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We lay the foundations for the construction of analytic expressions for Fourier-domain gravitational

waveforms produced by eccentric, inspiraling compact binaries in a post-circular or small-eccentricity

approximation. The time-dependent, ‘‘plus’’ and ‘‘cross’’ polarizations are expanded in Bessel functions,

which are then self-consistently reexpanded in a power series about zero initial eccentricity to eighth

order. The stationary-phase approximation is then employed to obtain explicit analytic expressions for the

Fourier transform of the post-circular expanded, time-domain signal. We exemplify this framework by

considering Newtonian-accurate waveforms, which in the post-circular scheme give rise to higher

harmonics of the orbital phase and to amplitude corrections of the Fourier-domain waveform. Such

higher harmonics lead to an effective increase in the inspiral mass reach of a detector as a function of the

binary’s eccentricity e0 at the time when the binary enters the detector sensitivity band. Using the largest

initial eccentricity allowed by our approximations (e0 < 0:4), the mass reach is found to be enhanced up to

factors of approximately 5 relative to that of circular binaries for Advanced LIGO, LISA, and the

proposed Einstein Telescope at a signal-to-noise ratio of ten. A post-Newtonian generalization of the post-

circular scheme is also discussed, which holds the promise to provide ‘‘ready-to-use’’ Fourier-domain

waveforms for data analysis of eccentric inspirals.
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I. INTRODUCTION

The detection and characterization of gravitational
waves (GWs) hold the promise to reveal previously un-
attainable, yet very valuable astrophysical information (see
[1] for a recent review). Ground-based detectors, such as
the Laser Interferometer Gravitational Wave Observatory
(LIGO) [2], VIRGO [3], GEO [4], and TAMA [5], have
started acquiring data at or near design sensitivity. The
space-borne Laser Interferometer Space Antenna (LISA)
[6] may be launched within the next decade, while future
Earth-based third-generation detectors, such as the pro-
posed Einstein Telescope (ET) [7], are currently being
planned. These detectors are expected to observe several
different astrophysical GW sources, one of the most prom-
ising of which are compact binary inspirals.

Black hole (BH) binaries are considered one of the main
targets for GW detection and their evolution can be
roughly divided into an inspiral phase and a merger plus
ringdown phase. Peters andMathews showed that eccentric
inspirals circularize via GWemission [8,9], and thus, it was
traditionally thought that eccentricity would not play a

major role in GW detection and analysis. One can show,

for example, that to leading order e=e0 � ðf=f0Þ�19=18

[10], which implies that if a binary enters the sensitivity
band of a ground-based interferometer at 20 Hz with an
initial eccentricity of 0.1, its eccentricity is reduced to 0.01
before the system reaches 200 Hz. Circularization via GW
emission, however, is not absolute, since systems that enter
a detector’s sensitivity band with large enough eccentricity
can retain some residual eccentricity before they merge or
exit the band. For example, if a binary enters the sensitivity
band at 20 Hz with an initial eccentricity of 0.4, its eccen-
tricity remains significant while in band, and is reduced to
0.01 only by the time the frequency reaches 103 Hz.
Astrophysical scenarios have been proposed that predict

that binary inspiral signals could enter the sensitivity band
of GW detectors with non-negligible eccentricity. Earth-
based detectors are expected to be sensitive to stellar mass
BH/BH binaries, which might fail to completely circular-
ize before merger, leading to potentially large eccentric-
ities in the detector band [11,12]. Wen [11] studied the
evolution of the inner binary of triple BH systems in
globular clusters. She found that approximately 30% of
these binaries could merge via the Kozai mechanism with
eccentricities � 0:1 by the time they enter the LIGO band
at frequency ’ 10 Hz. O’Leary, Kocsis, and Loeb [12]
studied the density cusp of stellar mass BHs that forms
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around supermassive BHs in galactic nuclei because of
mass segregation. They found that, in such dense environ-
ments, hyperbolic BH-BH encounters can lead to the for-
mation of bound systems, and that most of these binaries
( ’ 90%) would have eccentricity � 0:9 when they enter
the LIGO band. Several classes of compact binary sources
for LISA are also predicted to be eccentric when they enter
the detector’s band. In order to improve readability of this
paper, we have relegated a brief review of these astrophys-
ical scenarios to Appendix A.

For binaries with non-negligible eccentricities, a dedi-
cated search using matched-filtering techniques and eccen-
tric orbit templates would be necessary for detection and
extraction of astrophysical information. Until now, how-
ever, closed-form analytic expressions for such templates
have been lacking, with most studies concentrating on the
circular case. The modeling of eccentric orbits is much
more difficult, since it requires knowledge not only of the
orbital phase and frequency, but also of frequencies asso-
ciated with the higher harmonics of the eccentric motion,
as well as of frequencies associated with post-Newtonian
(PN) precession effects, such as pericenter precession.

Peters and Mathews’ seminal work [13], and Peters’
follow-up calculation of the angular momentum flux and
evolution of orbital elements at Newtonian order [9], laid
the foundations for the calculation of energy and angular
momentum fluxes at higher PN orders [14–21], the latter
mostly focusing on circular orbits. Analytic GW templates
for circular binaries are now available at 3.5PN order in the
phase [22–24] and 3PN order in the amplitude [25–28], and
their associated Fourier transforms have been computed in
the stationary-phase approximation. Recently Ref. [29]
provided a method to construct high accuracy templates
for elliptical binaries in the time domain by explicitly
computing the post-adiabatic short period contributions
at 2.5PN order, to be added to the post-Newtonian expres-
sions for the GW polarizations. A 3.5PN generalization of
these templates was discussed in Ref. [30].

Relatively few investigations of data analysis issues for
eccentric inspirals have been performed. Martel and
Poisson [31] quantified the accuracy towhich circular-orbit
templates could capture signals from eccentric binaries in
the LIGO band, finding that the signal-to-noise ratio (SNR)
loss is significant for eccentricities above 0.1. Seto [32]
studied parameter estimation in the context of eccentric
galactic neutron star binaries, and Benacquista [33,34]
carried out the first statistical investigation of the harmonic
structure of eccentric binary waveforms and their relevance
for LISA GW detection. The analysis by Martel and
Poisson was recently revisited [35,36], emphasizing the
need for eccentric binary templates. All these investiga-
tions, however, concentrated on either time-domain wave-
forms or numerical Fourier transforms of such waveforms,
which might not be desirable for data analysis purposes.

The aim of this paper is to lay the foundations of a post-
circular approximation that allows for the construction of

analytic, ‘‘ready-to-use’’ Fourier-domain waveforms for
eccentric binary inspirals. This approximation consists of
expanding time-domain gravitational waveforms in the
eccentricity parameter e0, which is defined to be the eccen-
tricity when the GW signal enters the detector sensitivity
band. The resulting expression is then Fourier transformed
in the stationary-phase approximation. This scheme is an
extension of the program initiated by Krolak, Kokkotas and
Schäfer several years ago [37] and it is intended to supple-
ment the PN approximation, thus yielding a double or
bivariate expansion in both the velocity of the binary
members and the initial eccentricity. Although the PN
scheme does not require the post-circular approximation
for the construction of numerical Fourier-domain tem-
plates, closed-form analytic expressions for these tem-
plates can only be obtained through the incorporation of
the post-circular approximation.
The usefulness of ready-to-use, analytic, frequency-

domain waveforms is twofold. Analytic expressions allow
us to study the structure of the eccentricity-induced cor-
rections to the Fourier transform of the signal; in turn, this
structure allows us to explain features in the SNR that
would otherwise be hidden by numerics. Second, analytic
expressions allow for fast implementations of dedicated
matched-filtering searches in a data analysis algorithm and
allow us to sidestep fast Fourier transforms, which would
drain numerical resources from Fourier-domain data analy-
sis pipelines.
We exemplify the post-circular approximation by con-

sidering Newtonian expressions for the two GW polariza-
tion states of elliptic binaries. The cosines and sines of the
GW phase are expanded in a truncated Bessel series, whose
argument is proportional to the eccentricity parameter. We
find that the first 9 terms in the sum suffice to approximate
the phase to better than 0.1% for eccentricities smaller than
0.4 (see Sec. II below). The Bessel series is then reex-
panded to eighth order in e � 1, which we find sufficient
to capture the essential features of orbital dynamics for
such small eccentricities.
The structure of the time-domain gravitational wave-

form for eccentric inspirals takes the form

hþ;� � F2=3
X10
‘¼1

½Cð‘Þ
þ;� cosð‘lÞ þ Sð‘Þþ;� sinð‘lÞ�; (1.1)

where F is the orbital frequency, l is the mean anomaly and
Cþ;� and Sþ;� are eighth-order power series in the eccen-

tricity [see Eqs. (3.7), (3.8), (3.9), and (3.10) and Eqs. (B1)–
(B36)]. The eccentricity is itself a function of the orbital
frequency, which we invert in the limit e � 1 and insert
into the time-domain waveforms to obtain explicit expres-
sions whose only independent variables are the orbital
frequency and the mean anomaly. The prescription de-
scribed above to compute time-domain waveforms is a
completion of the analytic work of Moreno-Garrido,
Buitrago and Mediavilla [38,39], improved through the
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resummation methods of Pierro et al. [40,41] and the more
general waveform expressions of Martel and Poisson [31].

Once closed-form, analytic expressions for the time-
domain waveforms are obtained, we compute their
Fourier transform in the stationary-phase approximation
(SPA). This approximation derives from the asymptotic
method of integration by steepest descent, which allows
one to systematically include higher harmonics in the
frequency-domain waveforms. This higher-harmonic
structure is found to fit perfectly in the formalism of
Refs. [42,43], which was developed to account for higher
harmonics due to PN amplitude corrections in circular-
orbit binary waveforms.

The Fourier transform of the response function is then
found to take the form

~h� ~Af�7=6
X10
‘¼1

�
‘

2

�
2=3

�‘e
�ic ‘ ; (1.2)

where ~A is an overall amplitude that depends on the
system parameters (such as the masses of the binary mem-
bers), while f is the dominant (quadrupole) GW frequency.
The amplitudes �‘ and the phases c ‘ are small-
eccentricity expansions [see Eqs. (4.28) and (C1)]. The
�‘’s depend on the antenna pattern functions Fþ;� [44],

the initial eccentricity e0 and the GW frequency. The
expansion of the phase reads

c ‘ �� 3

128
f�5=3

�
‘

2

�
8=3

�
1� 2355

1462
e20

�
f

f0

��19=9 þ � � �
�
;

(1.3)

where f0 is the frequency at which the eccentricity equals
e0, which we choose to coincide with the low-frequency
cutoff of the detector sensitivity band. This is in agreement
with the Newtonian limit of Eq. (A9) of [37] up to Oðe20Þ.

One of the benefits of obtaining closed-form, analytic
expressions for the Fourier transform of the waveforms is
that its harmonic structure and its eccentricity-induced
amplitude corrections become explicit. We find that these
higher-harmonic eccentricity corrections increase the SNR
for large total masses, in analogy to what was found for
PN amplitude-corrected circular-orbit waveforms in
[42,43,45]. Figure 1 compares the optimal SNR of equal-
mass binaries with eccentricity e0 ¼ 0 and e0 ¼ 0:3 at the
initial frequency of the sensitivity band of Advanced LIGO
(AdvLIGO), ET and LISA (20, 1 or 10, and 10�4 Hz,
respectively). The source is located at distances of
100 Mpc for AdvLIGO and ET, and 3 Gpc for LISA. By
‘‘optimal’’ we mean the SNR measured by an observer
located in a direction perpendicular to the orbital plane
(more precisely, we set � ¼ � ¼ �S ¼ �s ¼ c S ¼ 0 in
the notation of Sec. III). This SNR increase is rather
generic, irrespective of the location of the source in the sky.

The inclusion of eccentricity in the waveforms leads to
an increase in the mass reach as compared to circular

waveforms. This is shown in Fig. 2, where we plot the
mass reach enhancement Mðe0Þ=M0, where M0 ¼ Mð0Þ.
The mass reach Mðe0Þ is here defined as the mass yielding
an optimal SNR of ten, roughly corresponding to the
largest mass visible to the detector. The mass reach usually
increases with e0, up to factors of order 5 for binaries with
e0 ’ 0:4. This result should still hold when PN corrections
are included, since we expect these corrections to increase
the mass reach. We conclude then that LISA could poten-
tially observe moderately eccentric binaries with total
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FIG. 1 (color online). SNR for an equal-mass binary at optimal
orientation as a function of total mass for circular binaries and
elliptic binaries with initial eccentricity of 0.3. The assumed low-
frequency cutoffs for AdvLIGO, ET and LISA are 20, either 1 or
10, and 10�4 Hz, respectively. The sources are at 100 Mpc for
AdvLIGO and ET and at 3 Gpc for LISA. The initial eccentricity
corresponds to that at the low-frequency cutoff.
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FIG. 2. Normalized mass reach enhancement, as a function of
initial eccentricity. The normalization is given by the value of the
mass reach for circular binaries, namely, M0 ¼ 219M�, M0 ¼
440M�ð4397M�Þ and M0 ¼ 4:239� 107M� for AdvLIGO, ET
and LISA, respectively.
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masses of the order of 108M�. These results are in agree-
ment with preliminary results from numerical relativity
simulations of merging eccentric binaries [46] (see also
[47]).

An increase in mass reach in turn implies that, for a
system of fixed total mass, the distance to which the system
can be observed also increases with eccentricity. For ex-
ample, intermediate-mass BH (IMBH) mergers of total
mass ’ 200M� with orbital eccentricity of e0 ’ 0:3 would
be observable by AdvLIGO up to approximately 1.26 Gpc
(z ’ 0:26) with an SNR of 10, while supermassive black
holes (SMBHs) of total mass ’ 4� 107M� and initial
eccentricity e0 ’ 0:3 would be visible by LISA up to
approximately 100 Gpc (z ’ 10) with an SNR of 100.
Such an increase in distance corresponds to an increase
in accessible volume of up to a factor of approximately 100
for systems with e0 ’ 0:4.

The post-circular approximation also allows us to deter-
mine how many harmonics are needed to reproduce the
Fourier transform of the eccentric signal to some accuracy.
For a system with e0 ¼ 0:01, we find that keeping up to the
second or third harmonic suffices to reproduce the SNR of
a signal that includes ten harmonics to Oð1Þ and Oð10�1Þ,
respectively, in the entire mass range. For a system with
e0 ¼ 0:1, however, we find that a comparable accuracy in
SNR requires including up to the fourth and fifth harmonic,
respectively. Such an analysis allows us to conclude that
the inclusion of up to the fourth harmonic suffices for SNR
calculations when e0 	 0:1, while for systems with 0:1<
e0 	 0:3, one must really include eight harmonics or more.

Although the waveforms we consider in our post-
circular scheme are not accurate enough for a rigorous
data analysis study, as we have ignored PN effects, they
do provide insight as to the effect of eccentricity in detec-
tion and parameter estimation. As for detection, the SNRs
presented here may well be smaller than SNRs for PN-
corrected eccentric binary inspirals, since the addition of
harmonics to the amplitudes generally increases the power
in the signal. As for parameter estimation, the eccentricity
corrections to the phase of the Fourier transform have a
different frequency dependence relative to PN corrections
to the phase in the circular case. This suggests that the
initial eccentricity might be weakly correlated to other
intrinsic parameters. A more detailed study is necessary
to verify this conjecture, and it will be a topic for future
work. In Sec. VI we outline a possible extension of the
formalism to higher PN orders. When this extension is
achieved, ready-to-use Fourier-domain gravitational wave-
forms could be employed in GW searches and parameter
estimation.

The remainder of this paper deals with the details of the
calculations and results presented above. It is organized as
follows. Section II presents the basics of the Kepler prob-
lem and establishes the notation used in this paper.
Section III discusses how to model GWs from eccentric

binary inspirals in the time domain, while Sec. IV de-
scribes its frequency-domain representation. Section V
presents the SNR calculation, while Sec. VI discusses PN
corrections. Section VII concludes and points to future
research.
Technical details are discussed in the appendixes.

Appendix A reviews astrophysical scenarios that could
produce eccentric binaries in the LISA band.
Appendixes B and C list some lengthy coefficients appear-
ing in our analytic calculations. Appendix D discusses the
effect of possible eccentricity-induced modifications to the
innermost-stable circular orbit (ISCO), concluding that
they are negligible in our context. Finally, Appendix E
shows how to compute the orbital frequency at some given
time before merger for eccentric binaries.
In this work we follow the conventions of Misner,

Thorne and Wheeler [48]. Unless otherwise specified, we
use geometrical units, where G ¼ c ¼ 1, G stands for
Newton’s gravitational constant and c for the speed of
light.

II. THE BASICS OF THE KEPLER PROBLEM

In this section, we review some of the basic concepts
related to the Kepler problem in Newtonian mechanics, as
they are relevant to this paper. We present here only a
minimal description of this problem and refer the reader
to [49] for a more detailed account. We also establish the
notation we shall employ in the remainder of this paper.
Consider a system of two point particles in an eccentric

orbit. In the Newtonian Keplerian representation, the
Newtonian orbital trajectories are given by

r ¼ að1� e cosuÞ; (2.1)

Nðt� t0Þ ¼ l ¼ u� e sinu; (2.2)

���0 ¼ v 
 2 arctan

��
1þ e

1� e

�
1=2

tan
u

2

�
; (2.3)

where the notation, following [50], is as follows: � is the
orbital phase; ~r is the relative separation vector between the
compact objects, namely, ~r ¼ rðcos�; sin�; 0Þ; a is the
semimajor axis of the ellipse; e is the eccentricity parame-
ter; u is the eccentric anomaly; l is the mean anomaly; v is
the true anomaly; andN is the mean motion. The quantities
t0 and�0 are some initial time and initial orbital phase that
arise as constants of integration. Since the energy and
angular momentum fluxes depend on a and e, and together
cause the latter to vary with time, it can be shown that a and
e coevolve according to [8,9]

aðeÞ ¼
�

M

4�2F2

�
1=3 ¼ c0�ðeÞ; (2.4)

where M ¼ m1 þm2 is the total mass. The quantity F is
the Keplerian mean orbital frequency, which can be asso-
ciated with an instantaneous mean orbital frequency whose
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evolution is discuss further in Sec. IVB. The quantity c0 is
a constant defined by Fðe0Þ ¼ F0 and the function �ðeÞ is
given by

�ðeÞ ¼ e12=19

ð1� e2Þ
�
1þ 121

304
e2
�
870=2299

: (2.5)

The quantity e0 is henceforth always defined to be the
eccentricity when the GW signal enters the detector sensi-
tivity band. For AdvLIGO, ET and LISA, this corresponds
to the initial eccentricity at 20, 1 or 10, and 10�4 Hz,
respectively.

Gravitational waveforms for binary inspirals depend on
trigonometric functions of the orbital phase, but for eccen-
tric inspirals this phase is a complicated function of the
orbital frequency. In the circular-orbit limit (e ! 0), the
orbital phase satisfies � ¼ 2�FðtÞðt� t0Þ, where F is the
Keplerian orbital frequency (one-half the dominant, quad-
rupole GW frequency). For eccentric inspirals, however,
the phase is related to the arctangent of the eccentric
anomaly, which is then related in a transcendental way to
the mean motion, and thus, to the frequency N ¼ 2�F. We
must then find a way to express the orbital phase as a
function of the mean anomaly l.

Let us reexpress the cosine and sine of the orbital phase
in terms of the mean anomaly, through the well-known
Keplerian relations [40]

r

a
cos� ¼ cosu� e; (2.6)

r

a
sin� ¼ ð1� e2Þ1=2 sinu: (2.7)

Equation (2.1) allows us to rewrite these relations as

cos� ¼ cosu� e

1� e cosu
; (2.8)

sin� ¼ ð1� e2Þ1=2 sinu

1� e cosu
: (2.9)

Moreover, from the Fourier analysis of the Kepler problem,
one can expand trigonometric functions of the eccentric
anomaly as series of Bessel functions of the first kind, Jk.
One then finds that [40]

sinu

1� e cosu
¼ 2

X1
k¼1

J0kðkeÞ sinkl; (2.10)

cosu

1� e cosu
¼ 2

e

X1
k¼1

JkðkeÞ coskl; (2.11)

where primes stand for derivatives with respect to the
argument, and

JkðyÞ 

X1
m¼0

ð�1Þm
m!�ðmþ kþ 1Þ

�
y

2

�
2mþk

; (2.12)

with � the Gamma function (see e.g. [51]).

With these relations, we can now express the cosine and
sine of the orbital phase as a function of the mean anomaly.
Inserting Eqs. (2.10) and (2.11) into Eqs. (2.8) and (2.9) we
find that

cos� ¼ �eþ 2

e
ð1� e2ÞX1

k¼1

JkðkeÞ coskl; (2.13)

sin� ¼ ð1� e2Þ1=2 X1
k¼1

½Jk�1ðkeÞ � Jkþ1ðkeÞ� sinkl:

(2.14)

Equations (2.13) and (2.14) agree with the corresponding
expressions in the appendix of Ref. [38]. These relations
allow us to express the gravitational waveforms for eccen-
tric inspirals as explicit functions of the orbital frequency.
The number of terms we should keep in the Bessel

function expansion depends on the desired accuracy rela-
tive to the exact solution, as well as on the magnitude of the
eccentricity. Figure 3 plots the numerical solution of
Eq. (2.8) for the sine of the orbital phase with an eccen-
tricity of 0.99, together with the Bessel expansion of the
solution given in Eq. (2.14), where we keep 3 (dotted line),
7 (dashed line), 10 (dotted-dashed line) and 15 (dotted-
dotted-dashed line) terms in the sum. Observe that even for
such large eccentricities we only need fewer than 10 terms
to reproduce the exact solution quite accurately.
The number of terms needed to reproduce the exact

solution does depend on the eccentricity one is trying to
model. As an example, consider solving Eq. (2.2) for the
sine of the eccentric anomaly both numerically and with
Bessel functions. The latter solution is simply given by
[40]

0 1 2 3 4 5 6

l

-1

0

1 Exact Solution
N=3
N=7
N=10
N=15

FIG. 3 (color online). Plot of the sine of the phase calculated
numerically (solid black line) and expanded in Bessel functions
for a system with e0 ¼ 0:99, following Eq. (2.14), and keeping 3
(dotted red line), 7 (dashed green line), 10 (dotted-dashed blue
line) and 15 (dotted-dotted-dashed orange line) terms.
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sinu ¼ 2

e

X1
k¼1

JkðkeÞ sinklk
: (2.15)

In Fig. 4 we plot the absolute value of the fractional relative
difference between the numerical solution and the Bessel-
expanded solution, keeping 9 terms in the sum. We plot the
absolute value of the difference, normalized by the numeri-
cal solution for different eccentricities: e ¼ 0:1 in dotted
red, e ¼ 0:2 in dashed blue, and e ¼ 0:4 in solid black.
Observe that the error due to neglecting terms beyond the
9th in the sum amount to less than 0.1% in the worst case
(corresponding to the highest eccentricity e ¼ 0:4). For
cases with smaller eccentricity, such as e ¼ 0:2 and e ¼
0:1, the relative fractional error is always much smaller
(10�5 and 10�8 for the examples above, respectively).

The small-eccentricity assumption could be removed by
working directly with the full series in Eqs. (2.13) and
(2.14), or by resumming it. In fact, Pierro et al. [40] have
shown how to sum the infinite Bessel series to measure the
so-called ‘‘total harmonic distortion,’’ which is loosely
related to Apostolatos’ fitting factor [52]. We shall not,
however, work with such resummations here, since we
shall be interested in binaries with eccentricities e < 0:4.
In view of this, we shall truncate all expressions at order 10
in the Bessel expansions.

III. POST-CIRCULAR EXPANSION OF TIME-
DOMAIN ECCENTRIC INSPIRALWAVEFORMS

In this section we describe how to model gravitational
radiation from eccentric inspiraling binaries in the time
domain. We shall employ the quadrupole formalism, simi-

lar to that presented by Moreno-Garrido, Buitrago and
Mediavilla [38,39], but improved through the techniques
introduced by Pierro et al. [40,41].
The starting point is the expression for plus- and cross-

polarized gravitational waveforms hþ and h�, respec-
tively. We place the GW detector at luminosity distance
DL from the source, in a direction characterized by the
polar angles � and �, defined as those subtended by the
local Cartesian reference frame of the source and the line
of sight vector [31]. FollowingMartel and Poisson [31], we
rewrite the expressions of Wahlquist [53] as follows:

hþ ¼ � �

pDL

��
2 cosð2�� 2�Þ þ 5e

2
cosð�� 2�Þ

þ e

2
cosð3�� 2�Þ þ e2 cosð2�Þ

�
ð1þ cos2�Þ

þ ½e cos�þ e2�sin2�
�
;

h� ¼ � �

pDL

½4 sinð2�� 2�Þ þ 5e sinð�� 2�Þ
þ e sinð3�� 2�Þ � 2e2 sinð2�Þ� cos�;

(3.1)

where � ¼ m1m2=M is the reduced mass, DL is the lumi-
nosity distance, � is the same orbital phase presented in
Eq. (2.3) and p is the semilatus rectum, which is related to
the orbital frequency via Kepler’s second law

1

F
¼ 2�M�1=2

�
p

1� e2

�
3=2

: (3.2)

GWs are clearly dominated, at least for small eccentric-
ities, by components oscillating at 1, 2 and 3 times the
orbital frequency. Equation (3.1) is valid in the quadrupole
approximation, which means that higher multipoles (the
octupole, hexadecapole and higher) have been neglected.
These multipoles are proportional to terms of Oð _r=cÞ and
higher, which implies that Eq. (3.1) is a good approxima-
tion for slow velocities and weak gravity.
The harmonic structure discussed above can be seen

more clearly if we reexpress Eq. (3.1), by using trigono-
metric identities, as

hþ ¼ A
1� e2

�
cos�

�
es2i þ

5e

2
c2�ð1þ c2i Þ

�

þ sin�

�
5e

2
s2�ð1þ c2i Þ

�
þ cos2�½2c2�ð1þ c2i Þ�

þ sin2�½2s2�ð1þ c2i Þ� þ cos3�

�
e

2
c2�ð1þ c2i Þ

�

þ sin3�

�
e

2
s2�ð1þ c2i Þ

�
þ e2s2i þ e2ð1þ c2i Þc2�

�
;

(3.3)
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FIG. 4 (color online). Plot of the absolute value of the frac-
tional relative difference between the sine of the eccentric
anomaly, calculated numerically and expanded in Bessel func-
tions with 9 terms, for different eccentricities (e ¼ 0:4 solid
black curve, e ¼ 0:2 blue dashed curve, and e ¼ 0:1 red dotted
curve). The results are here normalized by the exact numerical
solution.
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h� ¼ A
1� e2

fcos�½�5es2�ci� þ sin�½5ec2�ci�
þ cos2�½�4s2�ci� þ sin2�½4c2�ci�
þ cos3�½�es2�ci� þ sin3�½ec2�ci� � 2e2s2�cig;

(3.4)

where we defined ci 
 cos�, si 
 sin�, c2� 
 cos2� and

s2� 
 sin2�, and we introduced the amplitude

A 
 �M
DL

ð2�MFÞ2=3; (3.5)

with the chirp mass given by M 
 �3=5M2=5. In the limit
e � 1 the dominant term is the second harmonic, followed
by the first and third harmonics, while the constant term
contributes only to higher order.

Explicit expressions for the waveforms as functions of
time are needed to construct their Fourier transform. We
shall thus substitute the expansions of the sines and cosines
of the phase in terms of Bessel functions [Eqs. (2.13) and
(2.14)] into Eqs. (3.3) and (3.4). The Bessel functions,
however, are themselves polynomials in the eccentricity,
which we are also expanding about. Three different ex-
pansions are thus taking place:

(i) PN and multipole expansion.—Weak-field expan-
sion of the metric in terms of mass and current
multipole moments of the source distribution, which
are then expanded in small velocities.

(ii) Bessel expansion.—Expansion of the orbital phase
in Bessel coefficients.

(iii) Eccentricity expansion.—Expansion of Bessel co-
efficients in small eccentricities.

The multipolar expansion is a weak-field expansion to
solutions to the Einstein equations, where we shall here
keep only the mass quadrupole. This implies that our
waveforms are accurate only to Newtonian order, where
we neglect terms of relative order Oð _r=cÞ. Such terms can
be accounted for through a PN analysis, as we shall discuss
in Sec. VI.

The Bessel and eccentricity expansions are related, and
one must ensure that they are performed to a consistent
order. Bessel functions of the first kind behave as JkðkeÞ �
ek asymptotically for e � 1. The phases in Eqs. (2.13) and
(2.14), however, scale as sin�� cos�� JkðkeÞ=e� ek�1.
Thus, an expansion of the waveforms toOðeNÞ requires the
phases in Eqs. (2.13) and (2.14) to be summed up to kmax ¼
N þ 1. We shall here sum up to N ¼ 8, which means that
the Bessel sums in Eqs. (2.13) and (2.14) must be per-
formed up to kmax ¼ 9.

With these expansions, the waveforms can be written as
a sum over harmonics. Using that the mean anomaly l ¼
2�Fðt� t0Þ, the waveforms become

hþ;� ¼ A
X10
‘¼1

½Cð‘Þ
þ;� cosð‘lÞ þ Sð‘Þþ;� sinð‘lÞ�; (3.6)

where the ‘ ¼ 1 coefficients are

Cð1Þ
þ ¼ s2i

�
e� 1

8
e3 þ 1

192
e5 � 1

9216
e7
�

þ ð1þ c2i Þc2�
�
� 3

2
eþ 2

3
e3 � 37

768
e5 þ 11

7680
e7
�
;

(3.7)

Sð1Þþ ¼ s2�ð1þ c2i Þ
�
� 3

2
eþ 23

24
e3 þ 19

256
e5 þ 371

5120
e7
�
;

(3.8)

Cð1Þ
� ¼ s2�ci

�
3e� 4

3
e3 þ 37

384
e5 � 11

3840
e7
�
; (3.9)

Sð1Þ� ¼ c2�ci

�
�3eþ 23

12
e3 þ 19

128
e5 þ 371

2560
e7
�
; (3.10)

and higher-order coefficients are listed in Appendix B.
This expansion resembles that of [39], but it differs in
that we are here allowing for arbitrary binary inclinations
via the angles ð�; �Þ and we are consistently expanding
to the same order in eccentricity, without keeping prefac-
tors of ð1� eÞ�1. We have checked that our results in
Eqs. (3.7), (3.8), (3.9), and (3.10) and those in
Appendix B are consistent with Eqs. (16)–(18) of
Ref. [39], after identifying their variable � with our �
and reexpanding their expressions in powers of e.
The maximum k that one employs in the sums of the

Bessel expansion, kmax, is not generically equal to the
maximum ‘ one uses in the sums of the harmonic decom-
position of the waveform, ‘max. This is because higher
harmonics in the waveform, such as hþ;� � cos3�, can

be reexpanded as powers of cos� and sin� with standard
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FIG. 5 (color online). Eccentricity as a function of frequency
for different value of the initial eccentricity e0 evaluated at F0 ¼
20 Hz. Solid lines correspond to the eccentricity as given by
Eq. (3.11) for e0 ¼ f0:1; 0:3; 0:5; 0:6; 0:7; 0:8; 0:9g, in ascending
order. Dotted lines correspond to the approximant of Eq. (3.12)
for the same initial eccentricities.
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trigonometric identities, which then become powers of
Bessel series via Eqs. (2.13) and (2.14). Cross terms in
the product of Bessel series combine to produce harmonics
of higher order. For example, if kmax ¼ 4, the harmonic
decomposition contains terms of the form hþ;� �
h0e

8 cos10l. Increasing kmax leads to terms that modify
h0, but only up to kmax ¼ 9, beyond which h0 is not
modified. Generically, this means that ‘max ¼ kmax þ 1 ¼
N þ 2, so with our choices (N ¼ 8, kmax ¼ 9), we have
‘max ¼ 10.

The expressions presented above depend on the eccen-
tricity, which itself is a function of time. Equation (2.4) can
be solved for the orbital frequency as a function of the

eccentricity to obtain F=F0 ¼ ½�ðe0Þ=�ðeÞ�3=2, where F0

is defined such that Fðe0Þ ¼ F0. This equation is not
invertible for large eccentricities, but in the limit e � 1
it yields

e� e0	
�19=18

�
1þ 3323

1824
e20½1� 	�19=9� þ 15 994 231

6 653 952
e40

�
1� 66 253 974

15 994 231
	�19=9 þ 50 259 743

15 994 231
	�38=9

�

þ 105 734 339 801

36 410 425 344
e60

�
1� 1 138 825 333 323

105 734 339 801
	�19=9 þ 2 505 196 889 835

105 734 339 801
	�38=9 � 1 472 105 896 313

105 734 339 801
	�19=3

�

þOðe0Þ8
�
; (3.11)

where we have defined 	 
 F=F0. Notice that Eq. (3.11) is
a series in odd powers of e0, and as such, it possesses
uncontrolled remainders of Oðe90Þ.

The inversion of the eccentricity as a function of fre-
quency is not valid for all frequencies and all initial eccen-
tricities. Figure 5 plots Eq. (3.11) as a function of
frequencies for different initial eccentricities, and initial
frequency F0 ¼ 20 Hz. Observe that for initial eccentric-
ities e0 	 0:6, eðFÞ decays monotonically as a function of
frequency, as expected, but for e0 > 0:6 it ceases to be
monotonic, displaying two peaks. This unphysical behav-
ior is a signal that the expansion in Eq. (3.11) breaks down.
This occurs when the first correction in the e0 expansion
ceases to be much less than unity. This requirement trans-

lates roughly to F � 1:2e18=190 F0, or simply e0 � 0:8. We

see then that truncating all expressions at e < 0:4 is con-
sistent with this requirement. More importantly, Fig. 5
shows that Eq. (3.11) is well-behaved for this range of
eccentricities.

Monotonicity, however, is not sufficient to guarantee
that Eq. (3.11) is valid up to e ¼ 0:4. The ultimate test is

to compare this power-series solution to the exact numeri-
cal inversion of Eq. (2.4). We find that the exact numerical
solution can be fitted by the following phenomenological
fraction to better than 1% accuracy:

eðFÞ ¼ 16:83� 3:814�0:3858

16:04þ 8:1�1:637
; (3.12)

where we have defined � 
 	2=3=�ðe0Þ. One can check
that in the limit 	 ! 1, Eq. (3.12) equals e0 with an
accuracy of roughly 1%. Equation (3.12) is plotted in
Fig. 5 with dotted lines. Observe that the dotted lines are
always close to the solid lines for e0 < 0:7. The use of
Eq. (3.12), however, would go against the philosophy of
this paper: to power-series expand all quantities in the limit
e0 � 1. We leave exploration of this type of resummation
and others for future work.
The waveform coefficients can now be written entirely

as a generalized power-series expansion in the frequency.
Inserting Eq. (3.11) into Eq. (3.6) and reexpanding in the
limit e � 1, we find, for example,

Cð2Þ
þ ¼ ð1þ c2i Þc2�

�
2� 5e20	

�19=9 þ
�
� 16 615

912
	�19=9 þ 19 123

912
	�38=9

�
e40

þ
�
� 8 448 925

207 936
	�19=9 þ 63 545 729

415 872
	�38=9 � 234 273 299

2 079 360
	�19=3

�
e60

þ
�
� 41 434 504 475

568 912 896
	�19=9 þ 469 672 525 907

758 550 528
	�38=9 � 778 490 172 577

632 125 440
	�19=3 þ 1 559 384 621 213

2 275 651 584
	�76=9

�
e80

�

þ s2i

�
e20	

�19=9 þ
�
3323

912
	�19=9 � 1209

304
	�38=9

�
e40 þ

�
1 689 785

207 936
	�19=9 � 1 339 169

46 208
	�38=9 þ 8 690 279

415 872
	�19=3

�
e60

þ
�
8 286 900 895

568 912 896
	�19=9 � 9 897 925 427

84 283 392
	�38=9 þ 28 877 797 117

126 425 088
	�19=3 � 1 428 551 432 057

11 378 257 920
	�76=9

�
e80

�
:

(3.13)
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Notice that in the limit e0 ! 0, Eq. (3.13) reduces to the
appropriate circular limit: Cð2Þ

þ ! 2ð1þ c2i Þc2�. As we can
see, the modified coefficients are complicated and unillu-
minating, which is why we do not present the remaining
ones here. Nonetheless, it is straightforward to insert
Eq. (3.11) into the waveforms of Eq. (3.6) to obtain ampli-
tude corrections as a function of the orbital frequency.

IV. FOURIER TRANSFORM OF THE WAVEFORM
IN THE SPA

In this section we calculate the Fourier transform of the
waveform computed in the previous section. To do so, we
shall employ the SPA (see [54,55] for a discussion in the
context of GW data analysis), which is an expansion in the
ratio of the radiation-reaction time scale to the orbital
period. In this asymptotic expansion we need only keep
the controlling factor, since subdominant terms can in
general be neglected for matched-filtering purposes [56].
Recently, it has been proposed that amplitude corrections
in the waveforms might play a critical role in the data
analysis problem [42,43,45,57–64], but we defer a discus-
sion of those corrections to future work. We shall here
primarily follow the prescription of [37].

Let us begin by reviewing the SPA, following Ref. [54].
Consider the generalized Fourier integral

IðyÞ ¼
Z b

a
gðtÞeiyc ðtÞdt; (4.1)

where gðtÞ, c ðtÞ, a, b and y are all real. In order to find the
asymptotic behavior of such an integral as y ! þ1, one
searches for stationary points, namely, those where _c ¼ 0.
This is because in the neighborhood of stationary points the
integrand oscillates less rapidly, and there is less cancella-
tion between adjacent subintervals [54]. Thus, the asymp-
totic behavior of Eq. (4.1) is given by

IðyÞ � gðaÞeiyc ðaÞ�i�=ð2pÞ
�

p!

yjc ðpÞðaÞj
�
1=p �ð1=pÞ

p
(4.2)

as y ! þ1, where c ðpÞðaÞ stands for the pth derivative

of c evaluated at t ¼ a. In Eq. (4.2) the factor of e�i�=ð2pÞ

has a positive sign if c ðpÞðaÞ> 0, and a negative sign

if c ðpÞðaÞ< 0. Here we have chosen the stationary

point to be located at t ¼ a, such that c ð1ÞðaÞ ¼ � � � ¼
c ðp�1ÞðaÞ ¼ 0.
Let us then define the Fourier transform of some time

series BðtÞ as

~BðfÞ 

Z 1

�1
BðtÞe2�iftdt; (4.3)

and let us write the time-domain waveform as the product
of a slowly varying amplitude AðtÞ and a rapidly varying
cosine with phase ‘�ðtÞ and ‘ > 0. Then, the Fourier
transform of the cosine (denoted by a subscriptC) becomes

~BCðfÞ ¼ 1

2

Z 1

�1
AðtÞðe2�iftþi‘�ðtÞ þ e2�ift�i‘�ðtÞÞdt:

(4.4)

The first term in Eq. (4.4) does not contain any stationary
points and, thus, it vanishes via the Riemann-Lebesgue
lemma [54]. The second term, however, does have a sta-

tionary point at the value t0 where ‘ _�ðt0Þ ¼ 2�f, which
defines the stationary-phase condition: Fðt0Þ ¼ f=‘,

where we have defined FðtÞ 
 _�ðtÞ=ð2�Þ. Thus, the
asymptotic behavior of the Fourier transform of a cosine
time series is

~BCðfÞ ¼ Aðt0Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
‘ _Fðt0Þ

q e�ið�þ�=4Þ; (4.5)

where we have defined the phase

� :¼ �2�ft0 þ ‘�ðt0Þ: (4.6)

The Fourier transform of a sine times series is then simply
~BSðfÞ ¼ i ~BCðfÞ. Equation (4.5) is identical to Eq. (4.2)
with p ¼ 2, gðtÞ ¼ AðtÞ=2, y ¼ f and c ðtÞ ¼
2�t� ‘�ðtÞ=f. In obtaining this solution we have implic-
itly assumed that dðlnAÞ=dt � d�=dt and d2�=dt2 �
ðd�=dtÞ2, which mathematically enforces the physical
condition that the amplitude varies much more slowly
than the phase. In Eq. (4.5) there is an extra factor of 2
relative to Eq. (4.2), because the phase� is not monotonic
in its range.1

In order to find the full solution, we must solve for the
phase �. Defining the quantity 
 
 F= _F, we can rewrite
�ðFÞ and tðFÞ as

�ðFÞ ¼ 2�
Z F


0dF0; tðFÞ ¼
Z F 
0

F0 dF
0; (4.7)

which then leads to

�½Fðt0Þ� ¼ 2�
Z Fðt0Þ


0
�
‘� f

F0

�
dF0: (4.8)

Of course, these expressions must be evaluated at the sta-
tionary point, given above by Fðt0Þ ¼ f=‘.

A. Circular case

The above formalism can be understood better by study-
ing the well-known circular case. Let us then solve explic-
itly for the Fourier transform of the response function hðtÞ
in the SPA for a binary in circular orbit (e ¼ 0). The
response function is defined via the linear combination

hðtÞ ¼ Fþð�S;�S; c SÞhþ þ F�ð�S;�S; c SÞh�; (4.9)

1The stationary-phase integral can be broken down into two
parts, inside each of which c is monotonic. Each of these
integrals has a stationary-phase contribution that leads to the
factor of 2 in Eq. (4.2). See [56] for more details.
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where Fþ and F� are the so-called beam-pattern functions
that characterize the response of the detector to an imping-
ing GW and are also slowly varying (see e.g. [65]). The
orbital frequency evolution is given by

dF

dt
¼ 48

5�M2
ð2�MFÞ11=3 (4.10)

[see e.g. the leading-order contribution to Eq. (A.2) in
[42]]. We can rewrite the response function of Eq. (4.9)
as hðtÞ ¼ hCðtÞ þ hSðtÞ, where

hCðtÞ ¼ AQCð�; �Þ cos2�; (4.11)

hSðtÞ ¼ AQSð�; �Þ sin2�; (4.12)

and where the amplitude A is a function of frequency,
defined in Eq. (3.5). We have here introduced the following
functions of the polarization and inclination angles, re-
spectively:

QCð�; �Þ 
 2ð1þ c2i Þc2�Fþ � 4cis2�F�; (4.13a)

QSð�; �Þ 
 2ð1þ c2i Þs2�Fþ þ 4cic2�F�: (4.13b)

The Fourier transform can then be computed in the SPA
via Eq. (4.5) with ‘ ¼ 2. We thus obtain

~h CðfÞ ¼ �
�

5

384

�
1=2

��2=3 M
5=6

DL

QCð�; �Þ

� ½2Fðt0Þ��7=6e�ið�þ�=4Þ: (4.14)

We can solve for the time and phase functions to obtain

�ðFÞ ¼ �c þ 2�
Z F


0dF0 ¼ �c � 1

32
ð2�MFÞ�5=3;

tðFÞ ¼ tc þ
Z F 
0

F0 dF
0 ¼ tc � 5M

256
ð2�MFÞ�8=3;

(4.15)

where �c and tc are the orbital phase and time of coales-
cence, respectively. Substituting the stationary-phase con-
dition Fðt0Þ ¼ f=2 into these expressions, the phase �
becomes

� ¼ �2�ftc þ ��c � 3

128x
; (4.16)

where we have defined x 
 ð�MfÞ5=3, and ��c is the GW
phase at coalescence. The argument of the exponential of
the Fourier transform is then

� i ln

� ~hðcircÞ
j~hðcircÞj

�
¼ 2�ftc � ��c � �

4
þ 3

128
ð�MfÞ�5=3;

(4.17)

and the full Fourier transform becomes

~hðcircÞ ¼ �
�
5

384

�
1=2

��2=3 M
5=6

DL

Qði; �Þf�7=6

� exp

�
i

�
2�ftc � ��c � �

4
þ 3

128
ð�MfÞ�5=3

��
;

(4.18)

where Q ¼ QC þ iQS. Equation (4.17) is in agreement
with well-known results in the literature [55], when we
keep in mind that the GW frequency f ¼ FGW ¼ 2F is
usually adopted to write down all results in calculations
involving circular binaries.

B. Eccentric case

Let us now focus on eccentric inspirals. Once more, we
must consider the response function of the detector, defined
by Eq. (4.9), except that now hþ;� correspond to the

eccentric waveforms discussed in Sec. III. For eccentric
waveforms, the response function becomes

hðtÞ ¼ A
X10
‘¼1

½�‘ cosð‘lÞ þ �‘ sinð‘lÞ�; (4.19)

where A is a function of frequency defined in Eq. (3.5),
and where we have defined

�‘ 
 FþC
ð‘Þ
þ þ F�C

ð‘Þ
� ; �‘ 
 FþS

ð‘Þ
þ þ F�S

ð‘Þ
� :

(4.20)

These coefficients are slowly varying functions of time,
which can be written as functions of the orbital
frequency for some given initial eccentricity e0. By using
the trivial trigonometric identity cosð‘lþ�Þ ¼ cosð‘lÞ�
cosð�Þ � sinð‘lÞ sinð�Þ we can combine terms into a
single sum of the form

hðtÞ ¼ A
X10
‘¼1

�‘ cosð‘lþ�‘Þ; (4.21)

where

�‘ ¼ sgnð�‘Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2
‘ þ�2

‘

q
; (4.22a)

�‘ ¼ tan�1

�
��‘

�‘

�
: (4.22b)

We shall not present the coefficients �‘ and �‘ here, but
they can be straightforwardly calculated using results from
the previous section.
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The Fourier transform in the SPA then becomes

~h ¼ �
�
5

384

�
1=2

��2=3 M
5=6

DL

½2Fðt0Þ��7=6

� ð1� e2Þ7=4
ð1þ 73

24 e
2 þ 37

96 e
4Þ1=2

� X10
‘¼1

�‘

ffiffiffi
2

‘

s
e�i�‘½Fðt0Þ�e�ið�þ�=4Þ; (4.23)

where we have used the fact that for eccentric orbits the
orbital phase evolution is given by [9]

dF

dt
¼ da

dt

dF

da
¼ 48

5�M2
ð2�MFÞ11=3 ð1þ

73
24 e

2 þ 37
96 e

4Þ
ð1� e2Þ7=2 :

(4.24)

The frequency that appears in Eq. (4.23) can be thought of
as an instantaneous mean orbital frequency. Such a quan-
tity is ‘‘instantaneous’’ in the sense that it evolves on a

radiation-reaction time scale. The factor of 1=
ffiffiffi
‘

p
comes

about due to the factor of ðd2�=dt2Þ�1=2 in Eq. (4.5). Also
note that now�ðt0Þ ¼ ‘lðt0Þ and the factor of�‘ cannot be
pulled out of the sum because it depends on ‘. One can

check that in the limit e0 ! 0, �2e
�i�2 ! Q and we

recover the circular limit.
The phase�must be evaluated at the stationary point t0,

which is here defined implicitly via ‘ _lðt0Þ ¼ 2�f or simply
Fðt0Þ ¼ f=‘, as already discussed. The phase � is then
essentially Eq. (4.8), which requires knowledge of the
characteristic time scale 
. Unlike the circular case, for
eccentric inspirals the integral over 
 can only be done
approximately, since


 ¼ 5M
96

ð2�MFÞ�8=3 ð1� e2Þ7=2
1þ 73

24 e
2 þ 37

96 e
4
; (4.25)

and e is a slowly varying function of F that cannot be
inverted in closed form. We can achieve this inversion
asymptotically for small eccentricities, by first expanding
Eq. (4.25) in e � 1


� 5M
96

ð2�MFÞ�8=3

�
1� 157

24
e2 þ 13 759

576
e4

� 999 793

13 824
e6 þ 70 021 111

331 776
e8 þOðe10Þ

�
: (4.26)

Since the eccentricity as a function of frequency is given by
Eq. (3.11), the characteristic time becomes


� 5M
96

ð2�MFÞ�8=3

�
1� 157

24
e20	

�19=9 þ e40

�
1 044 553

21 888
	�38=9 � 521 711

21 888
	�19=9

�

þ e60

�
3 471 049 619

9 980 928
	�38=9 � 265 296 245

4 990 464
	�19=9 � 135 641 025

369 664
	�19=3

�

þ e80

�
� 450 735 126 075

112 377 856
	�19=3 þ 25 654 857 812 777

18 205 212 672
	�38=9 þ 158 823 466 804 555

54 615 638 016
	�76=9

� 1 301 043 440 515

13 653 909 504
	�19=9

�
þOðe100 Þ

�
; (4.27)

where as usual 	 
 F=F0. This is a generalization of Eq. (A8) of Ref. [37] to higher powers of eccentricity.
We can now compute the new phase [Eq. (4.8)] by integrating the characteristic time. Using the stationary-phase

condition Fðt0Þ ¼ f=‘, we obtain

�‘ ¼ ‘�c � 2�ftc � 3

128x

�
‘

2

�
8=3

�
1� 2355

1462
e20	

�19=9 þ e40

�
5 222 765

998 944
	�38=9 � 2 608 555

444 448
	�19=9

�

þ e60

�
� 75 356 125

3 326 976
	�19=3 � 1 326 481 225

101 334 144
	�19=9 þ 17 355 248 095

455 518 464
	�38=9

�

þ e80

�
� 250 408 403 375

1 011 400 704
	�19=3 þ 4 537 813 337 273

39 444 627 456
	�76=9 � 6 505 217 202 575

277 250 217 984
	�19=9

þ 128 274 289 063 885

830 865 678 336
	�38=9

�
þOðe100 Þ

�
; (4.28)

where we recall that x 
 ð�MfÞ5=3, and� has now become a function of ‘. We have checked that the first few terms in the
phase of Eq. (4.28) agree with the phase computed in Eq. (A10) of [37]. Notice that when we apply the stationary-phase
condition to eðFÞ we must also rescale F0 ! f0=‘, so that eðf0Þ ¼ e0. Otherwise, the eccentricity function would not be
properly normalized.
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Combining all pieces together we obtain the Fourier
transform in the SPA, namely,

~h ¼ ~Af�7=6
X10
‘¼1

�‘

�
‘

2

�
2=3

e�ið�=4þ�‘Þ; (4.29)

where we have defined

~A ¼ �
�
5

384

�
1=2

��2=3 M
5=6

DL

; (4.30)

�‘ ¼ ð1� e2Þ7=4
ð1þ 73

24 e
2 þ 37

96 e
4Þ1=2 �‘e

�i�‘ðf=kÞ: (4.31)

This is the Fourier transform of the waveform for eccentric
inspirals in the SPA. Note that we have kept up to ten
harmonics, which corresponds to a consistent expansion in
the eccentricity to Oðe8Þ both in the amplitude and in the
phase. We already saw in Sec. II that this is enough to
model the Bessel function to high accuracy even for rela-
tively high eccentricities.

The Fourier transform presented here depends on the
coefficients �‘ that need to be reexpanded in the limit
e0 � 1. These coefficients can be obtained from
Eq. (4.31), using the definition of eðFÞ in Eq. (3.11), �‘

in Eq. (4.22a), �‘ in Eq. (4.22b) and �‘ and �‘ in
Eq. (4.20), where Cþ;� and Sþ;� are given in

Appendix B. The resulting expression must then be reex-
panded in the limit e0 � 1 to Oðe80Þ. We shall not present

these expressions here in full generality, since they are
lengthy and complicated. Instead we present partial results
for �k as a function of eðFÞ in Appendix C for an optimally
oriented binary (� ¼ � ¼ 0). In the next section, we shall
employ these expressions in combination with Eq. (3.11),
and reexpand them in e0 � 1 to eighth order to compute
the SNR.

V. SNR CALCULATION

In this section we compute the SNR using the Fourier
transform of the waveform in the SPA [Eq. (4.29)]. The
SNR is defined via

�2 
 4<
Z fhigh

flow

~h~h?

SnðfÞdf; (5.1)

where SnðfÞ is the one-sided noise power spectral density
and the star superscript stands for complex conjugation.
The noise curves of the AdvLIGO, ET and LISA detectors
are taken from Refs. [65–67], respectively; for LISA, in
particular, we adopt the simple ‘‘angle-averaged’’ model
discussed in [65].

A. Limits of integration

The upper frequency of integration fhigh is either the

frequency at which the motion transitions from inspiral to
plunge or the maximum frequency at which the detector

noise is under control. Since the noise power spectral
densities for LIGO and ET increase steeply at high fre-
quency, we will choose

fLISAhigh ¼ min½2FISCO; 1 Hz�; (5.2)

fLIGOhigh ¼ fEThigh ¼ 2FISCO: (5.3)

In the previous equations, as customary in the GW litera-
ture, we (somewhat arbitrarily) pick the ISCO frequency to

be FISCO 
 6�3=2ð2�MÞ�1, in analogy with the orbital
frequency of a test particle at the ISCO of the
Schwarzschild spacetime. In Appendix D we discuss pos-
sible eccentricity-induced modifications to this conven-
tional ISCO frequency, concluding that such
modifications should not introduce significant corrections
to our SNR calculations.
The lower limit of integration flow is determined by a

seismic (or acceleration) noise cutoff:

fLIGOlow ¼ fLIGOs ¼ 20 Hz; fETlow ¼ fETs ;

fLISAlow ¼ facc ¼ 10�4 Hz;
(5.4)

where we shall investigate the ET SNRwith fETs ¼ 1 Hz or
fETs ¼ 10 Hz. The quantity facc corresponds to the mini-
mum frequency at which acceleration noise is under con-
trol in LISA.
Different harmonic components will generically sample

different frequency ranges if we terminate all integrations
when the dominant quadrupole GW frequency equals the
ISCO frequency. To ensure that higher harmonics do not
exceed the region of validity, following [43], we shall
truncate the waveforms with unit step functions �ðxÞ
[�ðxÞ ¼ 1 if x � 0 and zero otherwise]):

~hLIGO=ET ¼ ~Af�7=6
X10
‘¼1

�
‘

2

�
2=3

�‘e
�i�‘�ð‘fLIGO=EThigh � 2fÞ;

(5.5)

where we have removed the factor of �=4 in the phase,
since it cancels out in SNR calculations. The step function
guarantees that higher harmonics are truncated at the cor-
rect upper frequency cutoff.
LISA sources can spend several years in the LISA band,

an issue that must be accounted for, since the detector will
not take data for more than a few years. Following [43,65],
we shall multiply the waveform by an additional step
function:

~hLISA ¼
ffiffiffi
3

p
2

~Af�7=6
X10
‘¼1

�
‘

2

�
2=3

�‘e
�i�‘

��ð‘fLISAhigh � 2fÞ�ð2f� ‘fLISAyr Þ; (5.6)

where fyr is the GW frequency of the fundamental har-

monic at a time T before the system reaches the ISCO (see
Appendix E for a discussion of how to calculate this
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quantity for eccentric inspirals). We shall here choose T to
be equal to 1 yr (hence assuming, somewhat optimistically,
that we can observe the whole last year of inspiral). This
step-function cutoff guarantees that all harmonics are in-
tegrated for no more than 1 yr, which is the higher-
harmonic generalization of the criterion used in [65].
Note also that we have multiplied the LISA waveform

amplitude by a geometrical correction factor of
ffiffiffi
3

p
=2

(see [65,68] for details).
With these considerations in mind, the SNR is given by

�2
A ¼ 4<

Z ‘maxf
A
high

fA
low

~hA ~h
?
A

SAn
df; (5.7)

where A stands for any of LIGO, ET or LISA. Caution
should be exercised in comparing results between different
detectors. Even for astrophysical systems with the same
masses, different detectors have different low-frequency
cutoffs, and the initial eccentricity e0 is defined as the value
of e at that frequency. For example, a 100M� system with
e0 ¼ 0:3 does not correspond to the same astrophysical

system when we discuss AdvLIGO, whose seismic cutoff
is 20 Hz, and when we discuss ET, whose seismic cutoff is
10 or 1 Hz.

B. Results

Figure 6 plots the SNR for an equal-mass system as a
function of the total binary mass expressed in solar mass
units. This SNR is computed at the optimal binary orienta-
tion (� ¼ � ¼ �S ¼ �s ¼ c S ¼ 0). As discussed earlier,
for each detector the initial eccentricity is computed at
some (somewhat conventional) lowest cutoff frequency,
which is different for each detector. We recall that for
AdvLIGO and ET this lower cutoff corresponds to the
seismic noise ‘‘wall’’ (20 and either 1 or 10 Hz), while
for LISA we (conservatively) adopt a lower cutoff at
10�4 Hz.
As a generic trend, the mass reach increases by as much

as a factor of 5 for the largest initial eccentricities explored
here. For systems with e0 ¼ 0:4 AdvLIGO could observe
binaries with total mass up to 103M�, ET could see sys-
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FIG. 6 (color online). SNR for an equal-mass binary at optimal orientation as a function of total mass in solar mass units for different
initial eccentricities. The top figures correspond to the AdvLIGO (left) and ET (right) detectors, while results for the LISA detector are
shown in the bottom panel.
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tems up to 2� 103M� or 2� 104M� (for a 10 or a 1 Hz
low-frequency cutoff, respectively), and LISA could see
binaries up to 2� 108M�. This is to be compared to
circular inspiral mass reaches of approximately 200M�
for AdvLIGO, 400M� or 4� 103M� for ET (for a 10 or
a 1 Hz low-frequency cutoff) and 4� 107M� for LISA.

Another feature of this figure is that for low-mass sys-
tems, the circular SNR curve seems to overlap that of
eccentric binaries. One can understand this by noting that
low-mass systems merge in the high-frequency band of the
detector, since the merger frequency is inversely propor-
tional to the total mass. In such cases, the binary circular-
izes before merger. Suppose that the binary’s eccentricity
reduces to e0 	 10�2 at some ‘‘circularization frequency’’
Fc. One can then compare the number of cycles the binary
spends in fflow; Fcg relative to the number of cycles spent
in fFc; Fhighg, to find that the latter is overwhelmingly large

for low-mass systems. Such a fact does not imply that
circular waveforms are sufficient for detection or parame-
ter estimation from eccentric inspirals of low mass. The
SNRs shown here are ‘‘optimal,’’ and thus, a much more
careful fitting-factor study is necessary to determine
whether circular templates suffice to extract eccentric bi-
nary signals.

For high masses the SNR presents a somewhat oscilla-
tory behavior. These oscillations seem to scale with the
eccentricity, becoming worse for systems with e0 ¼ 0:4.
Oscillations are expected, since different harmonics could
interfere in the SNR integrand and since the step-function
truncation of the waveforms will introduce oscillations at
overtones of the truncation frequencies. We discuss these
issues in more detail in the next subsection.

C. Accuracy of the approximation

An important issue concerns the accuracy of our post-
circular approximation. Our approximation is essentially
an expansion for e0 � 1, so it should break down as we
increase the initial eccentricity. On the other hand, if the
condition e0 � 1 is verified, a relatively small number of
harmonics should model the waveform accurately enough
that we would not lose much in terms of SNR.

In order to explore this issue, in Fig. 7 we plot the
absolute value �ð‘max; 10Þ 
 j�ð‘maxÞ � �ð10Þj, where
�ð‘maxÞ is the SNR computed by keeping ‘max terms in
the harmonic sum of Eq. (4.29). In the top two panels we
consider systems with moderate initial eccentricity (e0 ¼
0:01 and e0 ¼ 0:1), which are probably most relevant for
several classes of astrophysical GW sources. When e0 ¼
0:01, the deviation in SNR relative to the highest-order
terms we computed (‘max ¼ 10) is at most of Oð1Þ or of
Oð10�1Þ when one uses ‘max ¼ 2 and ‘max ¼ 3, respec-
tively. On the other hand, for the e0 ¼ 0:1 case, a compa-
rable accuracy in SNR requires ‘max � 4 and ‘max � 5,
respectively. It should not be surprising that a smaller
number of harmonics is required for systems with low

eccentricity. Our analysis suggests that summing up to
‘max ’ 4 should be enough for systems with e0 	 0:1,
while for systems with 0:1< e0 	 0:3 one needs ‘max � 8.
More interesting features emerge for larger values of e0

(bottom panels in Fig. 7), which we list below:
(1) Different harmonics play a critical role in the SNR

at different mass ranges. When e0 ¼ 0:3 the SNR
difference peaks at approximately ð200; 400; 500;
600ÞM� for ‘max ¼ ð2; 3; 4; 5Þ; for lower and larger
masses, a smaller number of harmonics is necessary.

(2) The number of harmonics necessary to cover the
entire mass range is a function of the initial eccen-
tricity e0. When e0 ¼ 0:3, for example, harmonics
with ‘ > 7 are not needed, because �ð6; 10Þ< 7 in
the entire mass range. On the other hand, for the
e0 ¼ 0:4 case, one really needs at least ‘max ¼ 9 to
obtain errors �ð9; 10Þ< 10 in the whole mass
range, while for e0 ¼ 0:5 the approximation seems
to break down, unless more harmonics are included.

(3) The oscillations visible in the plots are not neces-
sarily an artifact of the post-circular approximation.
Indeed, these oscillations are also present in the
small-eccentricity curves [e0 ¼ ð0:1; 0:2; 0:3Þ] of
Fig. 6 and in the top panel [e0 ¼ ð0:01; 0:1Þ] of
Fig. 7. If these oscillations were an artifact of the
post-circular approximation, they would vanish in
the small-eccentricity limit, but instead, although
they decrease in magnitude, they are still present.

The fact that different harmonics peak at different
masses can be understood by observing that two competing
effects control the SNR difference: the eccentricity decay
and the frequency band over which we perform the inte-
gration. For small masses, one is integrating over a larger
frequency band, and the binary rapidly circularizes before
merging. Less harmonics are needed in the limit of very
small mass, since the binary is essentially circular before
reaching the most sensitive region of the detector. On the
other hand, for really high masses one is integrating for
short times and essentially capturing only the behavior
near the ISCO. In such cases, the SNR difference is con-
verging to zero, because the SNRs themselves are essen-
tially vanishing (i.e. the range of integration asymptotes to
zero).
The oscillatory features can be understood by studying

the analytic structure of the waveforms used to compute
the SNRs. For small eccentricities, the oscillations are
probably due to interference between the different harmon-
ics and to the use of step functions to truncate the SNR at
different harmonics. The waveform contains a sum of ten
different oscillatory functions, and when this sum is multi-
plied by its complex conjugate, one naturally obtains in-
terference of the type exp½ið‘� ‘0Þt�. Moreover, the step-
function truncation of the SNR also forces oscillations at
overtones of the ISCO frequency. For example, Figs. 6 and
7 show oscillations at ‘FISCO, with ‘ ¼ f1; 10g. This is
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because the leading harmonic has a mass reach corre-
sponding to twice the ISCO frequency, whereas the ‘th
harmonic has a mass reach corresponding to ‘ times the
ISCO frequency. Since we use a step-function cutoff for
every harmonic [see e.g. Eq. (5.5)], the resulting SNR will
show the ‘‘bumps’’ seen in Fig. 7. Of course, although there
are analytic reasons that explain the presence of these
oscillations, one cannot formally exclude the possibility
that (for large e0) some of these oscillations are induced by
inaccuracies in the post-circular approximation.

D. Angular dependence

In all SNR plots, we have so far assumed that binaries
are optimally oriented. This is a very special configuration,
and it is important to investigate the variations in SNR for
nonoptimally oriented binaries. Figure 8 shows histograms
of the SNR distribution under the hypothesis of a uniform
distribution of the angles involved: the angles ð�; �Þ de-
scribing the orientation of the source and the three angles

ð�S;�S; c SÞ appearing in the antenna pattern functions
[65]. We binned the data of the 1000 random realizations
in bins of 50. The histograms are representative of the
number of realizations in each bin. Since they are normal-
ized, the numbers on the vertical axis do not correspond to
the actual number of realizations in each bin. The com-
parison of distributions corresponding to various eccentric-
ities makes sense only if the histograms are normalized. In
the two panels of Fig. 8 we plot the AdvLIGO SNR
distribution for two representative binaries with total
mass 100M� (left panel) and 300M� (right panel). The
SNR of the 100M� system is dominated mostly by the
leading harmonic, whereas the 300M� system has a sig-
nificant contribution from higher harmonics (see the top
panel of Fig. 6). In each panel we show three histograms,
corresponding to initial eccentricities e0 ¼ 0:1 (dotted
black), 0.2 (dashed blue) and 0.4 (solid red).
The effect of eccentricity is to shift the SNR distribution

to higher masses. For the 100M� system, although the SNR
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distribution visibly shifts to the right, the effect is rather
mild for the initial eccentricities considered in the plot. In
this case, the distributions look more or less similar, except
for a longer tail at large SNRs for large initial eccentric-
ities. For the 300M� system, the shift in the distribution is
much more pronounced. While the distribution is narrowly
peaked at low eccentricities, it becomes much wider for
larger eccentricities. This widening of the distribution
might be because, for large eccentricities, the waveforms
are more sensitive to terms proportional to ci ¼ cos� (see

the expressions of CðnÞ
þ and SðnÞþ in Appendix B). These

amplitude corrections, being proportional to the eccentric-
ity, are suppressed for small values of e0.

The SNR histograms show that, although the SNR val-
ues for any particular observation may deviate consider-
ably from the optimal values we have quoted, the general
trends in the SNR induced by eccentricity (mass reach
increase, accessible volume increase) will not be modified.
That is, regardless of the location of the source in the sky,
eccentricity has the net effect of increasing the SNR or
mass reach of any given signal.

VI. PN CORRECTIONS

Although this paper has only considered Newtonian
waveforms to exemplify the post-circular construction of
the SPA Fourier transform of eccentric waveforms, it is
instructive to discuss how to extend these results to higher
PN order. In this section we shall mainly follow the con-
ventions of Gopakumar and Iyer [50], where a ‘‘2PN term’’
is one of Oð _r=cÞ4 smaller than the leading-order term; i.e.
we employ a relative order counting scheme.

When eccentric orbits are studied beyond 1PN order,
one discovers that the Keplerian parametrization must be
corrected. In particular, Eqs. (2.1) and (2.3) are enhanced
by newOð _r=cÞ2 corrections, while Eq. (2.2) is enhanced by

corrections of Oð _r=cÞ4. Moreover, if we want to keep a
Keplerian-inspired parametrization we must introduce
three distinct eccentricity parameters: er measures radial
oscillations, e� measures azimuthal oscillations and et
measures the frequency eccentricity. These eccentricity
parameters can be written as functions of et in a PN
expansion, but this choice is somewhat arbitrary (see e.g.
[69] for comparisons of the different definitions with nu-
merical relativity simulations of eccentric mergers).
The waveforms then acquire two sets of modifications:

amplitude and phase corrections. The amplitude correc-
tions, as expected, take the form

hþ;�  m�

R
�2=3½Hð0Þ

þ;� þ �1=2Hð1=2Þ
þ;� þ �Hð1Þ

þ;� þ � � ��;
(6.1)

where � 
 mN is a natural PN expansion parameter of

Oð _r=cÞ2, � ¼ �m is the symmetric mass ratio and HðnÞ
þ;�

are products of functions of the eccentricities and harmonic
trigonometric functions. The phase corrections can be split
into

���0 ¼ �ðlÞ þWðlÞ; (6.2)

where �ðlÞ is a 2�K-periodic function of the mean anom-
aly, while WðlÞ is periodic in l, and thus, 2�-periodic. The
quantity K measures the advance of the periastron per
orbital revolution [19], while the effect of WðlÞ is to
modulate the amplitude via nutation.
The leading-order correction to the phasing of GWs is

due to pericenter precession. This effect is embodied in the
function �ðlÞ, which can be written as

�ðlÞ ¼ Kl ¼ ½1þ kpðetÞ�l; (6.3)

where we have defined K ¼ 1þ kpðetÞ. To this order, the
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mean anomaly continues to be given by Eq. (2.2) with e !
et, while the precessional correction kpðetÞ is given by

kpðetÞ ¼ 3�2=3

1� e2t
þOð _r=cÞ4: (6.4)

Since N appears here as a 1PN order correction, we can
take its Newtonian value in this equation, namely, N ¼
2�f, such that � ¼ 2�MF. Thus, the precessional correc-
tion becomes

kpðetÞ ¼ 3ð2�MFÞ2=3
1� e2t

þOð _r=cÞ4: (6.5)

We can expand this function for small eccentricities et �
1 to find

�ðlÞ � l½1þ 3ð2�MFÞ2=3ð1þ e2t þ e4t þ e6t þ e8t Þ�:
(6.6)

The second correction to the phase is given by the
nutation function W, defined by

W ¼ ðv� uþ et sinuÞ½1þ kpðetÞ� þOð _r=cÞ4; (6.7)

where the true anomaly is given by

v ¼ 2tan�1

��
1þ e�
1� e�

�
1=2

tan

�
u

2

��
: (6.8)

Note that the true anomaly depends on e� and not et, but

these quantities are related via

e� ¼ et½1þ �2=3ð4� �Þ þOð _r=cÞ4�: (6.9)

In Sec. II we already discussed how to solve for u as a
function of l in terms of a series of Bessel functions. In
particular, one can show that

u ¼ lþ X1
s¼1

�
2

s

�
JsðseÞ sinðslÞ: (6.10)

Equations (6.9) and (6.10) can be substituted in Eq. (6.8) to
find v as a function of l. Then Eq. (6.7) yields W as a
function of l. Expanding in et � 1 one finds

WðlÞ� et½�ð�10þ�Þ�2=3 þ 2� sinðlÞ
þ e2t ½�1=2ð4�� 31Þ�2=3 þ 5=2�cosðlÞ sinðlÞ
þ e3t ½ð�1=6ð�186þ 27�Þ�2=3 þ 13=3Þ
� cos2ðlÞ� 1=6ð12� 6�Þ�2=3 � 4=3� sinðlÞþ � � � :

(6.11)

This function, however, is part of the phase, so it enters the
waveform as the argument of trigonometric functions.
Note that WðlÞ is linear in et, and thus, when the cosð�Þ

or sinð�Þ are expanded in et � 1, WðlÞ introduces higher
harmonics into the waveforms.
We see then that to 1PN order, it suffices to consider the

pericenter precession correction through �. The correc-
tions produced by WðlÞ are automatically accounted for
in the Bessel expansion. In essence, this is because
Eqs. (2.1) and (2.2) are not modified to this order. The
1PN-corrected waveforms are then (schematically)

hðtÞ ¼ A
X10
‘¼1

�‘ cosf‘l½1þ 3ð2�MFÞ2=3

� ð1þ t2e
2
t þ t4e

4
t þ t6e

6
t Þ� þ�‘g; (6.12)

where the tk’s are constants. If we were to consider 2PN
corrections to the waveforms, then the formalism outlined
here would have to be extended andWðlÞ would contribute
by introducing new corrections not accounted for in the
Bessel expansion.
The structure of the 1PN time-domain waveform in

Eq. (6.12) is different from that obtained in Refs. [38,39],
in that the above equation does not lead to periastron-
precession sidebands in the GW spectrum. In
Refs. [38,39] such sidebands arise due to the assumption
that periastron precession leads to a constant _� / kp. This

assumption breaks down on long time scales as periastron
precession is not constant, an effect one can justly treat as a
1PN contribution. As a result, one loses the artificial side-
band structure in the GW spectrum. The implications of
this effect will be assessed in future work.
PN corrections modify the Fourier transform of the

waveform in the SPA. The phase ��‘ is modified by a factor
of (1þ kp), and we now obtain

�‘ðFÞ ¼ k�½tðf=‘Þ� � 2�ftðf=‘Þ; (6.13)

where

�½tðf=‘Þ� ¼ ‘�c þ ‘
Z f=‘ _�0

_F
dF0;

tðf=‘Þ ¼ tc þ
Z f=‘ dF0

_F0 :

(6.14)

The _� term contains the (1þ kp) dependence that we

referred to via Eq. (6.3). All the machinery developed in
the previous section then carries through, with the proper
enhancement of the Newtonian waveform to higher PN
order. The net effect of higher PN corrections in the Fourier
transform is to introduce an infinite set of harmonics and
PN corrections to the lower-order (Newtonian) harmonics
considered earlier.
While considering higher PN order effects, one can also

work with the PN parameter ðM!Þ2=3, where ! is the
orbital frequency. As pointed out in Ref. [20], this parame-
trization helps to more easily recover the circular limits of
various elliptic-orbit expressions. Furthermore, in compar-
ing numerical relativity results to PN expansions, Ref. [70]
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found that waveforms parametrized in terms of ðM!Þ2=3
are in better agreement with numerical waveforms. This
deserves more careful study in the future.

VII. CONCLUSIONS

We have proposed a new scheme, the post-circular ap-
proximation, to construct ready-to-use, analytic Fourier-
domain gravitational waveforms produced by eccentric
binary inspirals. The scheme consists of expanding all
quantities in a power series about zero initial eccentricity.
We find that the first 10 terms in the Bessel solution to the
Kepler problem suffice to reproduce the eccentricity evo-
lution to better than 0.1% for eccentricities e < 0:4. The
resulting waveforms are then rewritten in terms of ten
physical parameters (the reduced mass �, the initial eccen-
tricity e0 and frequency F0, the total massM, the luminos-
ity distance DL, four angles �, �, �, and � describing the
relative orientation of the source and detector, and a po-
larization angle c ) and the orbital frequency, which can be
thought of as a function of time.

This scheme allows us to analytically construct the
Fourier transform of the response function through the
SPA, where one assumes that the radiation-reaction time
scale is much larger than the orbital time scale. The result-
ing Fourier-domain waveforms contain eccentricity-
induced, higher-harmonic amplitude and phase correc-
tions. By computing the SNR as a function of total mass
and eccentricity we find that the amplitude corrections
increase the mass reach of the detectors by a factor ’ 5
for moderately eccentric systems, which in turn implies
that the source volume accessible to the detectors would be
increased by almost 2 orders of magnitude.

The results presented here cannot be used directly in
realistic data analysis pipelines because PN corrections to
the amplitude and phase have not been included. Instead,
the present paper was concerned with proposing a method
to construct ready-to-use, analytic expressions for the
Fourier transform of the response function, which was
exemplified through Newtonian-accurate expressions.
Future research should include such PN corrections.

Another interesting research direction is the study of the
effect of eccentricity in parameter estimation. Eccentricity
adds more complexity and information to the waveforms
that could break parameter degeneracies, thus possibly
leading to better accuracy in parameter estimation. On
the other hand, the inclusion of eccentricity-induced cor-
rections to the GW phase could mimic certain high-order
PN phase corrections, which would then create new degen-
eracies. A more detailed parameter estimation study is
needed to assess whether GW measurements will benefit
or not from the inclusion of eccentricity.

While finalizing the draft we learned that two different
groups are investigating frequency-domain gravitational
waveforms for eccentric binaries [71,72]. It would be

interesting to compare their approach with ours and with
the time-domain waveforms of [29].
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APPENDIX A: LISA ECCENTRIC BINARIES

In this appendix we briefly review some literature on
scenarios leading to noneccentric binary inspirals in the
LISA band. We consider in turn stellar mass binaries,
extreme- and intermediate-mass ratio inspirals (EMRIs/
IMRIs, respectively), and the coalescence of massive BHs.

1. Stellar mass binaries

Many stellar mass binaries involving neutron stars are
expected to be eccentric in the LISA band (see e.g. [34]). It
is also well known that LISA should provide a large
observational sample of interacting white-dwarf binaries,
whose evolution is driven by radiation reaction, tides and
mass transfer [73]. It was recently realized that eccentric
double white dwarfs formed in globular clusters would be
detectable by LISA out to the Large Magellanic Cloud
[74]. In these binaries, the periastron precession has con-
tributions due to general relativity, but also to tidal and
rotational distortions. Tides and stellar rotation should
dominate at frequencies above a few megahertz. The
Fisher-matrix analysis of [75] pointed out the interesting
possibility to study white-dwarf structure with LISA.
However their analysis neglected the contribution of
radiation-reaction effects, that should be relevant for f *
0:5 mHz. We expect our post-circular formalism to be
useful in this context, since radiation reaction in these
eccentric binaries should be well modeled by the quadru-
pole approximation.

2. Extreme- and intermediate-mass ratio inspirals

Formation scenarios for EMRIs and IMRIs, involving a
SMBH and either a compact stellar mass object or an
IMBH, are reviewed in Ref. [76]. If an EMRI is formed
following a tidal binary separation event, the compact
star is deposited on an orbit with semimajor axis
’ 102–103 AU and e ’ 0:9–0:99, and the orbit should
circularize by the time it enters the LISA band. However,
typical EMRIs are expected to form by scattering of the
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compact object into nearly radial orbits followed by in-
spiral due to dissipation, and, in particular, due to GW
emission. Hopman and Alexander [77] showed that the
eccentricity distribution of EMRIs is skewed to high-e
values, with a peak at e ’ 0:7, at an orbital period of
’ 104 s. The dynamical evolution of IMBH binaries
formed in dense stellar clusters, using a combination of
N-body simulations and three-body relativistic scattering
experiments, shows that the eccentricity of these systems
in the LISA band can be as large as ’ 0:2–0:3 [78]. The
post-circular approximation developed here could be ap-
plied to these systems once PN corrections are taken into
account.

3. Massive black hole coalescence

The eccentricity of SMBH binaries has been the subject
of some debate. Gravitational radiation reaction alone is
not sufficient to produce mergers between massive BHs,
which probably require dynamical interactions. Analytic
calculations and N-body simulations show that, in purely
collisionless spherical backgrounds, the expected equilib-
rium distribution of eccentricities is skewed towards high
e ’ 0:6–0:7, and that dynamical friction does not play a
major role in modifying such a distribution (see Ref. [79],
in particular, Fig. 5). The actual eccentricity of a merger
event is therefore determined by the competition between
dynamical wandering and GW-induced circularization.
Reference [76] presents arguments supporting circulariza-
tion of most binaries by the time they enter the LISA band.
However, several mechanisms producing nonzero eccen-
tricity have been proposed in the past (see e.g. Sec. 2 of
Ref. [80]).

Recent smoothed-particle hydrodynamics simulations
follow the dynamics of two BHs orbiting in massive, rota-
tionally supported circumnuclear disks [81,82]. The rota-
tion of the disk circularizes the orbit if the pair corotates
with the disk. Circularization is efficient until the BHs bind
in a binary, though in the latest stages of the simulations
(when the separation is of the order of a few parsecs) a
residual eccentricity e * 0:1 is still present. Cir-
cularization possibly reduces the gravitational radiation
merging time scale so much that the binary stalls, and no
coalescence results. For corotating disks, the numerical
resolution of the simulations is not sufficient to compute
the residual eccentricity when the BHs are close enough
that gravitational radiation takes over. Moreover, if the
orbit of the pair is counterrotating, the initial eccentricity
does not decrease, and BHs may enter the GW-dominated
phase with high eccentricity.

Collisional processes (such as three-body encounters
with background stars) may become important at BH
separations & 6 pc, possibly leading to an increase in
eccentricity balancing the circularization driven by the
large-scale action of the gaseous and/or stellar disk.
Several investigations show that eccentricity evolution

may still occur in later stages of the binary’s life, because
of close encounters with single stars [83] and/or gas-
dynamical processes [84]. In particular, the gravitational
interaction of the binary with a surrounding gas disk is
likely to excite BH binaries to eccentricities e * 0:1. The
transition between disk-driven and gravitational wave-
driven inspiral can occur at small enough radii that a small
but significant eccentricity survives, with typical values
e ’ 0:02 (and a lower limit of e ’ 0:01) 1 yr prior to
merger (cf. Fig. 5 of [84]). If the binary has an extreme
mass ratio q & 0:02, the residual eccentricity can be con-
siderably larger (e * 0:1). Recent simulations by Cuadra
et al. [85] investigate the evolution of the orbital parame-
ters of binaries embedded within geometrically thin gas
disks. For binary masses 105M� & M & 108M�, they find
that orbital decay due to gas disks may dominate the binary
dynamics for separations below a ’ 10�1–0:1 pc, and that
in the process the eccentricity grows at a rate de=dt ’
1:5� 10�4!orb, where !orb is the orbital frequency.
Saturation of the eccentricity growth is not observed up
to values e * 0:35, so the binary may have significant
eccentricity by the time gravitational radiation takes over.
Stellar dynamical hardening might also leave the binary

with nonzero eccentricity. Early studies suggested that any
such eccentricity would be small [83,86,87] (but see
[88,89] for examples of eccentricity growth in N-body
simulations). More recent N-body simulations combined
with a Fokker-Planck model [90] find that perturbations of
the (initially circular) binary orbit from passing stars pro-
duce significant eccentricity around or even before the time
when the binary becomes hard. The averaged eccentricity
growth is maximum for equal-mass binaries with e  0:75
and falls to zero at e ¼ 0 and e ¼ 1. It is hard to estimate
the final eccentricity, which strongly depends on noise-
induced changes in e at early times, and would presumably
be much smaller than the simulations suggest in the
large-N regime of real galaxies.
Berentzen et al. [47] present simulations following the

SMBH evolution in rotating galactic nuclei from kilopar-
sec separations down to coalescence, including PN correc-
tions to the binary equations of motion. They find that the
orbital eccentricities remain large (between 0.4 and 0.99,
with typical values around e ’ 0:9) until shortly before
coalescence, and that higher harmonics of the eccentric
signal are detectable by LISA with large SNR. Most of
these binaries have sizable eccentricities (up to ’ 0:2) by
the time they reach a separation ’ 102 Schwarzschild radii,
which roughly corresponds to a binary of mass M  2�
106M� entering the LISA band (see e.g. Fig. 8 of [47]). The
study by Sesana, Haardt, and Madau [91–93] confirms that
binaries with mass ratio q ¼ M2=M1 & 0:1 and/or eccen-
tricity e * 0:3 can shrink to the GW-dominated regime
within a Hubble time (see, in particular, Fig. 7 of [92];
Sec. 4.1 and Fig. 10 of [93]). Last but not least, an interest-
ing scenario producing highly eccentric mergers that could
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be observed by LISA involves close triple SMBH encoun-
ters [94,95].

APPENDIX B: HIGHER-ORDER COEFFICIENTS

In this appendix we list some of the higher-order coef-
ficients appearing in the expansion (3.6).

Cð2Þ
þ ¼ s2i

�
e2 � 1

3
e4 þ 1

24
e6 � 1

360
e8
�
þ ð1þ c2i Þc2�

�
�
2� 5e2 þ 11

4
e4 � 179

360
e6 þ 7

160
e8
�
; (B1)

Cð3Þ
þ ¼ s2i

�
9

8
e3 � 81

128
e5 þ 729

5120
e7
�
þ ð1þ c2i Þc2�

�
�
9

2
e� 171

16
e3 þ 9477

1280
e5 � 2187

1024
e7
�
; (B2)

Cð4Þ
þ ¼ s2i

�
4

3
e4 � 16

15
e6 þ 16

45
e8
�
þ ð1þ c2i Þc2�

�
�
8e2 � 20e4 þ 752

45
e6 � 688

105
e8
�
; (B3)

Cð5Þ
þ ¼ s2i

�
625

384
e5 � 15 625

9216
e7
�
þ ð1þ c2i Þc2�

�
�
625

48
e3 � 26 875

768
e5 þ 734 375

21 504
e7
�
; (B4)

Cð6Þ
þ ¼ s2i

�
81

40
e6 � 729

280
e8
�
þ ð1þ c2i Þc2�

�
�
81

4
e4 � 2349

40
e6 þ 146 529

2240
e8
�
; (B5)

Cð7Þ
þ ¼ s2i

117 649

46 080
e7 þ ð1þ c2i Þc2�

�
�
117 649

3840
e5 � 588 245

6144
e7
�
; (B6)

Cð8Þ
þ ¼ s2i

1024

315
e8 þ ð1þ c2i Þc2�

�
2048

45
e6 � 48 128

315
e8
�
;

(B7)

Cð9Þ
þ ¼ ð1þ c2i Þc2�

4 782 969

71 680
e7; (B8)

Cð10Þ
þ ¼ ð1þ c2i Þc2�

390 625

4032
e8; (B9)

Sð2Þþ ¼ s2�ð1þ c2i Þ
�
2� 5e2 þ 3e4 � 73

180
e6 þ 299

2880
e8
�
;

(B10)

Sð3Þþ ¼ s2�ð1þ c2i Þ
�
9

2
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16
e3 þ 9783

1280
e5 � 531

256
e7
�
;
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Sð4Þþ ¼ s2�ð1þ c2i Þ
�
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e6 � 4111
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e8
�
;

(B12)

Sð5Þþ ¼ s2�ð1þ c2i Þ
�
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e3 � 26875
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e5 þ 23 125
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e7
�
;

(B13)

Sð6Þþ ¼ s2�ð1þ c2i Þ
�
81

4
e4 � 2349

40
e6 þ 147 177
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e8
�
;

(B14)

Sð7Þþ ¼ s2�ð1þ c2i Þ
�
117 649

3840
e5 � 588 245
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e7
�
; (B15)

Sð8Þþ ¼ s2�ð1þ c2i Þ
�
2048

45
e6 � 48 128

315
e8
�
; (B16)

Sð9Þþ ¼ s2�ð1þ c2i Þ
4 782 969

71 680
e7; (B17)

Sð10Þþ ¼ s2�ð1þ c2i Þ
390 625

4032
e8: (B18)

Cð2Þ
� ¼ s2�ci

�
�4þ 10e2 � 11

2
e4 þ 179

180
e6 � 7
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e8
�
;

(B19)

Cð3Þ
� ¼ s2�ci

�
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8
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e7
�
;

(B20)

Cð4Þ
� ¼ s2�ci

�
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e6 þ 1376
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�
;
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Cð5Þ
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e7
�
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2
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�
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Cð9Þ
� ¼ �s2�ci

4 782 969
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e7; (B26)

Cð10Þ
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e8; (B27)

Sð2Þ� ¼ c2�ci
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�
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APPENDIX C: THE �k COEFFICIENTS

The coefficients defined in Eq. (4.31) are given by the
following expressions, when one fixes � ¼ � ¼ 0:

�1 ¼ �
��

� 19 496 441

368 640
Fþ � 20 671 709

368 640
iF�

�
e7

þ
�
111 701

4608
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þ
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�
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þ
�
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þ 4ðFþ þ iF�Þ;
�3 ¼

�
� 39 934 951

122 880
Fþ � 40 111 999

122 880
iF�

�
e7

þ
�
368 823

2560
Fþ þ 370 047

2560
iF�

�
e5

þ 813

16
ð�Fþ � iF�Þe3 þ 9ðFþ þ iF�Þe;

�4 ¼
�
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ðFþ þ iF�Þe6 þ 81

2
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92 160
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ð�336þ 2227e2Þe6ðFþ þ iF�Þ;

�9 ¼ 4 782 969

35 840
e7ðFþ þ iF�Þ;

�10 ¼ 390 625

2016
e8ðFþ þ iF�Þ: (C1)

APPENDIX D: ENDING FREQUENCY FOR
ECCENTRIC BINARIES

In this appendix we discuss possible generalizations of
the notion of an ISCO to eccentric binaries. The idea is that
eccentric binaries will transition from inspiral to plunge at
a frequency slightly different from the circular ISCO fre-
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quency, and we may worry about the effect of this modified
ISCO on the upper cutoff frequency used in SNR
calculations.

A possible way to modify the ISCO location is to use the
Newtonian formula in Eq. (2.4) with a ¼ p=ð1� e2Þ and
p ¼ 6þ 2e, which corresponds to the value of the separa-
trix between stable and unstable (plunging) orbits. In this
way we would find that the ISCO frequency is

FISCO ¼ 1

2�M

�
1� e2

6þ 2e

�
3=2

: (D1)

This guess cannot be valid for large eccentricities, when
the pericenter becomes small, since then the Newtonian
relations break down. A more accurate approximation of
the ISCO frequency is to use the pericenter frequency
�2

p ¼ M=r3p at the separatrix pericenter rp ¼ 6þ 2e,

leading to [96–98]

FISCO ¼ 1

2�M

�
1þ e

6þ 2e

�
3=2

; (D2)

but this result is also not appropriate here because this
eccentricity corresponds to that associated with
Schwarzschild geodesics, so it is not equivalent to the
Newtonian definition of eccentricity we have used (see
e.g. [69] for a discussion).

One expects the residual eccentricity any binary could
have by the time it enters the strong field to be small. The
classic work of Peters and Mathews [8] and Peters [9]
suggests that a binary with some moderate initial eccen-

tricity will rapidly circularize. Since e=e0 � ðf=f0Þ�19=18

to leading order [see e.g. Eq. (2.34) in [10]], an orbit with
initial eccentricity e0 ¼ 0:4 at the beginning of the LIGO
band will have a final eccentricity of e ’ 0:035 by the time
it reaches LIGO’s highest sensitivity region at 200 Hz.
These results suggest that the ISCO frequency for eccentric
inspirals will generically be close to the ISCO frequency
for circular inspirals, provided this frequency is much
larger than the initial frequency associated with the initial
eccentricity. If the latter is not the case (e.g. if a binary with
e0 ¼ 0:4 at F0 ¼ 20 Hz merges at 40 Hz), then one might
have to worry about the precise definition of the ISCO, but
in such cases the SNR will be dominated by the merger
waveform and not the inspiral. We are thus justified to
ignore eccentric corrections to the ISCO and employ the
usual circular-orbit ISCO expression in our SNR
calculations.

APPENDIX E: FREQUENCYATA GIVEN TIME
BEFORE MERGER

LISA sources can easily orbit for more than 1 yr in the
LISA band. The LISA mission, however, is not expected to
last for more than a few years in orbit. For this reason, it is
customary to perform LISA SNR and parameter estimation
calculations assuming that the source is observed over the
last year (or few years) of inspiral.

In the case of circular inspirals, one can compute exactly
(to Newtonian order) the frequency at a given time T prior
to merger. This is given by Eq. (2.15) in Ref. [65]:

fyr ¼ 4:149� 10�5

�
M

106M�

��5=8
�

T

1 yr

��3=8
Hz: (E1)

This equation can be obtained by finding TðFÞ as the
integral of _F�1 and then inverting the resulting expression
to find FðTÞ.
In the case of eccentric inspirals, an analogous relation

cannot be obtained analytically. This is because the equa-
tion for _F in Eq. (4.24) is a function of the eccentricity,
which itself is a function of the frequency (and implicitly
time). One could attempt to construct an approximation for
FðTÞ by inserting Eq. (3.11) for eðFÞ into the expression for
_F in Eq. (4.24) to compute TðFÞ, and then perturbatively
inverting this relation to find FðTÞ. The resulting asymp-
totic series, however, is poorly convergent for large masses
or large integration times.
A numerical procedure is thus necessary to find fyr for

eccentric inspirals. One such scheme is as follows. Given
some e0 and F0, one can find the corresponding initial
semimajor axis a0 from the first equality in Eq. (2.4).
From this, one can then use this same equation to find
the corresponding constant c0. The eccentricity eT a time T
before merger is then given by Eq. (5.14) in [8], namely,

Tða0; e0Þ ¼ 12

19

c40
�

Z eT

0

dee29=19

ð1� e2Þ3=2
�
1þ 121

304
e2
�
1181=2299

;

(E2)

where � ¼ m1m2M. This is because the eccentricity at
zero orbital separation (roughly corresponding to
‘‘merger’’) vanishes in the Newtonian approximation. If
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FIG. 9 (color online). Frequency 1 yr prior to merger as a
function of total mass for equal-mass binaries with different
initial eccentricity: e0 ¼ 0 (crosses), e0 ¼ 0:1 (circles), e0 ¼ 0:2
(squares), and e0 ¼ 0:4 (diamonds). The quantity f ¼ 10�4 Hz
corresponds to the acceleration noise cutoff frequency.
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we set T ¼ 1 yr, then we can solve Eq. (E2) for eyr
numerically using bisection or the secant method in
MATHEMATICA. Once the appropriate eyr is found, one

can use this to find ayr via Eq. (2.4), which can then also

be used to find fyr for some given e0 and M.

Figure 9 plots the dominant GW frequency (twice the
orbital frequency) 1 yr prior to merger found with the
above algorithm as a function of total mass for equal-
mass binaries with different initial eccentricities. Observe

that as the eccentricity increases, fyr decreases faster with

total mass than in the circular case, because eccentricity
speeds up the inspiral. Thus, given a fixed inspiral time
(e.g. 1 yr), the starting frequency must be pushed to lower
values. Care must be taken, however, since fyr appears

multiplied by ‘=2 in the step functions used to truncate the
waveform. Nonetheless, the above figure suggests that for
total masses M * 106M� it does not matter whether one
uses the circular or eccentric expressions for fyr.
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