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Marginal Lemaitre-Tolman-Bondi (LTB) models with corrections from loop quantum gravity have

recently been studied with an emphasis on potential singularity resolution. This paper corroborates and

extends the analysis in two regards: (i) the whole class of LTB models, including nonmarginal ones, is

considered, and (ii) an alternative procedure to derive anomaly-free models is presented which first

implements anomaly freedom in spherical symmetry and then the LTB conditions rather than the other

way around. While the two methods give slightly different equations of motion, not altogether surprisingly

given the ubiquitous sprawl of quantization ambiguities, final conclusions remain unchanged: compared to

quantizations of homogeneous models, bounces seem to appear less easily in inhomogeneous situations,

and even the existence of homogeneous solutions as special cases in inhomogeneous models may be

precluded by quantum effects. However, compared to marginal models, bouncing solutions seem more

likely with nonmarginal models.
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I. INTRODUCTION

Quantum gravity changes the structure and dynamics of
space-time on small distance scales, which should have
implications for the final stages of matter collapse. An
interesting class of models to shed light on this issue is
given by Lemaı̂tre-Tolman-Bondi (LTB) space-times,
which are inhomogeneous but do not show too much
complexity. Classically, these models describe collapsing
dust balls, containing Friedmann-Robertson-Walker solu-
tions as special cases. They thus provide an interesting
extension of models beyond homogeneity, an extension
which is particularly important to understand in the case
of quantum gravity.

Loop quantum gravity implies characteristic correction
terms in the Hamiltonian constraint of gravity and matter.
Once a combination of corrections keeping the algebra of
constraints anomaly-free has been found, a canonical
analysis of quantum gravitational collapse becomes pos-
sible. Finding such equations is not easy, making the
investigation of implications from quantum gravity correc-
tions highly restricted. Quantum geometry corrections re-
sult from an underlying spatial discreteness, which may
cast doubt on whether they can leave the theory covariant.
There are arguments at the level of the full theory [1]
stating that quantum operators may be anomaly-free, but

it remains unknown how to descend from this statement to
anomaly-free effective space-time geometries. A phe-
nomenological approach has thus been followed to inves-
tigate possible geometrical and physical effects of diverse
corrections. Here, one inserts expected corrections in the
classical constraints, suitably parametrized to reflect quan-
tization ambiguities, and evaluates conditions under which
the corrected constraints remain first class. As several
articles have by now shown, it is indeed possible to have
anomaly freedom even in the presence of quantum correc-
tions resulting from spatial discreteness [2–4].
Marginal models, which are a subclass of general LTB

models, have been analyzed in this spirit in Ref. [3]. This
has resulted in consistent deformations which implement
some types of quantum corrections without spoiling gen-
eral covariance, and made possible an initial analysis of
implications regarding effective pictures of collapse singu-
larities. (At the fundamental level of dynamical difference
equations in a loop quantization, spherically symmetric
models are singularity-free [5] as are homogeneous models
[6–8].) It turned out that there is no clear generic avoidance
of either spacelike or null singularities by an obvious
mechanism, in contrast to several homogeneous models
of loop quantum cosmology [9] where phenomenological
mechanisms such as bounces could be found easily. While
this outcome is not entirely unexpected given the types of
corrections analyzed in the marginal case, it does show that
further analysis is required. Marginal models, after all,
provide spatially flat Friedmann-Robertson-Walker models
in the homogeneous limiting case which give rise to phe-
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nomenological singularity avoidance in their loop quanti-
zation (including a positive matter potential) only with
holonomy corrections [10,11], which were not fully in-
cluded in [3] due to technical complications. It is thus
natural to extend the constructions to nonmarginal models
which would provide a homogeneous model of positive (as
well as negative) spatial curvature as limit. In that case,
loop quantum cosmology can give rise to phenomenologi-
cal singularity resolution even in the presence of inverse
triad corrections alone [12], which in inhomogeneous situ-
ations are easier to control than holonomy corrections. If
the behavior seen in homogeneous models should be ge-
neric and apply also to inhomogeneous situations, loop
quantized nonmarginal LTB models must give rise to
singularity resolution more easily than marginal ones.

To find anomaly-free versions of nonmarginal LTB
models including inverse triad corrections from loop quan-
tum gravity, we will follow two derivations. First, we will
extend the methods of [3] where constraints already incor-
porating the LTB reduction of metric components are made
anomaly-free by consistency conditions between correc-
tion functions. Secondly, wewill derive a general anomaly-
free system of spherically symmetric constraints, on which
we then apply the LTB reduction in a second step. As we
will show, the two steps of LTB reduction and deriving
consistency conditions almost commute: in the end, we
obtain consistent equations of motion of similar structure,
although they do differ by some terms. This outcome
considerably supports the constructions of [3].

Using these consistent equations, gravitational collapse
can be analyzed. We are specifically interested here in the
possibility of a turnaround of the collapse, or a bounce, in
the corrected equations, which are suggested to exist by
models where homogeneous interiors have been matched,
Oppenheimer–Snyder-style, to spherically symmetric ex-
teriors [13]. Also here, as in the marginal case but in
contrast to homogeneous models, we do not find a clear
indication for singularity resolution, although several extra
terms do seem to make a bounce more likely. As in the
marginal case, this part of the result is not conclusive since
not all corrections have been included and no complete
analysis has been performed. Our results thus do not mean
that there is no bounce in these inhomogeneous models.
But they do show that an outright treatment of inhomoge-
neous models is different from matching homogeneous
results. In fact, we also confirm the observation of [3]
that quantum corrections of the type studied here prevent
the existence of an exact homogeneous limit. ‘‘Effective’’
homogeneous geometries thus have to be taken with care,
but consistent relationships with inhomogeneous ones do
provide insights in their structure [14].

II. CLASSICAL EQUATIONS

Nonmarginal LTB models [15–17] have a space-time
metric given by

ds2 ¼ �dt2 þ R02

1þ �ðxÞdx
2 þ R2d�2 (1)

with d�2 ¼ d#2 þ sin2#d’2 and where � � 0 is a func-
tion of the radial coordinate x. (The limiting case � ¼ 0 is
that of marginal models.) The function Rðt; xÞ can depend
on both time and the radial coordinate, but not on the
angular coordinates to leave the metric spherically sym-
metric. It is easy to see that positively curved Friedmann-
Robertson-Walker models with scale factor aðtÞ are ob-
tained for �ðxÞ ¼ �x2 and Rðt; xÞ ¼ aðtÞx.
For an application of loop quantization we use densi-

tized triads instead of the spatial metric components,
whose conjugate momenta are given in terms of the
Ashtekar-Barbero connection and extrinsic curvature com-
ponents. Written as a densitized vector field taking values
in the Lie algebra of SU(2) with basis �i, the spherically
symmetric densitized triad is

E ¼ ExðxÞ�3 sin# @

@x
þ ðE1ðxÞ�1 þ E2ðxÞ�2Þ sin# @

@#

þ ðE1ðxÞ�2 � E2ðxÞ�1Þ @

@’
:

Similarly the Ashtekar connection Ai
a ¼ �i

a þ �Ki
a, where

�i
a and Ki

a are the components of spin connection and
extrinsic curvature, respectively, and � is the Barbero-
Immirzi parameter [18,19], reads

A ¼ AxðxÞ�3dxþ ðA1ðxÞ�1 þ A2ðxÞ�2Þd#
þ ðA1ðxÞ�2 � A2ðxÞ�1Þ sin#d’þ �3 cos#d’:

Introducing the U(1)-gauge invariant quantities ðE’Þ2 ¼
ðE1Þ2 þ ðE2Þ2 and A2

’ ¼ A2
1 þ A2

2 (see [20–22] for details),

we have the symplectic structure

fAxðxÞ; ExðyÞg ¼ f�K’ðxÞ; 2E’ðyÞg ¼ f�ðxÞ; P�ðyÞg
¼ 2G��ðx; yÞ

or more explicitly the Poisson bracket of functions f and g
is

ff; gg ¼ 2G
Z

dx

�
�

�f

�Ax

�g

�Ex þ
1

2

�f

�K’

�g

�E’ þ �
�f

��

�g

�P�

� �
�f

�Ex

�g

�Ax

� 1

2

�f

�E’

�g

�K’

� �
�f

�P�

�g

��

�
:

Compared to metric variables, we have an extra field �ðxÞ
with momentum

P�ðxÞ ¼ 2A’E
’ sin�

¼ 4 trððE1�1 þ E2�2ÞðA2�1 � A1�2ÞÞ
(with � defined as the angle between the internal directions
of A and E components), which plays the role of a U(1)-
gauge angle in the spherically symmetric theory. (This
gauge angle also determines the x component of the spin
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connection �x ¼ ��0, and thus enters the Ashtekar con-
nection by Ax ¼ ��0 þ �Kx with an extrinsic curvature
component Kx.)

In this situation, we have three constraints: the Gauss
constraint

Ggrav½�� ¼ 1

2G�

Z
dx�ððExÞ0 þ P�Þ; (2)

the vector constraint

Dgrav½Nx� ¼ 1

2G

Z
dxNx

�
2E’K0

’ � 1

�
AxðExÞ0 þ 1

�
�0P�

�

¼ 1

2G

Z
dxNx

�
2E’K0

’ � KxðExÞ0

þ 1

�
�0ððExÞ0 þ P�Þ

�
; (3)

and the Hamiltonian constraint

Hgrav½N� ¼ � 1

2G

Z
dxNjExj�1=2ðK2

’E
’ þ 2K’KxE

x

þ ð1� �2
’ÞE’ þ 2�0

’E
xÞ (4)

with �’ ¼ �ðExÞ0=2E’ the gauge invariant angular com-

ponent of the spin connection. Solving the Gauss constraint
removes the pair ð�;P�Þ and reduces the vector constraint
to the diffeomorphism constraint. After this step we can
work with the canonical pairs

fKxðxÞ; ExðyÞg ¼ fK’ðxÞ; 2E’ðyÞg ¼ 2G�ðx; yÞ:

The relation to the usual spherically symmetric geome-
trodynamical variables

fRðxÞ; PRðyÞg ¼ fLðxÞ; PLðyÞg ¼ G�ðx; yÞ (5)

as used, for example, in [23,24] can be obtained directly by
comparing the spatial metric

dq2 ¼ L2dx2 þ R2d�2 ¼ ðE’Þ2
jExj dx2 þ jExjd�2 (6)

in each set of variables and making use of the equations of
motion:

L ¼ E’jExj�1=2;

R ¼ jExj1=2;
PL ¼ �K’jExj1=2;
PR ¼ �sKxjExj1=2 � K’E

’jExj�1=2

(7)

where s ¼ sgnðExÞ. (The sign factor corresponds to the two
possible orientations of a triad; we will mostly use s ¼ þ1
below.)

Specializing the general spherically symmetric metric

ds2 ¼ �Nðt; xÞ2dt2 þ L2ðt; xÞðdxþ Nxðt; xÞdtÞ2
þ R2ðt; xÞd�2

to the LTB form (1) requires a vanishing shift function
Nx ¼ 0 and lapse N ¼ 1 for comoving coordinates of the
dust, and on using the first equation in (7) gives the non-
marginal LTB condition

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞ

p
E’ ¼ ðExÞ0 (8)

in terms of triads. From this we can derive the spin con-
nection component

�’ ¼ �ðExÞ0
2E’ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞ

p
(9)

and its derivative �0
’ ¼ ��0ðxÞ=2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �ðxÞp
, which appear

in the Hamiltonian constraint. Since the spin connection,
unlike in the marginal case, is not a constant �1, the
Hamiltonian constraint is different from the marginal case

Hclass
grav ½N� ¼ � 1

2G

Z
dxNðxÞjExj�1=2

�
�
K2

’E
’ þ 2K’KxE

x � �ðxÞE’

� �0ðxÞExffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞp �

: (10)

If we solve the diffeomorphism constraint identically,
which requires 2E’K0

’ � KxðExÞ0 ¼ 0, the LTB condition

for triad variables gives rise to a condition

K0
’ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �ðxÞp
Kx (11)

for the extrinsic curvature components. For a consistent
LTB formulation, the two LTB conditions must be pre-
served by evolution generated by the constraint. This is
indeed the case as can be seen from deriving Poisson
brackets between the Hamiltonian constraint and each of
the LTB conditions. For the Poisson bracket of the two
LTB conditions, after smearing them with fields �ðxÞ and
	ðxÞ, we get�Z

dx	ðxÞð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞp

Kx � K0
’Þ;

Z
dy�ðyÞð2 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �ðxÞp
E’

� ðExÞ0Þ
�
¼ 2G

Z
dz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðzÞp ð�	Þ0: (12)

This in general is nonvanishing, unlike in the marginal case
where � is zero. (Although we will not follow this route
here, we note that this will have an impact on implement-
ing the LTB conditions at the state level, as done in [3] for
the marginal case. Another complication for such a con-
struction is the explicit �-dependence of the LTB condi-
tions, which makes their integrated version used as
conditions on holonomies more complicated.)
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Equations of motion in this canonical formulation are
derived using _Ex ¼ fEx;Hclass

grav g, with a similar equation for

E’. With these we can first eliminate Kx and K’, and

finally E’ using the nonmarginal LTB condition to obtain
an equation entirely in terms of Ex. After replacing Ex by
R2 we obtain

Hclass
grav ¼ �2R _R _R0 � _R2R0 þ �0Rþ �R0

2G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞp ; (13)

which has to be equated to the matter part of the Hamil-

tonian for dust given by Hdust ¼ � 1
2GF

0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞp

. (A

more general canonical derivation of the gravity-dust sys-
tem will be given in Sec. IVB.) Thus

2R _R _R0 þ _R2R0 � �0R� �R0 ¼ F0 (14)

is the equation of motion, in agreement with the spatial
derivative of R _R2 ¼ �ðxÞRþ FðxÞ, which is the equation
obtained by solving Einstein’s equation for the nonmargi-
nal case.

III. INVERSE TRIAD CORRECTIONS FROMLOOP
QUANTUM GRAVITY

We will now repeat the canonical analysis using a
Hamiltonian constraint containing correction functions as
they are suggested by constraint operators in loop quantum
gravity. Consistency will then require conditions for the
possible terms, which show how quantum corrections can
be realized in an anomaly-free way. We discuss here only
inverse triad corrections which are easier to implement,
and which already provide insights into one of the main
classes of quantum geometry corrections.

Inverse triad corrections arise from every Hamiltonian
operator quantized by loop techniques, where inverse com-
ponents of the densitized triad appear. Such corrections are
directly related to spatial discreteness of quantum geome-
try since densitized triads as basic variables are quantized
to flux operators with discrete spectra containing zero [25].
Since such operators do not have densely defined inverses,
no direct inverse operator is available. Instead, well-
defined quantizations exist based on techniques introduced
in [1,26], implying corrections to the classical inverse.

In several symmetric models, inverse triad operators and
the corrections they imply can be computed explicitly [27].
As an example, spherically symmetric models used in [3]
give rise to a correction function of the form

�ð�Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�þ �‘2P=2j

q
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j�� �‘2P=2j

q
�‘2P

ffiffiffiffiffiffiffi
j�j

p
(15)

where � is the size of an elementary plaquette in a discrete
state underlying an LTB geometry. For corrections in
inverse powers of Ex, which is proportional to the area of
a spherical orbit, the relevant operators give rise to a
dependence on plaquette sizes on orbits. For a nearly

spherical distribution of N ðExÞ such plaquettes making
up the whole orbit, we thus have � ¼ Ex=N . Since we
refer only to the orbit size, corrections thus naturally
depend on Ex only but not on E’. (That this is required
will later be shown independently when we use anomaly
freedom to rule out that � could depend on E’.) Such a
correction function then multiplies any classical appear-
ance of ðExÞ�1 in a Hamiltonian operator. In particular,
classical divergences of inverse factors of Ex are cut off as
one can see from the plot in Fig. 1. Correspondingly, the
dynamics given by such a Hamiltonian will change from
quantum corrections. Classically, i.e. for ‘P ! 0, we have
�ðExÞ ¼ 1, and this limit is approached for large Ex. Also
this behavior of the correction function is illustrated in
Fig. 1.
For a large number N of discrete blocks, the scale � is

reduced compared to Ex and corrections from � can be
significant even for large Ex. Since typicallyN , in relation
to the underlying state, is not a constant but would depend
on the size Ex, different kinds of behaviors can arise. This
phenomenon of lattice refinement [28,29] is important to
capture the full dynamics of quantum gravity and its ele-
mentary degrees of freedom. It is also crucial for realizing
the correct scaling behavior of correction terms under
changes of coordinates [30]. In this paper, we will mainly
be looking at general implications in local equations of
motion, where the value or behavior ofN is not important.
More detailed investigations could at some point provide
restrictions on the possible form of N ðExÞ, and thus give
insights in the required behavior of discrete quantum grav-
ity states.

A. First version

We turn to the case of inverse triad corrections called
‘‘first version’’ in [3], where only those terms in the

Hamiltonian with explicit 1=
ffiffiffiffiffiffiffiffiffijExjp

dependence are cor-
rected by a factor �ðExÞ. Starting as in the marginal case,
we first assume that the classical expression for the spin

1
∆/∆*

0

1

α(
∆

/∆
*)

, f
(∆

/∆
*)

FIG. 1. The correction functions �ð�Þ (solid line) and fð�Þ
(dashed line) where � is taken relative to �� :¼

ffiffiffiffiffiffiffiffiffi
�=2

p
‘P.
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connection can be used, but show that this is inconsistent.
The Hamiltonian, now assuming Ex > 0, is

HI
grav½N� ¼ � 1

2G

Z
dxN

�
�ðExÞK

2
’E

’ffiffiffiffiffiffi
Ex

p þ 2K’Kx

ffiffiffiffiffiffi
Ex

p

� �ðExÞ�ðxÞE
’ffiffiffiffiffiffi

Ex
p � �0ðxÞ ffiffiffiffiffiffi

Ex
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞp �

: (16)

As in the marginal case, it turns out that the correction in
the Hamiltonian can lead to consistent LTB-type solutions
only if we also change the LTB conditions by a correction
function fðExÞ

ðExÞ0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞ

p
fðExÞE’ (17a)

and

K0
’ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞ

p
fðExÞKx: (17b)

These relations still solve the classical diffeomorphism
constraint identically, which does not receive corrections
in loop quantum gravity. The main consistency condition
then is that Poisson brackets of the LTB conditions with the
Hamiltonian constraint vanish.
Each of the Poisson brackets gives a differential equa-

tion for fðExÞ. For the LTB condition corresponding to the
triad variables we obtain

2Ex df

dEx ¼ fð1� �Þ: (18)

This is the same equation as found for the marginal case in
[3]. For N ¼ 1, for instance, the solution is given by

fðExÞ ¼ c1
ffiffiffiffiffiffi
Ex

p
e��=2

ð ffiffiffiffiffiffi
Ex

p þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex � �‘2P=2

q
Þ1=2ð ffiffiffiffiffiffi

Ex
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex þ �‘2P=2

q
Þ1=2

(19)

for Ex > �‘2P=2 and

fðExÞ ¼ c2
ffiffiffiffiffiffi
Ex

p
expð� 1

2�þ 1
2 arctanð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex=ð�‘2P=2� ExÞ

q
ÞÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ex
p þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ex þ �‘2P=2

qr (20)

for Ex < �‘2P=2 (dashed curve in Fig. 1). Here c1 ¼ 2
ffiffiffi
e

p
and c2 ¼ 25=4e1=2�
=4��1=4‘�1=2

P are constants of integra-
tion fixed, respectively, by the condition limEx!1fðExÞ !
1 and by requiring that fðExÞ be continuous at Ex ¼
�‘2P=2.

It is clear that we obtain the same equation because there
is no influence of � in the evaluation of the Poisson bracket,
� not affecting the terms containing Kx and K’ in the

Hamiltonian. However, the differential equation for fðExÞ
obtained by demanding that the corrected LTB condition
for extrinsic curvature components is also preserved in
time gives the equation

� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
K’Kx

ffiffiffiffiffiffi
Ex

p df

dEx þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
K’Kxfffiffiffiffiffiffi
Ex

p

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
K’Kxfffiffiffiffiffiffi

Ex
p � �0f

2
ffiffiffiffiffiffi
Ex

p þ �0�
2

ffiffiffiffiffiffi
Ex

p ¼ 0 (21)

which, due to the �0 terms, is different from and in fact
inconsistent with Eq. (18) obtained from the LTB condition
for triads.

B. Second version

We now repeat the above procedure for the second
version of the inverse triad corrections for which the
Hamiltonian is corrected by �ðExÞ in all terms and reads

HII
grav½N� ¼ � 1

2G

Z
dxN

�ðExÞffiffiffiffiffiffi
Ex

p
�
K2

’E
’ þ 2K’KxE

x

� �ðxÞE’ � �0ðxÞExffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞp �

: (22)

Again, the LTB conditions in the form

ðExÞ0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞ

p
gðExÞE’ (23a)

and

K0
’ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞ

p
gðExÞKx (23b)

solve the diffeomorphism constraint identically. However,
for the same reasons as noted above the conditions cannot
be consistent: since the terms containing Kx and K’ in the

Hamiltonian do not involve �, the Poisson bracket for the
triads gives the same result as in the marginal case where
the differential equation was

�
dg

dEx ¼ g
d�

dEx ; (24)

with the solution gðExÞ ¼ �ðExÞ. (This solution is unique
with the boundary condition imposing that g ¼ 1 for large
arguments.)
For the Poisson bracket involving the condition on ex-

trinsic curvature, on the other hand, the terms in the
Hamiltonian involving � are important and we get a differ-
ent result:
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� 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞp

�K’Kx

ffiffiffiffiffiffi
Ex

p dg

dEx þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞp

K’Kx

ffiffiffiffiffiffi
Ex

p

� d�

dEx g� �0�g
2

ffiffiffiffiffiffi
Ex

p � �0 ffiffiffiffiffiffi
Ex

p d�

dEx gþ �0�
2

ffiffiffiffiffiffi
Ex

p ¼ 0: (25)

As in the previous case the presence of �0 terms spoils the
consistency. Using � ¼ g the first two terms cancel while
the rest would require d�=dEx ¼ ð�� 1Þ=2Ex with a

solution � ¼ 1þ c
ffiffiffiffiffiffi
Ex

p
violating the classical limit at

large arguments.

C. Inclusion of corrections in the spin connection

A direct extension of the results from marginal to non-
marginal models is thus impossible. Here we have an
example for the information gained by a phenomenological
treatment: LTB-type solutions require additional correc-
tions to compensate inconsistencies seen so far. Such cor-
rections may be more difficult to derive from a full
Hamiltonian, but they follow directly from a phenomeno-
logical treatment. A successful consistent implementation
thus provides feedback on the full theory: additional cor-
rections required for consistency must eventually follow
from the full theory just like the primary correction �
followed from inverse triad operators.

In particular, to resolve inconsistencies, we thus have to
include further corrections in terms not affected yet, the
chief candidate being the spin connection terms in the
Hamiltonian constraint. They vanish in the marginal
case, such that results from there do not provide much
directions for more general models. Moreover, such terms
are in fact more difficult to derive from a full Hamiltonian
so that not much is known about their form. We will now
look for corrections in the spin connection terms which are
such that they combinewith those already used to provide a
consistent formulation.

1. Implementation

Classically we started with the expression �’ ¼
�ðExÞ0=2E’ ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �ðxÞp
. However, with quantum cor-

rections to the Hamiltonian the LTB conditions are also
corrected. For example, for the second version, the modi-

fied LTB condition ðExÞ0 ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
gðExÞE’ implies that

now the spin connection is

�’ ¼ �ðExÞ0
2E’ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �ðxÞ

p
gðExÞ: (26)

We include the additional factor of gðExÞ in the
Hamiltonian by replacing any occurrence of the classical
spin connection �class

’ from (9) with gðExÞ�class
’ .

Furthermore, the derivative of the spin connection then
is

�0
’ ¼ � �0gðExÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p � ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p ðExÞ0 dg
dEx : (27)

This introduces an explicit ðExÞ0 in the LTB-reduced
Hamiltonian, which would imply fH½N�; H½M�g � 0
even though the diffeomorphism constraint has been
solved identically. The system would thus be anomalous.
We are finally led to incorporate another correction func-
tion multiplying �0

’ in a function hðExÞ so that in the

Hamiltonian �0
’ is to be replaced with hðExÞð�class

’ Þ0. The
form of hðExÞ will be determined by the requirement of
consistency. With all the possible corrections, the new
Hamiltonian in the second version is

HII
grav½N� ¼ � 1

2G

Z
dxN

�
�K2

’E
’ffiffiffiffiffiffi

Ex
p þ 2�K’Kx

ffiffiffiffiffiffi
Ex

p

þ �E’ffiffiffiffiffiffi
Ex

p � �g2E’ffiffiffiffiffiffi
Ex

p � ��g2E’ffiffiffiffiffiffi
Ex

p � �0�h
ffiffiffiffiffiffi
Ex

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
�
:

(28)

We now demand that this Hamiltonian Poisson com-
mutes with the LTB conditions in (23). Here we note that
the terms containing the spin connection (and its deriva-
tive) in the Hamiltonian do not contain Kx or K’ and

therefore in evaluations of the Poisson bracket with the
first LTB condition there will be no changes. This leads to
the same differential Eq. (24) for gðExÞ as obtained earlier,
implying gðExÞ ¼ �ðExÞ. Evaluating the Poisson bracket
of the Hamiltonian with the second condition and using the
solution for gðExÞ gives a differential equation for hðExÞ

dð�h ffiffiffiffiffiffi
Ex

p Þ
dEx

¼ �2

2
ffiffiffiffiffiffi
Ex

p : (29)

Here, we can thus have a consistent formulation for the
nonmarginal case for a suitable h by correcting the spin
connection terms.
We proceed in a similar manner for the first version of

the inverse triad corrections. From the LTB condition for
triads in (17a) we find that the spin connection would be
replaced with fðExÞ�class

’ , and the derivative of the spin

connection receives a correction function lðExÞ in the form
lðExÞð�class

’ Þ0. With these changes the Hamiltonian is

HI
grav½N� ¼ � 1

2G

Z
dxN

�
�K2

’E
’ffiffiffiffiffiffi

Ex
p þ 2K’Kx

ffiffiffiffiffiffi
Ex

p þ �E’ffiffiffiffiffiffi
Ex

p

� �f2E’ffiffiffiffiffiffi
Ex

p � ��f2E’ffiffiffiffiffiffi
Ex

p � �0l
ffiffiffiffiffiffi
Ex

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
�
: (30)

Evaluating the Poisson bracket of this with the LTB con-
ditions and equating them to zero implies that the equation
for fðExÞ is unchanged compared to (18). The other
Poisson bracket then gives a differential equation for lðExÞ:

dðl ffiffiffiffiffiffi
Ex

p Þ
dEx

¼ �f

2
ffiffiffiffiffiffi
Ex

p : (31)

Differential equations for the correction functions h and
l are difficult to solve in general for given � and f. For a
near center analysis done later wewill need the lowest term
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in h and l in a power series expansion in x. Integrating (29)
and (31) keeping only the lowest order term in � and f we
find the solution

hðx � 0Þ ¼
�

2

�‘2P

�
3=2 R3

7
; lðx � 0Þ ¼ 8eð1=2Þ�ð
=4Þ

5ð�‘2PÞ2
R4

(32)

valid near the center.

2. Ambiguities

The Ex-dependence of � follows from the consideration
of inverse triad operators in the full quantum theory.
Although it is not determined uniquely in this way (see
[31,32] for a discussion), the general shape of this correc-
tion function is known well. No such arguments exist for
some other correction functions such as h, whose form is
thus less clear. More ambiguities are thus expected to arise
for it.

A basic condition on multiplicative corrections is that
they be scalar to preserve the transformation properties of
corrected expressions under changing coordinates. Among
the basic triad variables, Ex is the only one free of a density
weight and thus can appear in correction functions in an
unrestricted way. The other component E’, on the other
hand, is a density of weight one and would have to appear
in combination with other densities to result in a scalar. If
only triad components are considered for the dependence,
the only other density would be ðExÞ0. Scalars made from
these densities, such as E’=ðExÞ0 are however unsuitable
for corrections since they are not always finite.

In the present situation, we use the function � for a
nonmarginal LTB model, which means that we have an-
other density, �0, at our disposal. Scalars of the form
ðExÞ0=�0 or E’=�0 are well-defined for most functions �
of interest, and can thus arise in corrections. This enlarge-
ment of the space of acceptable variables means that addi-
tional ambiguities can arise. In the next section we will see
how several of these ambiguities can be fixed by an analy-
sis of the constraint algebra. The equations of motion will
remain structurally similar, so that we proceed for now
with an analysis of the equations resulting from the treat-
ment done so far.

D. Equations of motion

Given the consistency conditions between correction
functions we can derive consistent equations of motion
even without having explicit solutions for the differential
Eqs. (29) and (31). Once consistent constraints are avail-
able, the derivation follows the classical lines which we
briefly illustrate first. The first order equation (in time) has
already been worked out in (14), so that we can go on to the
evolution equation. From _Ex ¼ fEx;Hclass

grav g we have

K’ ¼ _Ex

2
ffiffiffiffiffiffi
Ex

p : (33)

Similarly, using _K’ ¼ fK’;H
class
grav g we obtain

_K ’ ¼ 1

2

�
�ffiffiffiffiffiffi
Ex

p � K2
’ffiffiffiffiffiffi
Ex

p
�
: (34)

Eliminating K’ from the above two equations we obtain

€E x ¼ �þ ð _ExÞ2
4Ex (35)

which, using Ex ¼ R2, can be written as

2R €Rþ _R2 ¼ �: (36)

Equations (14) and (36) are automatically consistent,
which can be seen explicitly by subtracting a time deriva-
tive of (14) from a space derivative of (36).
The same procedure is then applied to constrained sys-

tems including consistent correction terms. To get the first
order equation in version two we use (28) in the equations
of motion _Ea ¼ fEa;HII

gravg to solve for the extrinsic cur-

vature components

K’ ¼ _Ex

2�
ffiffiffiffiffiffi
Ex

p and Kx ¼
_E’

�
ffiffiffiffiffiffi
Ex

p � K’E
’

Ex : (37)

Using these along with the LTB condition E’ ¼
ðExÞ0=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ �
p

g in (28) we rewrite the Hamiltonian in
terms of Ex only

HII
grav ¼ � 1

2G

�
� ð _ExÞ2ðExÞ0

8
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
�2ðExÞ3=2 þ

_Exð _ExÞ0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
�2

ffiffiffiffiffiffi
Ex

p

� ð _ExÞ2ðExÞ0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
�3

ffiffiffiffiffiffi
Ex

p d�

dEx þ ð1� �2 � ��2Þ

� ðExÞ0
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p ffiffiffiffiffiffi
Ex

p � �0�h
ffiffiffiffiffiffi
Ex

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
�
; (38)

where we have already used the condition g ¼ �. When
equated to the dust Hamiltonian after using Ex ¼ R2 a first
order equation in time ensues

_R2R0

�2
þ 2R _R _R0

�2
� 2R _R2R0

�3

d�

dR
þ ð1� �2 � ��2ÞR0

� �0�hR ¼ F0: (39)

To obtain the evolution equation we use

_K ’ ¼ fK’;H
II
gravg ¼ � 1

2

�� �g2 � ��g2 þ �K2
’ffiffiffiffiffiffi

Ex
p

(40)

together with K’ ¼ _Ex=2�
ffiffiffiffiffiffi
Ex

p
from (37), such that

€E x � ð _ExÞ2
4Ex � ð _ExÞ2

�

d�

dEx ¼ ��2ð1� g2 � �g2Þ: (41)

With g ¼ � and Ex ¼ R2 this becomes
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2R €Rþ
�
1� 2

d log�

d logR

�
_R2 ¼ ��2ð1� �2 � ��2Þ: (42)

It is easy to see that this equation has the correct classical
limit and [using (29)] is consistent with the first order
equation.

Proceeding in a similar manner for the first version of the
inverse triad correction we find that the first order equation
is

� _R2R0 þ 2 _R _R0Rþ �ð1� f2 � �f2ÞR0 � �0flR ¼ fF0

(43)

and the evolution equation

2R €Rþ � _R2 ¼ ��ð1� f2 � �f2Þ: (44)

Using (31) along with (24) one can verify explicitly that
the first order and the second order equations are consistent
with each other.

E. Effective density

To interpret effects from correction terms it is often
useful to formulate them in terms of effective densities
rather than new terms in equations of motion. As in the
marginal case, we use the Misner-Sharp mass defined by

m ¼ R
2ð1�rARrARÞ (45)

where A ¼ ð1; 2Þ corresponds to the t� r manifold.
Writing the metric for spherical dust collapse as

ds2 ¼ �dt2 þ L2ðt; xÞdx2 þ R2ðt; xÞd�2 (46)

the equation for the Misner-Sharp mass becomes

m ¼ R

2

�
1þ _R2 � R02

L2

�
: (47)

Classically R02=L2 ¼ 1þ � and therefore the Misner-
Sharp mass is m ¼ ðR _R2 � �RÞ=2. With an effective den-
sity defined in terms of the Misner-Sharp mass by

�eff ¼ m0

4
GR2R0 (48)

we find that for the classical collapse it is

�classeff ¼ F0

8
GR2R0 : (49)

Here we have made use of the equation of motion _R2R ¼
�Rþ F which is obtained from the Hamiltonian con-
straint. This is in agreement with the 00 component of
Einstein’s equation, G00 ¼ 8
G�ðt; xÞ where �ðt; xÞ is the
dust density, implying � ¼ F0=8
GR2R0. Thus, classically
the effective density, defined in terms of the Misner-Sharp
mass, is the same as the dust density. Moreover, as ex-
pected, the expressions for the two are unchanged com-
pared to those for the marginal case.

We now proceed in the same way to find the effective
density for the first version of the inverse triad correction.

With the new LTB condition E’ ¼ ðExÞ0=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
fðExÞ,

the metric coefficient L � E’=
ffiffiffiffiffiffi
Ex

p
implies L ¼

R0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
fðRÞ using Ex ¼ R2. Therefore the Misner-

Sharp mass as defined in (47) is now

mI ¼ R
2ð1þ _R2 � ð1þ �Þf2Þ: (50)

The corresponding effective density as implied by (48) is

�Ieff ¼
1

8
GR2

�
fF0

R0 þ ð�� 1Þð3f2 þ 3�f2 � _R2 � 1Þ

þ �0flR
R0 � �0f2R

R0

�
(51)

where we have made use of (18) after substituting for Ex in
terms of R, and of (43). We note that this equation has the
correct classical limit.
For the second version of the inverse triad correction

we have E’ ¼ ðExÞ0=2 ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
gðExÞ, implying L ¼

R0=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
gðRÞ where as seen earlier gðRÞ ¼ �ðRÞ. With

this the Misner-Sharp mass is

mII ¼ R
2ð1þ _R2 � ð1þ �Þg2Þ: (52)

Using the relation �0 ¼ R0d�=dR (where the prime de-
notes derivative with respect to x) along with (39) we find
that the effective density is

�IIeff ¼
1

8
G

�
�2F0

R2R0 þ
1� �2

R2
ð1� �2 � ��2Þ

þ 2

�R
ð _R2 � �2 � ��2Þ d�

dR
þ �0�3h

RR0 � �0�2

RR0

�
: (53)

As in the marginal case, these effective densities imply
that the near center expansion for the mass function F can
have different behavior compared to the classical case, as
discussed in Sec. VI. The matter contribution to the effec-
tive density, as given by the first terms of (51) and (53), is
the same as in the marginal case.

F. Quantum correction to the energy function �?

Physically one would expect that the energy function �,
which is related to the velocity of the dust cloud, should
also receive corrections after including quantum effects. To
derive those, we have to find an independent definition of �
referring only to the constraints or evolution equations
derived from them. One possibility, in the classical case,
is to use (36) whose right-hand side only contains the
energy function. Once brought into an analogous form, a
corrected evolution equation can directly be used to read
off a corrected energy function. Specifically for version
one, where the evolution equation is given by (44), the
effective energy function is

�I
eff ¼ �f2�� �ð1� f2Þ (54)
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while for version two, where the evolution equation is
given by (42), the effective energy function becomes

�II
eff ¼ �4�� �2ð1� �2Þ: (55)

This correction in effect would imply that the near center
expansion for � can be different for the quantum corrected
equations as we will see when we come to the near center
analysis below.

IV. SPHERICALLY SYMMETRIC CONSTRAINTS

We have now several versions of consistent sets of
equations of motion for nonmarginal LTB models includ-
ing inverse triad corrections as expected from loop quan-
tum gravity. To make these equations consistent, we had to
introduce several correction functions in different terms of
the Hamiltonian constraint, which were then related to
each other by consistency conditions following from the
requirement that the LTB conditions be preserved. Since
there is some freedom in choosing the places and forms of
corrections in the constraint as well as the LTB conditions,
one may question how reliable such an analysis is regard-
ing the structure of resulting equations of motion or im-
plications for gravitational collapse.

Before analyzing corrected equations of motion further,
we now present an independent derivation which starts
with a consistent set of corrected spherically symmetric
constraints, and then implements the LTB reduction. As we
will see, the structure of the resulting equations is nearly
unchanged, while much less assumptions about different
corrections are required. With these two procedures we
thus demonstrate the robustness of consistently including
corrections at a phenomenological level. Note that this
would not have been possible had we chosen to fix the

gauge generated by the Hamiltonian constraint in any way
instead of dealing with the anomaly issue head on.

A. Gravitational variables and constraints

Quantum corrections due to inverse powers of the den-
sitized triad are introduced in the Hamiltonian constraint
(4) by functions which we initially assume to be of the
general form �ðEx; E’Þ and ��ðEx; E’Þ entering the
Hamiltonian constraint as

HQ
grav½N� ¼ � 1

2G

Z
dxNð�jExj�1=2K2

’E
’

þ 2s ��K’KxjExj1=2 þ �jExj�1=2E’

� ��jExj�1=2�2
’E

’ þ 2s ����
0
’jExj1=2Þ: (56)

To account for possible corrections from the quantization
of the spin connection, as suggested by the previous analy-
sis, we have also introduced functions ��ðEx; E’Þ and
���ðEx; E’Þ in those terms. The only restriction so far is
that we have the same � in the first and third term of the
Hamiltonian constraint due to their common origin from

the inverse jExj�1=2. The two main cases of interest here
are �� ¼ 1 or �� ¼ �, corresponding to two versions of
inverse triad corrections.
We now proceed to make the corrected constraints

anomaly-free before implementing LTB conditions. (For
a similar analysis for dilaton gravity, see [4].) To ensure
anomaly-freedom, we must determine conditions under
which the system of constraints, including its corrections
in the Hamiltonian constraint, remains first class.

Computing the Poisson bracket fHQ
grav½M�; HQ

grav½N�g gives

fHQ
grav½M�; HQ

grav½N�g ¼ Dgrav½ �� ���jExjðE’Þ�2ðMN0 � NM0Þ� �Ggrav½ �� ���jExjðE’Þ�2ðNM0 �MN0Þ�0�

þ 1

2G

Z
dxðMN0 � NM0Þð ���� � � ���Þ

sK’ðExÞ0
E’ þ 1

2G

Z
dxðMN0 � NM0Þð ��0 ��� � �� ��0

�Þ

� 2K’jExj
E’ : (57)

For a first class algebra the last two terms, which are not
related to constraints, must vanish, providing conditions on
the correction functions. The last term vanishes if, among
other possibilities, ��� / ��, upon which the third term gives
�� / �. To recover the classical limit, we then have

�� ¼ �; ��� ¼ ��: (58)

In this case, anomaly freedom is realized with corrections
to the spin connection terms to be only due to the inverse
power of the densitized triad factors they contain. This may
look contradictory to what we derived earlier, where addi-
tional correction functions such as h were needed.
However, the previous case (where LTB conditions were

used instead of the diffeomorphism constraint) implicitly
makes h dependent on ðExÞ0 as well. Comparing the cor-
rection terms we have

� �0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p �h ¼ 2 ����
0
’

¼ �2 ���

�
1

2

�0ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p g½Ex�

þ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p dg½Ex�
dEx ðExÞ0

�

and we can write, using g ¼ �
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h ¼ ��� þ 2
1þ �

�0
d log�

dEx ðExÞ0:
Thus, to match the current equations the correction func-
tion h used earlier must depend on ðExÞ0, which has a
density weight. (Similar considerations apply to the cor-
rection function l.) As the expression demonstrates, this is
made possible since in our earlier procedure we had the
function � at our disposal in addition to the triad compo-
nents. Its derivative �0 provides an extra density, which can

be combined with ðExÞ0 to provide a scalar correction
function. In the current setting, by contrast, we have not
yet introduced any such function by LTB conditions, and
so a possible dependence on ðExÞ0 is more restricted. The
new procedure of this section is clearly less ambiguous,
while the final results will be very close. This again dem-
onstrates the robustness.
To continue with the analysis of anomaly-freedom, we

compute Poisson brackets

fHQ
grav½N�; Dgrav½Nx�g ¼ �HQ

grav½NxN0� � 1

2G

Z
dxNðNxÞ0E’

�
@�

@E’ jExj�1=2K2
’E

’ þ 2s
@ ��

@E’ K’KxjExj1=2

þ @�

@E’ jExj�1=2E’ � @�

@E’ jExj�1=2�2
’E

’ þ 2s
@ ��

@E’ �
0
’jExj1=2

�
: (59)

In the case �� ¼ �,

fHQ
grav½N�; Dgrav½Nx�g ¼ �HQ

grav½NxN0

� ð@ log�=@E’ÞE’NðNxÞ0�:
The corrected Hamiltonian HQ

grav transforms as a scalar
only if � is independent of E’ since E’ is the only basic
quantity of density weight one. However, the vacuum
algebra is first class even if � depends on E’. In contrast,
when �� ¼ 1 (or more generally �� � �), � must be inde-
pendent of E’. (The case � ¼ �� in vacuum is special
because any such correction could be absorbed in the lapse
function, making the algebra formally first class.)

In summary, for corrections � (and ��) independent of
E’ we have

fHQ
grav½N�; Dgrav½Nx�g ¼ �HQ

grav½NxN0�
and

fHQ
grav½M�; HQ

grav½N�g ¼ Dgrav½ ��2jExjðE’Þ�2ðMN0 � NM0Þ�
�Ggrav½ ��2jExjðE’Þ�2

� ðMN0 � NM0Þ�0�: (60)

To proceed, we will include matter in the form of dust as it
is assumed in LTB models.

B. Dust

For a full consistency analysis based on the constraint
algebra we have to use a dynamical formulation of the dust
matter source, rather than a phenomenological implemen-
tation via the dust profile FðxÞ. It is convenient to use a
canonical formulation for dust with stress-energy tensor
T�� ¼ �U�U� as developed in [33]. The dust four-

velocity is given by the Pfaff form U� ¼ ��;� þ
WkZ

k
;�, where as canonical coordinates the dust proper

time � and comoving dust coordinates Zk with k ¼ 1, 2, 3
appear. Their respective conjugate momenta will be called
P and Pk. Matter contributions to the diffeomorphism and

Hamiltonian constraint read

Ddust½Na� ¼
Z

d3xNa ~Da ¼
Z

d3xNaðP�;a þ PkZ
k
;aÞ

Hdust½N� ¼
Z

d3xN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 þ qab ~Da

~Db

q
: (61)

Imposing spherical symmetry and using adapted coor-
dinates � :¼ Z1, Z2 ¼ #, Z3 ¼ ’ the constraints become

Ddust½Nx� ¼ 4

Z

dxNxðP��
0 þ P��

0Þ

Hdust½N� ¼ 4

Z

dxN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
� þ jExj

ðE’Þ2 ðP��
0 þ P��

0Þ2
s

(62)

with the remaining canonical pairs

f�; P�g ¼ f�; P�g ¼ 1

4


whose momenta P� and P� are defined by the relations
P ¼ P� sin# (in terms of the P of the full three-
dimensional theory) and P� ¼ �P�W1.
For nonrotating dust, as must be the case with spherical

symmetry, the constraints Pk ¼ 0 can be imposed by re-
quiring that the dust motion be described with respect to
the frame orthogonal foliation, so that the state does not
depend on the frame variables Zk. As a result P� is usually
taken to be zero. However, we will not choose to do so until
we try to solve the equations of motion.
From the form of the Hamiltonian (61) in the full theory

and qab ¼ ðdetEc
kÞ�1Ea

i E
b
i , we can expect quantum correc-

tions �½Ex; E’� from a quantization of inverse triads inside
the square root

HQ
dust½N� ¼ 4


Z
dxN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2
� þ �

jExj
ðE’Þ2 ðP��

0 þ P��
0Þ2

s
:
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Also here, the form of � will be restricted by the require-
ment of anomaly freedom.

Adding the individual contributions, the diffeomor-
phism and corrected Hamiltonian constraint for the
gravity-dust system are D½Nx� ¼ Dgrav½Nx� þDdust½Nx�
and HQ½N� ¼ HQ

grav½N� þHQ
dust½N�. Now, the Poisson

bracket for the matter part of the Hamiltonian with the
diffeomorphism constraint is

fHQ
dust½N�; D½Nx�g ¼ �HQ

dust½NxN0� þ
Z

dxNðNxÞ0 @�
@E’

� jExj
2E’

~D2
xffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

P2
� þ �jExjðE’Þ�2 ~D2

x

q
with ~Dx :¼ P��

0 þ P��
0. The closure of fHQ½N�; D½Nx�g

consistently imposes the condition that � and � be inde-
pendent of E’, upon which

fHQ½N�; D½Nx�g ¼ �HQ½NxN0�:
Finally,

fHQ½N�; HQ½M�g ¼ fHQ
grav½M�; HQ

grav½N�g
þ fHQ

dust½M�; HQ
dust½N�g

¼ Dgrav½ ��2jExjðE’Þ�2ðMN0 � NM0Þ�
�Ggrav½ ��2jExjðE’Þ�2ðMN0

� NM0Þ�0� þDdust½�jExjðE’Þ�2

�ðMN0 � NM0Þ�
gives the relation

� ¼ ��2: (63)

Note that the presence of matter makes this consistent
deformation of the classical constraint algebra nontrivial:
corrections can no longer be absorbed in the lapse function.
We also point out that a deformation of the constraint
algebra is required to implement the corrections consis-
tently. This seems to be an interesting difference to a
reduced phase space quantization which is possible in
this class of models based on a deparametrization [34].

C. LTB-like solutions

Using the transformation Eqs. (7), the quantum cor-
rected Hamiltonian in ADM variables (5) reads

HQ½N� ¼ 1

G

Z
dxN

�
� ��

PLPR

R
þ ð2 ��� �ÞLP

2
L

2R2
� �

L

2

� ð2 ��� �ÞR
02

2L
þ ��

�
RR0

L

�0

þ 4
GP�

�
1þ �

�02

L2

�
1=2

�

and the diffeomorphism constraint is

D½Nx� ¼ 1

G

Z
dxNxðR0PR � LP0

L þ 4
GP��
0Þ

where we have already used P� ¼ 0. Paralleling our treat-
ment of LTB-reduced constraints our further analysis will
be split into two different cases of correction functions. We
choose to work here in ADM variables instead of triad
variables, but of course identical results follow using the
latter.

1. Case �� ¼ �

The equations of motion _R ¼ fR;HQ½N� þD½Nx�g,
_L ¼ fL;HQ½N� þD½Nx�g, _PR ¼ fPR;H

Q½N� þD½Nx�g,
_PL ¼ fPL;H

Q½N� þD½Nx�g, _� ¼ f�;HQ½N� þD½Nx�g,
and _P� ¼ fP�;H

Q½N� þD½Nx�g are, respectively,

PL ¼ R

�N
ð� _Rþ NxR0Þ (64)

PR ¼ 1

�N
ð�L _R� _LRþ ðNxRLÞ0Þ (65)

_PR ¼ �N�

�
PLPR

R2
� LP2

L

R3

�
� N

d�

dR

�
�PLPR

R
þ LP2

L

2R2

� L

2

�
�

�
N�

R0

L

�0 þ N0�
R0

L
�

�
N0�

R

L

�0 þ N0 d�
dR

� RR0

L
þ

�
d2�

dR2
Rþ d�

dR

�
NR02

L
�

�
2N

d�

dR

RR0

L

�0

þ ðNxPRÞ0 � 2
GNP�

�
1þ �

�02

L2

��1=2 �02

L2

d�

dR

(66)

_PL ¼ N�

�
1

2
� P2

L

2R2
� R02

2L2

�
� ðN�Þ0 RR

0

L2
þ NxP0

L

þ 4
GN�P�

�02

L3

�
1þ �

�02

L2

��1=2
(67)

_� ¼ N

�
1þ �

�02

L2

�
1=2 þ Nx�0 (68)

_P � ¼
�
N�

P��
0

L2

�
1þ �

�02

L2

��1=2 þ NxP�

�0
: (69)

To try to find an LTB-like solution, following [17] and the
recent [34], we choose an embedding by coordinates such
that � ¼ t, or equivalently, from (68),N ¼ 1. SettingNx ¼
0, Eq. (69) becomes _P� ¼ 0 so that P�ðxÞ is a function of
the spatial coordinate only.
Substituting this and (64) with (65) in the diffeomor-

phism constraint

�D

�Nx
¼ R0PR � LP0

L þ 4
GP��
0 ¼ 0

gives the equation
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�
R0

�L

�� ¼ 0

or R0=�L ¼ E, with EðxÞ an arbitrary function of the
spatial coordinate only. To make contact with the classical
LTB solution we may define � by

E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
(70)

and obtain the corrected LTB condition

L ¼ R0

�E
:

Note that this is exactly the form of corrections used earlier
in (23), which we now have derived from the corrected
constrained system without extra assumptions about the
possible form of LTB solutions.

With all this, the Hamiltonian constraint

�

�
�PLPR

R
þ LP2

L

2R2
� L

2
� R02

2L
þ

�
RR0

L

�0�þ 4
GP� ¼ 0

becomes �
R _R2

�2
þ Rð1� �2E2Þ

�0 ¼ 8
GEP�: (71)

Again, we may define F by the equation 8
GEP� ¼ F0, so
finally the integrated Hamiltonian constraint reads

R _R2 ¼ �2Fþ R�2ð�2E2 � 1Þ þ cðtÞ (72)

and the second order, evolution equation from (67) is

2R €Rþ _R2 ¼ 2ð _R2 þ �4E2Þ d log�
d logR

� �2ð1� �2E2Þ:
(73)

This is precisely the time derivative of (72), provided
cðtÞ ¼ c ¼ const, and shows consistency. In the limit � ¼
1 we recover the classical LTB condition and evolution
equation. In this limit the integration constant can be
absorbed in F so we may set c ¼ 0 here.

Even though the corrected LTB condition coincides with
the one derived earlier, the first order and evolution equa-
tions are slightly different from the corresponding ones
(39) and (42) derived before:�

R _R2

�2

�0 þ R0ð1� �2E2Þ � 2EE0�hR ¼ F0 (74)

which unlike (71) is not a spatial derivative, and the second
order equation

2R €Rþ _R2 ¼ 2 _R2 d log�

d logR
� �2ð1� �2E2Þ: (75)

While several terms in the two sets of the equations agree,
the spatial derivative of (72) differs from (74) by a term
2EE0�Rðh� �Þ þ 2E2R��0, and (73) from (75) by
2�4E2d log�=d logR. It is interesting to note that the

more restrictive new method of this section provides a
Hamiltonian constraint which can be spatially integrated.

2. Case �� ¼ 1

Similarly to the previous case, choosing N ¼ 1 and
Nx ¼ 0 gives the equations of motion

PL ¼ �R _R (76)

PR ¼ �ðRLÞ� � ð1� �ÞL _R (77)

_PL ¼ �

2
þ ð2� �Þ

�
� P2

L

2R2
� R02

2L2

�
(78)

_PR ¼
�
LP2

L

R3
� PLPR

R2

�
�

�
R0

L

�0 þ d�

dR

�
LP2

L

2R2
þ L

2
� R02

2L

�

þ ð1� �ÞLP
2
L

R3
�

�
ð1� �ÞR

0

L

�0
: (79)

Substituting the first two equations in the diffeomorphism
constraint gives �

R0

L

�� ¼ ð1� �ÞR
0 _R

RL
:

Inserting the ansatz (17a)

L ¼ R0

Ef

gives the same Eq. (18) for the function fðExÞ as in the
previous treatment

R
df

dR
¼ fð1� �Þ: (80)

Substituting Eqs. (76) and (77) into the Hamiltonian con-
straint gives

ð2� �ÞR0 _R2 þ 2R _R _R0 � 2RR0 _R
_f

f
þ �R0 � �R0E2f2

� RðE2f2Þ0 ¼ 8
GEfP�

or using (80) and defining F0 ¼ 8
GEP�

�R0 _R2 þ 2R _R _R0 þ �R0ð1� E2f2Þ � RðE2f2Þ0 ¼ fF0

(81)

which reproduces the classical equation in the limit � ¼
f ¼ 1.
The second order equation from (78) is

2R €Rþ � _R2 ¼ ��ð1þ E2f2Þ þ 2E2f2: (82)

Also here, compared to (43) and (44) as obtained earlier:

�R0 _R2 þ 2R _R _R0 þ �R0ð1� E2f2Þ � RðE2Þ0fl ¼ fF0

2R €Rþ � _R2 ¼ ��ð1� E2f2Þ;
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the structure of the resulting equations remains similar up
to a few extra terms.

As in Secs. III E and III Fwe may interpret the effects of
correction terms using effective densities and energy
functions.

V. POSSIBILITY OF SINGULARITY RESOLUTION
THROUGH BOUNCES

We can now use the different sets of consistent equations
to analyze properties of gravitational collapse, such as the
formation of singularities. Classically we have the first
order equation

_R 2 ¼ �þ F

R
: (83)

Compared with the marginal case where � ¼ 0, there
exists the possibility that _R ¼ 0 even for positive mass
functions F. However, to conclude whether there is a
bounce or not we also need to look at the evolution
equation

2R €Rþ _R2 ¼ � (84)

and see whether we can have €R> 0 in addition to _R ¼ 0.
From the first equation we see that _R ¼ 0 implies �þ
F=R ¼ 0 and with both F and R positive we get � < 0;
bounces would be possible only for negative �. On the
other hand, for _R ¼ 0 the second order equation implies
2R €R ¼ �. Since R> 0 and � < 0 we conclude that €R< 0
and thus there is no bounce classically.

We would like to proceed in a similar manner for the
quantum corrected case also. However, there the first order
equation in time contains terms with spatial derivative as
well (which cannot be integrated out in all cases).
Therefore the analysis for the possibility of a bounce
cannot necessarily be done as easily as for the classical
case, a feature clearly related to the fact that we are dealing
with inhomogeneous models. Furthermore, because of the
inhomogeneous nature of the problem a bounce also makes
the analysis difficult by the fact that after the bounce there
will be the possibility of shell crossing (unless shells with
larger values of x bounce at larger values of R).

We note that (39) and (43) imply, as for the classical
case, that _R ¼ 0 is possible in both versions of inverse triad
corrections. Whether this corresponds to a bounce is what
we want to analyze. We start by putting _R ¼ 0 in (39)
which gives

ð1� �2 � ��2ÞR0 � �0�hR ¼ F0: (85)

Similarly, the evolution Eq. (42) becomes

2R €R ¼ ��2ð1� �2 � ��2Þ: (86)

Using (85) on the right of the above equation we have

€R ¼ ��2 F
0 þ �0�hR
2RR0 : (87)

For a bounce, €R> 0 which implies that ��2ðF0 þ
�0�hRÞ=2RR0 should be greater than zero. We need to
check whether this condition can be satisfied in the non-
marginal case where, as mentioned before, there are two
possibilities � > 0 and �1< �< 0. In what follows we
will assume that R0 > 0, which locally around a potential
bounce is a valid assumption even though a collapsing shell
with x ¼ x1, say, would start expanding after it experiences
a bounce: when _Rðt; x1Þ ¼ 0 the radius of this particular
shell is not changing with time. The assumption then
essentially implies that a shell with x ¼ x2 > x1, which
may still be contracting, does not immediately catch up
with the x1 shell. With this assumption and because R and
� are positive, the condition that (87) be positive becomes

�0 <�F0=�hR (88)

as a condition on �0 which needs to be satisfied for a
bounce, implying, in particular, that for a bounce �0 has
to be negative. Whether (88) can be satisfied generically is
not clear and must be determined from a numerical analy-
sis of the equations.
For the first version of the inverse triad correction, _R ¼

0 in (43) gives

�ð1� f2 � �f2ÞR0 � �0flR ¼ fF0: (89)

The evolution Eq. (44) becomes

2R €R ¼ ��ð1� f2 � �f2Þ (90)

and using (89) on the right we get

€R ¼ �f
F0 þ �0lR
2RR0 : (91)

This should be greater than zero for a bounce. Again
because of the presence of spatial derivatives in the above
expressions it is difficult to say whether there is a bounce in
general and whether or not the singularity can be avoided.
With (72) we have a corrected equation which can be

spatially integrated, allowing an analysis similar to the
classical one. The condition _R ¼ 0 at a bounce implies

R ¼ F

1� �2E2
¼ F

1� �2 � ��2

which is positive provided E < 1=�. The second derivative

2R €Rj _R¼0 ¼ 2�4 d log�

d logR
E2 � �2ð1� �2E2Þ

can be positive under this condition only if the derivative
d log�=d logR is sufficiently positive. This is not the case
in semiclassical regimes (for geometries to the right of the
peak in Fig. 1), where bounces are thus prohibited. The
correction function is increasing to the left of the peak,
which is a regime with strong quantum geometry correc-
tions. Since we have not included all quantum corrections,
a conclusion of a bounce in this regime would be unreli-
able. The only semiclassical option for a bounce is to have
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a geometry above the peak of inverse triad corrections, but
have decreasing patch sizes � which appear as the argu-
ment of �. Thus, the number N of patches would have to
increase sufficiently rapidly. In this regime, we have �> 1
and thus E < 1 by our condition for R> 0. Such a bounce
would thus be possible only for � < 0. (As the argument
shows, without lattice refinement a bounce from inverse
triad corrections would at best be possible only in the
strong quantum regime.)

While bounces seem possible in the present situation,
they cannot be considered generic. They require a regime
where the patch number is increasing sufficiently rapidly in
such a way that the patch size decreases. Since in the
discrete quantum geometry of loop quantum gravity the
patch size has a positive lower bound, the patch number of
an orbit of fixed size cannot increase arbitrarily. Tuning
then seems required to have the right behavior just when a
shell is about to bounce.

A. Near center analysis regarding bounces

On the basis of a general analysis it seems difficult to
conclude whether quantum corrections generically resolve
the singularity in nonmarginal LTB models through boun-
ces. The simplest possibility seems to be one where the
central shell is prevented from becoming singular because
of a bounce. For almost complete collapse, we should
expect the relevant regime to be one of small R. In this
case the subsequent study of the outer shells will become
difficult due to possible shell crossings, but presumably
these outer shells will not become singular either. We
therefore now proceed to a near center analysis.

As in the marginal case of [3], we use techniques similar
to those in [35] and assume that near the center of the dust
cloud we can expand Rðt; xÞ as

Rðt; xÞ ¼ R1ðtÞxþ R2ðtÞx2 þ � � � : (92)

For the classical collapse the mass function can be ex-
panded as

FðxÞ ¼ F3x
3 þ F4x

4 þ � � � : (93)

Substituting the expansion for Rðt; xÞ and for FðxÞ in the
classical first order equation _R2R ¼ �Rþ F, we find that
the lowest order term on the left (as also the second term on
the right) of the above equation goes as x3. This suggests
that the series expansion for the energy function �ðxÞ
should be

�ðxÞ ¼ �2x
2 þ �3x

3 þ � � � : (94)

It also implies that at x ¼ 0, the center of the cloud, �ðxÞ ¼
0 and therefore for the case where �ðxÞ> 0 outside x ¼ 0,
�2 should be greater than zero. On the other hand, for
�1< �ðxÞ< 0, �2 should be less than zero. However, if
we consider our effective � as in (54) then we can have
lower order terms in �. Since the lowest order term in � is
of order x3 and that in f is of order xwe can have the lowest

order term in � behave as x�3. This would then imply that
at the center � blows up whereas classically for negative �
we have the condition �1< �< 0.
With this caveat we now consider (89) to lowest order

after using various series expansions

c1R
3
1x

3

�
1� c22R

2
1x

2 � c22��3R
2
1

x

�
R1 þ 3c2c3��3R

6
1x

2

¼ 2c2F2R1x
2: (95)

Here c1, c2, c3, and ��3 are the coefficients of the lowest
order terms in the expansion of �, f, l, and �, respectively.
Here we assume the orbital vertex numberN to be nearly
constant around the center. (This gives rise to the strongest
effect from inverse triad corrections and allows direct
comparisons with the matching results from [13].) The
lowest order term in F is F2 instead of F3 because of the
effective density correction. For x � 0 the first two terms
in the parenthesis on the left can be ignored compared to
the third term and thus the above equation implies that
_R1 ¼ 0 for

��3 ¼ 2c2F2

ð3c2c3 � c1c
2
2ÞR5

1

: (96)

It turns out that 3c2c3 � c1c
2
2 < 0 implying that _R1 can be

zero only for ��3 < 0 as in the classical case. If we now
look at (90) near the center we find that the condition for a
bounce is

��3 >
2F2

3c3R
5
1

(97)

which means that, as in the classical case, � should be
positive implying that we do not have a bounce for the
central shell.
For version two the expression for the effective density

(53) and the effective energy function (55), respectively,
imply that to lowest order the mass function can behave as
x�3 and the energy function as x�10. To look at the possi-
bility of a bounce at the center of the cloud consider (85) to
lowest order

R1 � c21R
7
1x

6 � ��10c
2
1R

7
1

x4
þ 10��10c1c4R

7
1

x4
¼ � 3F�3

x4
:

(98)

Here c4, F�3, and ��10 are the coefficients in the expan-
sion of h, F, and �, respectively. Ignoring the first two
terms for x � 0, the above equation implies

��10 ¼ � 3F�3

ð10c1c4 � c21ÞR7
1

(99)

as the condition for _R1 ¼ 0. We note that the denominator
here is positive implying that ��10 > 0 if F�3 < 0 (nega-
tive mass function near the center) and ��10 < 0 if F�3 >
0 (positive but decreasing mass function near the center).
None of these behaviors could occur classically; either
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negative total energy (F < 0) or a negative density (F0 <
0) would be required. To see if the above condition implies
a bounce we use (86) to lowest order and find

��10 >� 3F�3

10c1c4R
7
1

(100)

as the condition for getting a bounce. This means that for
F�3 < 0, ��10 has to be positive (in agreement with the
condition for _R1 ¼ 0 found above) implying that a bounce
for the central shell is possible if the above inequality is
satisfied. For F�3 > 0, ��10 has to be greater than a
negative number and thus if it is positive then a bounce
again seems possible.

VI. COLLAPSE BEHAVIOR NEAR THE CENTER

Using (92)–(94) we see that to lowest order in x (which
is x3) the classical equation _R2R ¼ �Rþ F implies

dt ¼ � dR1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ F3

R1

q : (101)

This has the solution (choosing the minus sign which
corresponds to collapse)

t ¼ �
R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ F3

R1

q
�2

þ F3

2�3=2
2

� log

�
F3 þ 2�2R1 þ 2

ffiffiffiffiffiffi
�2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 þ F3

R1

s
R1

�
(102)

for �2 > 0 and

t ¼
R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3

R1
� j�2j

q
�2

þ F3

2j�2j3=2

� arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F3

R1
� j�2j

q
ð2j�2jR1 � F3Þ

2
ffiffiffiffiffiffiffiffiffij�2j

p ð�2R1 � F3Þ
�

(103)

for �2 < 0.
We now proceed with a similar analysis for the first

version of the inverse triad correction. Near the center
the various quantities ð�; f; lÞ behave as

� ¼
�
2

�l2P

�
3=2

R3
1x

3; f ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8e1�
=2

�l2P

vuut R1x;

l ¼ 1

5

�
2

�l2P

�
3=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8e1�
=2

�l2P

vuut R4
1x

4

(104)

where the way the near center behavior for l has been
determined is described around Eq. (32). In what follows
we will denote the constants appearing in the expansion of
ð�; f; lÞ by ðc1; c2; c3Þ, respectively. Thus substituting the
series expansions in (43) we get

c1ð1� c22R
2
1x

2 � �2c
2
2R

2
1x

4ÞR4
1x

3 þ c1 _R2
1R

4
1x

5 þ 2 _R2
1R1x

2

� 2�2c2c3R
6
1x

7 ¼ 3c2F3R1x
3: (105)

We now consider three different possibilities.

A. Case I: No correction to the expansion of F and �

If we work with (105) directly then we find that the
lowest order term on the left-hand side is 2 _R2

1R1x
2 and the

lowest order term on the right-hand side goes as x3 imply-
ing _R1 ¼ 0.

B. Case II: Modification to the expansion of F and no
modification to �

However because of the presence of an extra factor of x
on the right-hand side we can start the expansion of F with
the leading term behaving as x2. In this case the lowest
order term on both the left-hand side and right-hand side
are of order x2 and we get

2 _R2
1R1x

2 ¼ 2c2F2R1x
2 (106)

which has the solution (for collapsing dust cloud)

R1ðtÞ ¼ 1� ffiffiffiffiffiffiffiffiffiffi
c2F2

p ðt� t0Þ (107)

where we choose the initial condition R1ðt ¼ t0Þ ¼ 1. We
see that the central singularity R1 ¼ 0 forms in a finite time
ts ¼ ð1þ ffiffiffiffiffiffiffiffiffiffi

c2F2

p
t0Þ=

ffiffiffiffiffiffiffiffiffiffi
c2F2

p
.

C. Case III: Modifications to the series expansion of F
and �

There is a third option which is suggested by the possi-
bility of a corrected energy function as discussed earlier. If
we consider this correction then the lowest order term in
the expansion of � goes as ��3=x

3. With this included the
matching of lowest order terms in (105) gives

� ��3c1c
2
2R

5
1 þ 2 _R2

1 þ 3��3c2c3R
5
1 ¼ 2c2F2 (108)

and thus

dt ¼ �
ffiffiffi
2

p
dR1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c2F2 þ ð��3c1c
2
2 � 3��3c2c3ÞR5

1

q (109)

with the solution
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t ¼ �
ffiffiffi
2

p
R1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð��3c1c

2
2
�3��3c2c3ÞR5

1

2c2F2

r
F1ð15 ; 12 ; 65 ;�

ð��3c1c
2
2
�3��3c2c3ÞR5

1

2c2F2
Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2c2F2 þ ð��3c1c
2
2 � 3��3c2c3ÞR5

1

q þ c0 (110)

where 2F1ða; b; c; xÞ is the hypergeometric function and
where c0 is constant of integration.

VII. HOMOGENEOUS LIMIT AND MINKOWSKI
SPACE

In the classical case, the first order equation is _R2R ¼
�ðxÞRþ FðxÞ with corresponding expression for the mass
function F0 ¼ 8
GR2R0�. This allows isotropic space-
times as special solutions. We use the ansatz Rðt; xÞ ¼
aðtÞx with the condition that at time t ¼ 0, að0Þ ¼ a0 and
assume that the density � ¼ �0 is a constant and that the
energy function goes as � ¼ �kx2 where k is a constant.
When used in the first order equation, this gives

_a 2a ¼ �kaþ 8
G�0
3

(111)

which is the Friedmann equation.
We would now like to see if we can get a Friedmann-like

solution within the LTB class with inverse triad corrections
included. This would indicate whether there can be an
effective geometry of the classical homogeneous form,
although the notion of homogeneity itself might change
on a quantum space-time. Using the ansatz for R and the
assumed form for the mass function and the energy func-
tion we find that for the first version of the inverse triad
correction (43) we get

�ð1� f2Þ
f

aþ k�f2ax2 þ � _a2ax2

f
þ 2a _a2x2

f
þ 2klax2

¼ 8
G�0x
2: (112)

Although the resulting expression is not as simple as in the
marginal case, we can see that Friedmann-like solutions
are not possible since x2 does not cancel from the first term
while a is allowed to depend only on t.

The second version of the inverse triad correction (39)
gives

ð1� �2 þ k�2x2Þaþ 3 _a2ax2

�2
� 2 _a2a2

�3

d�

dðaxÞ þ 2k�hax2

¼ 8
G�0x
2: (113)

Again the Friedmann solution is prohibited. Since the first
term, which spoils the homogeneous limit, is the same for
an analysis based on (72), there is no homogeneous limit in
that case, either. One can also see from the first term that no
other x-dependent �, which might implement quantum
corrections to the notion of homogeneity, can resolve the
nonexistence of homogeneous effective geometries subject
to our equations.

The homogeneous limit, as a special case, would also
include Minkowski space as the vacuum solution.
Classically the first order equation for F ¼ 0 and � ¼ 0
implies that R � RðxÞ and we recover the Minkowski
space-time. However from (43) we see that after choosing
the mass function and the energy function equal to zero the
equation becomes

�ð1� f2ÞR0 þ � _R2R0 þ 2 _R _R0R ¼ 0 (114)

which, due to the presence of the first term, implies that R
will be dependent on both ðt; xÞ. Even though the equation
has the correct classical limit, it is not straightforward to
see how the time dependence of R should disappear in the
Minkowski limit.
For the second version (39) gives

ð1� �2ÞR0 þ _R2R0

�2
þ 2R _R _R0

�2
� 2R _R2R0

�3

d�

dR
¼ 0 (115)

which again implies that even though in the classical limit
we do have a Minkowski solution, there is still time de-
pendence in R in corrected solutions.
Strong corrections are suggested at small values of the

argument of �, which, given that R determines that value,
may seem unacceptable because the center in Minkowski
space is not physically distinguished. However, the radius
R and thus the center is directly relevant for the size of
corrections only if there is no lattice refinement in which
case the only parameter which � depends on is R. The
primary argument of � is, however, the size � of discrete
patches rather than R2 of whole spherical orbits. With a
nontrivial refinement scheme, �ðR2=N Þ will also depend
on the number of vertices per orbit, which for a good
semiclassical state must provide a more uniform distribu-
tion of quantum corrections not distinguishing a center:N
must be small when R2 is small. If discrete patch sizes on
all orbits are nearly similar, quantum corrections are uni-
form and do not distinguish a center. A detailed discussion
would go beyond the scope of this paper, but one can
already see the crucial role played by lattice refinement
for the correct semiclassical limit.

VIII. MATCHING OF THE LOOP CORRECTED
LTB INTERIOR WITH GENERALIZED VAIDYA

EXTERIOR

To verify the corrected mass formulas from a different
perspective, it is instructive to match our corrected models
of dust collapse to radiative generalized Vaidya solutions.
The interior metric for an inverse triad corrected nonmar-
ginal LTB model can be written in the form

MARTIN BOJOWALD, JUAN D. REYES, AND RAKESH TIBREWALA PHYSICAL REVIEW D 80, 084002 (2009)

084002-16



ds2 ¼ �dt2 þ ðR0Þ2
ð1þ �Þq2 dx

2 þ R2d�2 (116)

where q takes the appropriate form depending on whether
the correction function corresponds to first version or the
second version. Following [13], we match this interior
solution with the generalized Vaidya metric

ds2 ¼ �
�
1� 2M



�
dv2 þ 2dvdþ 2d�2 (117)

where M is allowed to be a function of v as well as .
Let the boundary of the dust cloud be at x ¼ xb. Here,

the exterior coordinates will then be functions v � vbðtÞ,
 � bðtÞ of the interior coordinate t such that

dv ¼ _vbdt; d ¼ _bdt: (118)

With this, the metric induced from the exterior on the
matching surface becomes

ds2 ¼ �
��

1� 2M



�
_v2
b � 2 _vb _b

�
dt2 þ 2

bd�
2: (119)

Matching the first fundamental form at the boundary
(where dx ¼ 0 in the interior coordinates) we get

� dt2 þ R2
bd�

2 ¼ �
��
1� 2M

b

�
_v2
b � 2 _vb _b

�
dt2

þ 2
bd�

2 (120)

where Rb is the value of the area radius at the boundary.
Equating the coefficients of dt2 and d�2, respectively, on
the two sides implies

b ¼ Rb

�
1� 2M

b

�
_v2
b � 2 _vb _b ¼ 1: (121)

We now match the second fundamental forms (extrinsic
curvature) at the boundary. For this we need the normal to
the boundary in the interior as well as the exterior coor-
dinates. In the interior we have dx ¼ 0 which implies that
the normal ni� ¼ ð0; a; 0; 0Þ where a is a constant fixed by

the normalization g
�	
i ni�n

i
	 ¼ 1 (the label i standing for

‘‘interior’’). This gives a ¼ R0
b=qb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
and the normal

in the interior is ni� ¼ ð0; R0
b=qb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
; 0; 0Þ. Evaluating

the �� component of extrinsic curvature Ki
�	 ¼ ni�;	 we

find

Ki
�� ¼ qbRb

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
: (122)

From (118), at the boundary, we have dv� _vbdt ¼ 0,

dt ¼ d
_b
, and thus

� _bdvþ _vbd ¼ 0: (123)

In terms of the Vaidya coordinates for the exterior, the
normal to the boundary is given by ne� ¼ ð�c _b; c _vb; 0; 0Þ
where c is a constant fixed again by the requirement
g�	
e ne�n

e
	 ¼ 1. Using the inverse of the metric in the ex-

terior we find that c ¼ 1. The �� component of the extrin-
sic curvature in the exterior is

Ke
�� ¼ �b _b þ b

�
1� 2M

b

�
_vb: (124)

Equating (122) and (124) and using (121) to simplify the
resulting expression we obtain

qb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p ¼ � _Rb þ
�
1� 2M

Rb

�
_vb (125)

implying

_v b ¼ qb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p þ _Rb

1� 2M
Rb

: (126)

Using this and its square, in the second line of (121) we
have

2M ¼ ð1� q2bð1þ �Þ þ _R2
bÞRb: (127)

At this stage, we can note that the expression for the Vadiya
mass resulting from matching is the same as the one
obtained for the effective Misner-Sharp mass in (50) and
(52).
The exterior region can contain trapped surfaces when

the condition 2M ¼  is satisfied. Using the first expres-
sion in (121) along with (127) this implies that the bound-
ary will be trapped when ð1� q2bð1þ �Þ þ _R2

bÞRb ¼ Rb,

or

_R b ¼ �qb
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ �

p
(128)

where the negative sign has been chosen since we have a
collapsing scenario. This formula shows that the horizon
condition is corrected by qb simply by multiplying 1þ �2

as it is suggested by the effective metric (116).

IX. CONCLUSIONS

We have extended the treatment of [3] to nonmarginal
models, where additional corrections from spin connection
terms arise. With these additional terms the original deri-
vation appears more arbitrary, which led us to provide an
independent derivation of equations corrected by the treat-
ment of inverse triads in loop quantum gravity. In this new
derivation, anomaly freedom is implemented first and LTB
conditions are imposed afterwards to select a special class
of solutions. The structure of the resulting equations is very
similar in both derivations, showing the robustness. By the
alternative method, which is much less arbitrary than the
one extended from [3] to nonmarginal models, we thus
show that the more phenomenological treatment of correc-
tions used in [3] is reliable. In details, however, the result-
ing equations do differ which is always possible due to
quantization ambiguities. The effects analyzed in this pa-
per do not appear to depend sensitively on the method, but
further analysis may well provide restrictions on accept-
able equations, and thus on quantization ambiguities.
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Our analysis in this paper has been done for inverse triad
corrections, while holonomy corrections, which to some
degree were treated in the marginal case of [3], are tech-
nically more involved. Already for inverse triad correc-
tions, the extension provided here is an interesting step in
the analysis of inhomogeneous collapse and singularities.
Comparing with homogeneous models and matching re-
sults of [13] would suggest easy resolutions of singularities
by bounces. Marginal models were not entirely conclusive
in this regard since their homogeneous analog is that of a
spatially flat Friedmann-Robertson-Walker model which
under inverse triad corrections gives rise to bounces only
with a negative matter potential [36]. In the collapse analy-
sis, however, we have used positivity conditions for the
mass function which indicate that bounces in marginal
LTB models with inverse triad corrections should not be
expected. For nonmarginal models, on the other hand,
homogeneous special solutions with positive spatial curva-
ture exist, which do show bounces with inverse triad cor-
rections and positive matter terms [12]. One would thus
expect nonmarginal models to result in bounces much
more easily than marginal ones do.

This, however, is not the case: we mostly confirm the
results found in marginal models where (i) bounces are not
obvious and (ii) a homogeneous limit of quantum corrected
solutions may not even exist. As for the first property,
bounces seem somewhat easier to achieve than in marginal
models, but in contrast to the expectation turn out to be

hard to realize generically. Moreover, a complete analysis
would have to involve an investigation of shell-crossing
singularities which can be involved even classically. (See
[3] for more discussions on this in marginal corrected
models.) As for property (ii) about the homogeneous limit,
one can evade ruling out a homogeneous limit at the
dynamical level only if one assumes a quantum notion of
symmetry which would imply effective isotropic space-
time metrics different from classical Friedmann-
Robertson-Walker models. This may well be expected, as
indeed the deformed constraint algebra (60) shows that
there is a corrected quantum space-time structure. It would
be interesting to see how this influences space-time
symmetries.
Finally, several issues discussed here involved the role of

lattice refinement for the semiclassical limit. As treatable
models between homogeneous ones and the full theory,
LTB models turn out to be quite instructive. This should
also be expected for an implementation at the state (rather
than phenomenological) level which was started in [3] for
marginal models but which we have not attempted here for
nonmarginal models.

ACKNOWLEDGMENTS

We thank Tomohiro Harada for discussions. M. B. and
J. D. R. were supported in part by NSF Grant
No. PHY0748336.

[1] T. Thiemann, Classical Quantum Gravity 15, 839 (1998).
[2] M. Bojowald, G. Hossain, M. Kagan, and S.

Shankaranarayanan, Phys. Rev. D 78, 063547 (2008).
[3] M. Bojowald, T. Harada, and R. Tibrewala, Phys. Rev. D

78, 064057 (2008).
[4] M. Bojowald and J. D. Reyes, Classical Quantum Gravity

26, 035018 (2009).
[5] M. Bojowald, Phys. Rev. Lett. 95, 061301 (2005).
[6] M. Bojowald, Phys. Rev. Lett. 86, 5227 (2001).
[7] M. Bojowald, Classical Quantum Gravity 19, 2717

(2002).
[8] M. Bojowald, Classical Quantum Gravity 20, 2595 (2003).
[9] M. Bojowald, Living Rev. Relativity 11, 4 (2008), http://

www.livingreviews.org/lrr-2008-4.
[10] G. Date and G.M. Hossain, Phys. Rev. Lett. 94, 011302

(2005).
[11] A. Ashtekar, T. Pawlowski, and P. Singh, Phys. Rev. D 73,

124038 (2006).
[12] P. Singh and A. Toporensky, Phys. Rev. D 69, 104008

(2004).
[13] M. Bojowald, R. Goswami, R. Maartens, and P. Singh,

Phys. Rev. Lett. 95, 091302 (2005).
[14] Other quantum effects not specific to the loop quantization

can also be useful in avoiding collapse singularities; see

e.g. [37].
[15] G. Lemaitre, Ann. Soc. Sci. Bruxelles, Ser. 1 53, 51

(1933).
[16] R. C. Tolman, Proceedings of the National Academy of

Sciences of India, Section A (Physical Sciences) 20, 169
(1934).

[17] H. Bondi, Mon. Not. R. Astron. Soc. 107, 410 (1947).
[18] J. F. Barbero G., Phys. Rev. D 51, 5507 (1995).
[19] G. Immirzi, Classical Quantum Gravity 14, L177 (1997).
[20] M. Bojowald and H.A. Kastrup, Classical Quantum

Gravity 17, 3009 (2000).
[21] M. Bojowald, Classical Quantum Gravity 21, 3733 (2004).
[22] M. Bojowald and R. Swiderski, Classical Quantum

Gravity 23, 2129 (2006).
[23] C. Vaz, L. Witten, and T. P. Singh, Phys. Rev. D 63,

104020 (2001).
[24] C. Kiefer, J. Müller-Hill, and C. Vaz, Phys. Rev. D 73,

044025 (2006).
[25] C. Rovelli and L. Smolin, Nucl. Phys. B331, 80 (1990).
[26] T. Thiemann, Classical Quantum Gravity 15, 1281 (1998).
[27] M. Bojowald, Phys. Rev. D 64, 084018 (2001).
[28] M. Bojowald, Gen. Relativ. Gravit. 38, 1771 (2006).
[29] M. Bojowald, D. Cartin, and G. Khanna, Phys. Rev. D 76,

064018 (2007).

MARTIN BOJOWALD, JUAN D. REYES, AND RAKESH TIBREWALA PHYSICAL REVIEW D 80, 084002 (2009)

084002-18



[30] M. Bojowald, Classical Quantum Gravity 26, 075020
(2009).

[31] M. Bojowald, Classical Quantum Gravity 19, 5113 (2002).
[32] M. Bojowald et al., Phys. Rev. D 70, 043530 (2004).
[33] J. D. Brown and K.V. Kuchař, Phys. Rev. D 51, 5600
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