numbers are used only when computing the analytical
solution with which to compare. Figure 6 shows conver-
gence of the numerical solution to the analytic solution.

0.1 1 10 100

R

1e-15

1e-12

1e-09

1e-06

|∆
Ω

|

NR = 34

NR = 48

NR = 62

NR = 76

NR = 90

FIG. 6 (color online). Convergence of the numerical solution
of the Hamiltonian constraint for a Schwarzschild black hole.
Plotted are five different resolutions NR, where NR is the number
of radial collocation points. Solid lines show the difference from
the analytic solution, dotted lines the difference from the nu-
merical solution at the next higher resolution. The highest
resolution has NR ¼ 104.
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The solid lines plot the differences between the numeri-
cally determined � and the analytic solution of Eq. (34)
computed with MATHEMATICA. As we increase the resolu-
tion of the elliptic solver, we find exponential convergence
to the analytic solution. For the generic examples consid-
ered later in this paper (which include spin, boost, and two
black holes), no analytic solutions are known. Therefore, in
Fig. 6, we also present an estimate of the numerical error
which does not rely on knowledge of the analytic solution.
Specifically, the dotted lines show the differences between
the numeric solutions at two successive resolutions. As can
be seen, these track very closely the error obtained from
comparing the lower resolution run to the analytic solution.

In our second example, we explore a solution which is
very close to the trumpet configuration. Recall that for a
trumpet, for R close to R ¼ 0, the solution behaves as� ¼
U0R withU0 given in Eq. (51). We choose parameters C ¼
1, K ¼ 0:1, Rms ¼ 10�6, and Rþ ¼ 100 which, as can be
seen from Fig. 4, result in an inner boundary which is very
close to the trumpet limit. Because application of the
minimal surface condition in this case proved numerically
problematic (presumably due to dividing by the very small
number Rms), we use the Dirichlet condition � ¼ U0Rms

at the inner boundary.
The numerical solution of the Hamiltonian constraint

equation for this example is shown in Fig. 7. One sees that
in the region 10�6 � R � 1, the conformal factor � is
proportional to R, with U0 the constant of proportionality.
Furthermore, within this range of conformal radius, the
proper area of coordinate spheres (4	r2, where r is the
Schwarzschild radius) is approximately constant, which is
consistent with the long cylinder of the trumpet. The

location of the apparent horizon rH ¼ 2M ¼ 1:69 is shown
as a vertical dashed line in this figure.

B. Single spinning black hole

Here, we construct a single spinning black hole, with no
boosts. We take the Bowen-York spin parameter Si ¼
ð0; 0; SÞ and solve the Hamiltonian constraint for the con-
formal factor �, with varying S. The solution is axisym-
metric, so Si represents the total angular momentum of the
black hole (see Sec. II D 2).
In the absence of boosts, W [Eq. (40)] reduces to W0 as

defined by Eq. (48), with c ¼ �. The radial behavior of�
will be rather similar to the spherically symmetric solution
with the same parameters as long as the spherically sym-
metric C2 is replaced by the solid angle average of W=6,
which we denote by

C2
eff � C2 þ 2S2: (54)

We use S=Ceff as a dimensionless measure of the impor-

tance of spin. Note that 0 � S=Ceff < 1=
ffiffiffi
2

p
as S=C varies

from zero to infinity. We find that the irreducible mass
varies less with spin keeping Ceff constant than when
keeping C constant, particularly for large spins, as shown
in Fig. 8. The constant values ofC andCeff are 1.0086, with
K ¼ 0:1, Rms ¼ 0:127, and Rþ ¼ 100.
In Fig. 9, we study how the nonzero spin distorts the

intrinsic geometry of the apparent horizon and compare the
results to an analogous distortion computed from the ana-
lytic Kerr solution. The solid lines of Fig. 9 show the

maximum and minimum of the Ricci scalar ð2ÞRM2
irr com-

puted from the 2-metric induced on the apparent horizon of
the spinning black hole. The dashed lines show the maxi-
mum and minimum values calculated from the analytic
Kerr solution, taken from Eq. (B1) of Ref. [58]. Note that
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FIG. 8 (color online). Irreducible mass versus dimensionless
spin for a single black hole spinning around the z-axis.
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FIG. 7 (color online). Numerical solution for a Schwarzschild
black hole with the inner boundary very close to the trumpet
limit. The dashed red line shows the conformal factor�, and the
solid blue line shows the Schwarzschild radius (calculated from
the proper area of coordinate spheres) as a function of the
conformal radius. The dotted black line is U0R, which equals
� for a trumpet, with U0 given in Eq. (51). The vertical dashed
line locates the apparent horizon.
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deviations from 0.5 are deviations from a spherical geome-
try. We see that the apparent horizon distortion is much less
for our conformally flat initial data than it is for Kerr. The
CMC data plotted in Fig. 9 is the same shown in Fig. 8,

with the CMC curves terminating at maxðS=CeffÞ ¼ 1=
ffiffiffi
2

p
.

The horizontal axis in Fig. 9 is the spin-extremality
parameter

� ¼ S

2M2
irr

(55)

as introduced in Ref. [58]. A maximally spinning Kerr
black hole has � ¼ 1, and the CMC sequence considered
here allows values as large as � � 0:78. In Sec. IV, we shall
place this number into the context of results on zero mean
curvature slices.

C. Single boosted black hole

Next, we construct single, nonspinning, boosted black
holes. We shall vary Pi and shall choose Qi ¼ þR2

msP
i, in

order to make the black hole spacetime inversion symmet-
ric (see the Appendix for details). As we vary the boost, we
keep the irreducible mass of the constructed black holes
constant by a suitable choice of Rms. Specifically, Mirr ¼
0:85 and the remaining CMC parameters are chosen to be
Rþ ¼ 100, K ¼ 0:1, and C ¼ 1:0086.

First, we compare initial data sets for an unboosted black
hole and for a boosted black hole with P�max=Mirr ¼ 1:77.
Figure 10 shows the coordinate locations of both the
apparent horizon and the minimal surface for these two
cases. The apparent horizon remains an approximate coor-
dinate sphere, although its coordinate radius is reduced

(recall that Mirr is identical for the boosted and unboosted
data set, which was achieved by reducing Rms for the
boosted case). Furthermore, the apparent horizon is offset
from the excision sphere in a direction opposite to the
boost Pi, analogous to the behavior of asymptotically flat
inversion symmetric Bowen-York initial data [47].
To investigate the intrinsic geometry of the apparent

horizon for the boosted black hole, we compute the Ricci

scalar ð2ÞRM2
irr from the 2-metric induced on the apparent

horizon. Figure 11 plots this quantity; it is axisymmetric
(as it must be), is maximum at the poles along the z-axis
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FIG. 10 (color online). Coordinate locations of the apparent
horizons and minimal surfaces, cut through the x-z plane, for a
nonspinning, unboosted black hole (solid black circles), and for a
nonspinning black hole boosted in the z direction (dashed red
circles).

FIG. 11 (color online). 2D Ricci scalar on the apparent horizon
surface of a black hole with �maxP=Mirr ¼ 1:77. In this view, a
wedge-shaped region has been removed from the front.
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FIG. 9 (color online). Dimensionless scalar curvature of the
apparent horizon versus spin for a single black hole. The solid
lines are the maximum and minimum numerical values com-
puted on CMC slices. The dashed lines are the maximum and
minimum analytic values for a Kerr black hole (these lines
continue to the maximal Kerr value � ¼ 1, where the maximum
and minimum are 2 and �1=2, respectively).
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and minimum along the equatorial region. (Recall that
ð2ÞRM2

irr ¼ 0:5 for a spherical geometry.) The numerically

computed spin of this black hole is indeed zero, to machine
precision.

Figure 12 shows the minimum and maximum of 2RM2
irr

as the boost parameter is varied in the range 0 �
�maxP=Mirr � 6:87. The minimum and maximum values
of 2RmaxM

2
irr when �maxP=Mirr ¼ 1:77 agree with those

shown in Fig. 11.

D. Binary black hole initial data

To demonstrate the generality of the approach that we
have presented, we shall construct initial data for two black
holes with mass-ratio approximately 2:1 and nonzero,
arbitrarily oriented Bowen-York spin and boost parame-
ters. First we describe how we obtain input parameters for
the elliptic solver corresponding to our particular physical
parameters. First, we choose � � rms=rH ¼ 0:8, which
singles out a particular line of constant � in Fig. 4, for
each black hole. Next, we pick KM for each black hole so
that (i) its minimal surface is at least partially down the
throat of the trumpet, which is near the turnover of the � ¼
0:8 curve and (ii) Eqs. (45) and (46) hold, i.e. before the
turnover. With these criteria in mind, we choose K (a
global parameter) to be 0.05 and the masses of black holes
A and B to be, respectively, MA ¼ 2=3 and MB ¼ 1=3.
Finally, from Eq. (46) and Fig. 5, we find Rms=Rþ ¼ 8:1�
10�4 for hole A and Rms=Rþ ¼ 4:1� 10�4 for hole B.

We fix the overall length scale by setting Rþ ¼ 300.
This places the excision radii at Rms ¼ 0:244 and 0.122 for
holes A and B, respectively, and the apparent horizon radii
RAH � 1 (because from Fig. 4, Rms=RAH � 0:2). The co-

ordinate locations of the two holes are then chosen to be
ðxA; yA; zAÞ ¼ ð10; 0; 0Þ and ðxB; yB; zBÞ ¼ ð�20; 0; 0Þ, and
the center of mass of the holes is at the origin of the
coordinate system.
We take the spins to be SiA ¼ ð0; 0; SAÞ and SiB ¼

ðSB; 0; 0Þ. Since we are adding significant spins, it is nec-
essary to set Ceff [defined in Eq. (54)] equal to gCM

2 for
each hole, giving 0.569 for hole A and 0.142 for hole B. We
take SA ¼ 0:4 and SB ¼ 0:1, then giving CA ¼ 0:0613 and
CB ¼ 0:0128.
We take the boost parameters of the two black holes to

be equal and opposite in the y direction, with magnitude
PA ¼ PB ¼ 0:067. This gives approximate speeds of vA ¼
�maxPA=MA ¼ 0:24 and vB ¼ �maxPB=MB ¼ 0:48, with
MA ¼ 2=3 andMB ¼ 1=3 as given above. With CA and CB

not equal to zero, and Pi not colinear with Si, inversion
symmetry is not possible (refer to the Appendix). Thus, we
set Qi

A ¼ Qi
B ¼ 0.

Figure 13 shows exponential convergence of the volume
L2-norm of the residual for the solution � of the elliptic
solver in this example, as the resolution of the numerical
grid is increased. In addition, we have calculated the
irreducible masses of the two holes and find values of
0.53 for hole A and 0.27 for hole B. This gives a mass
ratio of 1.96.
Figure 14 shows the conformal factor on the full com-

putational domain for the mass ratio 2:1 boosted, spinning
binary black holes described above. The dark blue color at
the outer edge shows that � ¼ 0 at null infinity (to ma-
chine precision). In the middle, there is a pronglike feature,
the tips of which are the two black holes. It is evident that
the conformal factor becomes quite small in the vicinity of
the two black holes.
Since our calculation of input parameters assumes

spherical symmetry when our holes in fact have appre-
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FIG. 13 (color online). Convergence of the elliptic solver for
the unequal mass binary black hole example shown in Fig. 14.
Shown is the volume L2-norm of the residual of � as N is
increased, where N is the cube root of the total number of
collocation points.
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FIG. 12 (color online). Dimensionless intrinsic geometry of
the apparent horizon (2D Ricci scalar, times the irreducible mass
squared) versus P�max=Mirr for a single nonspinning black hole,
with the ratio RAH=Rms kept fairly constant. Shown are the
maximum and minimum numerical values computed on CMC
slices.
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ciable spins and boosts, one expects the irreducible masses
to differ somewhat from the values used for calculating the
input parameters. This is indeed what we find (0.53 vs 0.67
for hole A and 0.27 vs 0.33 for hole B). Finally, we find that
the intrinsic geometry of each hole is distorted by the same
amount. In particular, the minimum and maximum values

of ð2ÞRM2
irr are, respectively, 0.37 and 0.54 for each hole.

IV. DISCUSSION

In this paper, we have considered the conformal method
on CMC hyperboloidal slices, focusing on generalizing the
traditional Bowen-York data. There are two key aspects
that make Bowen-York data easy to construct. First, for
constantmean curvature (no matter whetherK ¼ 0 orK �
0), the momentum constraint decouples from the
Hamiltonian constraint, and the former can be solved first.
Second, with conformal flatness, the momentum constraint
simplifies to such an extent that analytical solutions are
known: the symmetric, trace-free, divergence-free tensors
with appropriate radial fall-off. Interestingly, the second
aspect carries over from zero mean curvature to nonzero
mean curvature, with the conformal factor now playing the
dual role of turning the Hamiltonian constraint into an
elliptic equation as well as compactifying Iþ. The general
Bowen-York conformal traceless extrinsic curvature still
solves the momentum constraint analytically, where the
only change necessary is the addition of a spherically
symmetric divergence-free tensor [the first term in
Eq. (39)].

Compared to the zero mean curvature case as usually
formulated, the hyperboloidal initial value problem has

more free parameters, most notably the constants K (the
mean curvature) and C (the coefficient of the spherically
symmetric contribution to the conformal traceless extrinsic
curvature), though a nonzero C is also consistent with zero
mean curvature. Both these constants, as well as the mini-
mal surface coordinate radius, have to be chosen carefully,
and a significant portion of Sec. II is devoted to working
out permissible choices, and their consequences on the
initial data under construction.
As in the zero mean curvature case, hyperboloidal

Bowen-York initial data trivially extends to multiple black
holes with different spin and boost parameters for each
black hole. Once again, one must be careful to choose the
constants C (one for each black hole) and the radii of the
excision boundaries, and Sec. II E gives simple rules how
to do this. However, it is worth noting one significant
difference. A single black hole must be centered at the
origin of the conformal coordinates on a CMC hypersur-
face to be precisely Schwarzschild, since the outer bound-
ary condition is imposed at a finite coordinate radius. A
displaced black hole is not spherically symmetric.
For hyperboloidal slices, the elliptic equation for the

Hamiltonian constraint, Eq. (10), is singular at the outer
boundary Iþ, where� ! 0. Perhaps surprisingly, we have
not encountered any difficulties when numerically solving
this equation, for either single or binary black hole initial
data. This is without any attempt to isolate and explicitly
cancel the singular terms in the equation at future null
infinity, as was advocated in [18]. We suspect that the
absence of numerical difficulties is related to the simple
Dirichlet boundary condition�jIþ ¼ 0, and to the fact that
the singular terms force the solution to also satisfy the von
Neumann condition ð@�=@RÞIþ ¼ �K=3, which follows
from Eq. (12), implying spherical symmetry to at least first
order in an expansion away from null infinity. The freedom
in the solution at the outer boundary necessary to accom-
modate a global solution of the elliptic equation also
satisfying an inner boundary condition at Rms resides in a
higher order term in the expansion of � away from Iþ.
Our spectral code never evaluates the Hamiltonian con-
straint Eq. (10) right at Iþ. Rinne [59] has also had no
difficulty in solving the same elliptic equation with a finite
difference code, as part of a constrained evolution scheme
on CMC hypersurfaces [21].
The Hamiltonian constraint equation is also singular at

the inner boundary in the special case of a trumpet, for
which � ¼ 0 at R ¼ 0. This is a more challenging nu-
merical problem, as discussed in Sec. II F. Singular terms
include some inside the Laplacian operator. Their cancel-
lation again uniquely determines the normal derivative of
� there, but now that will have angular dependence if the
spin is nonzero. The solution does not have a simple
expansion in integral powers of R at the boundary, which
makes it more of a challenge for our spectral methods to
have the accuracy required to deal with the singularities in

FIG. 14 (color online). Conformal factor � for a spinning,
boosted binary black hole, with mass ratio 2:1. The inner
boundaries are the minimal surfaces of the two black holes,
and the outer boundary is null infinity. The maximum of � is
red, and equals 2.38. The minimum is dark blue, which is zero to
machine precision.
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the equation. Still, we were able to approach very close to
the trumpet limit, at least in the spherically symmetric
case, by using the analytic solution for �=R at the bound-
ary to formulate the boundary condition as a Dirichlet
condition on � at a small, but nonzero, R and by adding
extra collocation points near the boundary. If need be,
reformulating the Hamiltonian constraint as an equation
for �=R, as in Eq. (47), in a domain near the inner
boundary and explicitly canceling the singular terms at
the boundary should make it possible to manage exact
trumpet boundary conditions numerically.

One interesting aspect of hyperboloidal Bowen-York
data lies in the physical interpretation of the spin parameter
Si and the boost parameter Pi. On asymptotically flat
hypersurfaces (i.e. K ¼ 0), one can evaluate the ADM
integrals and find that the Bowen-York parameter Pi agrees
with the ADM linear momentum, and that Si agrees with
the ADM angular momentum. For hyperboloidal slices, the
ADM formulas are not applicable. Nevertheless, a single
unboosted spinning black hole, because it is axisymmetric,
has a well-defined angular momentum which agrees with
the spin parameter Si [see Eq. (43)]. The relationship of the
boost parameters to the linear momentum is less clear. The
conformal compactification leaves a rescaling freedom
R ! �R unspecified [see Eq. (24)], and as argued in
Sec. II D 2, the boost parameter rescales as Pi ! ��1Pi,
so that the vector Pi by itself has no physical meaning.
However, one can define a scale invariant quantity,�maxP

i,
which may be considered a ‘‘quasilocal’’ linear momen-
tum, at least when K is small. The proper interpretation of
boosts on CMC hypersurfaces requires further analysis.

When angular momentum is defined, we can consider
the question of how large spins can be constructed with
hyperboloidal Bowen-York data. In Sec. III B, we have
considered a sequence of black hole initial data with
increasing spins, and Fig. 9 shows that black holes have
been constructed with spin-extremality parameter3 � ¼
S=ð2M2

irrÞ � 0:78. In contrast, standard Bowen-York data

for a single spinning black hole allows � & 0:83 (Fig. 2 of
Ref. [58]), whereas conformally flat conformal thin sand-
wich data allows � & 0:56 along the easily accessible
lower branch of solutions, and � & 0:87 along the upper
branch (Fig. 7 of Ref. [58]). We thus see that hyperboloidal
Bowen-York initial data allows similarly large spins as the
standard Bowen-York initial data (this includes the widely
used puncture initial data [23] as a special case). We have
not tested the sensitivity of the maximum achievable � to
variations of the other Bowen-York parameters C, K, Rms

of spinning black holes, but do not expect it to be large as
long as KMirr is reasonably small.

The simplifying assumptions of Bowen-York initial data
appear to limit the ability to push towards near-extremal
spins � � 1. To construct larger spins, one would have to
give up these simplifying assumptions, most notably con-
formal flatness. An approach based on the extended con-
formal thin sandwich (XCTS) equations similar to
Ref. [58] seems very promising. Note that for the
Schwarzschild spacetime, the space-time metric can be
conformally rescaled, resulting in conformal lapse and
shift functions which are finite at Iþ [see Eq. (21)].
Thus, it seems quite likely that the XCTS equations rewrit-
ten in suitably rescaled variables can be used to construct
more sophisticated hyperboloidal initial data. The XCTS
approach has another interesting feature. In this approach,
the spins and boosts of the black holes are implemented
by boundary conditions at the black hole horizons
[36,60,61]; the region of the initial data hypersurface close
to the black holes should only be mildly affected by the
‘‘warping up’’ of the CMC hypersurface at large radii as
it approaches Iþ. Therefore, within the XCTS framework,
it might be easier to interpret a boost. This will be a topic of
future research.
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APPENDIX: THE INVERSION SYMMETRY OF
THE CMC INITIAL VALUE PROBLEM

In discussions of the conformally flat initial value prob-
lem, there has been considerable interest in inversion sym-
metric initial value data (see [62] and references therein).
The issue of inversion symmetry arises when the initial
hypersurface contains a minimal surface at a conformal
radius R ¼ Rms. As R decreases below this value, the
physical radius r increases and becomes infinite in the
limit R ! 0. The hypersurface may or may not be sym-
metric under the inversion transformation R ! R2

ms=R.
Imposing inversion symmetry on the initial data, and re-
quiring that it be preserved during subsequent evolution,

3We avoid the more widely used spin measure � ¼ S=M2,
with M the Christoudoulou mass, because � � 1 due to the
definition of the Christoudoulou mass, and because the
Christoudoulou mass only has physical meaning for Kerr black
holes.
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can lead to relatively simple excision boundary conditions
at R ¼ Rms. Inversion symmetry was discussed in the
original Bowen and York paper [22], and has been ex-
ploited in much of the numerical work based on the
Bowen-York class of solutions to the initial value problem
on maximal hypersurfaces. In this Appendix, we show that
the conditions on the solution for the conformal traceless
extrinsic curvature tensor which lead to inversion symme-
try are the same on CMC hypersurfaces as they are on
maximal hypersurfaces, noting, however, that the most
general Bowen-York solution of the conformal momentum
constraint equation does not admit inversion symmetry.

We start with the Hamiltonian constraint equation in the
form given in Eq. (47) as an equation for the scale-invariant
variableU � �=R. A rearrangement of terms gives a form
in which the possibility of inversion symmetry is manifest

R
@

@R

�
R
@U

@R

�
þ �̂Uþ 1

2
U ¼ 3

2U

��
R
@U

@R

�
2 þ r̂U 	 r̂U

�
�
K

3

�
2 þ 1

6
U6W

�
; (A1)

where �̂ is the Laplacian operator and r̂ is the gradient
operator on the unit two-sphere. The only term not obvi-
ously symmetric under the inversion transformation is the
term involving the source term W. If and only if W is
inversion symmetric, WðR; �; ’Þ ¼ WðR2

ms=R; �;�Þ, will
the solution forU, subject to the minimal surface condition
@U=@R ¼ 0 at R ¼ Rms, be inversion symmetric,
UðR; �; ’Þ ¼ UðR2

ms=R; �;�Þ.
The generalized Bowen-York solution for ~Aij is given in

Eq. (39). From this, we find

W ¼ R6 ~Aij
~Aij

¼ 9

2
R2½PkPk þ 2ðPiniÞðPjnjÞ�

þ 9

2
R�2½QkQk þ 2ðQiniÞðQjnjÞ�þ 6C2

� 9½PkQk � 4ðPiniÞðQjnjÞ�
þ 18ð"ijkSjnkÞð"imnSmnnÞ
� 18C

�
RðPknkÞ þ 1

R
ðQknkÞ

�

� 18

�
Rð"ijkPiSjnkÞ � 1

R
ð"ijkQiSjnkÞ

�
: (A2)

Under an inversion transformation, the first two terms on
the right-hand side of Eq. (A2) transform into each other
provided that Qi ¼ �R2

msP
i. The next three terms do not

depend on R and are therefore trivially inversion-
symmetric. Symmetry of the second to last square-bracket
requiresQi ¼ þR2

msP
i, while symmetry of the last square-

bracket requires Qi ¼ �R2
msP

i unless it vanishes because
the boost and spin vectors are colinear. Without any re-
strictions on the Bowen-York parameters ðC;Pi; SiÞ, there
is no choice of the Qi which guarantees an inversion-
symmetric W and therefore no guarantee of an inversion-
symmetric solution of the Hamiltonian constraint equation.
This result does not depend on the value of K. If we set
C ¼ 0, we recover the inversion symmetry result as usually
stated for maximal hypersurfaces, that the ‘‘minus’’ form
of inversion symmetry applies for general spin and boost.
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