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It is generally believed that coupling the graviton (a classical Fierz-Pauli massless spin-2 field) to its

own energy-momentum tensor successfully recreates the dynamics of the Einstein field equations order by

order; however the validity of this idea has recently been brought into doubt [T. Padmanabhan, Int. J. Mod.

Phys. D 17, 367 (2008).]. Motivated by this, we present a graviton action for which energy-momentum

self-coupling is indeed consistent with the Einstein field equations. The Hilbert energy-momentum tensor

for this graviton is calculated explicitly and shown to supply the correct second-order term in the field

equations; in contrast, the Fierz-Pauli action fails to supply the correct term. A formalism for perturbative

expansions of metric-based gravitational theories is then developed, and these techniques employed to

demonstrate that our graviton action is a starting point for a straightforward energy-momentum self-

coupling procedure that, order by order, generates the Einstein-Hilbert action (up to a classically irrelevant

surface term). The perturbative formalism is extended to include matter and a cosmological constant, and

interactions between perturbations of a free matter field and the gravitational field are studied in a vacuum

background. Finally, the effect of a nonvacuum background is examined, and the graviton is found to

develop a nonvanishing ‘‘mass-term’’ in the action.

DOI: 10.1103/PhysRevD.80.084014 PACS numbers: 04.20.Cv

I. INTRODUCTION

It is a standard view in particle physics that the nonline-
arity of a field theory, such as those of Yang and Mills, can
be equated with the notion that the field in question carries
the charge of the very interaction it mediates. This idea has
been brought to bear on gravity many times, and various
arguments [1–7] aim to derive general relativity from a
linear starting point by coupling gravity to the energy and
momentum of all fields, including the gravitational field
itself. Despite the conventional wisdom that this self-
coupling process is already well understood, Padmanab-
han has uncovered a number of serious problems with the
standard arguments [8]. Although we postpone an exami-
nation of Padmanabhan’s analysis to Appendix A, it suffi-
ces to express here what is, in our view, his most pertinent
observation: one cannot start with linear gravity, the Fierz-
Pauli massless spin-2 action [8,9], and generate the higher-
order corrections of general relativity by coupling the
gravitational field to its own Hilbert energy-momentum
tensor. More succinctly: one cannot derive the Einstein
equations by bootstrapping gravitons1 to their own energy
and momentum.

To clarify the content of this observation, consider a
perturbative expansion of the Einstein field equations
G�� ¼ �Tmatter

�� about a Minkowski background: g�� ¼

��� þ h��. Working to second-order in h��, we obtain

Gð1Þ
�� ¼ �Gð2Þ

�� þ �Tmatter
�� ; (1)

where the numbers in parentheses denote the powers of

h�� the term contains. Because Gð1Þ
�� ¼ 0 is the equation of

motion for a massless spin-2 field h��, the right-hand side

of (1) can be interpreted as this field’s source. Thus a
satisfying physical picture suggests itself: the gravitational
field h�� is induced by the energy-momentum tensor of all

fields T�� ¼ Tmatter
�� þ t��, where t�� is gravity’s own

energy-momentum tensor, identified as �Gð2Þ
��=�. In ac-

tuality, however, this description cannot be formulated in a
straightforward manner. Although the Fierz-Pauli action
SFP is typically used to prescribe the dynamics of a mass-
less spin-2 field, its Hilbert energy-momentum tensor2

t�� � �1ffiffiffiffiffiffiffiffi��
p �SFP

����
; (2)

*l.butcher@mrao.cam.ac.uk
1In discussions of this nature, the word graviton is often used

as a shorthand for the classical massless spin-2 field. We follow
this convention to cohere with the literature, but stress that this
graviton is in no way quantum mechanical. What is actually
being referred to is a gravitational wave, a classical fluctuation
in the geometry of spacetime.

2Although other definitions of the energy-momentum tensor
exist (see Sec. II C) we must define t�� according to the Hilbert’s
prescription (2) in order to maintain the analogy with Tmatter

�� .
This definition requires that SFP be ‘‘covariantized’’ (represented
in arbitrary coordinates using a flat metric ���) and a functional
derivative taken with respect to the metric. It is important to
realize that even though ��� is flat, the arbitrary variations ����
required to construct the functional derivative inevitably explore
curved metrics in a neighborhood of ���. Thus ‘‘covariantiza-
tion’’ is not really sufficient: the action must be generalized to a
curved background spacetime. One of the key aims of this paper
is to generalize SFP to curved spacetime in such a way that
energy-momentum self-coupling is consistent with general
relativity.
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is not proportional to Gð2Þ
��, and thus cannot be used as the

source-term for the second-order field equations. As an
alternative approach, one could introduce energy-
momentum self-coupling at the level of the action: because
t�� is a function of h��, adding the self-coupling term

t��h
�� to the Lagrangian yields a different result from

adding t�� directly to the equations of motion.

Unfortunately, this procedure also fails to generate

�Gð2Þ
��=� in the field equations.

Padmanabhan claims that these realizations bring to
light a previously neglected object S�� (see Appendix A)
which appears to codify the self-coupling of the gravita-
tional field. Unfortunately, this object has many undesir-
able features: it is not a tensor under general coordinate
transformations, has no clear physical interpretation, and
fails to reveal any equivalence between the coupling of
gravity to matter, and gravity to itself.

We propose an alternative solution to this apparent in-
consistency: the action for the graviton is not the Fierz-
Pauli action but is instead S2 given by (4), possessing a
nonminimally coupled term that vanishes when the (vac-
uum) background equations are enforced.3 We shall dem-
onstrate that the energy-momentum tensor of this action is
the correct second-order contribution to the equation of
motion, and furthermore, that this action provides the
starting point for a straightforward energy-momentum
self-coupling procedure that generates the Einstein-
Hilbert action (modulo surface terms) to arbitrary order.
We conclude the discussion by extending our formalism to
nonvacuum spacetimes.

Throughout the article we employ the abstract index
notation [10], with lower-case Roman indices indicating
a tensor’s ‘‘slots,’’ and Greek indices serving to enumerate
its components in a particular coordinate system. The
metric has signature ð�;þ;þ;þÞ, � � 8�G=c4, and the
Riemann and Ricci tensor are defined with the following
conventions: Ra

bcdv
b � 2r½crd�va, Rab � Rc

acb.

II. THE GRAVITON ACTION

Contrary to the standard approach, we represent the
gravitational field as a perturbation hab of the inverse
physical metric gab from the background �gab:

gab ¼ �gab þ hab: (3)

This expression is exact in that we have not neglected
terms Oðh2Þ; in contrast, the physical metric gab ¼ �gab �
hcd �gca �gdb þOðh2Þ. Following this convention, we use the
contravariant field hab, rather than hab, as the fundamental

dynamical variable of the action.4 In general we will write
bars over tensors derived solely from the background
geometry, and adopt the usual notational convenience of
raising and lowering indices with �gab and �gab.

5

We posit that the dynamics, energy and momentum of
the gravitational field hab, propagating in a background
spacetime with metric �gab, are all determined (to lowest-
order) by the following action:

S2½ �gab; hab� � 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

habðĜabcd þ �HabcdÞhcd;
(4)

where

Ĝ abcd � 1

2
ð �gaðc �gdÞb � �gab �gcdÞ �r2 � �rðc �gdÞða �rbÞ

þ 1

2
�gab

�rðc �rdÞ þ 1

2
�gcd

�rða �rbÞ (5)

is a differential operator representing the linearized
Einstein tensor (see Appendix B) and

�H abcd � 1

2
�R

�
�gac �gdb þ 1

2
�gab �gcd

�
� �Rab �gcd: (6)

While �Habcd has no obvious geometric interpretation, we
intend to show that its contribution to the action is neces-
sary for the consistency of energy-momentum self-
coupling with general relativity. Further motivation for
this ansatz is given in Sec. III.

3More precisely, S2 is the action for the graviton in a back-
ground spacetime with metric in some small neighborhood of the
solutions of the vacuum field equations. We use the term vacuum
to signify a region without matter; this does not necessarily
imply the absence of spacetime curvature.

4Any metric theory of gravity will have an ambiguity as to
which variable g 2 fgab; gab; ffiffiffiffiffiffiffi�g

p
gab; . . .g should be identified

as the true ‘‘gravitational field.’’ Such a distinction is of no
physical consequence and is largely unnecessary for a nonper-
turbative calculation; however for the present discussion we are
forced to single out a particular field variable for the expansion
g ¼ �gþ h. Our aim is to connect gravity to the particle physics
notion of a spin-2 field and elucidate a simple energy-momentum
self-coupling scheme that generates general relativity; to this end
we are required to pick g 2 fgab; gabg as it is only for these that
h is a genuine spin-2 field, i.e. a symmetric tensor (not a tensor
density) with (lowest-order) infinitesimal gauge transformation
�hab ¼ 2 �rða"bÞ. Fortunately, it is precisely for g 2 fgab; gabg
that the necessary energy-momentum self-coupling is its most
simple: habtab (see Sec. III). These considerations provide no
criteria for choosing the metric over its inverse as our expansion
variable, and while this choice only trivially alters the perturba-
tion theory at first-order (hab $ �hab) to second-order (the
relevant order for S2, tab, and Gð2Þ

ab) the two definitions of the
h-field differ by a term of the form hachbc. Our choice of g ¼
gab is preferable for this article because it simplifies the mathe-
matics of the action and energy-momentum tensor. The reason
for this is explored in Sec. III E, and stems from the fact that any
Lagrangian for pure gravity must contain more factors of gab

than gab in order that all the derivatives @a be contracted; thus an
expansion in g ¼ gab will be algebraically simpler. Indeed, this
observation still holds when coupling gravity to a scalar field �
or a 1-form Aa, and thus taking g ¼ gab simplifies many of the
calculations of the nonvacuum case also (see Sec. IV).

5The only exception to this rule is the physical metric and its
inverse, for which gab � gcd �g

ac �gdb, but rather gabgbc ¼ �a
c .
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Naturally, if we are to obtain general relativity without at
first assuming it, we must begin by considering the gravi-
ton in a flat background spacetime. Nevertheless, we will
see from the formalism of Sec. III that (provided we use S2
to describe the graviton) energy-momentum self-coupling
generates the Einstein-Hilbert action even when the back-
ground is not flat; �gab need only satisfy the weaker condi-
tion

�Gab � �Rab � 1

2
�gab �R ¼ 0: (7)

While this equation expresses the generality of the analysis
that is to follow, it should be stressed that no knowledge of
(7) will be required to assemble the Einstein-Hilbert action
order by order: a flat background will serve as a perfectly
satisfactory starting point.6 No matter which background
we use, however, it is absolutely crucial that we refrain
from inserting this particular metric [or even Eq. (7)] into

the action, thereby reducing S2 to
1
2�

R
d4x

ffiffiffiffiffiffiffi� �g
p

habĜabcdh
cd.

This is because we will need to be able to perform arbitrary
variations of �gab, not just those consistent with �Rabcd ¼ 0
or �Rab ¼ 0, to construct the energy-momentum tensor for
hab. That said, it will be instructive to temporarily ignore
this advice so that we may relate S2 to the Fierz-Pauli
action.

A. The Fierz-Pauli action

For a flat background, �Habcd vanishes, and we can
choose coordinates fx�g such that �g�� ¼ ��� and evaluate
S2 as a functional of the components h��. Integrating by
parts and discarding surface terms, we find that S2 reduces
to �1

2�

R
d4xLFP, where

L FP ¼ 1

2
@	h��@

	h�� � 1

2
@	h@

	h� @	h
��@�h�

	

þ @�h@�h
�� (8)

is the Fierz-Pauli Lagrangian [8].7 Modulo surface terms
and an overall rescaling, LFP is the unique specially rela-
tivistic Lagrangian for a symmetric tensor field h�� that is
invariant under the infinitesimal gauge transformation

�h�� ¼ 2@ð�"�Þ (see [8] for proof); hence it is the
Lagrangian for the graviton (massless spin-2 field) in flat
spacetime.

Starting from (8), we can covariantize LFP by making

the replacements ��� ! �g��, @� ! �r� and multiplying

by
ffiffiffiffiffiffiffi� �g

p
. This process obviously generates a unique man-

ifestly covariant Lagrangian density if �gab is flat, as in this
case the procedure is equivalent to representing the same
Lagrangian in arbitrary coordinates. However, for the pur-
poses of calculating the energy-momentum tensor (via
arbitrary variations of �gab) it will be necessary to general-
ize LFP to arbitrary backgrounds, and for a curved metric
the covariantization procedure is ambiguous. To see this,
observe that we can transmute the third term of (8) by twice
integrating by parts:

@	h
��@�h�

	 $ @�h
��@	h�

	: (9)

However this equivalence relies on the commutativity of
partial derivatives, and does not occur for the covariant
derivatives of a curved background; instead, integration by
parts yields

�r ch
ab �rahb

c $ �rah
ab �rchb

c � hcahbc �Rab

� habhcd �Racdb: (10)

Thus we are forced to make a seemingly arbitrary choice:
do we to covariantize (8) as written, or should we do so
after performing (9)? These two possibilities determine
Lagrangians which differ by hcahbc �Rab þ habhcd �Racdb;
they lead to different (first-order) equations of motion if
the background is curved,8 and determine different energy-
momentum tensors even if the background is flat.9 This last
problem is discussed by Padmanabhan [8], and is one of his
many nontrivial objections to the conventional wisdom that
general relativity is the unique energy-momentum self-
coupled limit of the flat-space massless spin-2 field.
A greater problem than this ambiguity, however, is that

neither choice (nor an admixture) leads to general relativity
after coupling it to its own energy-momentum. As we shall
see in Sec. III, the contribution from hab �Habcdh

cd is nec-
essary to achieve this, and it is impossible to use the
covariantizing ambiguity to produce this tensor because
it does not contain habhcd �Racdb. Instead, the presence of
�Habcd represents a rather different coupling ambiguity
faced when moving from a flat background to a curved
one. Typically we would invoke the Einstein equivalence
principal to banish from the action terms coupling matter
fields and Ricci tensors; we would argue that, working in
locally inertial coordinates about a point p, the Lagrangian
at p should have the same form as the Lagrangian in flat
spacetime. This amounts to a minimal coupling procedure:

6Of course, once the self-coupling procedure is complete, and
the Einstein-Hilbert action has been assembled starting from the
graviton on a flat background, we will be in an excellent position
to justify (7), as this is precisely the field equation (applied to the
background) that we will have derived. With hindsight, then, we
can see there was nothing special about our flat-space starting
point: we may begin with any one solution to (7) and use energy-
momentum self-coupling to derive the action (and field equation)
that defines all the others.

7Here and elsewhere we use the customary shorthand h �
haa � hab �gab.

8The first-order field equation only describes the spacetime
perturbations of general relativity if the ambiguous term is
covariantized to become �rch

ab �rahb
c; see Sec. II B and

Appendix B.
9Note that all other terms of LFP are invariant under the

operation that generated (9) so do not introduce further
ambiguity.
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once we have covariantized a specially relativistic
Lagrangian, the job of coupling the field to the gravity is
complete. However, while this rule may make sense to
curve the background spacetime of a spin-2 field that is
‘‘just another matter-field’’ and has nothing to do with
gravitation, it is far from clear that the principal should
hold for the graviton, for which it was only ever a conve-
nient fiction to think of as a tensor field propagating over a
background geometry.

In summary, the Fierz-Pauli action is insufficient to
determine S2 for an arbitrary background geometry; the
principal of equivalence fails to give a unique solution, and
cannot justify all the contributions necessary for an energy-
momentum self-coupling procedure consistent with gen-
eral relativity. However, it was never our aim to construct
general relativity from LFP, and we do not pretend to be
able to derive a curved spacetime theory of gravity from
purely specially relativistic concepts. S2 will serve as our
starting point, and the only significance we shall ascribe
LFP is that of a special case.

B. Field equations

Leaving the Fierz-Pauli action behind, we retrain our
attention on S2 and begin the process of deriving its adver-
tised connection to general relativity. First, we shall calcu-
late the associated field equations. As usual, the equations
of motion are derived from the condition that their solu-
tions be stationary configurations of S2 with respect to
variations in the dynamical field hab. As we will have no
cause to vary �gab in the derivation, we can enforce the
background equations (7) immediately and discard �Habcd.

Next, observe that Ĝabcd is ‘‘self-conjugate’’: for any
tensor fields Aab and Bab

Z
d4x

ffiffiffiffiffiffiffi� �g
p

AabĜabcdB
cd ¼

Z
d4x

ffiffiffiffiffiffiffi� �g
p

BabĜabcdA
cd;

(11)

provided either Aab or Bab has compact support. Therefore,
holding �gab constant and performing a variation �hab (a
symmetric tensor field with compact support) gives rise to
a variation in the action

�S2 ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

�habĜabcdh
cd: (12)

As Ĝabcd is already symmetric in its first two indices, we
can conclude that the equation of motion is

1ffiffiffiffiffiffiffi� �g
p �S2

�hab
¼ ��1Ĝabcdh

cd ¼ 0: (13)

The centrally important feature of this equation is that

Ĝabcdh
cd ¼ Gð1Þ

ab , the linear approximation to the Einstein

tensor under the inverse metric expansion (3). This is
particularly easy to verify for the special case of a flat
background in Lorentzian coordinates, but is shown to hold
more generally for vacuum backgrounds in Appendix B.
Thus S2 prescribes the correct first-order equation of mo-

tion for the graviton. In the next section we show that by
adding the energy-momentum tensor tab of hab (deter-
mined by S2) to the right-hand side of (13) we successfully
generate the Einstein field equations correct to second-
order.10

C. Energy-momentum tensor

We will now calculate the energy-momentum tensor of
the graviton and relate it to the second-order contribution
to the Einstein field equations. We follow Hilbert’s pre-
scription and define the energy-momentum tensor as a
functional derivative of the action with respect to the
(background) metric:

tab � �1ffiffiffiffiffiffiffi� �g
p �S2

� �gab
; (14)

where hab (rather than hab or hab) is to be held constant

when taking this derivative, as this is the field we have
taken to be the fundamental dynamical variable.11

As an aside, it is worth contrasting the variational defi-
nition (14) with Noether’s (canonical) energy-momentum
tensor:

t

�
can � @L

@ð@
h��Þ
@�h�� � �
�L; (15)

comprising the four conserved currents associated with the
invariance of the Lagrangian L under rigid spacetime
translations. The canonical tensor cannot be used in the
present discussion for a number of reasons. Firstly, it is not
uniquely determined by the action for hab: as it depends
directly on the Lagrangian, we are free to alter t
�

can by
adding a four-divergence to L, without changing either
the dynamics of hab or S2. Secondly, we require a sym-
metric tensor to act as the source for the first-order field
equation (13), but the canonical tensor need not have this
property.12 Lastly, Noether’s definition does not naturally
generalize to curved spacetime in such a way that t
�

can

inherits a covariant conservation law [11]. None of these

10Of course, the resulting field equation will no longer be a
stationary configuration of the action S2. In order that this self-
coupled equation of motion can be derived from the principle of
stationary action it will be necessary to introduce a third-order
correction to the action S3. Naturally, S3 will alter the energy-
momentum tensor of hab by a term Oðh3Þ; however, seemingly
by miracle, this will be precisely the third-order part of the
Einstein field equations. This process continues indefinitely and
is explained systematically in Sec. III. For the moment we
content ourselves with exploring the theory to second-order only.
11In later sections, the tensor written here as tab will be notated
t2ab to indicate that it is the energy-momentum contribution from
the second-order action S2 only. Here we need not make this
distinction.
12It is true that the canonical tensor can be made symmetric by
adding to it an identically conserved ‘‘correction’’ @��


½���, a
function of hab that cancels the antisymmetric part of t


�
can.

However, if we allow this sort of ad hoc adjustment of the
energy-momentum tensor, we only exacerbate the problem of
nonuniqueness.
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issues arise with tab, and in any case our aim has been to
connect the coupling between matter and gravity found in
general relativity with a perturbative coupling of gravity to
itself; it is the Hilbert energy-momentum tensor of matter,
not the canonical tensor, that appears in the full Einstein
field equations as the gravitational source. For these rea-
sons we discard the canonical tensor and henceforth refer
to tab, following Hilbert’s prescription (14), as the energy-
momentum tensor of hab.

To begin the calculation of tab, we divide the action into
two pieces S2 ¼ S2G þ S2H:

S2G � 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

habĜabcdh
cd; (16)

S2H � 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

hab �Habcdh
cd: (17)

It will be convenient to perform the functional derivative
(14) on these two components separately. Focusing first on
S2G, we integrate by parts13 so as to remove the second
derivatives from the integrand:

S2G ¼ �1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

�rch
ab �rdh

efKab
c
ef

d; (18)

for which we have introduced the abbreviation

Kab
c
ef

d � 1

2
ð �gcd �gaðe �gfÞb � �gcd �gab �gef � 2�c

ðe �gfÞða�
d
bÞ

þ �c
ðe�

d
fÞ �gab þ �d

ða�
c
bÞ �gefÞ

¼ Kba
c
ef

d ¼ Kab
c
fe

d ¼ Kef
d
ab

c: (19)

An infinitesimal variation in the inverse background metric
� �gab, vanishing on the boundary of the integral, induces a
variation in the action

�S2G ¼ �1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

� �gpq �rch
ab �rdh

ef

�@Kab
c
ef

d

@ �gpq

� 1

2
�gpqKab

c
ef

d

�
þ 4 �rch

abCðe
sdh

fÞsKab
c
ef

d

�
;

where

Ca
bc �

1

2
�gadð �rb� �gcd þ �rc� �gbd � �rd� �gbcÞ

¼ � 1

2
ð2�a

p�
r
ðb �gcÞq � �gar �gbp �gqcÞ �rr� �gpq (20)

is the connection that arises from the variation of the

covariant derivative: r �gþ� �g ¼ �rþ C. We can move the

covariant derivatives off � �gpq in the connection term using
integration by parts, and arrive at an equation of the form

�S2G ¼ R
d4x� �gpq½. . .�pq; the tensor density in square

brackets is then the functional derivative we seek:

�ffiffiffiffiffiffiffi� �g
p �S2G

� �gpq
¼ �1

2
�rch

ab �rdh
ef

�@Kab
c
ef

d

@ �gpq
� 1

2
�gpqKab

c
ef

d

�

� �rrð �rch
abðKab

c
ðpjfjqÞh

rf þ Kab
c
fðp

rhqÞ
f

� Kab
cr
fðphqÞ

fÞÞ: (21)

Meanwhile, S2H varies by

�S2H ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

� �Rab

�
�
1

2
�gab

�
1

2
h2 þ hcdh

cd

�
� habh

�
; (22)

where we have used the background equation (7) (after the
variation) to remove the terms proportional to �Rab; these
would only be significant if we intended to perform further
variations in the metric. Now, because

� �Rab ¼ 2 �r½cCc
b�a

¼
�
1

2
�grs �gap �gqb þ 1

2
�r
ða�

s
bÞ �gpq

� �r
p�

s
b �gaq

�
�rr

�rs� �gpq;

when we (twice) integrate by parts to alleviate � �gab of its
covariant derivatives, we generate a second-order differen-
tial operator

R̂ pqab � 1

2
�gaðp �gqÞb �r2 þ 1

2
�gpq

�rða �rbÞ � �rða �gbÞðp �rqÞ;

(23)

with the property

Z
d4x

ffiffiffiffiffiffiffi� �g
p

� �RabA
ab ¼

Z
d4x

ffiffiffiffiffiffiffi� �g
p

� �gpqR̂pqabA
ab (24)

for all Aab. Therefore, we can conclude from (22) that

�ffiffiffiffiffiffiffi� �g
p �S2H

� �gpq
¼ 1

2
R̂pqab

�
1

2
�gab

�
1

2
h2 þ hcdh

cd

�
� habh

�
:

(25)

Finally, we have only to combine Eqs. (21) and (25),
expand out all the products and derivatives, and assemble

the outcome into a formula for tab as a function of �rch
ab.

This is a straightforward but arduous calculation, and as
such we chose to complete it with a computer algebra
package. The result is

13More precisely, one adds to the integrand a divergence of the
form @að ffiffiffiffiffiffiffi� �g

p ½h �rh�aÞ ¼ ffiffiffiffiffiffiffi� �g
p �ra½h �rh�a that alters S2 only by a

function of the fields on the boundary (or at infinity) and thus
may be neglected for the purposes of functional variation.
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�tpq ¼ 1

4
�gpq

�
h �ra

�rbh
ab þ 2hab �ra

�rbh� 2hab
�r2hab � h �r2h� 1

2
�rah

�rah� 5

2
�rchab

�rchab þ �rcha
b �rbh

ac

þ 2 �rah
�rbh

ab

�
þ 1

4
h �rðp �rqÞh� 1

2
hpq

�r2hþ 1

4
h �r2hpq þ haðp �r2hqÞ

a � 1

2
hab �ra

�rbhpq þ 1

2
hpq

�ra
�rbh

ab

� haðp �rb �rqÞhab þ
1

2
hab

�rðp �rqÞhab � 1

2
h �ra

�rðphqÞ
a þ 1

4
�rah

�rahpq þ 1

2
�rbhap

�rbhaq � 1

2
�rahpq

�rbh
ab

þ 3

4
�rphab

�rqh
ab � �rbh

a
ðp
�rqÞhab � 1

2
�rbh

�rðphqÞ
b þ 1

2
�rbh

a
p
�rah

b
q: (26)

It is possible to render this formula rather more manageable by working in a gauge with �rah
ab ¼ 0, h ¼ 0:

�tpq ¼ �gpq

�
1

4
�rcha

b �rbh
ac � 5

8
�rchab

�rchab � 1

2
hab

�r2hab
�
þ haðp �r2hqÞ

a � 1

2
hab �ra

�rbhpq � hbc �RabcðphqÞ
a

þ 1

2
hab

�rðp �rqÞhab þ 1

2
�rbhap

�rbhaq þ 3

4
�rphab

�rqh
ab � �rbh

a
ðp
�rqÞhab þ 1

2
�rbh

a
p
�rah

b
q; (27)

but we will not need this partially gauge-fixed result for
this present article.14

Our task now is to compare tab with Gð2Þ
ab and demon-

strate that the energy-momentum self-coupling of hab (de-
termined by S2) is consistent with general relativity.

Details of the calculation of Gð2Þ
ab can be found in

Appendix B; the conclusion is

Gð2Þ
ab ¼ ��tab þOðh3Þ; (28)

and thus, to second-order, the vacuum Einstein field equa-
tions are

Ĝ abcdh
cd ¼ �tab (29)

as advertised.
As a corollary of (29), we can confirm Padmanabhan’s

observation that general relativity cannot be derived from
energy-momentum self-coupling the Fierz-Pauli
Lagrangian. Only once the contribution from �Habcd is
included will Einstein’s gravity result from an energy-
momentum self-coupled graviton. This realization casts
doubt on Mannheim’s recent treatment of gravitational
energy-momentum [12], in which a tensor is constructed
by applying (14) to a covariantized Fierz-Pauli Lagrangian,
rather than S2.

III. PERTURBATIVE GRAVITY

Here we develop the formalism to uncover the root cause
of the second-order energy-momentum self-coupling (29),
and reveal how the process continues to arbitrary order.

The vast majority of this section applies to any metric
theory of pure gravity15 and can be generalized to include
interactions with matter (see Sec. IV). Only in Sec. III E
will we commit to general relativity, fix our action S ¼
SEH, the Einstein-Hilbert action, and derive the formula (4)
for S2.
We shall concern ourselves with an expansion of the

inverse metric gab about a nondynamical background �gab,
which is itself an exact solution of the vacuum field equa-
tions:

gab ¼ �gab þ 	hab; (30)

0 ¼ �S½ �g�
� �gab

; (31)

where 	, a dimensionless expansion parameter, is constant
over spacetime.
Following (30), the action of the exact theory S½g�

becomes a 	-dependent functional of �gab and hab, which
can be Taylor expanded thusly:

S½g� ¼ S½ �gþ 	h� ¼ X1
n¼0

	nSn½ �g; h�; (32)

where Sn is the ‘‘nth partial action’’ given by

Sn½ �g; h� ¼ 1

n!
ð@n	S½ �gþ 	h�Þ	¼0: (33)

The derivative @	 acts on each instance of 	hab in the
integrand of S½ �gþ 	h� by Leibniz’s law, removing the
factor of 	. The ‘‘bare’’ hab left behind may still be covered
by spacetime derivatives @a, but these can be moved onto
the remainder of the integrand by integration by parts. This
operation generates the usual functional derivative:

14Gauge transformations are covered in Sec. III C; we note here
only that because tab is not invariant under the infinitesimal
gauge transformation �hab ¼ 2 �rða"bÞ, only the first formula
(26) can be used in all gauges. Although gauge invariance would
be a highly desirable property if we intended to argue that tab
was a physically meaningful tensor in full general relativity, it is
an impossible request to make of the tensor we seek, which
should be proportional to the gauge dependent tensor Gð2Þ

ab .

15We require only that the dynamics are determined by an
action that is a coordinate-independent integral of the metric
and its derivatives.
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@	S½ �gþ 	h� ¼
Z

d4xhabðxÞ �

� �gabðxÞS½ �gþ 	h�: (34)

In truth, the left-hand side of this equation differs from the
right by the surface term

R
d4x@aJ

a created when integrat-
ing by parts. As this is only a functional of the fields on the
boundary (or as x
 ! 1 if the integral of S runs over the
entire manifold) it will not contribute to equations of
motion or energy-momentum tensors, the calculation of
which are dependent only on variations of the field that
vanish on the boundary (or have compact support). Hence
these surface terms may be neglected for our present
purposes.

It follows from the repeated application of (34) that

@n	S½ �gþ 	h� ¼
�Z

d4xhab
�

� �gab

�
n
S½ �gþ 	h�; (35)

and thus the partial actions (33) are given by

Sn½ �g; h� ¼ 1

n!

�Z
d4xhab

�

� �gab

�
n
S½ �g�: (36)

An important consequence of this relation is that, using S2
as our starting point, we can generate the entire set of
partial actions fSn: n � 3g by calculating

Sn½ �g; h� ¼ 2

n!

�Z
d4xhab

�

� �gab

�
n�2

S2½ �g; h�; (37)

which is possible provided S2 is known in a neighborhood
of whichever particular background (a solution of (31)) we
are interested in. Note that the first two partial actions do
not contribute to the dynamics of hab: S0 ¼ S½ �g� is man-
ifestly independent of hab, and S1 vanishes once the back-
ground equation (31) has been enforced. We conclude,
therefore, that S2 contains all the information necessary
to reconstruct the ‘‘dynamical’’ part of the action

Sdyn½ �g; h� �
X1
n¼2

	nSn½ �g; h�; (38)

which itself contains all the dynamical information of the
full action S. This is absolutely key to the calculations of
Sec. II, in which we saw the first consequence of this
reconstruction process, the recovery of the second-order
equation of motion from an action that one would expect to
encode only first-order dynamics.

A. Field equations

In general, we could let 	 be a free parameter and, on
demanding �S½g�=�gab ¼ 0 for fixed �gab, derive a
	-dependent equation of motion E	½ �g; h� ¼ 0 for our dy-
namical field hab. Any hab that solved this equation would
correspond to a metric gab ¼ �gab þ 	hab that solved the

field equations exactly.16 However, if we are interested in
approximating small variations of the metric (i.e. the limit
	hab ! 0) we can choose some order N to which we want
the equation of motion to hold:

�S½g�
�gab

¼ Oð	Nþ1Þ: (39)

This is equivalent to

1

	

�SNþ1
dyn ½ �g; h�
�hab

¼ Oð	Nþ1Þ; (40)

where SNþ1
dyn is defined by discarding from Sdyn those terms

that can be neglected in (39):

SNþ1
dyn ½ �g; h� � XNþ1

n¼2

	nSn½ �g; h�: (41)

We shall adopt this ‘‘Nth-order approximation’’ picture for
the development of our formalism, as we can always write
N ¼ 1 if we wish to discuss the exact theory.
For the sake of continuity with the previous section, we

introduce the notation

�S2½ �g; h�
�hab

���������S½ �g�=� �gab¼0
� ��1

ffiffiffiffiffiffiffi� �g
p

Ĝabcdh
cd; (42)

where, because S2 is second-order in hab, Ĝabcd will be a
linear differential operator dependent only on �gab.17 The
equation of motion (40) now takes the form

	Ĝabcdh
cd ¼ � �

	
ffiffiffiffiffiffiffi� �g

p �

�hab

XNþ1

n¼3

	nSn½ �g; h�; (43)

where it should be taken as given that terms Oð	Nþ1Þ have
been neglected. This is the Nth-order approximation to the
equation of motion for hab that is consistent with the
dynamics of gab prescribed by the action S. The first-order
contribution has been separated from the sum so as to

evoke the picture of a wave equation 	Ĝabcdh
cd ¼ 0 with

a source. In the next section we will see that the source
term on the right of (43) is indeed the energy-momentum
tensor of the field hab, neglecting terms Oð	Nþ1Þ.

B. Energy-momentum tensor

First we shall demonstrate that the dynamical part of the
action (38) can be generated from S2 by a simple energy-
momentum self-coupling procedure. Observe that, as a

16It is advisable to set 	 ¼ 1 before attempting to solve
E	½ �g; h� ¼ 0, as this constant can always be absorbed into the
magnitude of hab. Although this refinement was convenient for
Sec. II, here we shall keep 	 as it provides a simple method for
tracking the powers of hab in expressions and is useful as a
variable for differentiation.
17The operator Ĝabcd defined here coincides with the definition
in (5) once S ¼ SEH has been fixed. This is shown in Sec. III E by
deriving S2.

BOOTSTRAPPING GRAVITY: A CONSISTENT APPROACH . . . PHYSICAL REVIEW D 80, 084014 (2009)

084014-7



consequence of (36), we have

Sn½ �g; h� ¼ 1

n

Z
d4xhab

�Sn�1½ �g; h�
� �gab

: (44)

Defining the nth partial energy-momentum tensor tnab by

applying Hilbert’s prescription to the nth partial action,

tnab � �1ffiffiffiffiffiffiffi� �g
p �Sn½ �g; h�

� �gab
; (45)

we conclude that

Sn½ �g; h� ¼ �1

n

Z
d4x

ffiffiffiffiffiffiffi� �g
p

habtn�1
ab : (46)

This makes manifest the energy-momentum self-coupling
procedure that allows us to generate the dynamical part of
the action (38) to arbitrary order, given only S2. The nth
partial action is nothing more than the integral of the
contraction of hab with the energy-momentum tensor of
the previous partial action (divided by�n). The dynamical
part of the action is therefore given by

SNþ1
dyn ½ �g; h� ¼ 	2S2½ �g; h� �

Z
d4x

ffiffiffiffiffiffiffi� �g
p

hab
XN
n¼2

	nþ1tnab
nþ 1

:

(47)

Note that, for the particular case of general relativity (S ¼
SEH), the background Eq. (7) also sets S0 ¼ 0, thus Sdyn ¼
SEH (modulo surface terms) and the energy-momentum
self-coupling procedure recovers the entire action of the
full theory, not just the dynamical part.

Because of factors of nþ 1 dividing each tnab in (47), it is
not the case that in the action hab couples directly to its
(Nth-order) total energy-momentum tensor, given by

TN
ab �

�1ffiffiffiffiffiffiffi� �g
p �SNdyn

� �gab
¼ XN

n¼2

	ntnab: (48)

Instead, the numerical denominators account for the nþ 1
factors of hab in habtnab, and ensure that the equations of

motion do indeed have TN
ab as the source. To prove this,

note that for any symmetric field lab (vanishing on the
boundary, or with compact support) we have

Z
d4xlab

�Sn½ �g; h�
�hab

¼
Z

d4x
lab

n!

�

�hab
ð@n	S½ �gþ 	h�Þ	¼0

¼ 1

n!
ð@
ð@n	S½ �gþ 	ðhþ
lÞ�Þ	¼0Þ
¼0

¼ 1

n!
ð@n	@
S½ �gþ 	ðhþ
lÞ�Þ	¼
¼0

¼ 1

n!
ð@n	ð	@�S½ �gþ 	hþ �l�ÞÞ	¼�¼0;

where � � 	
 ) @
 ¼ 	@�. Thus,

Z
d4xlab

�Sn½ �g;h�
�hab

¼ 1

n!
ð	@n	@�S½ �gþ	hþ�l�

þn@n�1
	 @�S½ �gþ	hþ�l�Þ	¼�¼0

¼ 1

ðn�1Þ!ð@�@
n�1
	 S½ �gþ	hþ�l�Þ	¼�¼0

¼ð@�Sn�1½ �gþ�l;h�Þ�¼0

¼
Z
d4xlab

�Sn�1½ �g;h�
� �gab

: (49)

Hence we have the following important result:

�Sn½ �g; h�
�hab

¼ �Sn�1½ �g; h�
� �gab

: (50)

Or, using definition (45),

�Sn½ �g; h�
�hab

¼ � ffiffiffiffiffiffiffi� �g
p

tn�1
ab : (51)

Therefore the equation of motion (43) takes on the form

	Ĝabcdh
cd ¼ �	�1

XNþ1

n¼3

	ntn�1
ab ; (52)

or, recalling (48),

	Ĝabcdh
cd ¼ �TN

ab: (53)

We have derived the relation we sought, demonstrating that
any metric theory of pure gravity can be formulated as a
first-order wave equation with its own energy-momentum
tensor as a source. For every N � 1, we can derive the
equation of motion (53) by applying the variational prin-
ciple to the action SNþ1

dyn ; the left-hand side is the wave

equation for the linearized theory, and the right-hand side
is the energy-momentum tensor prescribed by the action
SNdyn. This energy-momentum tensor is, to some extent,

incomplete: it does not include the Oð	Nþ1Þ contribution
from the highest-order partial action SNþ1. This contribu-
tion could be calculated, if so desired, and added by hand to
the field equations (53) so that the right-hand side read
�TNþ1

ab , but this equation would no longer be a stationary

configuration of the action SNþ1
dyn . To remedy this, we could

introduce a correction to the action 	Nþ2SNþ2 that would
generate the extra term in the equation of motion; the
appropriate functional is given by (46) and couples hab

to the highest-order partial energy-momentum tensor tNþ1
ab .

But now once again the energy-momentum tensor TNþ1
ab is

incomplete, and we can apply this same line of reasoning
anew. So long as there is no N for which tNab vanishes

identically, this process can continue indefinitely, and as
N ! 1 the exact field equations are recovered, along with
the action Sdyn ¼ S� S0 � 	S1.

All that remains is to connect our formalism to the
specific results of the previous section. For the sake of
completeness, however, we shall first discuss the gauge
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symmetries of the theory, and deduce the conservation law
for TNþ1

ab .

C. Gauge transformations

Because the action S½g� is a coordinate-system indepen-
dent integral, any diffeomorphism �: M ! M gives rise
to a gauge transformation of the theory through the action
of ��, the map comprising the pullback of � on covector
indices and the pushforward of ��1 on vector indices:

S½��g� ¼ S½g�: (54)

Taylor expanding both sides about �gab and applying the
background equation reveals the gauge invariance of the
dynamical part of the action:

SNþ1
dyn ½ �g; h0� ¼ SNþ1

dyn ½ �g; h�; (55)

where

	h0ab � ��gab � �gab: (56)

In the context of an Nth-order approximation, we must
insist that �� ¼ 1þOð	Þ, otherwise these transforma-
tions will map the small metric fluctuations 	hab onto
fluctuations comparable in magnitude to �gab. We can write

a general diffeomorphism of this form as �� ¼ e	L� ,
where L� is the Lie derivative along a vector field �a ¼
Oð1Þ. The gauge transformations of the theory are hence
given by

hab ! h0ab ¼ hab þ �hab;

�hab � 	�1
XN
n¼1

ð	L�Þn
n!

�gab þ XN�1

n¼1

ð	L�Þn
n!

hab;

(57)

where we have discarded all terms Oð	NÞ, as these will
only contribute terms Oð	Nþ1Þ to the equation of motion,
and termsOð	Nþ2Þ to SNþ1

dyn . If we wish we can let �a ¼ "a,

an infinitesimal vector field, and derive the infinitesimal
gauge transformation

�hab ¼
�
L"ð �gab þ 	habÞ N � 2;
�2 �rða"bÞ N ¼ 1:

(58)

Because these gauge transformations (infinitesimal or oth-
erwise) are symmetries of SNþ1

dyn , they map solutions of the

equation of motion (53) to other solutions. We can there-
fore use the equation of motion to deduce the transforma-
tion law for TN

ab:

�TN
ab � TN

ab½ �g; h0� � TN
ab½ �g; h� ¼

	

�
Ĝabcd�h

cd: (59)

This verifies the earlier remark that the energy-momentum
tensor is gauge dependent, except in the trivial caseN ¼ 1,
for which TN

ab ¼ 0 by definition. It may come as a surprise

that the energy-momentum tensor does not inherit the
gauge invariance of the action from which it was derived.

It should be stressed, however, that SNþ1
dyn is not identically

gauge invariant: the relation (55) is only true when the
background equation is obeyed. For general �gab, the diffeo-
morphism invariance of S½g� only furnishes the gauge
transformation law �SNþ1

dyn ¼ �	�S1, the right-hand side

of which has a nonvanishing energy-momentum tensor
responsible for the variation in TN

ab. Equivalently, the gauge

dependence of TN
ab can be seen to result from the non-

commutativity of gauge transformations and the functional
derivative �=� �gab used to define TN

ab [13]; these operations

would only commute if the gauge invariance of SNþ1
dyn

extended to a neighborhood of the solutions of the back-
ground equation, rather than being confined to the solu-
tions themselves.

D. Conservation law

It should be expected that SNþ1
dyn ½ �g; h� inherits the diffeo-

morphism invariance of S½g�, and that this symmetry en-
dows the energy-momentum tensor with a covariant
conservation law with respect to the background metric.
The derivation proceeds in close analogy to the proof of
raTmatter

ab ¼ 0 from general relativity.

We again appeal to the diffeomorphism invariance of the
action (54) but this time expand S½g� about �gab (a solution
of the background equation) and S½��g� about �� �gab
(which will also be a solution). The result,

SNþ1
dyn ½�� �g;��h� ¼ SNþ1

dyn ½ �g; h�; (60)

affirms that SNþ1
dyn is diffeomorphism invariant.18 Now let�

be an infinitesimal diffeomorphism: �� ¼ 1þL" for an
arbitrary infinitesimal vector field "a with compact sup-
port. Then (60) becomes

0 ¼
Z

d4x

��SNþ1
dyn

� �gab
L" �g

ab þ �SNþ1
dyn

�hab
L"h

ab

�
: (61)

Clearly the second term vanishes [to Oð	Nþ1Þ] if hab

solves the equation of motion (53), and thus

0 ¼
Z

d4x
�SNþ1

dyn

� �gab
�ra"b þOð	Nþ2Þ

¼
Z

d4x
ffiffiffiffiffiffiffi� �g

p
"b �raTNþ1

ab þOð	Nþ2Þ: (62)

As this equation holds for any "a it follows that

�r aTNþ1
ab ¼ 0 (63)

is valid up to and including Oð	Nþ1Þ. Because this relation
holds whenever hab solves its equation of motion, and
because gauge transformations map solutions to solutions,
the conservation law is gauge invariant.

18Note that diffeomorphism invariance is equivalent to being
independent of coordinate system, and is a distinct property from
gauge invariance as defined in Sec. III C.
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It is important to recognize that (63) applies to the
ðN þ 1Þth-order energy-momentum tensor: this is the
highest-order approximation to the energy-momentum ten-
sor that can be constructed from our truncated action SNþ1

dyn ,

and is a better approximation than the tensor TN
ab which

features in the equations of motion appropriate to this
order. Of course, the conservation law for TN

ab follows from

(63) by discarding the highest-order term, and ensures the
consistency of the equation of motion (53) with the identity
�raĜabcdh

cd ¼ 0, which holds for all hab once the back-
ground equation has been enforced.

E. Constructing the graviton action

It is now time to close the circle of our discussion and
connect the abstract formalism to our earlier calculation.
We shall derive here the graviton action S2, the ansatz of
Sec. II, by applying the perturbative formalism to the
particular case

S½g� ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi�g
p

R � SEH½g�; (64)

the Einstein-Hilbert action. To proceed, we will use Eq.
(36) to derive S1, and then S2, by successive functional
derivatives �=� �gab acting on SEH½ �g�. The first derivative
generates

S1½ �g; h� ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

�Gabh
ab; (65)

which of course vanishes for all hab when �gab solves the
background equation �Gab ¼ 0. A second variation in �gab

gives rise to

�S1 ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

� �Rab

�
hab � 1

2
h �gab

�

þ � �gcd
1

2
ðhcd �R� h �Rcd � �gcd �Gabh

abÞ
�
:

Replacing � �Rab ! � �gcdR̂cdab in accordance with (24), we
determine �S1=� �gab and assemble

S2 ¼ 1

2

Z
d4xhcd

�S1
� �gcd

¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

hcdR̂cdab

�
hab � 1

2
h �gab

�

þ 1

2
hcdðhcd �R� h �Rcd � �gcd �Gabh

abÞ
�

¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p

habðĜabcd þ �HabcdÞhcd: (66)

In the last line we referred to the definitions (5) and (6), and
made use of the identity

R̂ abef

�
�e
c�

f
d �

1

2
�gef �gcd

�
� Ĝabcd: (67)

This completes the derivation of the graviton action (4) and

confirms that it can be used as the starting point of an
energy-momentum self-coupling procedure (46) that gen-
erates the Einstein field equations and the Einstein-Hilbert
action (modulo surface terms) to arbitrary order.
The preceding calculation helps to reveal the advantage

of using hab, a perturbation in the inverse metric, as our
fundamental degree of freedom. Had we instead taken the
usual approach, expanding gab ¼ �gab þ 	hab and taking
hab as fundamental, the perturbative formalism would have
unfolded identically but for the placement of indices.
However, the calculation of S2 from SEH would have
differed dramatically. The Lagrangian of S1 would instead
be proportional to �Gabhab, and because the Ricci tensor is
naturally covariant, the variation of �Gab ¼ �Rcd �g

ca �gdb �
1
2
�Rcd �g

cd �gab under � �gab would have been complicated by

the extra two factors of �gab on the first term, compared to
the relevant tensor in our approach: �Gab ¼ �Rab �
1
2
�Rcd �g

cd �gab. This trend continues at every order; the hab
convention leads to a greater proliferation of terms in each
partial energy-momentum tensor because the Lagrangian

of Sn has the form ð �raÞ2ðhabÞn so must be contracted with
further nþ 1 factors of �gab to render it a scalar.19 Each of
these metric factors generates a term in the partial energy-
momentum tensor, and thus acts as compound interest for
the process of energy-momentum self-coupling. In com-
parison, our convention leads to Lagrangians of the form

ð �raÞ2ðhabÞn, which only need only n� 1 additional factors
of �gab.

20 Clearly the inefficiency of the hab approach stems
from the natural covariance of derivative operators (@a or
�ra) and curvature tensors; the advantages of the contra-
variant expansion gab ¼ �gab þ hab are therefore not pecu-
liar to the Einstein-Hilbert action, and are expected to be
even more distinguished in higher derivative theories of
gravity.

IV. MATTER

To avoid over-complicating our discussion, we have so
far focused exclusively on pure gravity. Here we will go
some way to remedy this simplification, and generalize the
formalism of the previous section to include the perturba-
tions of matter fields, and the effects of nonvacuum
backgrounds.
In the most general case, let the action S be a functional

of gab and a generic matter field�A, where A will serve as
a placeholder for any number of internal or spacetime

19There are of course the instances of �gab@c �gde in each �ra, but
these occur equally in either convention.
20This does not mean that all terms in such a Lagrangian will
contain only n� 1 additional factors of �gab; there will often be
cases in which �gab is contracted with ð �raÞ2 and thus nþ 1
factors of the metric (and its inverse) will be present. These cases
only represent a small proportion of all possible terms, particu-
larly as n becomes large, and are no worse than the terms
afforded by the hab convention.
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indices. We then expand S about a background ð �gab; ��AÞ as
follows:

gab ¼ �gab þ 	hab; (68)

�A ¼ ��A þ 	c A; (69)

) S½g;�� ¼ X1
n¼0

	nSn½ �g; h; ��; c �; (70)

where �gab and ��A satisfy the background equations

�S½ �g; ���
� �gab

¼ 0;
�S½ �g; ���
� ��A

¼ 0: (71)

As before, each partial action can be calculated from the
partial action at the previous order; with matter included,
the appropriate recurrence relation is

Sn ¼ �1

n

Z
d4x

ffiffiffiffiffiffiffi� �g
p ðhabtn�1

ab þ c Ajn�1
A Þ; (72)

where

tnab �
�1ffiffiffiffiffiffiffi� �g
p �Sn

� �gab
; jnA � �1ffiffiffiffiffiffiffi� �g

p �Sn

� ��A
: (73)

There are two aspects of this coupling scheme that differ
from pure gravity. The first is immediately apparent: the
habtab term has been joined by an analogous coupling
between matter fluctuations c A and its ‘‘source current’’
jA. The second difference is hidden within the definitions
of tab and jA; because the fSng now represent the partial
actions for gravity and matter together, habtab and c AjA
are no longer just self-couplings, and will in general con-
tain terms coupling hab to c A. In particular, tnab should now
be interpreted as the (nth-order) energy-momentum tensor
due to all the fields: hab, c A, and the background matter
��A.
Proceeding as before, we can now demand that the

dynamical fields hab and c A solve the field equations of
the action SNþ1

dyn ¼ P
Nþ1
n¼2 	

nSn; and generate approximate

solutions of the exact field equations (prescribed by S)
accurate to Oð	NÞ. Instead of using the definition (42) for

Ĝabcd, we write the general form of S2, modulo surface
terms, as

S2 ¼ 1

2

Z
d4x

ffiffiffiffiffiffiffi� �g
p ðhabĜabcdh

cd=�� 2habÎabAc
A

þ c AŴABc
BÞ; (74)

once the background equations (71) have been enforced. In

the above equation, Ĝabcd, ÎabA, and ŴAB are linear opera-

tors that depend only on background fields, Ĝabcd and ŴAB

are self-conjugate, in the sense given by (11), and ÎabA is

conjugate to ÎyAab:

Z
d4x

ffiffiffiffiffiffiffi� �g
p

AabÎabAB
A ¼

Z
d4x

ffiffiffiffiffiffiffi� �g
p

BAÎyAabA
ab; (75)

for all Aab or Bab, provided one has compact support.
These definitions lead to equations of motion, accurate to
Oð	NÞ, as follows:

	Ĝabcdh
cd ¼ �TN

ab þ 	�ÎabAc
A; (76)

	ŴABc
B ¼ JNA þ 	ÎyAabh

ab; (77)

where

TN
ab �

XN
n¼2

	ntnab; JNA � XN
n¼2

	njnA: (78)

Although this formalism is quite general, it is probably
too general to be usefully employed. Indeed, the compli-
cations involved in describing matter as a background field
and a dynamical perturbation generally serve to obscure
the physical interpretation of the mathematics. An interest-
ing example of this occurs when one tries to rederive
�raTNþ1

ab ¼ 0 by applying the argument of Sec. III D. The

result that now follows is

�r aTNþ1
ab ¼ 1

2
ffiffiffiffiffiffiffi� �g

p �

�"b

Z
d4x

ffiffiffiffiffiffiffi� �g
p

JNþ1
A L"

��A; (79)

the physical interpretation of which is far from clear.
Rather than continue with this formulation in its full gen-
erality, it will therefore be more instructive to examine two

special cases. First, we set ��A ¼ 0 and consider small
matter fields 	c A interacting with 	hab. Second, by setting
c A ¼ 0 we can study the effect of a background matter

field ��A on the propagation of the graviton. In principal,
one could reach these special cases starting from the
formalism we have just described, but it will be simpler
and more illuminating to build them up from scratch.

A. Matter perturbations

In a region where the matter fields are small enough that
their effects on spacetime curvature can be described by
small perturbations 	hab in the inverse metric, we can

model the dynamics by taking ��A ¼ 0, and describe the
matter field using 	c A alone. As it is often the case for
gravitational theories, let us suppose that the action S is the
sum of a gravitational action Sg and a matter action S�:

S½g;�� ¼ Sg½g� þ S�½g;��: (80)

Moreover, for the sake of simplicity, we take �A to be a
free field:

S�½g; 	�� ¼ 	2S�½g;�� 8 gab;�A: (81)

This assumption will mean that the perturbative expansion
of S can be described by an energy-momentum coupling
procedure only. To see this explicitly, we expand the action
about a background ð �gab; 0Þ:
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S½ �gþ 	h; 	c � ¼ X1
n¼0

	nðSgn½ �g; h� þ S�n½ �g; h; c �Þ; (82)

where each gravitational partial action

Sgn½ �g; h� ¼ 1

n!
ð@n	Sg½ �gþ 	h�Þ	¼0

¼ 1

n!

�Z
d4xhab

�

� �gab

�
n
Sg½ �g�; (83)

much as before, and the matter partial actions

S�n½ �g; h; c � ¼ 1

n!
ð@n	S�½ �gþ 	h; 	c �Þ	¼0

¼ 1

n!
ð@n	ð	2S�½ �gþ 	h; c �ÞÞ	¼0

¼ 1

ðn� 2Þ! ð@
n�2
	 S�½ �gþ 	h; c �Þ	¼0

¼ 1

ðn� 2Þ!
�Z

d4xhab
�

� �gab

�
n�2

S�½ �g; c �:
(84)

Defining the partial energy-momentum tensors for hab and
c A as

tgnab � �1ffiffiffiffiffiffiffi� �g
p �Sgn

� �gab
; t�n

ab � �1ffiffiffiffiffiffiffi� �g
p �S�n

� �gab
; (85)

respectively, we see that the partial actions are coupled as

Sn½ �g; h� ¼ �
Z

d4x
ffiffiffiffiffiffiffi� �g

p
hab

�
tgn�1
ab

n
þ t�n�1

ab

n� 2

�
: (86)

These partial actions lead to the Nth-order equations of
motion

	Ĝabcdh
cd ¼ �TN

ab ¼ XN
n¼2

	nðtgnab þ t�n
ab Þ (87)

	ŴABc
B ¼ XN

n¼2

� �	n

ðn� 1Þ ffiffiffiffiffiffiffi� �g
p �

�c A

Z
d4x

ffiffiffiffiffiffiffi� �g
p

habt�n
ab

�
:

(88)

The first equation confirms that the energy-momentum
tensors of c A and hab combine as the source for the
graviton. The second equation describes how the coupling
between hab and t�ab acts as a source for c

A. Note that even

when the matter field is not free, because S� never contains

terms linear in the matter fields, ÎabA must be at least linear

in ��A, so we will always have ÎabA ¼ 0 when ��A ¼ 0.

B. Nonvacuum background

For a nonvacuum spacetime, we expect to be able to
approximate (at least to first-order) the behavior of a
gravitational perturbation by ignoring the perturbations in
the matter field that it might induce. Alternatively, we may

have in mind a particular nonvacuum solution of the field

equations ð �gab; ��AÞ and wish to find nearby solutions
(approximate or exact) with precisely the same matter
content. For these two scenarios, we can set c A ¼ 0 and

investigate the effect that the background ��A has on the
dynamics of hab.
Considerations of this nature highlight an interesting

feature of our prior discussion of the graviton action. In
Sec. II we saw the importance of a contribution to the
action habHabcdh

ab that vanished in the vacuum; the ob-
vious question to ask is whether a similar term exists in the
nonvacuum case, and whether or not it will vanish on the
nonvacuum background equations. To answer these ques-
tions we will derive the graviton action for a nonvacuum
background, which will also include the cosmological
constant as a special case.
Let us restrict our attention to general relativity in the

presence of a matter field:

S½g;�� ¼ SEH½g� þ S�½g;��; (89)

S�½g;�� � 2
Z

d4x
ffiffiffiffiffiffiffi�g

p
L�ðgab;�A; @a�

AÞ: (90)

The factor of 2 in the definition of the matter Lagrangian
L� compensates for our slightly unusual normalization of
SEH.

21 It should be noted that we have assumed that L�

does not depend on derivatives of the metric. This is the
case for the Lagrangians of all the fields of the standard
model except the spin- 12 fermion, which in any case should

be coupled to gravity using the vierbein formalism, e.g.
[14]; such an approach is beyond the scope of this article.
The results of this section can be generalized to allow Lm

to depend on @cg
ab without any great difficulty, but this is

an added algebraic complication that seems to add little
insight to our investigation.
We proceed by expanding the action about a background

ð �gab; ��AÞ just as in (68) and (69), but now, as c A ¼ 0, the
coupling scheme (72) reverts to the familiar energy-
momentum coupling of Sec. III. Following precisely the
same method as Sec. III E, we can compute S2 by two
successive functional derivatives (with respect to �gab)

applied to S½ �g; ���. The first derivative yields

S1 ¼ 1

�

Z
d4x

ffiffiffiffiffiffiffi� �g
p ð �Gab � � �T�

abÞhab; (91)

where

�T �
ab ¼ �1ffiffiffiffiffiffiffi� �g

p �S�½ �g; ���
� �gab

¼ �2
@ �L�

@ �gab
þ �gab

�L� (92)

is the energy-momentum tensor of the background matter.

21All our actions are twice as large as the usual definition. This
normalization has no effect on the classical equations of motion,
but has allowed us to define the energy-momentum tensor
without a factor of 2, simplifying the algebra of Secs. II and III.
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The second derivative yields the graviton action:

S2 ¼ 1

2

Z
d4xhab

�S1
� �gab

¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p �

habĜabcdh
cd � ð �Gab � � �T�

abÞhabh

þ 2�habhcd
@2 �L�

@ �gab@ �gcd

þ ð �Rþ 2� �L�Þ
�
1

2
habh

ab � 1

4
h2
��

: (93)

This is the action we sought: the generalization of Eq. (4)
to a nonvacuum background.

If we are only interested in the linear theory, and have no
wish to calculate the energy-momentum tensor, then we
are free to enforce the background equation

�Gab ¼ � �T�
ab; (94)

in the graviton action. In sharp contrast to the vacuum case,
however, the background equation does not reduce S2 to
1
2�

R
d4x

ffiffiffiffiffiffiffi� �g
p

habĜabcdh
cd, or indeed any other covarianti-

zation of the massless spin-2 Fierz-Pauli action. Instead, it
appears as though the background matter has endowed the
graviton with mass:

S2 ¼ 1

2�

Z
d4x

ffiffiffiffiffiffiffi� �g
p ðhabĜabcdh

cd þ �Þ; (95)

where the ‘‘mass-term’’ � is given by

� � � 1

2
M

�
habhab � 1

2
h2
�
þ Nabcdh

abhcd; (96)

with

M � 2�

�
�L� � �gab

@ �L�

@ �gab

�
; Nabcd � 2�

@2 �L�

@ �gab@ �gcd
:

(97)

We refer to � as a mass-term because it is quadratic in hab,
free from derivatives, and has been added to the kinetic

term habĜabcdh
cd in the Lagrangian. However, as we will

see for the specific case of the cosmological constant, �
does not by itself determine whether the graviton is ac-
tually massive, i.e. whether it propagates subluminally; the
curvature of the background will play an equally important
role in the field equations. In particular, while it is tempting
to identify a mass m for the graviton according to m2 ¼ M
(at least when Nabcd ¼ 0) we will soon see that the back-
ground matter often sets M< 0, so this idea is essentially
untenable.

To explore these issues, it will be instructive to calculate
� for a few simple examples. First, consider a scalar field

background �� with Lagrangian

�L� ¼ � 1

2
�gab@a ��@b ��� Vð ��Þ; (98)

the mass-term is

�� ¼ �Vð ��Þ
�
habh

ab � 1

2
h2
�
: (99)

To ensure that the scalar field has positive energy density,

we must insist that Vð ��Þ � 0; hence M � 0 as previously
warned. Equation (99) can also be used to find the corre-
sponding mass-term for a cosmological constant. In this
case the Lagrangian is L� ¼ ��=�, which we can reach

from L� by setting @a �� ¼ 0 and V ¼ �=�. Clearly this
gives

�� ¼ �

�
habh

ab � 1

2
h2
�
; (100)

which similarly suffers from M< 0 if the cosmological
constant is positive.
At this point, the reader may be suspicious that the

formulas for �� and �� (with M< 0 and Nabcd ¼ 0)
signify that hab is a tachyon in the presence of a scalar
field background or a cosmological constant. Indeed, if the
background were flat and M constant over spacetime, we
could derive the field equations from (95), observe that
their divergence enforces the de Donder gauge condition

@�h�� � 1

2
@�h ¼ 0;

and, substituting this back into the equations of motion,
conclude that the dynamics of the graviton were described
by

ð@2 �MÞh�� ¼ 0:

This argument appears to justify the relation m2 ¼ M for
the graviton’s mass, and motivate the conclusion that M<
0 betrays tachyonic behavior. It is important to realize,
however, that the field equation above is of little relevance
to the actual physical system wewere discussing. In reality,
M will not be constant, and the presence of background
matter will inevitably preclude background flatness. To
understand how this last consideration alters the dynamics
of the graviton, we shall briefly examine the field equation
for hab in the presence of a cosmological constant. First,
we substitute (100) into (95) and derive the field equation

Ĝ abcdh
cd þ�

�
hab � 1

2
�gabh

�
¼ 0: (101)

In contrast to the naive approach, the covariant divergence
of this equation vanishes identically, and so cannot be used

to relate �rbh and �rahab. In place of this, the gauge
invariance of the vacuum theory remains intact,22 and the

22If we wish to extend our discussion of gauge invariance
(Sec. III C) to include background matter in general, we would
need to account for the gauge-fixing implicit in our starting
assumption c A ¼ 0, which is obviously not preserved by a (first-
order) infinitesimal diffeomorphism �c A ¼ L"

��A. However,
because � is constant over spacetime, no such difficulty arises
here, and the transformations �hab ¼ �2 �rða"bÞ remain a sym-
metry of the equations of motion.
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field equation may be simplified by setting h ¼ 0,
�rah

ab ¼ 0:

�r 2hab � 2 �Rdabch
dc ¼ 0: (102)

Surprisingly, the contribution from �� has been canceled
by a term proportional to the background Ricci tensor,
resulting in a field equation that is identical in form to
the first-order vacuum field equation (13) in this gauge. Of
course, this does not indicate that the cosmological con-
stant has no effect on the propagation of hab, only that
these effects are limited to the constraints imposed on the
background geometry by the background equation �Rab ¼
��gab. For this reason, it does not seem particularly natural
to interpret 2 �Rdabch

dc as endowing the graviton with a
mass; Eq. (102) can instead be understood as a (partially
gauge-fixed) massless spin-2 field equation that has been
generalized to cosmological backgrounds. Quite aside
from this, there is also the technical issue of interpreting
the four-index tensor �Rabcd as a mass: only if this tensor
can be defined in terms of a single scalar variable (and the
background metric) could the argument be made that this
single variable described the graviton’s mass. For a non-
zero cosmological constant, the only background with this

property is de Sitter space: �Rdabc ¼ �
3 ð �gdb �gac � �gdc �gabÞ,

thus the gauge-fixed field equation (102) becomes�
�r2 � 2�

3

�
hab ¼ 0: (103)

If we were so inclined, we might interpret this as a field
equation for a graviton withm2 ¼ 2�=3, and note that this
relation has the correct sign for positive �, unlike the
formula m2 ¼ �2� suggested by our preliminary inspec-
tion of ��. In truth, however, further investigation is
needed before we can either adopt or discard this interpre-
tation. This is not only because (102) [of which (103) is a
special case] can be understood as a generalization of a
massless field equation to cosmological backgrounds, but
also because of the subtleties involved in interpreting the

wave operator �r2 in curved space, and issues of whether or
not to use a conformal coupling. Clearly, more work must
be done to ascertain the physical ramifications of ��, and
the mass-term � in general, before we can understand the
degree to which its effects can be thought of as giving mass
to the graviton.

Although massive gravitons and the cosmological con-
stant were historically viewed as entirely separate con-
cepts, recent work has brought to light a number of
interesting connections between the two. Deser and
Waldron [15] have demonstrated that, in (anti-)de Sitter
background spacetimes, a massive spin-2 field is stable if
and only if m2 � 2�=3, or m ¼ 0. While it is intriguing
that our de Sitter background field equation (103) suggests
precisely the same special value of m2 ¼ 2�=3, Deser and
Waldron’s analysis differs significantly from our own, so
this superficial observation may be misleading. In particu-

lar, whereas our mass-term arises as a direct result of the
perturbative expansion, Deser andWaldron add their mass-
term to the action by hand. Thus it is far from clear that the
massive gravitons of their paper correspond to the physical
system considered above. In contrast, Novello and Neves
[16] claim to prove that m2 ¼ �2�=3, with the implica-
tion that � � 0. This approach considers an unusual gen-
eralization of the spin-2 field equation to curved
backgrounds, making a nonstandard choice for the cova-
riantization ambiguous term discussed in Sec. II A. Thus,
while their calculations arguably describe a spin-2 field,
this does not appear to be a natural way to describe the
spin-2 field that results from perturbations of the metric (or
its inverse) in Einstein’s theory. It is our intention to
disentangle the connections between these two approaches,
and our own, in a later publication.
For the sake of completeness, we conclude this section

with an example of a mass-term that can have M> 0, and
Nabcd � 0. Unlike ��, however, we shall not attempt to
derive any of the implications for the equations of motion.
Consider an electromagnetic 1-form background �Aa, with
Lagrangian

�L A ¼ � 1

4
�F2 ¼ � 1

4
�gab �gcd �Fac

�Fbd; (104)

and note that �Fab � 2@½a �Ab� is independent of the metric.

The calculation yields

�A ¼ � 1

4
� �F2

�
habh

ab � 1

2
h2
�
� �habhcd �Fac

�Fbd;

(105)

which has the aforementioned properties.

V. CONCLUSION

Contrary to the prevailing maxim, coupling the classical
Fierz-Pauli graviton to its own energy and momentum does
not recreate general relativity order by order. However,
there is an alternative action for the graviton (4) for which
energy-momentum self-coupling is consistent with
Einstein’s theory. Using this action, the energy-momentum
tensor of the graviton (26), added as a source to the
graviton’s first-order equation of motion (13), builds a field
equation consistent with the Einstein equations to second-
order. Furthermore, the perturbative formalism developed
in Sec. III reveals that our action provides sufficient infor-
mation to reconstruct general relativity to arbitrary accu-
racy: a simple recurrence relation (46) identifies the
energy-momentum tensor at one order as the appropriate
contribution to the action at the next. To any order N, this
scheme assembles an action that dictates field equations
(53) in which the graviton’s Nth-order energy-momentum
tensor is the source.
The formal machinery used to understand vacuum per-

turbations is easily extended to include matter, although
the physical interpretation of the most general approach, in

LUKE M. BUTCHER, MICHAEL HOBSON, AND ANTHONY LASENBY PHYSICAL REVIEW D 80, 084014 (2009)

084014-14



which matter comprises both a background field and a
small perturbation, is less than transparent. Focusing on
matter perturbations separately from nonvacuum back-
grounds serves to clarify the formalism significantly. In a
vacuum background, the interactions between the graviton
and perturbations of a free matter field lead to a field
equation (87) in which the source for the graviton is the
sum of gravitational and matter energy-momentum. This
interaction inevitably induces a source in the field equa-
tions for matter (88). Alternatively, one may neglect matter
perturbations and examine the consequences of a nonvac-
uum background. In this case, the dynamics and energy-
momentum of the graviton are prescribed by the action
(93), generalizing our previous ansatz. Surprisingly, the
background matter appears to induce a mass-term in the
graviton action, although it is currently unclear to what
extent its interpretation as a mass is valid at the level of the
field equations. The mass-terms induced by a scalar field
(99), a cosmological constant (100) and electromagnetism
(105) have been calculated.
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APPENDIX A: PADMANABHAN’S ANALYSIS

The recent article by Padmanabhan [8] unearths many
significant shortcomings of the well-known arguments [1–
4] that supposedly derive Einstein’s equations by coupling
the Fierz-Pauli graviton to its own energy-momentum
tensor. Here we attempt to summarize his observations,
and explain their relation to this present work.

In broad terms, Padmanabhan’s criticisms fall into three
areas:

(1) The Einstein-Hilbert action consists of a bulk term
(the �2 action) and a surface term. The latter in-
cludes a piece linear in h��, so there can be no way

to construct it from a self-coupling procedure that
starts with an action that is already quadratic in
h��.

23

(2) The starting point, the Fierz-Pauli Lagrangian (8),
describes a Lorentz invariant field theory, and yet
the end result, general relativity, is generally cova-
riant. It is claimed that this metamorphosis only
occurs because general covariance has been as-

sumed in the various derivations, in which case it
is ‘‘no big deal to obtain Einstein’s theory.’’ More
generally, the classic bootstrapping arguments wield
ideas developed in general relativity (such as
Hilbert’s definition of the energy-momentum ten-
sor) or use knowledge of the end result to achieve
their goal. Hence they cannot be regarded as a
derivation of general relativity from first principles.

(3) The first-order field equation can only take a sym-
metric tensor as its source; the canonical energy-
momentum tensor (15) is not necessarily symmetric,
and although it can be made to be so, this process is
not unique. Therefore the energy-momentum self-
coupling procedure is ill-defined. The Hilbert defi-
nition is uniquely determined by the action, but to
use it would violate criticism 2. Crucially, even if we
allow ourselves to use Hilbert’s definition, we still
fail to recover the correct source-term for the
second-order field equation.

It is to this very last crucial point that we have devoted the
bulk of this paper. We now wish to explain our position
with regards to the first two criticisms, and also
Padmanabhan’s proposed solution to the third.
Response to criticism 1.—Our approach expressly

avoids discussing surface terms. This has greatly stream-
lined our formalism, and because such terms are com-
pletely irrelevant for determining field equations or
energy-momentum tensors, the only price to pay for this
simplicity is that we can only claim to reconstruct the
Einstein-Hilbert action modulo surface terms.24 In this
sense, Padmanabhan’s first criticism still stands, although
it is unclear whether it has any great importance. If the
action is an integral over the whole manifold, and asymp-
totic conditions apply to hab such that the surface term at
infinity vanishes, then of course there is no distinction
between the Einstein-Hilbert action and the action we
have constructed. Even if the action is an integral over a
manifold with a boundary, so long as we consider the
action to be a functional over all fields with a particular
boundary configuration (just as we might think of the
action of a particle as a functional over all paths with
particular end-points) the two actions differ only by an
irrelevant constant. Besides, in situations where contribu-
tions from the boundary really are important, one does not
typically use the Einstein-Hilbert action anyway: the
Gibbons-Hawking-York boundary term [17,18] must be
included to remove the dependence on second derivatives
of the metric. This allows the field equations to be derived
using a variational principle that only demands that the
variation in the fields (and not also their derivatives) van-
ishes on the boundary.

23The argument given by Padmanabhan is phrased in terms of
nonanalyticity in a dimensionful coupling constant. This form of
the argument depends on his particular choice of normalization
for h�� and SEH, but is essentially equivalent to the statement
given here.

24Note that this does not necessarily mean that we have con-
structed the �2 action, only that the integrand of the action
differs from

ffiffiffiffiffiffiffi�g
p

R by some total divergence.
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Padmanabhan’s major concern is that the surface term of
the Einstein-Hilbert action has some quantum mechanical
significance. As the nature of quantum gravity has yet to be
understood, it remains unclear whether or not this is the
case. We stress once again that the analysis in this paper is
purely classical, and that we make no claims as to a
quantum mechanical interpretation. Furthermore, it is not
even known whether the graviton is a useful theoretical
object for describing quantum gravity. We note again that
the Gibbons-Hawking-York boundary term is usually in-
cluded in quantum gravity investigations for which the
boundary is not negligible.

Response to criticism 2.—It is our view that
Padmanabhan’s concerns about general covariance are un-
justified: we take the position of Weinberg [19], that ‘‘gen-
eral covariance by itself is empty of physical content.’’ Any
theory (Lorentz invariant or not) can be expressed in
arbitrary curvilinear coordinates, so the requirement of
general covariance cannot, in and of itself, constrain the
sort of theory one might construct. Rather, the kinematical
content of general relativity is encapsulated by the equiva-
lence principle, that the effect of gravity vanishes locally in
an inertial coordinate system; thus expressing physical
equations in coordinate invariant notation is an invaluable
tool for describing how their dynamics are modified by
gravity. It is possible that when Padmanabhan refers to
‘‘general covariance’’ he is referring to the equivalence
principle also. As the latter is tantamount to identifying the
gravitational field with a dynamical metric, he would cer-
tainly be correct to criticize any ‘‘derivation’’ that con-
tained such a step; needless to say, we do not appeal to the
equivalence principle in our approach.

General covariance aside, though, Padmanabhan’s ob-
jection to the use of curved-space ideas is a valid one,
indicating that none of the classic arguments constitute a
derivation from first principles. Our approach certainly
makes use of curved-space concepts; however our goals
are perhaps not quite so bold as the other derivations that
Padmanabhan has scrutinized: we do not pretend to derive
general relativity purely from the ideas of Lorentz-
invariant field theory. It should be stressed, however, that
even if some of the kinematical content of general relativ-
ity is in some way assumed (curved spacetime, functional
derivatives with respect to the metric, etc.) it is still a ‘‘big
deal’’ to derive the dynamical content of the theory,
Einstein’s equations.

Response to criticism 3.—We have already explained our
position with regards to the definition of the energy-
momentum tensor in Sec. II C; the only reason that
Hilbert’s definition is unpalatable to Padmanabhan is that
his aim is to start with as little curved-space mathematics
as he can. However, the failure of the Hilbert energy-
momentum tensor to give the correct second-order term
for the Einstein field equations is a more significant stum-
bling block. We have explained our remedy, the use of a

different starting action, in the body of this paper.
Padmanabhan, on the other hand, eschews energy-
momentum self-coupling and introduces a new object
S�� that he defines with the following algorithm. Start
with a Lorentz invariant Lagrangian Lð���; h��; @�h��Þ
expressed in Lorentzian coordinates fx�g. Replace every
instance of ��� with the metric �g�� to produce a new

Lagrangian ~Lð �g��; h��; @�h��Þ; note that this is not the

same as expressing L in an arbitrary coordinate system
because the partial derivatives @� have not been upgraded

to covariant derivatives �r�. We can now define

S�� � 2
@

ffiffiffiffiffiffiffi� �g
p ~L
@ �g��

�������� �g¼�
: (A1)

The subscript reminds us that we must set �g�� ¼ ��� after

taking the metric derivative, as we are supposedly working
in Lorentzian coordinates. Padmanabhan claims to be able
to reconstruct the �2 action by coupling h�� to this new

object S��. Unfortunately S�� has a number of highly
undesirable properties, suggesting that it is a rather un-
natural object, ill-defined in its current form.25

Firstly, as it has been constructed from a Lagrangian
rather than an action, S�� depends directly on surface
terms. This introduces a very large ambiguity, as S��

will depend on whether we write the integrand of the action
in the form ð@hÞ2, as Padmanabhan does, in the form h@2h,
or as some arbitrary combination of both. Each possibility
defines a different S�� and (presumably) leads to a differ-
ent self-coupled limit for the graviton. It seems that the
only remedy for this ambiguity is to artificially stipulate
that L contain no second derivatives, although we note in
passing that even this leaves us free to add surface terms of
the form @�ð�A�Þ in theories for fields other than the
graviton.
The second troubling aspect to S�� is the ‘‘half-

covariantizing’’ algorithm used to construct ~L. It should
be clear that this procedure has only been defined in
Lorentzian coordinates, thus the matrix S�� does not really
constitute the components of a tensor, as we have not
explained how their values change when expressed in
another coordinate system.26 There are essentially two
ways to extend the definition (A1) to include curvilinear
coordinates. The trivial solution is to construct the tensor
Sab � S��ð@�Það@�Þb using the vectors fð@�Þag, partial

25In private communication, Padmanabhan has indicated that
he shares our concerns about S�� and does not believe it to be of
any fundamental importance; hence we present the case against
S�� for the sake of completeness rather than rebuttal.
26The insistence that we be able to calculate the components of
this object in arbitrary coordinates has nothing to do with curved
spacetime or general relativity. Rather, this reflects the perfectly
reasonable expectation that we should be able to express
Padmanabhan’s self-coupling procedure in flat-space spherical
polar coordinates, for example, or any other coordinate system
we choose.
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derivatives with respect to the Lorentzian coordinates used
to calculate S�� in the first place. This obviously defines a

genuine tensor, so the components S�
0�0

of Sab in some

curvilinear coordinate system fx�0 g can be calculated, and
they will be related to S�� by the usual transformation
rules. It should be clear, however, that this solution is rather
unnatural: suppose we have a Lagrangian expressed in a
curvilinear coordinate system, then the only way to calcu-

late the components S�
0�0

in that system is to first transform
to Lorentzian coordinates, calculate S�� according to (A1),
and then transform back to our original coordinate system.
Also, because this process picks out a special set of coor-
dinates, there is also no reason to expect that Sab can be

written as a tensorial function of hab, �gab, and
�ra. The

natural way to proceed would be to generalize the defini-

tion (A1) in such a way that we could calculate S�
0�0

working in any coordinate system. It might seem that a
viable solution would be to define the tensor

Sab � 2ffiffiffiffiffiffiffi� �g
p @

ffiffiffiffiffiffiffi� �g
p

L
@ �gab

�������� ��
; (A2)

where L ¼ Lð �gab; hab; �rchabÞ is the fully covariant
Lagrangian, and the subscript indicates that the

Christoffel symbols ��a
bc are to be treated as independent

of the metric and held constant in the derivative. This
expression generalizes (A1) to define a tensor Sab in a
coordinate invariant fashion; because the Christoffel sym-
bols are held constant, no term arises from a variation of
the covariant derivatives, and Sab will reduce to S�� in
Lorentzian coordinates. This expression gives us some
insight into the geometrical meaning of Padmanabhan’s
half-covariantized algorithm; in particular, it reveals that
the derivative @=@ �g�� used to define S�� is in fact explor-

ing geometries (infinitesimally close to Minkowski space-
time) with connections that are not metric compatible.27 It

is perhaps unsurprising that this ��-constant derivative in-
troduces a new layer of ambiguity to the procedure, as we

can now alter Sab by adding terms proportional to 0 ¼
�rc �gab to the Lagrangian. Although this might seem a
rather contrived objection, it is in fact a very common
consideration. For example, suppose the Lagrangian in-

cludes a term of the form �rah
a
b; should we calculate Sab

by acting with @=@ �gj �� on �rað �gachcbÞ, or should we first
commute the metric past the covariant derivative, and act

on �gac �rahcb instead? Note that this issue would have been
invisible in Lorentzian coordinates because

@ �rc �gef
@ �gab

�������� ��
¼ �2 ��ða

cðe�
bÞ
fÞ; (A3)

which we would have automatically set to zero. It seems
the only way to avoid this uncertainty in Sab is to introduce
another artificial constraint on the Lagrangian: we insist
that it be written in such a way that no derivatives act on the
metric. This should be achieved by commuting covariant
derivatives through the metric, rather than integrating by
parts, due to the aforementioned issues with surface terms.
We shall take our analysis of S�� no further at this time.

It is still uncertain whether this object can be generalized,
naturally and uniquely, to form a genuine tensor; without
such a generalization it is difficult to ascertain what sort of
mathematical object the matrix of functions S�� is sup-
posed to represent. Although we cannot claim to have
exhausted all possibilities, the evidence before us suggests,
at the very least, that this goal is not easily achieved.
Aside from these technical issues, we should also em-

phasize that, unlike the energy-momentum tensor, S�� has
no apparent physical interpretation beyond its supposed
role in a graviton self-coupling scheme. Energy-
momentum self-coupling was justified by analogy with
matter-gravity coupling, and advanced by the notion that
the energy-momentum of all fields should source gravita-
tion. In contrast, the self-coupling scheme involving S��

only serves to set gravity apart from the other fields.
Furthermore, our solution displays an unusual symmetry
between the coupling terms in the action and source terms
generated in the field equations as a result (see Sec. III B);
this symmetry is broken by Padmanabhan’s self-coupling
procedure.

APPENDIX B: EXPANSION OF Gab

Here we determine the first two terms of the expansion
of the Einstein tensor

Gab ¼ Gð1Þ
ab þGð2Þ

ab þOðh3Þ; (B1)

induced by a perturbation of the inverse metric about a
vacuum background:

gab ¼ �gab þ hab; (B2)

�Gab ¼ 0: (B3)

The perturbation in the metric is of course fixed by the
relationship gabgbc ¼ �a

c ,

) gab ¼ �gab � hab þ hach
c
b þOðh3Þ: (B4)

To begin, introduce a connection Ea
bc between the deriva-

tive operators ra and �ra:

Ea
bc ¼

1

2
gabð �rbgcd þ �rcgbd � �rdgbcÞ: (B5)

This allow the Ricci tensor to be expressed as

Rab ¼ 2ð �r½cEc
a�b þ Ec

d½cE
d
a�bÞ: (B6)

From (B5) it is clear that

27This is the same operation as the derivative used to acquire
the Einstein equations from the Palatini action [20], although
here we will have no cause to perform the complementary
derivative @=@�j �g.

BOOTSTRAPPING GRAVITY: A CONSISTENT APPROACH . . . PHYSICAL REVIEW D 80, 084014 (2009)

084014-17



Eað0Þ
bc

¼ 0; (B7)

Eað1Þ
bc

¼ � 1

2
�gadð2 �rðbhcÞd � �rdhbcÞ; (B8)

Eað2Þ
bc

¼ � 1

2
hadð2 �rðbhcÞd � �rdhbcÞ

þ 1

2
�gadð2 �rðbðhcÞehedÞ � �rdðhbehecÞÞ: (B9)

Hence the terms of the expansion Rab ¼ Rð1Þ
ab þ Rð2Þ

ab þ
Oðh3Þ can be computed as follows:

Rð1Þ
ab ¼ 2 �r½cEcð1Þ

a�b (B10)

Rð2Þ
ab ¼ 2ð �r½cEcð2Þ

a�b þ Ecð1Þ
d½cE

dð1Þ
a�bÞ: (B11)

Thus,

Gð1Þ
ab ¼ Rð1Þ

ab �
1

2
�gabR

ð1Þ
cd �g

cd

¼ � �rc
�rðahbÞ

c þ 1

2
�r2hab þ 1

2
�ra

�rbh

� 1

2
�gabð� �rc

�rdh
cd þ �r2hÞ; (B12)

which confirms that Ĝabcd, as defined in (5), represents the
linearized Einstein tensor:

Ĝ abcdh
cd ¼ Gð1Þ

ab: (B13)

In particular, note that both sides of this equation agree on

the order of the derivatives in �rc
�rðahbÞ

c; this is the de-

scendant of the covariantization ambiguous term discussed
in Sec. II A.

To find Gð2Þ
ab , start with

Gð2Þ
ab ¼ Rð2Þ

ab �
1

2
�gabðRð2Þ

cd �g
cd þ Rð1Þ

cdh
cdÞ þ 1

2
habR

ð1Þ
cd �g

cd;

(B14)

and substitute Eqs. (B10) and (B11), followed by (B8) and
(B9). The bookkeeping for this calculation is characteristi-
cally laborious, but is easily accomplished using a com-
puter algebra package; the result is

Gð2Þ
ab ¼ ��tab þ 1

2
hĜabcdh

cd; (B15)

where tab is given by (26). As expounded in Sec. II B, and
now confirmed by direct calculation (B13), the first-order

approximation to the Einstein field equation is Ĝabcdh
cd ¼

0, so Ĝabcdh
cd ¼ Oðh2Þ must hold true at second-order.

Clearly it follows from this that hĜabcdh
cd ¼ Oðh3Þ, and

hence (28) is verified.

The third-order difference between Gð2Þ
ab and ��tab ex-

ists because the field equation approximated to second-
order in (29) is actually

ffiffiffiffiffiffiffi�g
p

Gab=
ffiffiffiffiffiffiffi� �g

p ¼ 0; this is of

course entirely equivalent to the usual form of the
Einstein field equation Gab ¼ 0.
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