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We present spherically symmetric boson stars as black hole mimickers based on the power spectrum of

a simple accretion disk model. The free parameters of the boson star are the mass of the boson and the

fourth-order self-interaction coefficient in the scalar field potential. We show that even if the mass of the

boson is the only free parameter, it is possible to find a configuration that mimics the power spectrum of

the disk due to a black hole of the same mass. We also show that for each value of the self-interaction a

single boson star configuration can mimic a black hole at very different astrophysical scales in terms of the

mass of the object and the accretion rate. In order to show that it is possible to distinguish one of our

mimickers from a black hole, we also study the deflection of light.
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I. INTRODUCTION

Because of a number of observations related to high
energy events, at the present time one important problem
in relativistic astrophysics is the nature of black hole
candidates (BHCs). It is usually assumed that black hole
solutions are the only models of BHCs. Nowadays there
are various new nonvacuum solutions in general relativity
for different types of matter and configurations that might
mimic a black hole, and therefore the question of whether
BHCs are black hole solutions or a different solution has
been of certain interest. Among such alternative solutions
are wormholes [1,2], gavastars [1,3–5], brane world solu-
tions [6], and boson stars (BSs) [7–9]. Astrophysical im-
plications of these solutions cannot be distinguished from
those due to black hole solutions at distances far from the
event horizon region, and thus the existence of the horizon
itself has become the subject of study of BHCs [10].

We will study various properties of black hole mimick-
ers, including the stability. For instance, the stability of the
whole set of wormhole solutions usually thought of as
mimickers is not clear; instead, the instability has been
shown for basic wormhole solutions [11–14], destroying
previous hope that these solutions could be stable as shown
in [15] for particular types of perturbations. On the other
hand, the stability of gravastars has been explored and it
has been found that there are regions of stability [3,16,17].
Also, as per boson stars, it can be said that the stability of
their solutions has actually been exhaustively studied, for
instance, using perturbative methods [18,19], catastrophe
theory [20], and full nonlinear numerical relativity, both in
spherical symmetry [19,21,22] and full 3D [23], and the
stable branches of solutions are well known.

In fact, the study of boson stars has been pushed forward
up to the binary boson star collision [24] and the nonlinear
evolution of perturbed boson stars [25], in both cases
considering the system as a source of gravitational waves.

The study of gravitational wave signatures has also been
studied in order to distinguish a black hole from a gravastar
[4]. Instead, in the case of wormholes, e.g., simple solu-
tions (supported by a phantom scalar field) could not take
the perturbative analysis, and there is no hope for the study
of a binary system because, as shown in [13], the lifetime
of these solutions is rather short and they should either
collapse and form black holes or explode before they could
merge; however, in [14] it was shown that charged worm-
holes can have a longer lifetime if the charge parameter is
adequately chosen. Concerning a potential full nonlinear
study of gravastars, the challenges are related to the evo-
lution of the fluid, and numerical methods should be able to
handle very well located distributions of matter; never-
theless, some alternative gravastarlike solutions have
been proposed to ameliorate the infinitesimally thin shell
problem by introducing anisotropies in the fluid [26]. At
the end of the day, if black hole mimickers are to be
compared from all angles with black holes, mimickers
should also be expected to do what black holes can do:
collide and generate gravitational radiation with a given
fingerprint.
The black hole mimicker models mentioned above are

usually compared using the study of the accretion of geo-
metrically thin, optically thick disk models, since they are
based on the study of timelike geodesics on a fixed back-
ground space-time. In this paper we present a set of boson
star solutions that can act as black hole mimickers based on
the same accretion disk model used for the other mimick-
ers. We show that they appear to be independent of the
astrophysical parameters related to the mass of the BHC
and the accretion rate. With these results we find that the
power spectrum obtained from this type of accretion disk
model does not suffice to distinguish a boson star from a
black hole if the boson star is chosen appropriately. This
paper is a generalization of [9], in the following sense:
(1) we show that a boson star mimicker for one BHC mass
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is also the same mimicker for other BHCmasses if we only
change the values of the boson mass, (2) we track the
mimickers for various values of the self-interaction pa-
rameter, and (3) we present the deflection of light as a
method to eventually distinguish a black hole from a boson
star.

In order to provide potential predictions that help dis-
tinguish our boson stars from a black hole, we study the
light deflection from our boson stars and from the mim-
icked black hole. Then we show that in the boson star case
there is no photon sphere, as expected, and we give the
scale at which high resolution lensing would distinguish
between the boson star and the black hole.

The paper is organized as follows: in Sec. II we present
the construction of boson star solutions. In Sec. III we
describe the disk model and the calculation of the power
spectrum. In Sec. IV we present the boson stars that are
able to mimic black holes, whereas in Sec. V we present a
prediction to falsify our model based on the deflection of
light by boson stars. Finally, in Sec. VI we draw some
conclusions.

II. SPHERICAL BOSON STARS

Boson stars are solutions to Einstein’s field equations
minimally coupled to a complex scalar field [27,28]. The
scalar field is endowed with a potential self-interaction that
guarantees a global Uð1Þ symmetry. This global phase
invariance implies the existence of a conserved charge
corresponding to the boson particle number of equilibrium
configurations. The Lagrangian density describing a com-
plex scalar field minimally coupled to general relativity
reads

L ¼ � R

2�0

þ g��@��
�@��þ Vðj�j2Þ; (1)

where �0 ¼ 8� in units where c ¼ G ¼ 1, � is the scalar
field, the star stands for the complex conjugate, and V is the
potential of the scalar field. Notice that this Lagrangian
density is invariant under the global Uð1Þ group, and the
associated conserved charge is called the number of parti-
cles (defined below). When the action is varied with re-
spect to the metric, Einstein equations arise,
G�� ¼ �0T��, where the stress-energy tensor reads

T�� ¼ 1
2½@���@��þ @��@��

��
� 1

2g��½��;��;� þ Vðj�j2Þ�: (2)

In the case of boson stars as black hole mimickers, it
suffices to consider the potential of the type Vðj�jÞ ¼
m2j�j2 þ �j�j4, where m is associated with the mass of
the boson and � to the self-interaction of the boson system.
Finally, Bianchi identities reduce to the Klein-Gordon
equation

�
h� dV

dj�j2
�
� ¼ 0; (3)

where h� ¼ 1ffiffiffiffiffi�g
p @�½ ffiffiffiffiffiffiffi�g

p
g��@���.

Boson stars are spherically symmetric solutions of the
equations above when a harmonic time dependence for the
scalar field is assumed, �ðr; tÞ ¼ �0ðrÞe�i!t, where r is
the radial coordinate and t the coordinate time. This con-
dition implies that the stress-energy tensor becomes time
independent, which in turn implies that the geometry of the
space-time is also time independent.
Boson star solutions are constructed considering the

time-independent spherically symmetric line element

ds2 ¼ ��ðrÞ2dt2 þ aðrÞ2dr2 þ r2d�2; (4)

with �ðrÞ the lapse function and aðrÞ the radial metric
function. Under these specifications, the Einstein-Klein-
Gordon equations become

@ra

a
¼ 1� a2

2r
þ 1

4
�0r

�
!2�2

0

a2

�2
þ ð@r�0Þ2

þ a2�2
0ðm2 þ ��2

0Þ
�
;

@r�

�
¼ a2 � 1

r
þ @ra

a
� 1

2
�0ra

2�2
0ðm2 þ ��2

0Þ;

@rr�0 þ @r�0

�
2

r
þ @r�

�
� @ra

a

�
þ!2�0

a2

�2

� a2ðm2 þ 2��2
0Þ�0 ¼ 0: (5)

System (5) is a set of coupled ordinary differential equa-
tions to be solved under the conditions að0Þ ¼ 1, �0ð0Þ
finite and @r�0ð0Þ ¼ 0 as a condition that guarantees the
regularity of the operators at the origin; also demand
�0ð1Þ ¼ 0 in order to ensure asymptotic flatness at infin-
ity. The problem turns into an eigenvalue problem for !,
and for a given value of the central field �0, there is a
unique!with which the boundary conditions are satisfied.
In order to get rid of the constants in the equations, we

rescale variables and constants by ~�0 ¼
ffiffiffiffi
�0

2

q
�0, ~r ¼ mr,

~t ¼ !t, ~� ¼ m
!�, and � ¼ 2�

�0m
2 . In terms of these new

constants, and after removing the tildes from the variables,
the system of equations becomes

@ra

a
¼ 1� a2

2r
þ 1

2
r

�
�2

0

a2

�2
þ ð@r�0Þ2 þ a2ð�2

0 þ��4
0Þ
�
;

@r�

�
¼ a2 � 1

r
þ @ra

a
� ra2�2

0ð1þ��2
0Þ;

@rr�0 þ @r�0

�
2

r
þ @r�

�
� @ra

a

�
þ�0

a2

�2

� a2ð1þ 2��2
0Þ�0 ¼ 0: (6)

Notice that ! now turns into the central value of the lapse
� due to the rescaling. This is the system we solve using
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finite differences with an ordinary integrator (adaptive
step-size, fourth-order Runge-Kutta algorithm in the
present case) and a shooting routine that bisects the value
of ! (the central value of �). Also, it is worth noting that
the radial coordinate is scaled by m, and thus a natural
scale for our calculations will be given by m ¼ 1 which,
together with �, determines the properties of each
configuration.

The solutions of (6) define sequences of equilibrium
configurations like those shown in Fig. 1. Each point in
the curves corresponds to a boson star solution. In each of
the curves two important points for the different values of
� are indicated: (i) the critical point—marked with a filled
circle—indicating the threshold between the stable and
unstable branches of each sequence (that is, configurations
to the left of this point are stable and those to the right are
unstable, as found for boson stars in the full nonlinear
regime [21–23]) and (ii) the point at which the binding
energy EB ¼ M� Nm ¼ 0, indicated with an inverted
filled triangle, where N ¼ R

j0d3x ¼ R
i
2 �ffiffiffiffiffiffiffi�g

p
g��½��@����@��

��d3x is the number of particles,

that is, the conserved quantity due to the invariance under
the global Uð1Þ group of the Lagrangian density (1). For a
mass estimate we use the Misner-Sharp mass defined
through the metric functions by MðrÞ ¼ ð1� 1=a2Þr=2,
where M is the mass function evaluated at the outermost
point of the numerical domain; the configurations between
the instability threshold and the zero binding energy point
have negative binding energy (EB < 0) and collapse into

black holes, whereas those to the right of the inverted
triangles have positive binding energy and disperse [23].
Those configurations to the left of the threshold of insta-
bility, that is, stable configurations, obviously possess
negative binding energy, and are the ones expected to be
studied as black hole mimickers. For reviews and more
information on boson stars, see [29,30].

III. DISK MODEL AND THE POWER SPECTRUM

Following a procedure similar to that described in [8] to
calculate the power spectrum from the disk model, we first
study the geodesics. Given the line element ds2 ¼
��ðrÞ2dt2 þ aðrÞ2dr2 þ r2d�2, the equation for timelike
geodesics followed by test particles on the equatorial plane
reads

_r 2 þ 1

a2

�
1þ L2

r2

�
¼ E2

�2a2
; (7)

where L2 ¼ r4 _’2 and E2 ¼ ��2 _t2 are the squared angular
momentum and energy at spatial infinity, and are the
conserved quantities of the test particle related to the
independence on the azimuthal angle ’ and t of the
space-time, respectively; an overdot indicates the deriva-
tive with respect to the proper time of the test particle. The
geodesics for a Schwarzschild black hole are given by (7),
with the values �2 ¼ a�2 ¼ ð1� 2M

r Þ. Since Eq. (6) for �
is linear, we rescale this function so that at infinity �ðr !
1Þ ¼ 1=aðr ! 1Þ; thus at infinity �2 ¼ a�2, which im-
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FIG. 1. (Top panel) Sequences of equilibrium configurations for different values of � are shown as a function of the central value of
the scalar field �0ð0Þ; each point in the curves corresponds to a solution of the eigenvalue problem and represents a boson star. The
filled circles indicate the critical solution that separates the stable from the unstable branch. Those configurations to the left of the
maxima represent stable configurations. The inverted triangles indicate the point at which the binding energy is zero. The mass of the
configurations is given in units of the squared Planck mass over the mass of the boson, which implies a scale invariance of this plot
under the change ofm. (Bottom panel) We show the compactness of the equilibrium configurations. We define compactness as the ratio
2N99=R99, where R99 is the radius at which 99% of the total number of particles N99 is contained. In this plot we also show the critical
point with a filled circle and indicate that the critical configurations are the most compact ones among the stable configurations for
each value of �. Those configurations to the right of the critical solutions are even more compact; however, they are unstable and are
not considered here. In our results below we will also use the critical solutions for reference as the most compact stars.
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plies the coefficient of E2 in (7) equals 1 for both boson
stars and black holes.

The study of stable orbits of test particles requires the

effective potential V2
eff ¼ 1

a2
ð1þ L2

r2
Þ for a given angular

momentum of the test particle. In order to consider only
circular orbits, we rewrite (7) for _r ¼ 0 and demand
dV=dr ¼ 0 with V ¼ ½ð1þ L2=r2Þ � E2=�2�=a2. This
condition implies

E ¼ �2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � r��0p ; L ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r3��0

�2 � r��0

s
(8)

where�2 � r��0 > 0 for all BSs. Before proceeding to the
calculation of the emission spectrum, we need the angular

velocity of a test particle given by � ¼
ffiffiffiffiffiffi
��0
r

q
, which is a

regular function for all values of r in the boson star case.
The accretion disk model is that of a geometrically thin,

optically thick, steady accretion disk. The power per unit
area generated by such a disk rotating around a central
object is given by [8,31] and is also used in the study of
disks around gravastars [5]:

DðrÞ ¼ _M

4�r

�

a

�
� d�

dr

�
1

ðE��LÞ2
Z r

ri

ðE��LÞ dL
dr

dr;

(9)

where _M is the accretion mass rate and ri is the inner edge
of the disk. For black holes this radius is assumed to be at
the ISCO (r ¼ 6M) of the hole. For BSs we choose ri ¼ 0
based on two considerations: (i) BSs allow circular orbits
in the whole spatial domain and thus there is no kinemati-
cal restriction to choose ri ¼ 0; (ii) it has been shown that

the luminosity of the disk for BSs, considering this inner
radius, never reaches the value of Eddington luminosity in
the whole spatial domain even for high accretion rates, and
thus there are no radiation pressure effects imposing a
restriction on the inner edge location [8]. Considering the
disk starting at ri ¼ 0 does not affect the boson star struc-
ture as long as the disk is made of test particles; if the
interaction of the disk matter with the geometry of the
space-time is taken into account—which is beyond the
scope of this paper—there may be restrictions on the
geometrical properties of the disk. Moreover, considering
other values of ri for the BSs within the present model
permits one to eventually find another configuration that
would act as a mimicker. Now, assuming it is possible to
define a local temperature, we use the Stefan-Boltzmann
law so that DðrÞ ¼ �T4, where � ¼ 5:67�
10�5 erg s�1 cm�2 K�4 is the Stefan-Boltzmann constant.
Now, considering that the disk emits as a blackbody, we
use the dependence of T on the radial coordinate, and
therefore the luminosity Lð�Þ of the disk and the flux
Fð�Þ can be calculated using the expression for the black-
body spectral distribution:

Lð�Þ ¼ 4�d2Fð�Þ ¼ 16�h

c2
cosð#Þ�3

Z rf

ri

rdr

eh�=kT � 1
;

(10)

where d is the distance to the source, ri and rf indicate the

location of the inner and outer edges of the disk, h ¼
6:6256� 10�27 erg s is the Planck constant, k ¼ 1:3805�
10�16 ergK�1 is the Boltzmann constant, and # is the disk
inclination. The algorithm to construct the emission spec-
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FIG. 2. The emission spectra for cases A (top panel) and B (bottom panel) due to the black hole and two different boson stars: the
most compact of the stable branches for the � ¼ 0 case (M ¼ 0:633M2

pl=m; see Fig. 1) and an adequate configuration (M ¼
0:473M2

pl=m) that presents a power spectrum that mimics that of the black hole. The most compact boson star is used only as a

reference. The configuration withM ¼ 0:473 is used for the two different astrophysical situations. For case A, m ¼ 1:2� 10�27 GeV,
and for case B, m ¼ 2:51� 10�22 GeV. The spectrum due to the black hole and the one due to the mimicker lie approximately on top
of each other. For similar physical configurations the spectra are comparable to those obtained in [5], where the redshift was also taken
into account.
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trum for such an accretion disk around a BS and a BH is as
follows:

(1) Define the space-time functions a and � by choos-
ing one of the equilibrium configurations in Fig. 1
and then calculate M.

(2) Define the metric of the equivalent BH through

�BH ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r

p
and aBH ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2M=r

p
.

(3) Calculate the angular velocity, angular momentum,
and energy of a test particle for both space-times,
�BS;BH, LBS;BH, EBS;BH.

(4) Use such quantities to calculate the power emitted in
both cases DBSðrÞ and DBHðrÞ defined in (9).

(5) Calculate the temperature of the disk in both cases

TBSðrÞ¼ ðDBSðrÞ=�Þ1=4 and TBHðrÞ¼
ðDBHðrÞ=�Þ1=4.

(6) Use such temperatures to integrate the luminosity
(10), LBSð�Þ and LBHð�Þ, for several values of �.

IV. BOSON STARS AS MIMICKERS OF BLACK
HOLES

We use the simple model described above and look for
the boson star configurations that are able to produce
approximately the same power spectrum due to the pres-
ence of a black hole of the same mass. In order to do so, we
first set two physical situations:

(A) a black hole of 3� 109M� with an accretion rate of
2� 10�6M�=yr.

(B) a black hole of 10M� with an accretion rate of 2�
10�12M�=yr.

The angle used in the calculations is # ¼ 60� in all the
cases presented, and the disk’s outer edge is assumed to be

located at 50M. A different inclination of the disk would
shift the power spectrum toward higher luminosities for
small # and smaller luminosities for # approaching�=2 in
all the frequencies.

A. The unexpected case of � ¼ 0

In the past it was considered that BSs could be detected
because the emission power spectrum from an accretion
disk showed a hardening at high frequencies by orders of
magnitude [8]; however, the boson star chosen was the
most compact in the stable branch of the� ¼ 0 case; it was
shown in [9] that by choosing a different boson star with a
different compactness, it was possible to mimic the spec-
trum. In Fig. 2 we show that the spectrum is mimicked
independently of the physical scale at the price of changing
the value of the boson mass.
In Fig. 3 we show the two physical situations, A and B,

and show how the accretion disk spectra due to a black hole
are mimicked by one due to an appropriate boson star
configuration. For reference, we also present the spectra
calculated using the most compact configuration in the
stable branch of the � ¼ 0 case (see Fig. 1) that corre-
sponds to a boson star mass M ¼ 0:633M2

pl=m. On top of

the black hole spectrum, there is one due to a boson star
configuration with M ¼ 0:473M2

pl=m on the same stable

branch of boson star configurations. In case A, if we have a
mass of 3� 106M� and M ¼ 0:473M2

pl=m, we need the

mass of the boson to be m ¼ 1:2� 10�27 GeV, whereas
for case B, if we have a BHC mass of 10M�, we need m ¼
2:51� 10�22 GeV. That is, we show here that it is actually
possible to mimic a black hole at two very different scales
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FIG. 3. The emission spectra for cases A (top panel) and B (bottom panel) due to the black hole and two different boson stars: the
most compact of the stable branches for the � ¼ 50 case (M ¼ 2:257M2

pl=m; see Fig. 1) and an adequate configuration (M ¼
0:9898M2

pl=m) that presents a power spectrum that mimics that of the black hole. As in the previous case, the same configuration with

M ¼ 0:9898 is used for the two different astrophysical situations. For case A, m ¼ 1:88� 10�27 GeV, and for case B, m ¼
5:25� 10�22 GeV, respectively. The spectrum due to the black hole and that due to the mimicker lie approximately on top of each
other.
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at the price of changing the mass of the boson. This fact
indicates that restrictions on the value of m should happen
in turn. At the moment, since no fundamental scalar field
particle has ever been discovered, the boson mass is a free
parameter; once there are bounds on the mass of a boson
particle, the set of BHCs that can be mimicked with boson
stars will be restricted, and the only free parameter will be
the self-interaction.

B. The case � � 0

With the introduction of the self-interaction fourth-order
term in the potential, a new free parameter is involved,
which makes it easier to fit, for instance, the power spec-
trum of a disk and which is bad for the boson star model in
terms of the number of parameters. However, if a boson is
to be observed in the laboratory, the its mass would be fixed
and the � parameter would become the only free parame-
ter. Meanwhile, here we present a few cases for � � 0 and
indicate the range in which the boson stars as black hole
mimickers should be searched in the configuration set of
Fig. 1.

We consider again the physical situations A and B in
order to show that the best mimicker is scale independent
as in the case� ¼ 0; that is, we choose our best black hole
mimicker from Fig. 1, for a given�, and this will also work
for other astrophysical cases with different masses of the
central object and different accretion rates.

We choose the case � ¼ 50 and present the spectra as
before for cases A and B. Again, there is a mimicker
configuration with mass M ¼ 0:9898M2

pl=m. In case A

the mass of the boson required for the boson star to be a
mimicker is m ¼ 1:88� 10�27 Gev, whereas for case B
m ¼ 5:25� 10�22 GeV.

C. Tracking all the cases

The mimickers based on this model of accretion disk are
shown in the diagram of Fig. 1 for each value of� as those
configurations whose spectra approximate that of the black
hole with the same mass, only in terms of the correct boson
mass. In order to show where the mimickers we found are
located among the whole set of boson star solutions, we
present Fig. 4, where we indicate the location of the
mimickers and their apparently continuous distribution.
It is natural to expect that the mimicker should change if

the disk model is different, if the angle of inclination used
to calculate the luminosity is different, or if other effects
are taken into account. Nevertheless, our results show that
the boson star mimickers presented here are a set of
measure zero among the total set of stable boson stars
with different values of m and �, out of which correct
mimickers can be chosen.
Another point has to do with the boson masses in terms

of the mass of the BHC. We show in Fig. 5 the boson mass
scaling with the mass of the black hole candidate for
mimicker configurations. As an example, assuming the
axion mass is of the order of 1 MeV (10�12 GeV), there
is no astrophysical configuration even around 1M� that
might possibly act as an astrophysical black hole mim-
icker; instead, the mass of the object would be 10�8M�.
Another example is the Higgs boson; with a mass bounded
by mHiggs > 115 GeV, it would imply black hole mimick-

ers with mass M� 10�22M�.

V. LENSING, AWAY TO DISTINGUISH A BLACK
HOLE FROM ITS MIMICKER

In order to provide a method to distinguish a boson star
mimicker from a black hole, we show the lensing deflec-
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tion effects for a boson star mimicker configuration and the
black hole mimicked. For this we choose to solve the full
geodesics equation of null rays for the mimicker and the
black hole,

d2xi

d	2
þ �i

jk

dxj

d	

dxk

d	
¼ 0; (11)

where xi ¼ ðt; r; ’Þ are, respectively, the time, radial, and
azimuthal angular coordinates, and 	 is the affine parame-
ter of the geodesics. We integrate the geodesic equations
numerically using a fourth-order accurate Runge-Kutta
integrator in terms of the affine parameter. For the black
hole space-time we use the Schwarzschild solution in
Schwarzschild coordinates. For the boson star, since the
metric functions are calculated as a numerical solution of
Eqs. (6), we solve the geodesic equation by sourcing the
ordinary differential equation integrator with second-order
interpolated values of the Christoffel symbols in (11). In
the calculations of the null ray trajectories, we have veri-
fied the convergence of the numerical method by monitor-
ing the null condition of the tangent vector of the geodesic
at every point of the space.

We use various values of the impact parameter and
calculate the deflection angle in both space-times (the
black hole and the boson star). The results are shown in
Fig. 6 as a set of null rays on the equatorial plane for the
black hole and its mimicker for the case � ¼ 0. It can be
seen that for small values of the impact parameter, the
black hole traps the null rays, whereas the boson star is
transparent and only deflects the null rays. The deflection
angle in terms of the closest approach to the center is
shown in Fig. 7, where we see the expected result that

boson stars do not have a photon sphere since they have no
horizon; that is, there is no minimum impact parameter
after which the null ray trajectories are trapped.
In the example of Fig. 6 the luminous source is located at

a distance of 50M. This distance can be extended arbi-
trarily far away from the BHC. From Fig. 7 we can see that
if the deflection angle can be measured with an observa-
tional resolution of r� 15–20M, a boson star mimicker
can be distinguished from a black hole because the curves
are clearly distinct. On the other hand, the deflection angle
due to the boson star mimicker is on top of the deflection
angle due to the black hole starting approximately at a
distance r > 20M, which implies that these two objects
cannot be distinguished from each other using the deflec-
tion angle for large values of r.

VI. CONCLUSIONS

We have shown that stable spherically symmetric boson
stars are black hole mimickers when the emission spectrum
of a simple accretion disk model around a black hole is
compared to another around a boson star of the same mass.
For each value of the self-interaction coefficient [includ-

ing the free field case (� ¼ 0)], given astrophysical pa-
rameters for the mass of the black hole candidate and the
accretion rate parameter, it is possible to find a stable boson
star configuration whose accretion disk shows the equiva-
lent spectrum for a disk around a black hole of the same
mass.
We have also shown that for each value of the self-

interaction coefficient �, once the mimicker boson star
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sphere radius of the black hole, rS is the Schwarzschild radius,
and the label rc indicates the closest approach radius. We only
show the deflection angle for r >M because in spherical coor-
dinates the geodesic equations become stiff; a detailed study of
this region would need a patch with different coordinates which
is not within the scope of this paper.
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has been found for a given astrophysical combination with
mass of the BHC and accretion rate, that same boson star
configuration is the mimicker for other astrophysical pa-
rameter combinations.

Most importantly, we also showed the way a boson star
could be distinguished from a black hole by studying the
light deflection. Considering that the black hole mimicker
property of boson stars can be extended to other accretion
disk models, it is possible that the light deflection could be,

together with the gravitational wave emission [24,25], one
of the few experiments that could discard or confirm the
existence of boson stars.
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