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We derive new formulas for the spectral energy density and total energy density of massless particles in

a general spherically symmetric static metric from a generalized uncertainty principle. Compared with

blackbody radiation, the spectral energy density is strongly damped at high frequencies. For large values

of r, the spectral energy density diminishes when r grows, but at the event horizon, the spectral energy

density vanishes and therefore thermodynamic quantities near a black hole, calculated via the generalized

uncertainty principle, do not require any cutoff parameter. We find that the total energy density can be

expressed in terms of Hurwitz zeta functions. It should be noted that at large r (low local temperature), the

difference between the total energy density and the Stefan-Boltzmann law is too small to be observed.

However, as r approaches an event horizon, the effect of the generalized uncertainty principle becomes

more and more important, which may be observable. As examples, the spectral energy densities in the

background metric of a Schwarzschild black hole and of a Schwarzschild black hole plus quintessence are

discussed. It is interesting to note that the maximum of the distribution shifts to higher frequencies when

the quintessence equation of state parameter w decreases.
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In quantum mechanics, the product of the uncertainty in
position and the uncertainty in momentummust be equal to
or exceed a fundamental limit proportional to Planck’s
constant. This is called the Heisenberg uncertainty princi-
ple, which shows that, in a six-dimensional phase space, no
particle can be localized into a region smaller than ð2�@Þ3,
so this is the size of a fundamental element. Hence the
volume in the phase space for each discrete quantum state
is ð2�@Þ3. Although the cell of the volume was first estab-
lished from the study of a nonrelativistic gas [1], Bose [2]
showed that, for an ultrarelativistic gas, the cell takes the
same form as that in nonrelativistic cases. From which one
can show that, for a perfect relativistic gas, the energy
distribution has a blackbody spectrum and obeys Stefan-
Boltzmann law. In fact, this follows if one does not con-
sider gravitational interactions. But, if one does, the
Heisenberg uncertainty principle is found to be modified
to [3–18]

�X�P � @

2
½1þ �ð�PÞ2�; (1.1)

which, as is easily verified, implies a finite minimal uncer-

tainty ð�XÞmin ¼ @
ffiffiffiffi
�

p
. Equation (1.1) is called the gener-

alized uncertainty principle, which has found strong
support from string theory [3,4], loop quantum gravity
[5], and noncommutative geometry [6,7]. The generalized
uncertainty principle has both low-energy (quantum me-
chanical) and high-energy (quantum gravity) limits. Based
on this principle, the volume of a phase-space cell is

changed from ð2�@Þ3 into ð2�@Þ3ð1þ �P2Þ3 [19], where
P is the 3-momentum of a particle.
There has been much attention devoted to resolving the

corrections to thermodynamical quantities in various
spacetime backgrounds via the generalized uncertainty
principle in recent years. Such as black hole [20–35],
universe [36–42], dark energy [43], and brane world [44–
46] backgrounds. However, despite extensive discussion,
exact thermodynamic relations with the generalized uncer-
tainty principle are still lacking. In this paper, we discuss a
perfect relativistic gas on black hole backgrounds with the
generalized uncertainty principle and show that the energy
distribution is described by new formulas. This is consid-
ered for one reason. From the Heisenberg uncertainty
principle, one can obtain the energy distribution formulas
in curved spacetime as will be shown in the next section.
Unfortunately, calculations generally lead to divergent ex-
pressions due to the infinite growth of the density of states
close to an event horizon. But a generalized uncertainty
principle provides a minimal length scale, which may play
the role of a natural cutoff. Therefore we expect the use of a
generalized uncertainty principle to be natural as it re-
moves the divergence near event horizons.
In the next section, we discuss the thermodynamical

properties of a perfect relativistic gas in a general spheri-
cally symmetric static metric, assuming the generalized
uncertainty principle, and give the density of the spectral
frequency distribution of the energy. In Sec. III, we further
show basic properties of the spectral energy distribution in
the background metric of a Schwarzschild black hole and
of a Schwarzschild black hole plus quintessence. In
Sec. IV, we derive a new formula for the total energy
density from the spectral frequency distribution and show*ZHLI@zjut.edu.cn
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that the deviation from the Stefan-Boltzmann law is due to
the presence of the generalized uncertainty principle.
Finally, Sec. V contains a further discussion of the new
formulas and some concluding remarks.

II. SPECTRAL ENERGY DISTRIBUTION

In this section, we discuss the density of the spectral
frequency distribution of the energy from the modified
number of states. Based on the generalized uncertainty
principle, the number of quantum states of the system in
a phase volume d3Xd3P reads [19,47–49] (we use Planck
units)

�d3Xd3P

ð2�Þ3ð1þ �P2Þ3 ; (2.1)

where � is the degeneracy due to the spin. As already
mentioned in the introduction, the concept of cells in phase
space can be applied not only to a nonrelativistic gas but
also a relativistic gas. The physical reason can be traced
back to the universality of the Heisenberg uncertainty
principle. Therefore, we naturally suppose that Eq. (2.1)
is also applicable to both a nonrelativistic gas and a rela-
tivistic gas, since the generalized uncertainty principle is
valid for these two cases.

We now consider a spacetime with metric

ds2 ¼ BðrÞdt2 � B�1ðrÞdr2 � r2ðd�2 þ sin2�d’2Þ:
(2.2)

This includes as special cases the Schwarzschild, Reissner-
Nordström, Barriola-Vilenkin, and (anti-)de Sitter space-
time background or any combination of these, where the
event horizons are determined by B ¼ 0. At the WKB
level, the 3-momentum of a free massless particle in this
spacetime can be written as

P2 ¼ PiP
i ¼ BP2

r þ 1

r2
P2
� þ

1

r2sin2�
P2
’ ¼ !2

B
; (2.3)

where ! is an angular frequency. Equation (2.3) tells us
that, near an event horizon, the momentum of a particle
approaches infinity; i.e., its de Broglie wavelength is ever-
increasingly blueshifted. Hence the WKB approximation
or the relativistic Hamilton-Jacobi equation is justified. In
fact, earlier works [50,51] have shown that the WKB
approximation is valid in the neighborhood of a black hole.

Using Eqs. (2.1) and (2.3) and Planck’s distribution, we
obtain the energy of particles with frequencies between !
and !þ d!:

dU! ¼ d!
Z �!3

2�2B2ð1þ �!2

B Þ3
4�r2dr

e�! � 1
: (2.4)

In Eq. (2.4), � is the inverse temperature at large distance.
The plus sign corresponds to the Fermi case, while the
minus sign corresponds to the Bose case.

On the other hand, the energy dU! can be given by the
integral [52–54]

dU! ¼ d!
Z

�!ðrÞ4�r2dr: (2.5)

Here �!ðrÞd! is the energy density in the frequency range
from ! to !þ d!. Comparing this with Eq. (2.4), we find
that the density of the spectral frequency distribution of the
energy of a perfect relativistic gas can be written as

�!ðrÞ ¼ �!3

2�2B2ð1þ �!2

B Þ3
1

e�! � 1
: (2.6)

In this paper, �!ðrÞ is called the spectral energy density for
short.
Compared with blackbody radiation, the spectral energy

density is modified at high frequencies as shown in Fig. 1.
Note that when � ¼ 0, formula (2.6) becomes

�!ðrÞ ¼ �!3

2�2B2

1

e�! � 1
; (2.7)

which is the spectral energy distribution in curved space-
time with the usual Heisenberg uncertainty principle.
Obviously, in this case, the spectral energy density diverges
at an event horizon (B ¼ 0). To control divergences,
’t Hooft [50] introduced a cutoff parameter, which is
interpreted as the position of a ‘‘brick wall.’’ However,
substituting B ¼ 0 into Eq. (2.6) gives �! ¼ 0, and there-
fore it is not necessary to introduce the brick-wall model
when the generalized uncertainty principle is taken into
account. In Minkowski spacetime B ¼ 1, our result re-
duces to the case discussed by Chang et al. [19].

III. SOME EXAMPLES

In this section, we will further show basic properties
of the spectral energy distribution via some specific
examples.

FIG. 1. The spectral energy density �! versus the frequency
!. The heavy curve and the light curve describe the behaviors
based on the generalized uncertainty principle and the
Heisenberg uncertainty principle, respectively.

ZHONG-HENG LI PHYSICAL REVIEW D 80, 084013 (2009)

084013-2



A. Schwarzschild black hole

For the Schwarzschild black hole background, BðrÞ is
given by

BðrÞ ¼ 1� rH
r
; (3.1)

where rH ¼ 2M is the event horizon radius. The inverse
Hawking temperature�H is expressed in terms of the event
horizon radius via the relation �H ¼ 4�rH.

By choosing the inverse temperature � to correspond to
the Hawking inverse temperature �H, the spectral energy
density for the Schwarzschild spacetime background can
be written as

�! ¼ �!3ð1� xÞ
2�2ð1� xþ �!2Þ3

1

e4�rH! � 1
: (3.2)

Here a dimensionless parameter x ¼ rH=r is introduced
which maps the region rH � r <1 into the finite interval
1 � x > 0.

We have drawn the behavior of the spectral energy
density for fixed frequency in Fig. 2. On it, we see that,
for large values of r, the spectral energy density diminishes
when r grows, but at the event horizon x ¼ 1, the spectral
energy density vanishes. This shows that thermodynamic
quantities near a black hole, calculated via the generalized
uncertainty principle, do not require any cutoff parameter.

B. Schwarzschild black hole surrounded
by quintessence

Nowadays, astrophysical data lead one to believe that
the expansion of the Universe is accelerating [55], which
implies that most of the energy of the Universe is some sort
of dark energy, with a ratio of pressure to density less than
w ¼ �1=3. It is possible that the dark energy density has a
time-dependent w. When �1<w<�1=3, the Universe
is in the quintessence phase.

The spacetime metric for a Schwarzschild black hole
surrounded by quintessence gives [56]

BðrÞ ¼ 1� 2M

r
�

�
r0
r

�
3wþ1

: (3.3)

The event horizons are determined by

1� 2M

r
�

�
r0
r

�
3wþ1 ¼ 0: (3.4)

The mass parameterM can be written in terms of the other
metric parameters when recognizing that BðrHÞ ¼ 0, yield-
ing

M ¼ rH
2

�
1�

�
r0
rH

�
3wþ1

�
: (3.5)

The Hawking inverse temperature �H is given by

�H ¼ 4�rH

�
1þ 3w

�
r0
rH

�
3wþ1

��1
: (3.6)

Note that, if and only if

r0
rH

> e ¼ 2:718 . . . ; (3.7)

the Hawking temperature is positive for anyw in ð�1;� 1
3Þ.

The spectral energy density at inverse temperature �H is
given by

�! ¼ �!3½1� xð1� �3wþ1Þ � �3wþ1x3wþ1�
2�2½1� xð1� �3wþ1Þ � �3wþ1x3wþ1 þ �!2�3

� 1

e4�r0!=�ð1þ3w�3wþ1Þ � 1
: (3.8)

Similarly to the previous subsection, the dimensionless
parameters x and � denote x ¼ rH=r and � ¼ r0=rH,
respectively.
We see from Fig. 3 that the maximum of the distribution

shifts to higher frequencies with decreasing w.

FIG. 2. The spectral energy density �! versus x for fixed
frequency ! on the Schwarzschild spacetime background.

FIG. 3. The spectral energy density �! versus the frequency !
for fixed x in the spacetime metric of a Schwarzschild black hole
surrounded by quintessence. The heavy solid curve is for w ¼
�1, the light solid curve is for w ¼ �2=3, the dotted-dashed
curve is for w ¼ �1=2, and the dashed curve is for w ¼ �2=5.
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IV. TOTAL ENERGY DENSITY

It is known that, in Minkowski spacetime and with the
Heisenberg uncertainty principle, the total energy density
of blackbody radiation is proportional to the fourth power
of the temperature, which is the Stefan-Boltzmann law.
In curved spacetime (2.2), the corresponding energy den-
sity can be derived by direct integration of the distribution
(2.7). The result takes the same form as that in flat space-
time if the temperature is replaced by the local temperature
[57]

TðrÞ ¼ 1

�
ffiffiffiffi
B

p : (4.1)

We now turn to consider the total energy density in
curved spacetime with the generalized uncertainty princi-
ple. In this case, the total energy density is obtained by
integrating (2.6) over all frequencies:

�ðrÞ ¼
Z 1

0

�!3

2�2B2ð1þ �!2

B Þ3
d!

e�! � 1
: (4.2)

In the integral we put x ¼ �!=2� and transform it as
follows:

�ðrÞ ¼ 8�2�
Z 1

0

T4ðrÞx3
½1þ 4�2�T2ðrÞx2�3

dx

e2�x � 1

¼ ��T3ðrÞ
2�

d

dTðrÞ
�

1

½4�2�T2ðrÞ�2

�
Z 1

0

xdx

½ð 1
2�

ffiffiffi
�

p
TðrÞÞ2 þ x2�2ðe2�x � 1Þ

�
: (4.3)

The integral is calculated from the formulas

Z 1

0

xdx

ð�2 þ x2Þ2ðe2�x � 1Þ ¼ � 1

8�3
� 1

4�2
þ 1

4�
c 0ð�Þ

(4.4)

and

Z 1

0

xdx

ð�2 þ x2Þ2ðe2�x þ 1Þ ¼
1

4�2
� 1

4�
c 0

�
�þ 1

2

�
;

(4.5)

where c ð�Þ is the Euler psi function and the prime denotes
the derivative with respect to its argument.
We finally find that the total energy density in curved

spacetimewith the generalized uncertainty principle can be
written as

�ðrÞ ¼
8<
:
� �

16�2�2 ð1þ �
ffiffiffi
�

p
TðrÞ
2 Þ þ �

64�3
ffiffiffiffi
�5

p
TðrÞ ½3�ð2; 1

2�
ffiffiffi
�

p
TðrÞÞ � 1

�
ffiffiffi
�

p
TðrÞ �ð3; 1

2�
ffiffiffi
�

p
TðrÞÞ� ðbosonsÞ;

�
16�2�2 � �

64�3
ffiffiffiffi
�5

p
TðrÞ ½3�ð2; 12 þ 1

2�
ffiffiffi
�

p
TðrÞÞ � 1

�
ffiffiffi
�

p
TðrÞ �ð3; 12 þ 1

2�
ffiffiffi
�

p
TðrÞÞ� ðfermionsÞ; (4.6)

where �ðnþ 1; �Þ ¼ ð�1Þnþ1c ðnÞð�Þ=n! is Hurwitz zeta
function.

From formula (4.6), it is clear that the total energy
density is determined only by the local temperature TðrÞ
but is not proportional to the fourth power of the tempera-
ture. In other words, the total energy density does not take
the form of the Stefan-Boltzmann law. However, the de-
viation of the total energy density from the Stefan-
Boltzmann law appears only at a high local temperature,
because the effect is too small to be observable at a low
local temperature as shown in Fig. 4.

For
ffiffiffiffi
�

p
TðrÞ � 1, formula (4.6) gives

�ðrÞ ¼
8<
:

�2

30 �T
4ðrÞ � 4�4

21 ��T6ðrÞ ðbosonsÞ;
7�2

240 �T
4ðrÞ � 31�4

168 ��T6ðrÞ ðfermionsÞ: (4.7)

It should be noted that, when � ¼ 0, formula (4.6)
reduces to the form proportional to the fourth power of
the temperature and the theory agrees with that performed
in curved spacetime with the Heisenberg uncertainty
principle.

FIG. 4. The total energy density � versus the local temperature
TðrÞ. The heavy curve and the light curve describe the behaviors
of total energy density based on the generalized uncertainty
principle and the Heisenberg uncertainty principle, respectively.

ZHONG-HENG LI PHYSICAL REVIEW D 80, 084013 (2009)

084013-4



Here we give two other forms for the total energy density, which are useful in some problems.
(1) The gamma-function representation:

�ðrÞ ¼
8><
>:
� �

16�2�2 ð1þ �
ffiffiffi
�

p
TðrÞ
2 Þ þ 3�

64�3
ffiffiffiffi
�5

p
TðrÞ

P1
n¼1

1
n

�ðnÞ�ð 1
2�
ffiffi
�

p
TðrÞÞ

�ðnþ 1
2�
ffiffi
�

p
TðrÞÞ

ð1� 2
3

Hð1Þ
n�1

2�
ffiffiffi
�

p
TðrÞÞ ðbosonsÞ;

�
16�2�2 � 3�

64�3
ffiffiffiffi
�5

p
TðrÞ

P1
n¼1

1
n

�ðnÞ�ð12þ 1
2�
ffiffi
�

p
TðrÞÞ

�ðnþ1
2þ 1

2�
ffiffi
�

p
TðrÞÞ

ð1� 2
3

Hð1Þ
n�1

2�
ffiffiffi
�

p
TðrÞÞ ðfermionsÞ:

(4.8)

(2) The beta-function representation:

�ðrÞ ¼
8><
>:
� �

16�2�2 ð1þ �
ffiffiffi
�

p
TðrÞ
2 Þ þ 3�

64�3
ffiffiffiffi
�5

p
TðrÞ

P1
n¼1

1
n Bðn; 1

2�
ffiffiffi
�

p
TðrÞÞð1� 2

3

Hð1Þ
n�1

2�
ffiffiffi
�

p
TðrÞÞ ðbosonsÞ;

�
16�2�2 � 3�

64�3
ffiffiffiffi
�5

p
TðrÞ

P1
n¼1

1
n Bðn; 12 þ 1

2�
ffiffiffi
�

p
TðrÞÞð1� 2

3

Hð1Þ
n�1

2�
ffiffiffi
�

p
TðrÞÞ ðfermionsÞ:

(4.9)

Here �ðxÞ is the gamma function and Bðx; nÞ is the beta
function which are related to Hurwitz zeta function by [58]

�ð2; xÞ ¼ X1
n¼1

1

n

�ðnÞ�ðxÞ
�ðnþ xÞ ; (4.10)

�ð3; xÞ ¼ X1
n¼1

1

n

�ðnÞ�ðxÞ
�ðnþ xÞH

ð1Þ
n�1; (4.11)

and

Bðn; xÞ ¼ �ðnÞ�ðxÞ
�ðnþ xÞ ; (4.12)

whereHðkÞ
n is the generalized harmonic numbers defined by

HðkÞ
n ¼ Xn

j¼1

1

jk
: (4.13)

V. DISCUSSION AND CONCLUSION

We have considered a perfect gas consisting of massless
particles in static spherically symmetric metrics. The spec-
tral energy density and the total energy density with the
generalized uncertainty principle are given by formulas
(2.6) and (4.6), respectively. The spectral energy density

�!ðrÞ has a maximum at a frequency !m, which satisfies

e	ð3� 	Þ � 3

	2½e	ð3þ 	Þ � 3� ¼ �

�2B
(5.1)

with 	 ¼ �!m. From Eq. (5.1) it is clear that, when � ¼ 0,
the spectral energy density follows from the Heisenberg
uncertainty principle !m, which does not depend on r
dominating and the theory agrees with that performed in
Minkowski spacetime. Hence, the dependence on r be-
comes more and more relevant when approaching the event
horizon.
On the other hand, from Eq. (4.6) we find that at large

TðrÞ, in the Bose case, the total energy density reduces to
the form proportional to the local temperature, while in the
Fermi case it becomes constant. In either case, the result is
very different from the Stefan-Boltzmann law. This means
that, as r approaches an event horizon, the effect of the
generalized uncertainty principle becomes more and more
important, which may be observable.
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