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Methods are presented to define and compute source multipoles of dynamical horizons in numerical

relativity codes, extending previous work in the isolated and dynamical horizon formalisms to allow for

horizons that are not axisymmetric. These methods are then applied to a binary black hole merger

simulation, providing evidence that the final remnant is a Kerr black hole, both through the (spatially)

gauge-invariant recovery of the geometry of the apparent horizon, and through a detailed extraction of

quasinormal ringing modes directly from the strong-field region.
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I. INTRODUCTION

The problem of the merger of binary black hole systems
now seems to be well under the control of numerical
relativity. More precisely, the development, due to
Einstein’s vacuum evolution equations, of an initial data
set containing two apparent horizons into a quiescent state
containing only one apparent horizon, has now been car-
ried out numerous times by various research groups, with
somewhat different numerical treatments and mathemati-
cal formalisms [1–4]. Numerical relativity is now a tool for
studying the physics of strong gravitational fields.

When applying this tool, one is immediately faced with
a fundamental irony of numerical relativity: a numerical
code is incapable of dealing with abstract tensors, and must
instead compute their components in a particular vector
basis. The fundamental physics of general relativity, how-
ever, is basis independent. One must be careful to ensure
that any physical claims are independent (to whatever
extent is possible) of the coordinate system and vector
basis in which they are demonstrated.

One reasonably well-developed example is the compu-
tation of spin angular momentum in binary black hole
simulations. Numerous investigations have been made of
the physics of spinning black hole mergers, presenting in
some detail effects such as a hang-up of the merger,
allowing angular momentum to be radiated so that the final
remnant has subextremal spin [5]; spin flips [6], in which
the dynamics of the merger cause the spin direction of the
merged black hole to be dominated by the direction of
orbital angular momentum, rather than the spins of the
progenitor black holes; and perhaps of most astrophysical
interest, the kick applied to a merged black hole system,
balancing the linear momentum given off in gravitational
radiation during nonsymmetric mergers [7–20]. A certain
amount of investigation has also gone into the study of
black holes of nearly-extremal spin in binary configura-
tions, an avenue that could probe the limits of cosmic
censorship [21,22]. Because such physical effects must

be parametrized according to the spin angular momenta
of the dynamical black holes, methods must be devised to
define and compute such a quantity. The most common
approach begins with a formula that appears both in the
quasilocal formalism of Brown and York [23] and in the
isolated and dynamical horizon formalisms [24,25]. This
formula gives angular momentum within a two-surface
(normally taken to be an apparent horizon of spherical
topology) as a functional of a vector field tangent to that
surface. This vector field is interpreted as a generalized
rotation generator, and it is through this that the vectorial
nature of angular momentum in Newtonian mechanics is
generalized. In order to apply this formula, a rule must be
given for choosing such a generalized rotation generator on
a dynamical black hole. Methods have recently been pre-
sented to fix these vector fields as ‘‘approximate Killing
vectors’’ in a precise sense [22,26–29].
The method presented in Refs. [22,28,29] actually pro-

vides much more information than just the generalized
rotation generators. The method starts with the expression
of the vector field in terms of a scalar potential:

�A ¼ �ABrBz; (1)

where uppercase Latin letters index the tangent bundle to
the two-dimensional surface, r is the covariant derivative
on this tangent bundle, inherited from that on spacetime,
and �AB is the Levi-Civita tensor on the surface. The vector
~� is said to be an approximate Killing vector if it is of this
form and if the function z satisfies a certain generalized
eigenvalue problem on the surface. On a metric sphere,1

the operator in this problem reduces to the conventional
spherical Laplacian, so these functions can be interpreted
as spherical harmonics of the two-surface. In this special
case, the three ‘ ¼ 1 harmonics provide the three standard
rotation generators.

*owen@astro.cornell.edu

1Throughout this paper, by ‘‘metric sphere’’ we mean a sphere
in the metric sense: a closed 2-surface of constant positive
intrinsic curvature, sometimes also referred to as a ‘‘round
sphere.’’
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The appearance of generalized spherical harmonics in
this formalism raises the possibility that one could natu-
rally define more than just the spin angular momentum
(which is often physically understood as the current dipole
moment of the source). Perhaps with the help of the
remaining eigenfunctions, we could define higher multi-
pole moments.

The idea of quasilocal source multipoles in general
relativity is not new. In Ref. [30], a complete formalism
was presented for application on axisymmetric isolated
horizons. This formalism involves numbers In and Ln,
where n is a nonnegative integer index. Ashtekar et al.
not only provided definitions for these multipole moments,
they also proved that they completely characterize the
isolated horizon geometry, that a unique isolated horizon
(up to diffeomorphism) can be constructed from given
multipole moments.

A few years later, Schnetter, Krishnan, and Beyer [31]
were the first to apply this multipole moment formalism in
numerically generated dynamical spacetimes. Their work
was intended as a wide overview of the use of the dynami-
cal horizon formalism in interpreting numerical relativity
simulations; for them, multipole moments were just one of
many points of discussion. They applied the formalism of
Ref. [30] in an essentially unmodified form. Because this
construction is restricted to axisymmetric horizons, the
authors of Ref. [31] focused attention on an axisymmetric
black hole merger.

Another application of this method appeared in
Ref. [32], a paper presenting methods to solve for confor-
mally curved initial data sets. As one might expect, when
solving for a fully stationary single-black-hole initial data
set, the result is a slice of the Kerr spacetime, a fact that the
authors confirm using the multipole construction of
Ref. [30].

Quite recently, another paper appeared, Ref. [33], which
introduced a novel scheme for computing multipole mo-
ments indirectly, from surface integrals of various powers
of the curvature. This new method is still restricted to
axisymmetric horizons, but it avoids the need to explicitly
find the axisymmetry, and could markedly improve accu-
racy in cases where it can be used.

Here, we take a slightly different approach. Rather than
directly applying the methods of Ref. [30] in an axisym-
metric merger, we modify the method, in a manner briefly
suggested by its authors, so that it can be applied without
the requirement of axisymmetry. Whereas the original
method in Ref. [30] involved a preferred coordinate system
on the axisymmetric horizon, in which spherical harmonic
projections could be taken, we choose to project the rele-
vant quantities against spectrally-defined spherical har-
monics. Such harmonics are invariantly defined on any
given topological sphere endowed with intrinsic geometry,
as eigenfunctions of geometric operators, such as the one
mentioned above relevant to the computation of spin an-

gular momentum. Extra structure, such as the axisymmetry
that provides the preferred coordinate system of Ref. [30],
is not necessary. While the continuum eigenvalue problems
that define these harmonics would complicate analytical
treatments, they are quite straightforward to solve
numerically.
In Sec. II we introduce the details of this method, in

particular, the eigenvalue problems used to define spherical
harmonics on deformed spheres. In Sec. III, we investigate
one of the simplest applications of current physical rele-
vance. This is the question of the final remnant of a
numerical merger of two vacuum black holes. While the
general expectation is that the remnant of such mergers
will generically be a Kerr black hole, relatively little effort
has gone into a detailed investigation of whether this is
actually the case. This question is of relevance to the status
of black hole uniqueness, whose rigorous proof still in-
volves certain analyticity assumptions [34]. It is also re-
lated to the question of stability of the Kerr solution, which
has so far been proven only for individual modes of linear
perturbations [35]. Even if we fully accept the expectation
that general relativity must force the remnant of a black
hole merger to be Kerr, the detailed recovery of the Kerr
solution at late times, in as gauge-invariant a manner as
possible, provides at the very least a stringent and
physically-relevant code test. In Ref. [36], Campanelli
et al. demonstrated that a particular black hole merger
simulation approaches Petrov type D in a certain sense at
late times, and carries no NUT charge. This fact largely
confirms that their merger produces a Kerr geometry. One
advantage of their approach is that it is fully local, that one
can investigate the approach to Kerr geometry throughout
the spatial slices, rather than simply on the horizon as we
do here. In a follow-up to the current paper, we intend to
repeat many of the methods of Ref. [36] on the data sets
discussed in Sec. III. Here we focus on multipole moments
partly as a complementary method of black hole charac-
terization, but also because these moments are of interest in
their own right, as tools for probing the physics of tidal
structure in strong-field gravity.

II. GENERALIZED SPHERICAL HARMONICS

The definitions given in Ref. [30] for the mass and
current multipoles on isolated horizons are very simple
spherical harmonic projections of quantities related to the
intrinsic and extrinsic geometry of the apparent horizon2 in
spacetime.

I� :¼
I

y�RdA; (2)

2In the case of isolated horizons, the surfaces of interest are
arbitrary two-dimensional spacelike slices of the three-
dimensional null isolated horizon. In the case of dynamical
horizons, the two-surfaces of interest are the apparent horizons
into which the dynamical horizon is naturally foliated.
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L� :¼
I

yB�!BdA: (3)

Here, dA refers to the metric volume element on the
apparent horizon, R is its intrinsic scalar curvature (not
to be confused with the Ricci scalar of the full spacetime,
or of the spatial slice, or of the horizon worldtube), and !A

is a connection on the normal bundle of the two-surface,
which is conveniently written in terms of the two future-

directed null normals, ~‘ and ~n:

!A :¼ e�An�
ð4Þr�‘

�; (4)

where ð4Þr is the metric-compatible torsion-free spacetime
covariant derivative, and f ~eAg are basis vectors tangent to
the two-surface. Throughout this paper, capital latin letters
will index this two-dimensional tangent bundle. The null

normals ~‘ and ~n are, as usual, normalized such that ~‘ � ~n ¼
�1. In most numerical papers and codes,!A is written and
computed in terms of the extrinsic curvature of the spatial
slice. Here, we will refer to the I� as the mass multipoles
and the L� as the current multipoles, though as noted in
Ref. [30] extra factors involving horizon areas and quasi-
local spins must be included if one wishes to make them
dimensionally consistent with the standard definitions of
these quantities.

The objects y� appearing in (2) and yA� appearing in (3)
are scalar and vector spherical harmonics, respectively. It is
in the definition of these harmonics that the breaking of
axisymmetry has the most immediately-apparent cost, and
therefore where the work in this paper will depart most
strongly from the construction in Ref. [30]. In that paper,
attention is focused on the case of axisymmetric isolated
horizons. Axisymmetry provides a natural coordinate sys-
tem on the apparent horizon, so the spherical harmonics
used in Ref. [30] are the standard (m ¼ 0) ones of spherical
coordinates, applied in this canonical coordinate system. In
other words, they are eigenfunctions not of the geometric
Laplacian on the apparent horizon, but rather of the
Laplacian of a metric sphere in these coordinates. There
is nothing inherently wrong with such a choice in axisym-
metry, in fact it provides certain benefits in that context,3

but for purposes of strongly dynamical, strongly nonaxi-
symmetric systems a more general approach is called for.

A. Scalar spherical harmonics

Our approach will be to define the spherical harmonics
spectrally, as eigenfunctions of the geometric Laplacian
operator (or certain generalizations thereof) on the appar-
ent horizon surface. In other words, our scalar spherical

harmonics are taken to be the functions y� that satisfy the
equation

�y� ¼ �ð�Þy� (5)

for some constant, �ð�Þ. The function y� is defined only on

the apparent horizon, and� is the intrinsic Laplacian of the
apparent horizon, � :¼ gABrArB. The letter � is a label
for the various solutions to the eigenproblem.
Because the Laplacian in (5) reduces to the standard

spherical Laplacian when the surface becomes a metric
sphere, the functions y� reduce to the standard spherical
harmonics in that special case as well. However, this is not
the only self-adjoint operator with this property. For ex-
ample, we can consider the problem:

�y� þ qRy� ¼ �ð�Þy�; (6)

where R is again the intrinsic scalar curvature of the
surface and q is a numerical parameter. In the case of a
metric sphere, where R is constant, the second term on the
left side does not alter the eigenfunctions, it merely in-
creases each eigenvalue. This eigenproblem, therefore, can
again be considered to define a reasonable generalization
of coordinate spherical harmonics. However, on a de-
formed sphere, where R is not constant, these generalized
spherical harmonics will no longer agree with those de-
fined by (5). To fix this arbitrariness, and since we see no
particular reason to prefer any other value for q, we choose
q ¼ 0, in other words the problem in Eq. (5), to define our
scalar spherical harmonics. In the case of vector spherical
harmonics, we will see a geometrical reason to prefer a
particular value for an analogous parameter.

B. Vector spherical harmonics

We will take our generalized vector spherical harmonics
to be tangent to the surface, in which case they can be
written in terms of gradients of two scalar potentials:

yA� ¼ rAw� þ �ABrBz�: (7)

Here r is the torsion-free metric-compatible derivative on
the apparent horizon, and �AB is the Levi-Civita tensor on
it. To consider the importance of these two potentials we
should investigate the one-form !A against which the
vector spherical harmonics will be projected. In Eq. (4),

the future-directed null vectors ~‘ and ~n are orthogonal to
the apparent horizon and normalized relative to one an-

other by the standard Newman-Penrose condition ~n � ~‘ ¼
�1, but are otherwise free. One can arbitrarily scale the ~‘
vector at the cost of inversely scaling the ~n vector. This
‘‘boost freedom’’ is a standard gauge degree of freedom in
the dynamical horizon formalism. The dynamical horizon
worldtube carries with it a preferred slicing into apparent
horizons, but this slicing is only of the dynamical horizon
itself. There is no preferred way of extending this slicing
into the ambient spacetime. If we wish for our horizon

3One such benefit is that the mass dipole moment always turns
out to be zero. In other words, their construction guarantees that
one is in a ‘‘center of mass frame.’’ In general, this may not hold
in our construction, though we have not yet seen an example
where it fails.
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multipoles to be independent of this gauge freedom, then
we must choose harmonics that project out only the gauge-
invariant part of !A.

From Eq. (4), it is apparent that a boost, ~‘ � a ~‘, ~n �
a�1 ~n, will add a pure gradient to !A:

!A � !A �rA logðaÞ: (8)

Any part of !A that is a pure gradient is therefore entirely
due to boost gauge, in the sense that it can be transformed
away by an appropriate boost. Vector spherical harmonics
of the form yA� ¼ rAw� will pick up this gauge-dependent
information in the integral (3), however vector spherical
harmonics of the form yA� ¼ �ABrBz� will not. We there-
fore restrict all attention to vector spherical harmonics of
this latter form.

We now need a rule to define the potential functions z�
that appear in these vector spherical harmonics. In the case
of a metric sphere, the obvious choice is that they be the
scalar spherical harmonics. As in the previous subsection,
there are many ways to generalize the spherical harmonics
of the metric sphere. For the current purposes, there is
reason to prefer a somewhat complicated fourth-order
generalized eigenproblem:

�2z� þrAðRrAz�Þ ¼ �ð�Þ�z�: (9)

This generalized eigenproblem also defines the potentials
for the approximate Killing vector fields used for comput-
ing spin angular momentum in Ref. [22]. For this reason,
when this problem is used to define the vector spherical
harmonics, the current dipole moment of the horizon is
identical to the quasilocal spin defined there, a quantity that
itself reduces on axisymmetric isolated horizons to the
quasilocal spin defined by Hamiltonian methods [24]. In
Ref. [30], the agreement of the current dipole with the spin
is cited as a reason to prefer using coordinate harmonics in
a canonical coordinate system rather than spectrally-
defined harmonics. There it was assumed that such har-
monics would be simple eigenfunctions of the Laplacian,
like the scalar spherical harmonics of the previous sub-
section, in which case the current dipole would not agree
with the standard spin angular momentum. We have
averted this situation simply by choosing a better operator.

We should also note that when vector spherical harmon-
ics are chosen in this way, we are assured that there will be
no current monopole moment. This fact can be viewed in a
number of related ways. On the simplest level, there is the
fact that when the vector spherical harmonics are defined to
be of the form yA� ¼ �ABrBz�, then a potential of the form
z� ¼ const cannot define a (normalizable) vector spherical
harmonic. In some sense, z� ¼ const can be viewed as a
solution to Eq. (9) with arbitrary eigenvalue, but it is not a
well-behaved solution. The generalized eigenproblem is
technically singular in function spaces that include con-
stants [37], meaning that well-behaved solutions cannot be
found unless the function space is restricted to, for ex-

ample, functions with zero average over the sphere, a
condition which removes all nonzero constants from
consideration.
Another way of looking at this, which helps to elucidate

the relationship between the mass and current multipoles,
is that when the vector spherical harmonics are defined in
this way, an integration by parts allows the current mo-
ments to be written as:

L� :¼
I

z��dA; (10)

where� :¼ �ABrA!B can be interpreted geometrically as
a scalar curvature of the normal bundle of the two-
dimensional surface in four-dimensional spacetime. The
current moments thus represent for the extrinsic geometry
of the apparent horizon what the mass moments represent
for its intrinsic geometry.
The complex combination of these two curvatures, Rþ

i�, is sometimes called the complex curvature of the two-
surface embedding. As is briefly described in Sec. 4.14 of
Ref. [38], the vanishing of the current monopole moment
can be understood geometrically in this context as a result
of the generalization of the Gauss-Bonnet theorem to the
Lorentzian normal bundle. The integral of any constant
multiple of � is a topological invariant, just like that of R,
but because the gauge group on the normal bundle is
topologically trivial, this invariant must always vanish.
One final point to note, with regard to both the scalar and

the vector harmonics, is that of normalization. Solutions of
the eigenproblems in Eqs. (5) and (9) are determined only
up to constant multiplicative factors.4 We fix these factors
with an integral normalization condition. The condition
imposed on scalar spherical harmonics is:

I
ðy�Þ2dA ¼ 1: (11)

On metric spheres in Euclidean space, this reduces to the
standard normalization condition for scalar spherical har-
monics (up to a factor of areal radius).
For vector spherical harmonics, the normalization con-

dition we impose is:

I
gABy

A
�y

B
�dA ¼ 1: (12)

This differs slightly from the standard normalization con-
dition for axial vector spherical harmonics in euclidean
space, which involves an extra factor of ‘ð‘þ 1Þ, but
because the generalization of the index ‘ is not an integer,
but rather a function of the eigenvalue �ð�Þ, we simply

leave this factor out.

4In fact, solutions of Eq. (9) are determined only up to constant
multiplicative and additive factors, however additive constants
have no effect on the multipoles due to the vanishing of the
current monopole.
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Normalization conditions like those above still do not
determine a sign for the spherical harmonics. This sign
ambiguity translates directly into a sign ambiguity for the
multipoles. We fix the sign with the condition that the
values of the multipole moments be nonnegative.

In summary, the approach we take to defining multipoles
in numerical simulations begins with finding solutions y�
and z� of the eigenproblems (5) and (9) defined on the
apparent horizon two-surface. From the potential z�, vec-
tor spherical harmonics are computed as yA� :¼ �ABrBz�.
The harmonics are normalized with the conditions in
Eqs. (11) and (12). Then, the surface integrals in Eqs. (2)
and (3) are computed to be the multipoles.

III. NUMERICAL RESULTS

The immediate purpose of this mathematical machinery
is to investigate the remnant of a binary black hole merger.
There is a very large space of physically-relevant mergers
worth investigating, including variations in the initial mass
ratio, eccentricity, spin magnitudes, and spin directions.
For this paper we will focus on a very simple case: the
merger of a noneccentric binary of equal mass, nonspin-
ning black holes. This data set is discussed in detail in
Ref. [4], which briefly notes the fact that two independent
measures of the final spin agree to well within their ex-
pected numerical errors. This claim can be considered a
first indication that the tidal structure of the quiescent black
hole is that of Kerr, as this is the case in which these two
measures of spin are designed to agree. Our goal now is to
present the rest of the tidal information, to the extent that it
can be resolved in the code, to strengthen the case that the
final remnant is a Kerr black hole.

The code used to compute these multipoles is a part of
the Spectral Einstein Code (SpEC) developed and main-
tained by the Caltech and Cornell Numerical Relativity
groups, particularly Lawrence E. Kidder, Harald P.
Pfeiffer, and Mark A. Scheel. Once an apparent horizon
has been found, using the method described in Ref. [39],
the code interpolates all relevant data to a pseudospectral
grid on that surface. Because this grid is pseudospectral,
the code can automatically transform any smooth function
on the apparent horizon into a truncated expansion in
coordinate spherical harmonics. This expansion, inserted
into Eq. (5) or (9), provides a finite-dimensional matrix
eigenproblem (or generalized eigenproblem in the latter
case) which is solved using the LAPACK routine dggev.
We emphasize that while this construction involves coor-
dinate spherical harmonics, they are only used to supply
the numerical discretization, so they disappear in the con-
tinuum limit. The geometrical spherical harmonics y� and
yA� that define the multipoles are, apart from numerical
truncation error, uniquely defined on any given two-sphere
(up to possible degeneracy in the eigenspaces).

The information that we can assess includes not only
the values of the multipole moments defined in Eqs. (2) and

(3), but also the spectrum of eigenvalues in Eqs. (5) and (9).
A particular motivation for investigating eigenvalues of
geometric operators is that they provide an indication of
symmetries in the horizon. As is familiar from elementary
quantum mechanics, a symmetry in an operator leads to
degeneracies in its eigenspaces. The converse is not nec-
essarily true, but on an intuitive level we may interpret
degeneracies in the eigenspectrum as indicators of possible
symmetry.
This is an interesting tool for the study of this particular

problem, because in the ringdown after a nonspinning
black hole merger there is a transition from one axis of
symmetry to another. Immediately after the formation of a
common apparent horizon, one intuitively expects this
horizon to be ‘‘peanut shaped,’’ with an axis of approxi-
mate symmetry5 along a line connecting the previous two
individual apparent horizons. After the ringdown is com-
plete, one would expect a single black hole with symmetry
about the axis of the initial orbital angular momentum.
This breaking and forming of symmetries is demonstrated
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FIG. 1 (color online). Absolute values of the lowest three
(dipole) nontrivial eigenvalues of the Laplacian on the dynami-
cal horizon during the ringdown. The breaking away of the red
(dotted) curve from the blue (solid) curve at early times is due to
the breaking of the initial (approximate) peanut axisymmetry.
The joining of this curve onto the black (dashed) curve at late
times is due to the late-term axisymmetry of the final Kerr
horizon. The horizontal gray lines represent the expected eigen-
values on a Kerr horizon with mass and spin equal to the final
measured values in the simulation. Thus the convergence of the
eigenvalues to these lines demonstrates the approach to Kerr
geometry.

5In the case studied here, this axisymmetry would only be
approximate, as tidal bulges would be expected to phase-shift
due to horizon viscosity during the inspiral. In the case of a direct
head-on collision of nonspinning holes, this axisymmetry would
be exact, and would be preserved even through the ringdown.
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in Fig. 1. The figure presents the three eigenvalues of the
horizon Laplacian associated with harmonics that would
settle to the ‘ ¼ 1 spherical harmonics if the horizon were
to become metrically spherical. Two of these curves over-
lap at early times, a degeneracy due to the approximate
axisymmetry of the initial ‘‘peanut’’ shape. As this sym-
metry is broken during the ringdown, the degeneracy
breaks and one eigenvalue eventually joins up with the
third eigenvalue, demonstrating the eventual axisymmetry
about the spin direction.6

With the next five eigenvalues, in Fig. 2, we see the
pattern again. Again, modes are nearly degenerate at early
times, but split off during the ringdown and reconnect as
the quiescent symmetry is approached. Note, however, that
one degeneracy at early times is quite visibly broken. This
may be due, on an intuitive level, to the tidal interaction of
the two black holes during inspiral, with shifted phase due
to horizon viscosity [40–42]. Because such tidal interaction

is a quadrupolar effect, it would make sense for it to be less
visible in the dipolar information of Fig. 1.
Degeneracies in the other eigenproblem, Eq. (9), give a

similar picture of the breaking and reforming of symme-
tries, but this problem gives an even more compelling
picture of the relationship between symmetries and degen-
eracies. The original motivation of Eq. (9), as described in
Appendix A of Ref. [22], was to construct, in a sense, the
closest possible approximation of an axial symmetry on a
horizon that may not have any true symmetries at all. One
can easily show that the value of a given eigenvalue is
proportional to the integral of the square of the residual in
Killing’s equation for the associated ‘‘approximate Killing
vector’’ field. Thus, when there is a true symmetry, and
therefore a true Killing vector field, one of the eigenvalues
of this problem will equal zero. So from plots of the
eigenvalues of Eq. (9) we can see the breaking and forming
of symmetries both indirectly, through degeneracies of the
eigenspaces, and directly, through the value of the lowest
eigenvalue. Figure 3 shows the three lowest eigenvalues of
this problem. As noted at the end of Sec. II B, there are no
monopole harmonics at all for this problem, so these are
the three harmonics that would reduce to the ‘ ¼ 1 har-
monics if the horizon approached a metric sphere. The
vertical axis of the figure is now logarithmically scaled,
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FIG. 2 (color online). Absolute values of the next five (quad-
rupole) eigenvalues of the Laplacian on the dynamical horizon
during the ringdown. As in Fig. 1, the curves are paired up at
early times, split their degeneracies, and connect in a different
pairing at late times, again indicating transition from one axis of
symmetry to another. The fact that one of these degenerate pairs
at early times is visibly nondegenerate indicates imperfection in
the peanut axisymmetry intuitively due to phase offset tidal
bulges built up during the inspiral.
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FIG. 3 (color online). Absolute values of the lowest three
(dipole) nontrivial eigenvalues of the generalized eigenvalue
problem in Eq. (9) on the dynamical horizon during the ring-
down. The vertical axis is now scaled logarithmically to better
show the approach of the smallest eigenvalue to zero. As argued
in Appendix A of Ref. [22], the vanishing of this smallest
eigenvalue is direct evidence of a rotational symmetry of the
intrinsic surface geometry, so this figure provides a clear picture
not only of the symmetry transition itself, but also of the
relationship between symmetries and degeneracies. In particular,
the crossing of the red and black (dotted and solid) curves can be
seen as an example of ‘‘accidental’’ degeneracy, degeneracy that
is not necessitated by a symmetry of the operators.

6All figures in this paper give quantities computed in code
units evaluated with respect to coordinate time which is also
expressed in code units. For context, the final black hole
described in Figs. 1–9 has horizon mass M � 1:98 in these
code units, where this mass is defined by the Christodoulou
formula M2 ¼ M2

irr þ J2=ð4M2
irrÞ where Mirr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A=ð16�Þp

is the
irreducible mass and J is the quasilocal spin angular momentum
defined in Appendix A of Ref. [22]. In the simulation presented
in Figs. 10–13, the value of this final mass in code units is M �
2:56.
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to show the approach of the smallest eigenvalue to zero
both at early and late times.

These figures also provide a quantitative picture of the
intrinsic geometry of the apparent horizon, and its ap-
proach at late times to the geometry of a slice of the Kerr
horizon. The horizontal lines in Figs. 1–3 represent the
expected values for these eigenvalues on a Kerr horizon of
the same mass and spin as is measured at very late times in
the simulation. Note that this spin is guaranteed to be
identical to the late time current dipole moment on the
horizon [this is the main motivation for Eq. (9)], so agree-
ment of the current dipole with the ‘‘expected Kerr value’’
is trivial, however the consistency of all other multipoles,
as well as these eigenspectra, present a nontrivial demon-
stration that the quiescent hole is Kerr.

Figures 4–8 present the behavior of the multipole mo-
ments. In Fig. 4, the three excited quadrupole moments are
shown (the other two vanish as demanded by reflection
symmetry). One moment starts out relatively small and
grows to take the value expected for a Kerr black hole.
The other two fall exponentially toward zero, until reach-
ing the level of numerical truncation. Figure 5 shows the

convergence of this floor of numerical error for three values
of the resolution of the numerical simulation. On all three
simulations, the horizon finder and eigenvalue solver are
run at the maximum relevant resolution, essentially the
same as the angular resolution of the original simulations.
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FIG. 5 (color online). A particular quadrupole moment from
Fig. 4 shown for three different resolutions. The order of the
pseudospectral angular discretization is given by L ¼ 18, 20, 22,
respectively, L representing the maximum ‘-value of coordinate
spherical harmonics used to discretize the problem. At late
times, the exponential falloff halts, but the level where this
occurs converges exponentially toward zero as L is increased.
These nonzero values can therefore be attributed to standard
truncation error.
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FIG. 4 (color online). Relaxation of the three excited quadru-
pole moments to expected Kerr values. Two of the five possible
quadrupole moments must vanish due to the reflection symmetry
in the problem, and indeed, their computed values are small
enough to be considered zero to within ordinary numerical
errors. Of the remaining three multipoles, two fall exponentially
toward the level of numerical truncation, and the third quickly
settles to the expected value for a Kerr black hole of the same
final mass and spin. This expected value is shown in the thick
horizontal gray line, which for most of the simulation overlaps
the dashed blue curve. In this and later figures, curves are labeled
by the ‘‘effective’’ ‘ values of their corresponding spherical
harmonic at late times. That is, ‘eff is defined from the value
of the eigenvalue � at late times by the equation � ¼
�‘effð‘eff þ 1Þ=r2, where r is the areal radius of the horizon,
again measured after the hole settles down.
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FIG. 6 (color online). Relaxation of the five excited hexadecu-
pole mass moments to expected Kerr values. Four of the nine
possible moments vanish due to the reflection symmetry in the
problem. Of the remaining five, four fall to zero exponentially,
and the other rises to the expected value for a Kerr black hole.
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Figures 6–8 are analogous to Fig. 4, showing higher-order
multipole moments. Again, all multipoles allowed by the
reflection symmetry of the problem are excited near the
moment of merger, but in each case a single moment rises
to the expected value for a Kerr black hole of the measured

final mass and spin, while all other multipoles decay ex-
ponentially toward zero before stopping due to numerical
truncation.
The fact that those multipoles that decay to zero do so

exponentially raises the question of whether this decay can
be attributed to quasinormal ringing. The answer to this
question is clouded by a few subtleties. For one, while the
multipoles do appear to oscillate within an exponential
envelope, this oscillation does not appear to be even ap-
proximately periodic, and at any rate occurs on a much
longer time scale (compared to the exponential decay time
scale) than the oscillations associated with quasinormal
ringing. There is an intuitive explanation for this.
Because the multipoles are defined with respect to spheri-
cal harmonics that are fixed by the intrinsic geometry of the
horizon, changes in horizon geometry will cause changes
in these harmonics. In particular, if the major part of the
perturbation from Kerr geometry is a nonaxisymmetric
bulge that rotates around the spin axis, then the spherical
harmonics will be dragged along with this bulge.
Intuitively, an ideal ‘‘‘ ¼ 2, m ¼ 2’’ bulge would be ex-
pected to drag the spherical harmonics into corotation with
it, so the multipole representing this bulge would be ex-
pected to fall off as a pure exponential, with no oscillation.
In reality, the situation is more complicated, presumably
due in part to the existence of higher multipolar structure,
and in part due to the eventual approach to axisymmetry,
causing degeneracies in the eigenproblems to be broken at
the numerical level rather than at the analytical one.
Properly ‘‘unwinding’’ this rotation of the harmonics

would amount to a partial fixing of angular coordinates.
There may be sensible ways to do this, but we consider this
somewhat outside the scope of the current research, so
instead we choose to ignore the oscillatory behavior, by
focusing on the quadratic sums of multipoles associated
with nearly-degenerate eigenspaces. In particular, the two
exponentially-decaying curves in Fig. 4 are associated with
such an asymptotically degenerate eigenspace, and can
intuitively be interpreted as real and imaginary parts of
the ‘‘‘ ¼ 2, m ¼ 2’’ multipole. Their quadratic sum can
therefore be viewed as the overall ‘‘magnitude’’ of the
quadrupolar part of this rotating bulge, and would be
expected to fall off exponentially in time without oscilla-
tion. Figure 9 shows the value of this quadratic sum as well
as the falloff rate expected from perturbation theory. We
used the method due to Leaver [43] to compute quasinor-
mal frequencies in terms of the roots of two coupled
complex continued fractions. For the mass and spin, we
used values computed at late times on the horizon and
reported in Ref. [4].
The remarkably fine agreement between this quadratic

sum of multipole moments and the expected exponential
falloff of the dominant ‘‘‘ ¼ 2,m ¼ 2’’ quasinormal mode
in perturbations of the Kerr geometry makes it tempting to
try to pick other quasinormal ringing modes out of the data.
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FIG. 7 (color online). Of the seven current octupole moments,
only three are allowed by the reflection symmetry to be excited.
Again, two fall exponentially toward the level of numerical
truncation error, and the other exponentially approaches its
expected value for a Kerr hole. The quantity ‘eff labeling the
curves is again computed from the eigenvalue at late times, but
the definition is now given by the equation � ¼ �‘effð‘eff þ
1Þ=r2 þ 2=r2, taken from the special case of Eq. (9) on a round
sphere.
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FIG. 8 (color online). Of the eleven current 32-pole moments,
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truncation error, and the other exponentially approaches its
expected value for a Kerr hole. The quantity ‘eff labeling the
curves is defined as in Fig. 7.
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This however would be a somewhat nontrivial undertaking.
For one thing, all multipoles defined in our formalism are
computed from data directly on the horizon. Different
radial modes of black hole perturbations would be directly
superposed in the multipoles. Further complicating matters
in the case of a Kerr hole, the angular dependence of the
quasinormal modes are not given by pure spherical har-
monics, as defined here, but as solutions of the ‘‘angular
equation’’ of the Teukolsky formalism [Eq. (4.10) of
Ref. [44]]. Thus all multipoles would be expected to
project out components of all radial and angular quasinor-
mal modes, rather than cleanly projecting out one at a time.
What is seen in Fig. 9 as exponential decay is actually just
the dominant term of a multiexponential expansion. The
problem of fitting data to a sum of exponentials is famously
ill posed, so any effort to pick out higher-order ringing
modes from this data would be quite ambitious, if possible
at all.

Many of these complications disappear if the final black
hole is nonspinning. In that case, the quasinormal modes
should have the angular dependence of pure spherical
harmonics, so multipoles of a given order can be expected
to project out modes of the same order (though, again,
multiple radial modes would be expected to overlap). Also,
if there are enough degrees of reflection symmetry to
forbid the rotation of the spherical harmonics described
above, one might hope to recover not only the exponential
falloff rates of different quasinormal modes, but also their
frequencies of oscillation.

Figures 10–13 demonstrate this recovery. The data used
here are from the ringdown after the collision of two black
holes of nonzero antialigned spin (and therefore zero total
angular momentum) starting from rest. This is a simple test

case that can be used for studying black hole kicks, and the
particular simulation studied here will be presented in great
detail for that goal in an upcoming paper [45]. For the
present purposes, the important points are that the final
state is nonspinning, and that two orthogonal planes of
reflection symmetry (the coordinate x ¼ 0 and z ¼ 0
planes, with the final kick being in the y direction) hold
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FIG. 10 (color online). Ringing of the dominant mass quadru-
pole moment as the product of a nonaxisymmetric head-on
merger settles down to a Schwarzschild black hole. The dashed
blue curve represents numerical data, and the solid red curve is
an exponentially-damped sinusoid, with frequency and damping
corresponding to quadrupole gravitational quasinormal modes of
a Schwarzschild black hole [43]. An arbitrary constant amplitude
scaling and phase have been applied to the red curve, by eye.
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FIG. 11 (color online). Ringing of the dominant mass octupole
moment as the product of a nonaxisymmetric head-on merger
settles down to a Schwarzschild black hole.
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the harmonics in place, in that they remain symmetric or
antisymmetric under the action of the reflection symme-
tries. Figures analogous to Figs. 10–13 for the current
multipoles show similar agreement, but are omitted here
because they look essentially the same. Incidentally, simi-
lar (though less detailed) agreement with quasinormal ring-
ing frequencies was noted in the oscillation of the area of
spatial slices of the event horizon in other recent simula-
tions using the SpEC code [46].

One subtlety with Figs. 10–13 must be noted. At late
times, when these moments reach levels on the order of
10�9, the data become quite noisy. This is a result of
numerical errors, particularly the truncation error of the
angular discretization. However it appears that the numeri-
cal data in Figs. 11–13 continue to decrease as the simu-
lation goes on. This is an artefact of the manner in which
the data are extracted. The numerical code computes es-
sentially as many multipoles as there are grid points on the
interpolated apparent horizon. These multipoles must be
ordered in some way. The most obvious ordering is pro-
vided by the eigenvalues of the spherical harmonics.
However such an ordering is not effective when families
of eigenspaces are nearly degenerate, as particularly in the
case of ringdown to a Schwarzschild black hole. To pick
out particular eigenvalues in this quasinormal ringdown
phase, we employ a simple postprocessing script that
chooses, at each time step, the particular multipole moment
that has value closest to a ‘‘prototype’’ value taken from the
perturbation theory results shown in the red curves in these
figures. Simultaneously, the script checks that any chosen
multipole corresponds to an eigenvalue which lies within a
certain range, so that the multipole is assured to have the
proper ‘‘‘’’ value. After this searching is carried out, we
check the eigenvalue, as a function of time, corresponding

to the chosen multipole, to ensure that it is smooth and
therefore that the procedure has chosen a consistent multi-
pole and eigenvalue data set.7 This procedure nicely and
unambiguously recovers physical perturbations during
most of the ringdown. However at late times the perturba-
tion is small enough that the ordering ambiguity is particu-
larly strong. At late times, the script chooses the moment
closest to the prototype value, out of the many that are
oscillating quickly at small values due to numerical error,
yet all eigenvalues in the given range are essentially the
same, so the smoothness of the eigenvalue is no longer an
effective tool to distinguish the correct moment from the
others of the same ‘. The matching of the numerical data to
the prototype function is therefore given more weight than
it deserves, and the data, though clearly flooded with
numerical error, continue to fall off exponentially in
time. Figure 10 is an exception to this behavior. In that
particular case, a method involving matching the spherical
harmonics to coordinate spherical harmonics was able to
unambiguously pick out the ‘‘correct’’ harmonic. For
higher multipoles that method failed, apparently due to
the rotation ambiguity of the coordinate spherical harmon-
ics themselves.
The quality of the agreement with standard quasinormal

ringing frequencies, both in the approach to Schwarzschild
geometry in Figs. 10–13 and in the approach to Kerr
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FIG. 12 (color online). Ringing of the dominant mass hexade-
cupole moment as the product of a nonaxisymmetric head-on
merger settles down to a Schwarzschild black hole.
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FIG. 13 (color online). Ringing of the dominant mass 32-pole
moment as the product of a nonaxisymmetric head-on merger
settles down to a Schwarzschild black hole.

7Immediately after the formation of the common horizon,
when deviations from the expectations of linearized theory are
strongest, this script can again have trouble finding consistent
multipole and eigenvalue data sets. For this reason some data are
omitted from the beginning of Fig. 12, as nonsmoothness of the
eigenvalues showed that the chosen multipoles did not represent
a consistent data set at very early times.
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geometry in Fig. 9, initially came as quite a surprise,
considering that a major motivation for this project is a
healthy skepticism for the quality of the coordinates in
numerical simulations. While the slicings used here are
not arbitrary—both simulations employ harmonic slicings
during the ringdown, as do conventional treatments of
black hole perturbation theory—they are nonetheless dif-
ferent harmonic slicings than those in conventional pertur-
bation theory, because the ones used in our simulations are
horizon-penetrating. One might ask, then, how the numeri-
cal code knows to settle on a harmonic slicing in which
these frequencies come out as expected. The answer lies in
the approach to stationarity. At late times the simulations

develop approximate stationary Killing vector fields ~�, and
the coordinate components of the spacetime metric tensor
asymptote to constant values, meaning that the coordinates

adapt themselves to the symmetry such that ~@t ! ~�. This
turns the definition of the ringing frequencies into a geo-
metrical statement: rather than saying @2t� ¼ �!2�, one
can say �ð�ð�ÞÞ ¼ �!2�. In other words, the frequencies
come out right because the coordinates adapt themselves to
the late-term stationarity. The process by which this adap-
tation occurs is, to our knowledge, still an open question.

At any rate, we must caution that this recovery of
standard frequencies at late times should by no means be
taken as license to overlook gauge ambiguity in numerical
simulations. For example, it is quite tempting to associate
the slight disagreement with perturbative results immedi-
ately after merger with nonlinear dynamics, however this
disagreement could just as likely be due to the coordinates
having not yet adapted to the approximate stationarity, or
to stationarity simply not existing to a sufficient approxi-
mation. All of these effects (and perhaps others) will have
an impact on the ringing immediately after merger, and a
detailed investigation of the nonlinear extension of quasi-
normal ringing would require (at least partially) slicing-
invariant comparisons beyond the scope of the current
work. For example, one might treat the ringing of one
multipole as a ‘‘clock’’ by which to measure the frequen-
cies of the other multipoles.

IV. DISCUSSION

We have presented a definition of quasilocal source
multipoles on dynamical horizons, adapted from that in
Ref. [30] in such a way that it can be applied to horizons
without axisymmetry, while preserving the agreement of
the current dipole moment with the spin angular momen-
tum defined by Hamiltonian methods [24]. More precisely,
the vector spherical harmonics used to project out current
multipoles are constructed in such a way that the dipole
moment is identical to the spin angular momentum used in
Ref. [22]. The key to this generalization is the definition of
spherical harmonics as solutions to certain eigenvalue
problems on the apparent horizon.

We have also applied this formalism to demonstrate that
in a detailed and partially gauge-invariant sense, the binary
black hole merger described in Ref. [4] indeed settles to a
Kerr black hole, at least in the neighborhood of the horizon.
There are limits to the gauge independence of this state-
ment. The work here depends heavily on the formalism of
dynamical horizons [25], which are dependent on the slic-
ing of spacetime (or, from a different viewpoint, are them-
selves invariantly defined yet carry unique foliations into
apparent horizons that are compatible with the foliation of
spacetime only in certain time slicings). Use of a unique
and invariantly defined horizon such as the event horizon
may be of interest (and is possible in the SpEC code [46]),
however it would not alleviate the problem of slicing
dependence, as a slicing must be chosen at some point to
break the three-dimensional horizon worldtube into two-
dimensional surfaces on which the spherical harmonic
projections are taken.
A demonstration along the same lines as discussed here

has been carried out before [31], however the numerical
results here are somewhat stronger, and our generalization
of the formalism has allowed the consideration of a non-
axisymmetric merger.
Looking in detail at the ringdown of the multipoles, we

have also recovered known quasinormal ringing frequen-
cies. The dominant exponential damping time scale is
recovered in the ringdown to Kerr geometry, and agrees
with results from perturbation theory. Much more detailed
results are found in the ringdown after a head-on collision
leading to a Schwarzschild geometry, in which oscillation
frequencies and damping time scales can be picked out
mode by mode.
In future work we intend to study the ringdown of these

data sets (and possibly others) on a local level, using a
variant of the method presented in Ref. [36].
As for the multipole moments themselves, various ave-

nues of investigation are open. The methods used here
could be applied to study the tidal interaction of black
holes during fully nonlinear binary inspiral and merger,
including a full nonlinear generalization of certain results
[41,42] of black hole perturbation theory. As mentioned in
Ref. [30], quasilocal source multipoles might also be ap-
plicable in trying to find a generalization, to exact general
relativity, of Einstein’s celebrated quadrupole formula.
Related to this, one might hope to recover force laws at
the quasilocal level, relating black hole kicks to products of
multipoles, as is done in the asymptotic regime in
Ref. [17]. However, such an investigation would presum-
ably require a satisfactory quasilocal definition of black
hole linear momentum, which (if possible at all) appears to
be beyond the realm of current understanding.
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