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In this paper a holographic description of eternal inflation is developed. We focus on the description of

an open Friedmann-Robertson-Walker (FRW) universe that results from a tunneling event in which a false

vacuum with positive vacuum energy decays to a supersymmetric vacuum with vanishing cosmological

constant. The observations of a ‘‘census taker’’ in the final vacuum can be organized into a holographic

dual conformal field theory that lives on the asymptotic boundary of space. We refer to this bulk-boundary

correspondence as FRW/CFT duality. The dual conformal field theory (CFT) is a Euclidean two-

dimensional theory that includes a Liouville 2D gravity sector describing geometric fluctuations of the

boundary. The renormalization-group flow of the theory is richer than in the AdS/CFT correspondence,

and generates two space-time dimensions—one spacelike and one timelike. We discuss a number of

phenomena such as bubble collisions, and the Garriga, Guth Vilenkin ‘‘persistence of memory,’’ from the

dual viewpoint.
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I INTRODUCTION

There are two views of eternal inflation [1]. According
to the ‘‘global’’ point of view the entire multiverse is an
infinite system of pocket universes populating a landscape
[2–5]. The global view raises some difficult questions of
principle: for example, in saying the multiverse is a system,
do we mean a quantum system described by a wave func-
tion�? If so, what variables does� depend on? How local
is the description? And what relevance does the existence
of cosmic event horizons have? If the description is (ap-
proximately) local, then what operational meaning can be
attached to correlation functions between variables in re-
gions that are out of causal contact?

According to the second local or causal patch viewpoint,
[6] cosmology should be formulated without any reference
to unobservable events beyond the observer’s horizon. In
such a formulation the wave function � depends only on
the degrees of freedom that have operational meaning to
the observer. The biggest question raised by the local
viewpoint is what meaning to attach to events beyond the
observer’s horizon.

In this paper we will focus on the local description of an
observer located in a so-called terminal vacuum with an
exactly vanishing cosmological constant. Following
Shenker, we will call such an observer a census taker
(CT). However, we will also give reasons to believe that
the global and the local descriptions are both correct, being
related by a complementarity principle similar to black
hole complementarity.

Obviously the causal past of the census taker contains
the most information in the asymptotic late-time limit.
Thus, to define the CT’s space of states we need to specify
the late-time limit of the CT’s trajectory. All trajectories in
an eternally inflating universe eventually end in some kind

of terminal state. The terminal states are easiest to describe
if we assume that the mechanism for de Sitter decay is
bubble nucleation of the type considered by Coleman and
De Luccia [7]. The result of such a decay is always an
open, negatively curved, Friedmann-Robertson-Walker
(FRW) universe. This paper will expand on the proposal
of [8], in which a holographic duality was introduced
between an FRW cosmology and a two-dimensional
Euclidean conformal field theory (CFT). This duality will
be called the FRW/CFT correspondence. The regulator that
cuts off the census taker’s observations is time: the longer
the CT observes, the more he counts. Using the dictionary
provided by FRW/CFT, the cutoff may be identified with
the ultraviolet regulator of the two-dimensional CFT.

II. THE CENSUS BUREAU

A. Causal patch

Let us begin with a precise definition of a causal patch.
Start with a cosmological space-time and assume that a
future causal boundary exists. For example, in flat
Minkowski space the future causal boundary consists of
Iþ (future lightlike infinity) and a single point: timelike
infinity. For a Schwarzschild black hole, the future causal
boundary has an additional component: the singularity.
A causal patch is defined in terms of a point a on the

future causal boundary. We call that point the ‘‘census
bureau.1’’ By definition, the causal patch is the causal
past of the census bureau, bounded by its past light cone.
For Minkowski space, one usually picks the census bureau
to be timelike infinity. In that case the causal patch is all of
the Minkowski space as seen in Fig. 1.

1This term originated during a discussion with Steve Shenker.
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In the case of the Schwarzschild geometry, a can again
be chosen to be timelike infinity, in which case the causal
patch is everything outside the horizon of the black hole.
There is no clear reason why one cannot choose a to be on
the singularity [9], but it would lead to obvious difficulties.

de Sitter space has the causal structure shown in Fig. 2.
In this case, all points at future infinity are equivalent: the
census bureau can be located at any of them. However,
string theory and other considerations [10] suggest that de
Sitter minima are never stable. After a series of tunneling
events they eventually end in terminal vacua with exactly
zero or a negative cosmological constant. The entire distant
future of de Sitter space is replaced by a fractal of terminal
bubbles.

Transitions to vacua with negative cosmological con-
stant always lead to singular crunches in which the energy
density blows up, or approaches the Planck scale. As in the
case of the black hole, we will not consider census bureaus
located on singularities. That leaves only the supersym-
metric bubbles with zero cosmological constant.2 Such a
bubble evolves to an open, negatively curved, FRW uni-
verse bounded by a ‘‘hat’’ [8]. The census bureau is at the
tip of the hat.

The term ‘‘census taker’’ denotes an observer in such an
FRW universe who looks back into the past and collects
data. He can count galaxies, other observers, hydrogen
atoms, colliding bubble universes, civilizations, or any-
thing else within his own causal past. As time elapses the
census taker sees more and more of the causal patch.
Eventually all census takers within the same causal patch
arrive at the census bureau where they can compare data.

There are two possible connections between hatted ter-
minal geometries and observational cosmology with a
nonzero cosmological constant. First, for many purposes,

the current cosmological constant is so small that it can be
set to zero. Later we will argue that the conformal field
theory description of the approximate hat which results
from a nonzero cosmological constant is an ultraviolet
incomplete version of the type of field theory that describes
a hat.
This paper is mainly concerned with the second connec-

tion in which hatted geometries are used as probes of
eternal inflation. It was emphasized by Maloney,
Shenker, and Susskind [11] that because any de Sitter
vacuum will eventually decay, a census taker can look
back into it from a point at or near the tip of a hat and
gather information. In principle the census taker can look
back, not only into the ancestor vacuum (our vacuum in
this case), but also into bubble collisions with other vacua
of the landscape. Much of this paper is about the gathering
of information as the census taker’s time progresses, and
how it is encoded in the renormalization-group (RG) flow
of a holographic field theory.

B. Asymptotic coldness

String theory is a powerful tool in the study of quantum
gravity, but only in special backgrounds such as flat space
and anti-de Sitter (AdS) space. Effective as it is in describ-
ing scattering amplitudes in asymptotically-flat (supersym-
metric) space-time, and black holes in anti-de Sitter space,
it is an inflexible tool which at present is not useful as a
mathematical framework for cosmology. What is it that is
so special about flat and anti-de Sitter space backgrounds
that allows a rigorous formulation of quantum gravity, and
why are cosmological backgrounds so difficult?
The problem is frequently blamed on time dependence,

but time-dependent deformations of anti-de Sitter space or
matrix theory [12] are easy to describe. Time dependence
in itself does not seem to be the problem. There is one
important difference between the usual string theory back-
grounds and more interesting cosmological backgrounds.
Asymptotically-flat and anti-de Sitter backgrounds have a
property that we will call asymptotic coldness. Asymptotic
coldness means that the boundary conditions require the
energy density to go to zero at the asymptotic boundary of
space-time. Similarly, the fluctuations in geometry tend to
zero. This condition is embodied in the statement that all

FIG. 2. Conformal diagrams for eternal de Sitter space. The
causal past of the census bureau at a is shown in grey.

FIG. 1. Conformal diagram for ordinary flat Minkowski space.
The causal patch associated with the ‘‘census bureau’’ at t ¼ 1
is the entire space-time.

2We will assume that nonsupersymmetric vacua never have
exactly zero cosmological constant.
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physical disturbances are composed of normalizable
modes. Asymptotic coldness is obviously important to
defining an S matrix in flat space-time, and plays an
equally important role in defining the observables of anti-
de Sitter space.

But in cosmology, asymptotic coldness is never the case.
Closed universes have no asymptotic boundary, and homo-
geneous infinite universes have matter, energy, and geo-
metric variation out to spatial infinity. Under this
circumstance an S matrix cannot be formulated. String
theory at present is ill equipped to deal with asymptotically
warm geometries. To put it another way, there is a conflict
between a homogeneous cosmology and the holographic
principle [13–16] which requires an isolated, cold
boundary.

Consider the three kinds of decay products that can
occur in eternally inflating space-time: de Sitter bubbles
with positive cosmological constant; crunching bubbles
with negative cosmological constant; and supersymmetric
hatted geometries with zero cosmological constant.
de Sitter geometries are never asymptotically cold; the
thermal fluctuations continue forever or at least until the
de Sitter space decays. Crunches are obviously not good
candidates for asymptotic coldness. That leaves vacua with
a vanishing cosmological constant bounded by hats.

The geometry under a hat is not asymptotically cold. A
negatively curved FRW universe is spatially homogeneous
on large scales and not empty. Thus if we fix the time and
go out to spatial infinity, conditions do not become cold.
However, if the cosmological constant is zero, the tem-
perature and density of matter do tend to zero at asymptoti-
cally late times. Although we may not be able to define an
S matrix, the late-time universe can be described in terms
of a supersymmetric spectrum of free particles described
by string theory. This partial asymptotic coldness makes
hatted geometries the best candidates for a precise mathe-
matical formulation of eternally inflating cosmology.

III. THE FRW/CFT DUALITY

A. Open FRW universe

The classical space-time in the interior of a Coleman-
De Luccia bubble [7] has the form of an open infinite FRW
universe. Let H 3 represent a hyperbolic geometry with
constant negative curvature,

dH 2
3 ¼ dR2 þ sinh2Rd�2

2: (3.1)

The metric of open FRW is

ds2 ¼ �dt2 þ aðtÞ2dH 2
3; (3.2)

or in terms of conformal time T (defined by dT ¼ dt=aðtÞ)
ds2 ¼ aðTÞ2ð�dT2 þ dH 2

3Þ: (3.3)

Note that in (3.1) the radial coordinate R is a dimensionless
hyperbolic angle and that the symmetry of the spatial

sections is the noncompact group Oð3; 1Þ. This symmetry
plays a central role in what follows.
If the vacuum energy in the bubble is zero, i.e., no

cosmological constant, then the future boundary of the
FRW region is a hat. The scale factor aðtÞ then has the
early and late-time behaviors

aðTÞ � t�H�1eðTþT0Þ; (3.4)

where H is the Hubble constant of the ancestor vacuum.
For early time when T ! �1 the constant T0 is zero,

aðTÞ ¼ H�1eT ðT ! �1Þ: (3.5)

In the simplest thin-wall case, T0 is zero for all time (within
the FRW region). In general the sign of T0 at late time
depends on the equation of state at the intermediate stage.
If there is an accelerating (decelerating) phase between the
early and the late-time phases (3.4), T0 is positive (nega-
tive) at late time.
In Fig. 3, a conformal diagram of FRW is illustrated,

with surfaces of constant T and R shown. The colored
region represents the de Sitter ancestor vacuum. Figure 4
shows the census taker, as he approaches the tip of the hat,
looking back along his past light cone.
The geometry of a spatial slice of constant T is a three-

dimensional, negatively curved, hyperbolic plane. It is
identical to 3D Euclidean anti-de Sitter space. The two-
dimensional analog is well illustrated in Fig. 5 by Escher’s
drawing ‘‘Limit Circle IV.’’ It is both a drawing of
Euclidean AdS and also a fixed-time slice of open FRW.
In Fig. 5, the green circle is the intersection of the census

taker’s past light cone with the time slice. As the census
taker advances in time, the green circle moves out toward
the boundary.

FIG. 3 (color online). A conformal diagram for the FRW
universe created by bubble nucleation from an ‘‘ancestor’’
metastable vacuum. The colored region is the ancestor vacuum.
The timelike and spacelike curves are surfaces of constant T and
R. The two-sphere at spatial infinity is indicated by �.

CENSUS TAKING IN THE HAT: FRW/CFT DUALITY PHYSICAL REVIEW D 80, 083531 (2009)

083531-3



A fact (to be explained later) which will play a leading
role in what follows, concerns the census taker’s angular
resolution, i.e., his ability to discern small angular varia-
tion. If the time at which the CT looks back is called TCT,
then the smallest angle he can resolve is of order
expð�TCTÞ. It is as if the CT were looking deeper and
deeper into the ultraviolet structure of a quantum field
theory on �. This observation motivates an FRW/CFT
correspondence.

The boundary of anti-de Sitter space plays a key role in
the AdS/CFT correspondence, where it represents the ex-
treme ultraviolet degrees of freedom of the boundary the-
ory. The corresponding boundary in the FRW geometry is
labeled � and consists of the intersection of the hat Iþ,
with the spacelike future boundary of de Sitter space. From
within the interior of the bubble, � represents spacelike
infinity. It is the obvious surface for a holographic descrip-
tion. As one might expect, theOð3; 1Þ symmetry which acts
on the time slices, also has the action of two-dimensional
conformal transformations on �. Whatever the census
taker sees, it is very natural for him to classify his obser-
vations under the conformal group. Thus, the apparatus of
(Euclidean) conformal field theory, such as operator di-
mensions, and correlation functions, should play a leading
role in organizing his data. The conjecture of [8] is that
there exists an exact duality between the bulk description
of the hatted FRW universe and a conformal field theory
living on �.
In complicated situations, such as multiple bubble colli-

sions, � requires a precise definition. The asymptotic light
cone Iþ (which is, of course, the limit of the census taker’s
past light cone), can be thought of as being formed from a
collection of lightlike generators. Each generator, at one
end, runs into the tip of the hat, while the other end
eventually enters the bulk space-time. The set of points
where the generators enter the bulk define �.

B. Observer complementarity and the census taker

This paper is about a duality between the FRW patch
under a hat and two-dimensional conformal field theory.
However, it is possible that there is a larger point at stake—
a possible complementarity between the census taker’s
patch and the entire multiverse. The question is whether
or not degrees of freedom beyond the census taker’s hori-
zon have meaning (we believe the answer is yes) and
whether they are independent of the degrees of freedom
on the observer’s side (in our opinion, no). In the context of
black holes the situation is fairly clear by now and is
encapsulated in the principle of black hole complementar-
ity. A generalization of black hole complementarity is
sometimes called observer complementarity. In this section
we will review the complementarity principle [17–19] and
then discuss its possible application to the relation between
the census taker and the multiverse.
Consider any ordinary quantum system with a Hilbert

space H and a collection of observables (we work in the
Heisenberg picture). Pick two times, one in the past and
one in the future. Call them tin and tout. For every observ-
able AðtoutÞ (to be measured at tout), there is another ob-
servable that can be measured at tin with exactly the same
spectrum, and the same probability distribution as AðtoutÞ in
any state. To find that operator all we have to do is solve the
Heisenberg equations of motion, and express AðtoutÞ as a
functional of the operators at tin. An example from ele-

FIG. 4 (color online). The census taker is indicated by the red
dot. The thin black lines represent his past light cone and the
blue curve is a spacelike surface of constant T.

FIG. 5 (color online). Escher’s drawing of the Hyperbolic
Plane, which represents Euclidean anti-de Sitter space or a
spatial slice of open FRW. The green circle shows the intersec-
tion of the census taker’s past light cone, which moves toward
the boundary with census taker time.
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mentary quantum mechanics is the free particle on a line.
Choose AðtoutÞ to be the position of the particle XðtoutÞ. The
corresponding operator at time tin is

XðtinÞ þ PðtinÞ
M

ðtout � tinÞ:

The point is not that measuring XðtinÞ þ PðtinÞ
M ðtout � tinÞ

at time tin is the same thing as measuring XðtoutÞ at the later
time—it is clearly not—but that in any Heisenberg state,
the probability distribution for the two measurements are
the same.

To say it another way, imagine preparing a particle in the
remote past in some state. WemaymeasureX at time tout or
we may measure X þ P

M ðtout � tinÞ at time tin. The proba-

bility distributions for the two experiments are identical.
Thus, by solving the equations of motion one can ex-

press AðtoutÞ as a functional A�ðtinÞ of operators at time tin.
[A�ðtinÞ has the same probability distribution as AðtoutÞ and
is the same Heisenberg operator as AðtoutÞ]. A formal
expression for A�ðtinÞ is given by

A�ðtinÞ ¼ Uyðtout; tinÞAðtinÞUðtout; tinÞ (3.6)

where Uðtout; tinÞ is the usual time development operator
from tin to tout.

Now let us consider a process in which a black hole
forms and evaporates. We begin by following an in-falling
system in ‘‘free floating coordinates,’’ such as Eddington-
Finkelstein or Painleve-Gullstand coordinates. In such co-
ordinates the in-falling system can be described by ordi-
nary low energy physics as it crosses the horizon, at least
until it approaches the singularity. Consider a low energy
observable AðpÞ at a point p, behind the horizon of the
black hole (see Fig. 6). One can always find an observable
A�ðtinÞ in the remote past, outside the black hole, with the

same expectation value and probability distribution as
AðpÞ. All we need is low energy physics to run the operator
backward to tin. Then we get A�ðtinÞ by running AðtinÞ
forward with U,

A�ðtinÞ ¼ UyAðtinÞU: (3.7)

We emphasize again, that throughout this operation the
description in the in-falling frame is governed by conven-
tional low energy quantum field theory. Note that A�ðtinÞ is
a function of operators at timelike and lightlike past infin-
ity. In other words it is a function of asymptotic in
operators.
Next, assume that in the exterior frame of reference—

the frame of an observer who remains outside the horizon
—the process is governed by an S matrix, connecting in
states to out states. The Hilbert space for this observer
should be isomorphic to the one for the in-falling observer,
but the operator that describes the same physics will de-
pend on which observer we are considering. In the exterior
frame, the operator AðtinÞ evolves into a late-time operator
AðqÞ ¼ SyAðtinÞS, which consists of the outside degrees of
freedom (Hawking radiations). The operator A��ðtinÞwhich
has the same probability distribution as AðqÞ is given by

A��ðtinÞ ¼ SyAðtinÞS ¼ SyUA�ðtinÞUyS: (3.8)

In other words there is a mapping from an operator behind
the horizon to an operator composed of the outgoing
degrees of freedom. The mapping is simply the conjuga-
tion by SyU. Of course the mapping is not an easy one to
decode. Black holes are very efficient ‘‘scramblers’’ of
information [20].
Consider a laboratory falling into a black hole. How

much information can that laboratory contain? The answer
is obvious: if every operator in the laboratory can also be
represented in the Hilbert space of the outgoing evapora-
tion products, then the information in the laboratory cannot
exceed the entropy of the black hole [9]. Let us define a
concept of information capacity for a system or subsys-
tem.3 The information capacity is the maximum amount of
information that the system can contain. Equivalently it is
the maximum entropy of the system. For a quantum system
it is the logarithm of the dimensionality of the Hilbert
space of states needed to describe the system. What we
have argued in the previous paragraph is that the informa-
tion capacity of any subsystem behind the horizon is
bounded by the information capacity of the black hole,
i.e., the Bekenstein-Hawking entropy.
The census taker’s causal patch is bounded by a horizon.

Part of that horizon is the hat itself but it also extends into
the bulk geometry as in Fig. 7. It should be clear that the
census taker’s region is the analog of the exterior of a black
hole, and the portion of the multiverse beyond the horizon
is the analog of the interior of the black hole. Most of the

FIG. 6 (color online). A low energy operator A behind the
horizon can be evolved into the past. The useful coordinates are
freely falling. 3Not to be confused with channel capacity.
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multiverse is behind the horizon and naively cannot be
directly detected by the CT. But there is radiation coming
into the CT’s patch that is analogous to the Hawking
radiation.

The situation is similar to that of information behind the
horizon of a black hole and its evaporation products. In the
practical sense, the information becomes so scrambled that
it is lost to an outside observer. In what follows, we will
conjecture a version of observer complementarity that
applies to the CT’s horizon (even though the logical foun-
dation for the existence of unitary evolution might be
weaker, since there is no analog of the formation and
evaporation of a black hole).

We take the following assertions as given:
(i) The degrees of freedom accessible to the CT are a

complete description of the multiverse.
(ii) The Hilbert space of the CT’s patch, i.e., the FRW

region under the hat, is isomorphic to the Hilbert
space of the multiverse. Operators outside the CT’s
horizon are complementary to operators within the
horizon in the sense that they have the same
statistics.

At first sight these assumptions appear to be impossible
since the FRW patch of the CT is a proper subset of the
multiverse. It seems clear that the CT can never have
enough information to decode the multiverse.

However, here is where the current setup differs from a
black hole. The black hole can only store a finite amount of
information—the entropy of the black hole—and an ob-
server on the outside cannot collect more information than
that. But in the case of the census taker, if he waits long
enough there is no bound to the amount of information that
he can collect. In other words, the information capacity in
the CT’s patch is infinite. (It is worth noting that the
information capacity of a de Sitter space if it were stable
would not be infinite.)

The ‘‘bulk’’ theory of the multiverse also requires an
unbounded number of degrees of freedom to describe it.
The phenomenon of eternal inflation will eventually popu-

late the multiverse with an infinite number of events of
every kind. For these reasons, counting and comparing the
information capacity of the CT’s patch and the information
capacity of the multiverse can only make sense for regu-
larized versions of the theories.
There is one more point that is worth mentioning.

Consider Fig. 8. The triangular region on the left is the
FRW patch and the triangle on the right is the portion of the
ancestor vacuum which lies beyond the CT’s horizon. Note
that the two regions share a common boundary, namely �.
This suggests that the boundary-holographic theory de-
scribing the census taker’s patch may also be the holo-
graphic description of the rest of the multiverse.
The rest of this paper is about the duality of the boundary

CFT and the FRW patch. It is independent of the conjec-
tured observer complementarity relating it to the global
description of the multiverse.

IV. THE HOLOGRAPHIC WHEELER-DEWITT
EQUATION AND THE FSSY CONJECTURE

The traditional approach to quantum cosmology, the
Wheeler-DeWitt equation, is the opposite of string theory:
it is very flexible from the point of view of background
dependence—it does not require an an asymptotically cold
boundary condition, it can be formulated for a closed
universe, a flat or open FRW universe, de Sitter space, or
for that matter, flat and anti-de Sitter space space-time—
but it is not a consistent quantum theory of gravity. It is
based on the existence of local bulk degrees of freedom and
therefore fails to address the problems that string theory
and the holographic principle were designed to solve,

FIG. 7 (color online). The horizon of the CT consists of the hat
and its continuation into the bulk.

FIG. 8 (color online). The FRW patch and the portion of the
ancestor behind the horizon share a common boundary �.
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namely, the huge overcounting of degrees of freedom
implicit in a local field theory.

Freivogel, Sekino, Susskind, and Yeh (FSSY) [8] sug-
gested a way out of the dilemma: synthesize the Wheeler-
DeWitt philosophy with the holographic principle to con-
struct a holographic Wheeler-DeWitt (WDW) theory. We
will begin with a review of the basics of conventional
WDW theory; for a more complete treatment, especially
of infinite cosmologies, see [21].

The ten equations of general relativity take the form

�

�g��
I ¼ 0 (4.1)

where I is the Einstein action for gravity coupled to matter.
The canonical formulation of general relativity makes use
of a time-space split [22]. The six space-space components
are more or less conventional equations of motion, but the
four equations involving the time index have the form of
constraints. These four equations are written,

H�ðxÞ ¼ 0: (4.2)

They involve the space-space components of the metric
gnm, the matter fields�, and their conjugate momenta. The
time component H0ðxÞ is a local Hamiltonian which
‘‘pushes time forward’’ at the spatial point x. More gen-
erally, if integrated with a test function,

Z
d3xfðxÞH0ðxÞ (4.3)

it generates infinitesimal transformations of the form

t ! tþ fðxÞ: (4.4)

Under certain conditions H0 can be integrated over
space in order to give a global Hamiltonian description.
Since H0 involves second space derivatives of gnm, it is
necessary to integrate by parts in order to bring the
Hamiltonian to the conventional form containing only first
derivatives. In that case the Arnowitt-Deser-Misner equa-
tions can be written as

Z
d3xH ¼ E: (4.5)

The Hamiltonian density H has a conventional structure,
quadratic in canonical momenta, and the energy E is given
by a Gaussian surface integral over spatial infinity. The
conditions which allow us to go from (4.2) to (4.5) are
satisfied in asymptotically cold flat-space time, as well as
in anti-de Sitter space; in both cases global Hamiltonian
formulations exist. Indeed, in anti-de Sitter space the
Hamiltonian of the holographic boundary description is
identified with the Arnowitt-Deser-Misner energy, but, as
we noted, cosmology, at least in its usual forms, is never
asymptotically cold. The only recourse for a canonical
description is the local form of Eqs. (4.2).

When we pass from classical gravity to its quantum
counterpart, the usual generalization of the canonical
Eqs. (4.2) becomes the Wheeler-DeWitt equations,

H�j�i ¼ 0 (4.6)

where the state vector j�i is represented by a wave func-
tional that depends only on the space components of the
metric gmn, and the matter fields �.
The first three equations

Hmj�i ¼ 0 ðm ¼ 1; 2; 3Þ (4.7)

have the interpretation that the wave function is invariant
under spatial diffeomorphisms,

xn ! xn þ fnðxmÞ: (4.8)

In other words�ðgmn;�Þ is a function of spatial invariants.
These equations are usually deemed to be the easy
Wheeler-DeWitt equations.
The difficult equation is the time component

H0j�i ¼ 0: (4.9)

It represents invariance under local, spatially varying, time
translations. Not only is Eq. (4.9) difficult to solve; it is
difficult to even formulate: the expression for H0 is riddled
with factor ordering ambiguities. Nevertheless, as long as
the equations are not pushed into extreme quantum envi-
ronments, they can be useful.

A. Wheeler-DeWitt and the emergence of time

Asymptotically cold backgrounds come equipped with a
global concept of time. But in the more interesting asymp-
totically warm case, time is an approximately derived
concept [21,23], which emerges from the solutions to the
Wheeler-DeWitt equation. The perturbative method for
solving (4.9) that was outlined in [21] can be adapted to
the case of negative spatial curvature. We begin by decom-
posing the spatial metric into a constant curvature back-
ground and fluctuations. Since we will focus on open FRW
cosmology, the spatial curvature is negative, the space
metric having the form

ds2 ¼ a2ðdR2 þ sinh2Rðd�2 þ sin2�d�2ÞÞ
þ a2hmndx

mdxn: (4.10)

In (4.10) a is the usual FRW scale factor and the x’s are
ðR; �;�Þ.
The first step in a semiclassical expansion is the so-

called mini-superspace approximation in which all fluctu-
ations are ignored. In lowest order, the Wheeler-DeWitt
wave function depends only on the scale factor a. To carry
out the leading approximation in open FRW, it is necessary
to introduce an infrared regulator which can be done by
bounding the value of R,

R< R0 ðR0 � 1Þ: (4.11)
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Let us also define the total dimensionless coordinate vol-
ume within the cutoff region, to be V0,

V0 ¼ 4�
Z

dRsinh2R � 1

2
�e2R0 : (4.12)

The first (mini-superspace) approximation is described
by the action

L ¼ �aV0 _a
2 � V0a

2
: (4.13)

Defining P to be the momentum conjugate to the scale
factor a,

P ¼ �aV0 _a (4.14)

the Hamiltonian H is given by 4

H ¼ 1

2V0

P
1

a
P� 1

2
V0a: (4.15)

Finally, using P ¼ �i@a, the first approximation to the
Wheeler-DeWitt equation becomes

� @a
1

a
@a�� V2

0a� ¼ 0: (4.16)

The equation has two solutions,

� ¼ expð�iV0a
2=2Þ; (4.17)

corresponding to expanding and contraction universes; to
see which is which we use (4.14). The expanding solution,
labeled �0 is

�0 ¼ expð�iV0a
2=2Þ: (4.18)

From now on we will only consider this branch.
At first sight there is something peculiar about (4.18).

Multiplying V0 by a2 seems like an odd operation. V0a
3 is

the proper volume, but what is V0a
2? In flat space it has no

invariant significance, but in hyperbolic space its geomet-
ric meaning is simple: it is just the proper area of the
boundary at R0. One sees from the metric (3.3) that the
coordinate volume V0 and the coordinate area A0, of the
boundary at R0, are (asymptotically) equal to one another,
to within a factor of 2,

A0 ¼ 2V0: (4.19)

Thus the expression in the exponent5 in (4.18) is �iA0=4,
where A0 is the proper area of the boundary at R0,

�0 ¼ expð�iA0=4Þ: (4.20)

This is very suggestive. It is the first indication of a
holographic version of the WDW theory for an open FRW
universe.

To go beyond the mini-superspace approximation, one
writes the wave function as a product of �0, and a second
factor c ða; h;�Þ that depends on the fluctuations,

�ða; h;�Þ ¼ �0c ða; h;�Þ ¼ expð�iA0a
2=4Þc ða; h;�Þ:

(4.21)

By integrating the Wheeler-DeWitt equation over space,
and substituting (4.21), an equation for c can be obtained,

i@ac � 1

A0

@a
1

a
@ac ¼ Hmc : (4.22)

In this equation Hm has the form of a conventional
Hamiltonian (quadratic in the momenta) for both matter
and metric fluctuations.
In the limit of a large scale factor, the term 1

A0
@a

1
a @ac

becomes negligible and (4.22) takes the form of a
Schrodinger equation,

i@ac ¼ Hmc : (4.23)

Evidently the role of a is not as a conventional observable,
but a parameter representing the unfolding of cosmic time.
One does not calculate its probability, but instead con-
strains it—perhaps with a delta function or a Lagrange
multiplier. As Banks has emphasized [23], in this limit,
and maybe only in this limit, the wave function c has a
conventional interpretation as a probability amplitude.
As we have described it, the Wheeler-DeWitt theory is a

throwback to an older view of quantum gravity based on
the existence of bulk, space-filling degrees of freedom. It
has become clear that this is a serious overestimate of the
capacity of space to contain quantum information. The
correct (holographic) counting of degrees of freedom is
in terms of the area of the boundary of space [13]. The
question addressed by FSSY [8] is how to combine the
flexibility of the Wheeler-DeWitt theory with the require-
ments of the holographic principle.

B. The FSSY conjecture

The conjecture of [8] is as follows:
The holographic description of the FRW region under a

hat is a Wheeler-DeWitt theory in which the ordinary bulk
degrees of freedom are replaced by degrees of freedom that
reside on the asymptotic boundary of space, i.e., on �. The
Wheeler-DeWitt wave function is a functional of those
boundary degrees of freedom. Semiclassical bulk degrees
of freedom are approximate concepts reconstructed from
the precise boundary quantities.
Unlike the AdS case in which the boundary is asymptoti-

cally cold, the holographic degrees of freedom include a
dynamical boundary metric.
As in the AdS/CFT correspondence [16], it is useful to

define a regulated boundary, �0, at R ¼ R0. In the regu-
lated theory the number of degrees of freedom is propor-
tional to the area of the regulated boundary in Planck units.

4The factor ordering in the first term is ambiguous. We have
chosen the simplest Hermitian factor ordering.

5In this subsection we are setting 4�G=3 equal to 1. Including
this factor, the wave function is �0 ¼ expð�ið 3

4�ÞðA0

4GÞÞ.
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In principle R0 can depend on the angular location on
�2,

R0 ¼ R0ð�2Þ:
In fact, later we will discuss invariance under gauge trans-
formations of the form

R ! Rþ fð�2Þ: (4.24)

[The notation fð�2Þ indicating that f is also a function of
location on �0.]

Let us now consider the boundary degrees of freedom. In
AdS/CFT the boundary theory is typically a gauge theory
and does not include gravitational degrees of freedom.
Asymptotic coldness is the statement that the bulk fields
are frozen at the boundary and do not fluctuate. But in an
asymptotically warm geometry, the boundary geometry
will fluctuate. For this reason the boundary degrees of
freedom must include a two-dimensional spatial metric
on �0. The induced spatial geometry of the boundary can
always be described in the conformal gauge in terms of a
Liouville field Uð�2Þ,

ds2 ¼ e2Uð�2Þe2R0ð�2Þd�2
2: (4.25)

The Liouville field U may be decomposed into a homo-
geneous term U0, and a fluctuation. Obviously the homo-
geneous term can be identified with the FRW scale factor,

eU0 ¼ a: (4.26)

In Sec. VI, we will give a more detailed definition of the
Liouville degree of freedom.

We also postulate a collection of boundary ‘‘matter’’
fields. The boundary matter fields, y, are not the limits of
the usual bulk fields �, but are analogous to the boundary
gauge fields in the AdS/CFT correspondence. In this paper,
we will not speculate on the detailed form of these bound-
ary matter fields.

C. The wave function

In addition to U and y, we assume a local Hamiltonian
HðxiÞ that depends only on the boundary degrees of free-
dom (the notation xi refers to coordinates of the boundary
�), and a wave function �ðU; yÞ,

�ðU; yÞ ¼ e�ð1=2ÞSþiW: (4.27)

At every point of �, � satisfies

HðxiÞ�ðU; yÞ ¼ 0: (4.28)

In Eq. (4.27), SðU; yÞ andWðU; yÞ are real functionals of
the boundary fields. For reasons that will become clear, we
will call S the action. However, S should not in any way be
confused with the four-dimensional Einstein action.

We make the following three preliminary assumptions
about S and W:

(i) Both S and W are invariant under conformal trans-
formations of �. This follows from the Oð3; 1Þ sym-
metry of the background geometry.

(ii) The leading (nonderivative) term in the regulated
form ofW is�A=4where A is the proper area of�0,

W ¼ � 1

4

Z
�
e2R0e2U þ . . . (4.29)

This follows from (4.20). This term plays a role in
determining the expectation values of momentum
conjugate to U, but will play secondary roles in this
paper.

(iii) S has the form of a local two-dimensional
Euclidean action on �. In other words it is an
integral over �, of densities that involve U, y,
and their derivatives with respect to xi.

The first of these conditions is just a restatement of the
symmetry of the Coleman-De Luccia (CDL) instanton.
Later we will see that this symmetry is broken by a number
of effects, including the extremely interesting ‘‘persistence
of memory’’ discovered by Garriga, Guth, and Vilenkin
(GGV) [24].
The second condition follows from the bulk analysis

described earlier in Eq. (4.20). It allows us to make an
educated guess about the dependence of the local
Hamiltonian HðxiÞ on U. A simple form that reproduces
(4.20) is

HðxÞ ¼ 1
2e

�2U�2
U � e4R0

8
e2U þ . . . (4.30)

where �U is the momentum conjugate to U. It is
easily seen that the solution to the equation H� ¼ 0 has
the form (4.20).
The highly nontrivial assumption is the third item—the

locality of the action. That the action S is local is far from
obvious; as a rule quantum field theory wave functions are
not local in this sense. In our opinion item three is the
strongest of our assumptions and the one most in need of
confirmation. At present our best evidence for the locality
is the discrete tower of boundary correlators, including a
two-dimensional transverse, traceless, dimension-2 tensor-
correlation function, discovered in [8]. This is consistent
with a dimension-2 energy-momentum tensor—a neces-
sary condition for a local field theory.
In principle, much more information can be obtained

from bulk multipoint functions, continued to �. For ex-
ample, correlation functions of hij would allow us to study

the operator product expansion of the energy-momentum
tensor.
The assumption that S is local is a very strong one, but

we mean it in a rather weak sense. One of the main points
of this paper is that there is a natural RG flow in cosmology
(see Sec. VI). By locality we mean only that S is in the
basin of attraction of a local field theory. If it is true,
locality would imply that the measure
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��� ¼ e�S (4.31)

has the form of a local two-dimensional Euclidean field
theory with action S, and that the census taker’s observa-
tions could be organized not only by conformal invariance
but by conformal field theory.

V. DATA

The conjectured locality of the action S is based on data
calculated by FSSY. The background geometry studied in
[8] was the Minkowski continuation of a thin-wall CDL
instanton, describing transitions from the ancestor vacuum
to a hatted supersymmetric vacuum with zero cosmologi-
cal constant. In this section, the data of [8] will be
reviewed.

We begin with some facts about three-dimensional hy-
perbolic space and the solutions of its massless Laplace
equation. An important distinction is between normaliz-
able modes and non-normalizable modes. A minimally
coupled scalar field � is sufficient to illustrate the impor-
tant points.

The norm in hyperbolic space is defined in the obvious
way:

h�j�i ¼
Z

dRd�2�
2sinh2R: (5.1)

In flat space, fields that tend to a constant at infinity are on
the edge on normalizability. With the help of the delta
function, the concept of normalizability can be generalized
to continuum normalizability, and the constant ‘‘zero
mode’’ is included in the spectrum of the wave operator,
but in hyperbolic space the normalization integral (5.1) is
exponentially divergent for constant �. The condition for
normalizability is that � ! 0 at least as fast as e�R. The
constant mode is therefore non-normalizable.

Normalizable and non-normalizable modes have very
different roles in the conventional AdS/CFT correspon-
dence. Normalizable modes are dynamical excitations
with finite energy and can be produced by events internal
to the anti-de Sitter space. By contrast non-normalizable
modes cannot be excited dynamically. Shifting the value of
a non-normalizable modes is equivalent to changing the
boundary conditions from the bulk point of view, or chang-
ing the Lagrangian from the boundary perspective. But, as
we will see, in the cosmological framework of FSSY,
asymptotic warmness blurs this distinction.

The massless scalar correlator in the CDL background
stays finite when the points approach the boundary [8]. In
other words, non-normalizable modes (which have arbi-
trary angular dependence, and stay finite near the bound-
ary) are excited. We will call this geometry asymptotic
warm, in the sense that we cannot turn off perturbations at
spatial infinity.

The reason for this asymptotic warmness is the fact that
the Euclidean version of the CDL instanton is compact

(even though the spatial slice of the Lorentzian geometry is
noncompact). The Euclidean metric is of the form

ds2 ¼ a2ðXÞðdX2 þ d�2 þ sin2��2
2Þ: (5.2)

Note that the Euclidean version of de Sitter space is a four-
dimensional sphere (for which aðXÞ ¼ H�1= coshX, with
�1 � X � 1, where H is the Hubble constant of the
ancestor vacuum). The Euclidean CDL geometry in the
thin-wall limit is a sphere cut at certain value of X and
patched with a flat disc [for which aðXÞ / H�1eX] on the
negative X side. The open FRW universe (3.3) is given by
the analytic continuation

X ! T þ �i=2; � ! iR; (5.3)

from (5.2). (Note eX ! ieT , and that S3 goes to H 3).
Correlators are calculated in the Euclidean background

(5.2) and analytically continued to the FRWuniverse, as we
will review below.

A. Scalars

Correlation functions of massless (minimally coupled)
scalars, �, depend on time and on the dimensionless geo-
desic distance between points onH 3. In the limit in which
the points tend to the holographic boundary � at R ! 1,
the geodesic distance between points 1 and 2 is given by

l1;2 ¼ R1 þ R2 þ logð1� cos�Þ (5.4)

where � is the angular distance on S2 between 1 and 2. It
follows on Oð3; 1Þ symmetry grounds that the correlation
function h�ð1Þ�ð2Þi has the form

h�ð1Þ�ð2Þi ¼ Gfl1;2; T1; T2; g
¼ GfR1 þ R2 þ logð1� cos�Þ; T1; T2g:

(5.5)

Before discussing the data on the CDL background, let
us consider the form of correlation functions for scalar
fields in anti-de Sitter space. We work in units in which
the radius of the anti-de Sitter space is 1. By symmetry, the
correlation function can only depend on l, the proper
distance between points. The two-point function has the
form

h�ð1Þ�ð2Þi � e�ð��1Þl

sinhl
: (5.6)

In anti-de Sitter space the dimension � is related to the
mass of � by

�ð�� 2Þ ¼ m2: (5.7)

We will be interested in the limit in which the two
points 1 and 2 approach the boundary at R ! 1. Using
(5.4) gives

h�ð1Þ�ð2Þi � e��R1e��R2ð1� cos�Þ��: (5.8)
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It is well known that the ‘‘infrared cutoff’’ R, in anti-
de Sitter space, is equivalent to an ultraviolet cutoff in the
boundary-Holographic description [16]. The exponential
factors, expð��RÞ in (5.8) have an important quantum
field theoretic meaning: they exactly correspond to cutoff
dependent wave function renormalization constants. These
factors are normally stripped off when defining field theory
correlators. However, in this paper we will not remove
them.

The remaining factor, ð1� cos�Þ�� is the conformally
covariant correlation function of a boundary field of di-
mension �.

Now let us briefly explain how to calculate the correlator
on the CDL background. Equation of motion for massless
scalar � in the Euclidean CDL geometry is

�
�@2X þ a00ðXÞ

aðXÞ � r2
S

�
ðaðXÞ�Þ ¼ 0; (5.9)

where r2
S is the Laplacian on S3. The Euclidean correlator

is expressed as

h�ðX1; 0Þ�ðX2; �Þi ¼ 1

aðX1ÞaðX2Þ
�

Z
C1

dk

2�
u�kðX1ÞukðX2ÞGkð�Þ;

(5.10)

where ukðXÞ are the eigenfunctions of the Schrödinger
operator: ½�@2X þ a00ðXÞ=aðXÞ	ukðXÞ ¼ ðk2 þ 1ÞukðXÞ,
and Gkð�Þ ¼ sinhkð�� �Þ=ðsin� sinhk�Þ is the Green’s
function on S3 with mass (k2 þ 1). The correlator in the
thin-wall limit can be written in terms of the reflection
coefficient RðkÞ in the potential a00ðXÞ=aðXÞ. RðkÞ has a
pole at k ¼ i, corresponding to a bound state [we can see
that uBðXÞ / aðXÞ is a bound state with eigenvalue k ¼ i].
The integration contour C1 indicates that the integration is
done along the real axis and the contribution from the
residue of the pole at k ¼ i is added [which is equivalent
to the integration along the contour (a) in Fig. 9].6 We can
easily show that (5.10) indeed satisfies (5.9) with a delta
function on the right-hand side.

Performing the analytic continuation (5.3), we get the
correlator on the Lorentzian CDL background,

h�ðT1; 0Þ�ðT2; lÞi ¼ e�ðT1þT2Þ
Z
C1

dk

2�
ðeikðT1�T2þ�Þ

þRðkÞe�ikðT1þT2ÞÞ sinkl

sinhl sinhk�
(5.11)

where l is the geodesic distance on H 3.
The first term, which has nontrivial dependence on

(T1 � T2), exists even when there is no bubble nucleation.
Namely, the FRW region in the thin-wall limit can be
thought of as a part of flat Minkowski space (called the
Milne universe); the first term gives the correlator in
Minkowski space written in hyperbolic coordinates.7 So
we will call this term the flat space piece. The second term,
which involves RðkÞ depends on the details of bubble
nucleation, such as the Hubble constant of the false vac-
uum and the tension of the domain wall.
In FSSY [8], it was shown that the correlator on the CDL

background can be written as a sum of AdS correlators
with definite masses (dimensions). By deforming the con-
tour for the k integration, we get a discrete sum over
residues at the poles. The integrand has poles at integer
multiples of k ¼ i, and there is a double pole at k ¼ i. In
addition RðkÞ may have other singularities in the lower
half plane.8

Let us study the second term of (5.11) which involves
RðkÞ. In the region of our interest (l ! 1), the contour can
be closed in the following way:

FIG. 9. Contours of integration for the two contributions G1,
G2.

6We take this contour since we have to include the bound state
mode in the complete set in the X space. Otherwise, the corre-
lator becomes singular at X ! �1 (or T ! �1) even though
the background is smooth there. The presence of a bound state in
the Euclidean problem corresponds to the presence of non-
normalizable modes in the FRW universe as we will see below.

7We can do the integral for the first term in (5.11) by contour
deformation, and see that it agrees with the massless correlator in
flat space, h�ð1Þ�ð2Þi ¼ 1=fðT̂1 � T̂2Þ2 � jX̂a

1 � X̂a
2j2g, where T̂,

X̂ are the Minkowski coordinates, related to the hyperbolic
coordinates by T̂ ¼ eT coshR, X̂a ¼ eT sinhR�a.

8Poles in the lower half plane correspond to ‘‘virtual states’’
and resonances, which blow up at X ! �1.
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e�ðT1þT2Þ
�I

a

dk

2�
RðkÞ e�ikðT1þT2�lÞ

2 sinhl sinhk�

þ
I
b

dk

2�
RðkÞ e�ikðT1þT2þlÞ

2 sinhl sinhk�

�
(5.12)

where the contours
H
a and

H
b are shown in Fig. 9. FSSY

ignored the contribution from poles in the lower half plane
on the basis that they are negligible at late time. In fact
those terms have significance that we will come back to,
but first we will review the terms studied in FSSY.

First, there is the normalizable contribution, G1. This is
an infinite sum, each term having the form (5.8) with
T-dependent coefficients,

G1 ¼
X1
�¼2

G�e
ð��2ÞðT1þT2Þ e

�ð��1Þl

sinhl

! X1
�¼2

G�e
ð��2ÞðT1þT2Þe��R1e��R2ð1� cos�Þ��

(5.13)

where � takes on integer values from 2 to1, and G� are a
series of constants which depend on the detailed CDL
solution.

The connection with conformal field theory correlators
is obvious; Eq. (5.13) is a sum of correlation functions for
fields of definite dimension �, but with coefficients which
depend on the time T. (It should be emphasized that the
dimensions � in the present context are not related to bulk
four-dimensional masses.) Note that the sum in (5.13)
begins at � ¼ 2, implying that every term falls at least as
fast as expð�2RÞ with respect to either argument. Thus
every term is normalizable.

Let us now extrapolate (5.13) to the surface �. � can be
reached in two ways—the first being to go out along a
constant T surface to R ¼ 1. Each term in the correlator
has a definite R dependence which identifies its dimension.

Another way to get to � is to first pass to lightlike
infinity, Iþ, and then slide down the hat, along a lightlike
generator, until reaching �. For this purpose it is useful to
define light cone coordinates, T� ¼ T � R,

G1 ¼ e�ðTþ
1
þTþ

2
ÞX
�

G�e
ð��1ÞðT�

1
þT�

2
Þð1� cos�Þ��:

(5.14)

We note that apart from the overall factor e�ðTþ
1
þTþ

2
Þ, G1

depends only on T�, and therefore tends to a finite limit on
Iþ. If we strip that factor off, then the remaining expres-
sion consists of a sum over CFT correlators, each propor-
tional to a fixed power of eT

�
. In the limit (T� ! �1) in

which we pass to �, each term of fixed dimension tends to

zero as eð��1ÞðT�
1
þT�

2
Þ with the dimension-2 term dominat-

ing the others.
The second term in the scalar correlation function dis-

cussed by FSSY consists of a single term, which comes

from the double pole at k ¼ i,

G2 ¼ el

sinhl
ðT1 þ T2 þ lÞ

! fTþ
1 þ Tþ

2 þ logð1� cos�Þg: (5.15)

The contribution (5.15) does not have the form of a corre-
lator of a conformal field of definite dimension. To under-
stand its significance, consider a canonical massless scalar
field in two dimensions. On a two-sphere the correlation
function is ultraviolet divergent and has the form

logf	2ð1� cos�Þg (5.16)

where 	 is the ultraviolet regulator momentum. If the
regulator momentum varies with location on the
sphere—for example in the case of a lattice regulator
with a variable lattice spacing—formula (5.16) is replaced
by

logfð1� cos�Þg þ log	1 þ log	2: (5.17)

Evidently if we identify the UV cutoff 	 with Tþ,

log	 ¼ Tþ; (5.18)

the expressions in (5.15) and (5.17) are identical. The
relation (5.18) is one of the central themes of this paper,
that as we will see, relates RG flow to the observations of
the census taker.
That the UV cutoff of the 2D boundary theory depends

on R is very familiar from the UV/IR connection [16] in
anti-de Sitter space. In that case the T coordinate is absent
and the log of the cutoff momentum in the conformal field
theory would just be R. The additional time-dependent
contribution in (5.18) will become clear later when we
discuss the Liouville field.
The logarithmic ultraviolet divergence in the correlator

is a signal that massless 2D scalars are ill defined; the well-
defined quantities being derivatives of the field.9 When
calculating correlators of derivatives, the cutoff depen-
dence disappears. Thus for practical purposes, the only
relevant term in (5.17) is logð1� cos�Þ.
The existence of a dimension-zero scalar field on � is a

surprise. It is obviously associated with bulk field modes
which do not go to zero for large R. Such modes are non-
normalizable on the hyperbolic plane, and are usually not
included among the dynamical variables in anti-de Sitter
space.
In string theory the only massless scalars in the super-

symmetric hatted vacua would be moduli, which are ex-
pected to be ‘‘fixed’’ in the ancestor. For that reason FSSY
considered the effect of adding a four-dimensional mass

9Exponentials of the field can also have well-defined dimen-
sions. The dependence on the cutoff 	 in (5.18) becomes
exponentiated. The resulting power law dependence on 	 is
recognized as the wave function renormalization factor.
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term, m2�2, in the ancestor vacuum. The mass term is
assumed to vanish in the supersymmetric hatted vacuum.

The result on the boundary scalar was to shift its dimen-
sion from � ¼ 0 to � ¼ � (when mass is small, � / m2).
If m is sufficiently small relative to the ancestor Hubble
constant the corresponding mode stays non-normalizable.
However the correlation function was not similar to those
in G1, each term of which had a dependence on T�. The
dimension � term depends only on Tþ:

G2 ! e��Tþ
1 e��Tþ

2 ð1� cos�Þ��: (5.19)

The two terms, (5.14) and (5.19) depend on different
combinations of the coordinates, Tþ and T�. It seems odd
that there is one and only one term that depends solely on
Tþ and all the rest depend on T�. In fact the only reason
for this was that FSSY ignored an entire tower of higher
dimension terms, which, like (5.19), depend only on Tþ.
These terms all come from the contour b in Fig. 9.

From now on we will group all terms independent of T�
into the single expression G2:

G2 ¼
X
�0

~G�0e��0ðTþ
1
þTþ

2
Þð1� cos�Þ��0

: (5.20)

The �0 include �, the positive integers, and contributions
from whatever other poles in the lower half plane. In the
case � ¼ 0, the leading term in G2 is (5.15).

Finally there is the flat space piece coming from the first
term of (5.11),

Gflat ¼ e�ðT1þT2Þ

2 sinhl

X1
n¼1

ðe�nTþ
1 enT

�
2 þ enT

�
1 e�nTþ

2 Þ: (5.21)

Here the Tþ dependence at one point is combined with the
T� dependence at the other point.

We will return to the two terms G1 and G2 in Sec. VIB.

B. Metric fluctuations

To prove that there is a local field theory on �, the most
important test is the existence of an energy-momentum
tensor. In the AdS/CFT correspondence, the boundary
energy-momentum tensor is intimately related to the bulk
metric fluctuations. We assume a similar connection be-
tween bulk and boundary fields in the present context. In
FSSY, metrical fluctuations were studied in a particular
gauge which we will call the spatially transverse-traceless
(STT) gauge. The coordinates of region I can be divided
into FRW time, T, and space xm where m ¼ 1, 2, 3. The
STT gauge for metric fluctuations is defined by

rmhmn ¼ 0; hmm ¼ 0: (5.22)

In these equations, the index is raised with the aid of the
background metric (3.3). The main benefit of the STT
gauge is that metric fluctuations satisfy minimally coupled
massless scalar equations, and the correlation functions are
similar to G1 and G2. However the index structure is rather

involved. We define the correlator,

hh�� h
� i ¼ Gf�

�� g ¼ G1f�


�� g þG2f�

�� g: (5.23)

The complicated index structure of G was worked out in
detail in FSSY. In this paper we quote only the results of
interest—in particular, those involving elements of Gf�


�� g
in which all indices lie in the two-sphere �2. We consider
the part G1fikjlg, which contains a term with dimension 2.

This is the dimension that energy-momentum tensor in a
two-dimensional conformal field theory should have.10

As in the scalar case, G1 consists of an infinite sum of
correlators, each corresponding to a field of dimension
� ¼ 2; 3; 4; . . . . The asymptotic T and R dependence of
the terms is identical to the scalar case, and the first term
has � ¼ 2. Once again this term is also time independent.
After isolating the dimension-2 term and stripping off

the factors expð�2RÞ, the resulting correlator is called
G1fikjlgj�¼2. The calculations of FSSY revealed that this

term is two-dimensionally traceless, and transverse,

G1

�
ik

il

����������¼2
¼ G1

�
ik

jk

����������¼2
¼ 0 riG1

�
ik

jl

����������¼2
¼ 0:

(5.24)

Equation (5.24) is the clue that, when combined with the
dimension-2 behavior of G1fikilgj�¼2, hints at a local theory

on �. It insures that it has the precise form of a two-point
function for an energy-momentum tensor in a conformal
field theory. The only ambiguity is the numerical coeffi-
cient connecting G1fikjlgj�¼2 with hTi

jT
k
l i. We will return to

this coefficient momentarily.
The existence of a transverse, traceless, dimension-2

operator is a necessary condition for the boundary theory
on� to be local: at the moment it is our main evidence. But
there is certainly more that can be learned by computing
multipoint functions. For example, from the three-point
function hhhhi it should be possible to verify the operator
product expansion and the Virasoro algebra for the energy-
momentum tensor.
Dimensional analysis allows us to estimate the missing

coefficient connecting the metric fluctuations with Ti
j, and

at the same time determine the central charge c. In [8] we
found c to be of order of the horizon entropy of the ancestor
vacuum. We repeat the argument here:
Assume that the (bulk) metric fluctuation h has canoni-

cal normalization, i.e., it has bulk mass dimension 1 and a
canonical kinetic term. Either dimensional analysis or ex-
plicit calculation of the two-point function hhhi shows that
it is proportional to the square of the ancestor Hubble
constant,

hhhi �H2: (5.25)

10G2 does not contain the � ¼ 2 term because RðkÞ is zero at
k ¼ �i which would correspond to � ¼ 2 [8].
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Knowing that the three-point function hhhhimust contain a
factor of the gravitational coupling (Planck length) lp, it

can also be estimated by dimensional analysis,

hhhhi � lpH
4: (5.26)

Now assume that the 2D energy-momentum tensor is
proportional to the boundary dimension-2 part of h, i.e.,
the part that varies like e�2R. Schematically, we write

T ¼ qh (5.27)

with q being a numerical constant. It follows that

hTTi � q2H2 hTTTi � q3lpH
4: (5.28)

Lastly, we use the fact that the ratio of the two- and
three-point functions is parametrically independent of lp
and H because it is controlled by the classical algebra of
diffeomorphisms: ½T; T	 ¼ T. Putting these elements to-
gether we find

hTTi � 1

l2pH
2
: (5.29)

Since we already know that the correlation function has the
correct form, including the short distance singularity, we
can assume that the right-hand side of (5.29) also gives the
central charge. It can be written in the rather suggestive
form:

c� area=G ðG ¼ l2pÞ (5.30)

where area refers to the horizon of the ancestor vacuum. In
other words, the central charge of the hypothetical CFT is
proportional to the horizon entropy of the ancestor.

C. Dimension-zero term

The term G2fikjlg begins with a term, which like its scalar

counterpart, has a nonvanishing limit on �. It is expressed
in terms of a standard 2D bitensor tfikjlg which is traceless

and transverse in the two-dimensional sense. If the corre-
lation function were given just by tfikjlg, it would be a pure

gauge artifact. One can see this by considering the line-
arized expression for the 2D curvature-scalar C,

C ¼ rirjh
ij � 2riri Trh: (5.31)

The 2D curvature associated with a traceless-transverse
fluctuation vanishes, and since tfikjlg by itself is traceless

transverse with respect to both points, it would be pure
gauge if it appeared by itself.

However, the actual correlation function G2fikjlg is given
by

G2

�
ik

jl

�
¼ t

�
ik

jl

�
fR1 þ T1 þ R2 þ T2 þ logð1� cos�Þg:

(5.32)

The linear terms in Rþ T, being proportional to tfikjlg are

pure gauge, but the finite term

t

�
ik

jl

�
logð1� cos�Þ (5.33)

gives rise to a nontrivial 2D curvature-curvature correla-
tion function of the form

hCCi ¼ ð1� cos�Þ�2: (5.34)

One difference between the metric fluctuation h, and the
scalar field �, is that we cannot add a mass term for h in the
ancestor vacuum to shift its dimension.
Finally, as in the scalar case, there is a tower of higher

dimension terms in the tensor correlator, G2fikjlg that only
depend on Tþ.
The existence of a zero dimensional term in G2fikjlg,

which remains finite in the limit R ! 1 indicates that
fluctuations in the boundary geometry—fluctuations which
are due to the asymptotic warmness—cannot be ignored.
One might expect that in some way these fluctuations are
connected with the field U that we encountered in the
holographic version of the Wheeler-DeWitt equation. In
the next section we will elaborate on this connection.

D. Three-point functions

Three-point functions in the CDL geometry can also be
calculated by analytic continuation from the Euclidean
space. They take the form of AdS three-point functions
with mass of the propagators summed over. Let us illustrate
this by taking the tree-level three-point function for a
massless field � with an interaction term

R
d4x

ffiffiffi
g

p
�3, as

an example.
The Euclidean three-point function is given by integrat-

ing the vertex over the whole Euclidean space,

h�ðx1Þ�ðx2Þ�ðx3Þi ¼
Z

d4x0h�ðx1Þ�ðx0Þih�ðx2Þ�ðx0Þi
� h�ðx3Þ�ðx0Þi; (5.35)

where the subscript 0 denotes the coordinates of the vertex.
The propagators h��i are given by the two-point functions
(5.10). In the thin-wall background, h��i is written in
terms of the reflection or the transmission coefficients
RðkÞ, T ðkÞ. The external points are put on the flat side,
since we want three-point functions in the flat FRW uni-
verse. When the vertex is on the flat side,

h�ðX1;�1Þ�ðX0;�0Þi ¼ 1

aðX1ÞaðX0Þ
Z
C1

dk

2�
ðeikðX1�X0Þ

þRðkÞe�ikðX1þX0ÞÞGkð�10Þ;
(5.36)

and when the vertex is on the de Sitter side,

YASUHIRO SEKINO AND LEONARD SUSSKIND PHYSICAL REVIEW D 80, 083531 (2009)

083531-14



h�ðX1;�1Þ�ðX0;�0Þi ¼ 1

aðX1ÞaðX0Þ
Z
C1

dk

2�

kþ i tanhX0

kþ i

�T ðkÞe�ikðX1�X0ÞGkð�10Þ;
(5.37)

where �1, �0 denote the positions on S3, and �10 is the
geodesic distance on S3.

Performing the integration over the Euclidean time (X0)
of the vertex, we get

h�ðX1;�1Þ�ðX2;�2Þ�ðX3;�3Þi
¼ 1

aðX1ÞaðX2ÞaðX3Þ
Z
C1

dk1
2�

Z
C1

dk2
2�

Z
C1

dk3
2�

�Gk1k2k3ð�1;�2;�3Þ 
 ½ðeik1X1 þRðk1Þe�k1X1Þ

 ð2Þ 
 ð3Þ 
 cðflatÞk1k2k3

þT ðk1Þe�ik1X1 
 ð2Þ 
 ð3Þ 
 cðdSÞk1k2k3
	

(5.38)

where (2) and (3) denote the factors given by replacing the

subscripts in the previous factors by 2 and 3. cðflatÞk1k2k3
and

cðdSÞk1k2k3
are the coefficients we get when the vertex is on the

flat side and de Sitter side, respectively.
Gk1k2k3ð�1;�2;�3Þ is a three-point function for massive

fields on S3,

Gk1k2k3ð�1;�2;�3Þ ¼
Z

d3�0Gk1ð�10ÞGk2ð�20ÞGk3ð�30Þ:
(5.39)

To get the three-point function in the FRWuniverse from
(5.38), we analytically continue the coordinates of the
external points by (5.3), do the k integrals by closing the
contour in the appropriate directions, and rotate the inte-
gration contour for

R
d3�0 to get an integral overH 3. The

final result is a sum of massive three-point functions on
H 3 (three-dimensional Euclidean AdS). The mass (di-
mension) for each AdS propagator is summed over; as in
the two-point function, the dimension takes integer values
starting from 2, and other possible values coming from the
poles of RðkÞ or T ðkÞ.

The detailed structure of three-point functions is under
study. Three-point functions involving a graviton will tell
us the precise value of the central charge, as mentioned in
Sec. VB. Also, the study of operator algebra will provide
nontrivial consistency checks for our proposal of identify-
ing a bulk field with a tower of CFT operators.

That is the data about correlation functions on the
boundary sphere � that form the basis for our conjecture
that there exists a local holographic boundary description
of the open FRW universe. There are a number of related
puzzles that this data raises: First, how does time emerge
from a Euclidean QFT? The bulk coordinate R can be

identified with scale size just as in AdS/CFT11 but the
origin of time requires a new mechanism.
The second puzzle concerns the number of degrees of

freedom in the boundary theory. The fact that the central
charge is the entropy of the ancestor suggests that there are
only enough degrees of freedom to describe the false
vacuum and not the much large number needed for the
open FRW universe at late time. The resolution of both
puzzles involves the Liouville field.

VI. LIOUVILLE THEORY

A. Breaking free of the STT gauge

The existence of a Liouville sector describing metrical
fluctuations on � seems dictated by both the holographic
Wheeler-DeWitt theory and from the data of the previous
section. It is clear that the Liouville field is somehow
connected with the non-normalizable metric fluctuations
whose correlations are contained in (5.32), although the
connection is somewhat obscured by the choice of gauge in
[8]. In the STT gauge, the fluctuations h are traceless, but
not transverse (in the 2D sense). From the viewpoint of 2D
geometry they are not pure gauge as can be seen from the
fact that the 2D curvature correlation does not vanish. One
might be tempted to identify the Liouville mode with the
zero-dimension piece of (5.32). To do so would of course
require a coordinate transformation on�2 in order to bring

the fluctuation hji to the ‘‘conformal’’ form ~h�j
i .

This identification may be useful but it is not consistent
with the Wheeler-DeWitt philosophy. The Liouville field
U that appears in the Wheeler-DeWitt wave function is not
tied to any specific spatial gauge. Indeed, the wave function
is required to be invariant under gauge transformations,

x� ! x� þ f�ðxÞ (6.1)

under which the metric transforms:

g�� ! g�� þr�f� þr�f�: (6.2)

Let us consider the effect of such transformations on the
boundary limit of hij. The components of f along the

directions in � induce 2D coordinate transformation under
which h transforms conventionally. Invariance under these
transformations merely mean that the action S must be a
function of 2D invariants.
Invariance under the shifts fR and fT are more interest-

ing. In particular, the combination fþ ¼ fR þ fT gener-
ates nontrivial transformations of the boundary metric hij.

An easy calculation shows that

hji ! hji þ fþð�2Þ�j
i : (6.3)

In other words, shift transformations fþ, induce Weyl
rescalings of the boundary metric. This prompts us to

11This is often described by saying that R is related to the
renormalization-group flow parameter.
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modify the definition of the Liouville field from

U ¼ T þ ~h (6.4)

to

U ¼ T þ ~hþ fþ: (6.5)

One might wonder about the meaning of an equation such
as (6.5). The left side of the equation is supposed to be a
dynamical field on �, but the right side contains an arbi-
trary function fþ. The point is that in the Wheeler-DeWitt
formalism thewave function must be invariant under shifts,
but in the original analysis of FSSY a specific gauge was
chosen. Thus, in order to render the wave function gauge
invariant, one must allow the shift fþ to be an integration
variable, giving it the status of a dynamical field.

A similar example is familiar from ordinary gauge theo-
ries. The analog of the Wheeler-DeWitt gauge-free formal-
ism would be the unfixed theory in which one integrates
over the time component of the vector potential. The
analog of the STT gauge would be the Coulomb gauge.
To go from one to the other we would perform the gauge
transformation

A0 ! A0 þ @0�: (6.6)

Integrating over the gauge function � in the path integral
would restore the gauge invariance that was given up by
fixing the Coulomb gauge.

Returning to the Liouville field, since both ~h and f are
linearized fluctuation variables, we see that the classical
part of U is still the FRW conformal time.

One important point: because the effect of the shift fþ is
restricted to the trace of h, it does not influence the
traceless-transverse (dimension-2) part of the metric fluc-
tuation, and the original identification of the 2D energy-
momentum tensor is unaffected.

Finally, invariance under the shift f� is trivial in this
order, at least for the thin-wall geometry. The reason is that
in the background geometry, the area does not vary along
the T� direction.

Given that the boundary theory is local, and includes a
boundary metric, it is constrained by the rules of two-
dimensional quantum gravity laid down long ago by
Polyakov [25]. Let us review those rules for the case of a
conformal matter field theory coupled to a Liouville field.
Two-dimensional coordinate invariance implies that the
central charge of the Liouville sector cancels the central
charge of all other fields. We have argued in [8] (and in
Sec. V) that the central charge of the matter sector is of
order of the horizon area of the ancestor vacuum, measured
in Planck units. It is obvious from the four-dimensional
bulk viewpoint that the semiclassical analysis that we have
relied on only makes sense when the Hubble radius is much
larger than the Planck scale. Thus we take the central
charge of matter to satisfy c � 1. As a consequence, the
central charge of the Liouville sector, cL, must be large and

negative. Unsurprisingly, the negative value of c is the
origin of the emergence of time.
The formal development of Liouville theory begins by

defining two metrics on �2. The first is what we will call
the reference metric ĝij. Apart from an appropriate degree

smoothness, and the assumption of Euclidean signature,
the reference metric is arbitrary but fixed. In particular it is
not integrated over in the path integral. Moreover, physical
observables must be independent of ĝij.

The other metric is the ‘‘real’’ metric denoted by gij. The

purpose of the reference metric is merely to implement a
degree of gauge fixing. Thus one assumes that the real
metric has the form

gij ¼ e2Uĝij: (6.7)

The real metric—that is to say U—is a dynamical variable
to be integrated over.
For positive cL the Liouville Lagrangian is

LL ¼ Q2
ffiffiffî
g

p
8�

fr̂Ur̂Uþ R̂Ug (6.8)

where R̂, r̂, all refer to the sphere �2, with metric ĝ. The
constant Q is related to the central charge cL by

Q2 ¼ cL
3
: (6.9)

The two-dimensional cosmological constant has been set
to zero for the moment, but it will return to play a surpris-
ing role. For future reference we note that the cosmological
term, had we included it, would have had the form

Lcc ¼
ffiffiffî
g

p
�e2U: (6.10)

It is useful to define a field� ¼ QU in order to bring the
kinetic term to the canonical form. One finds

LL ¼
ffiffiffî
g

p
8�

fr̂�r̂�þQR̂�g (6.11)

and, had we included a cosmological term, it would be

Lcc ¼
ffiffiffî
g

p
� exp

2�

Q
: (6.12)

By comparison with the case of positive cL, very little is
rigorously understood about Liouville theory with negative
central charge. In this paper we will make a leap of faith:
we assume that the theory can be defined by analytic
continuation from positive cL. To that end we note that
the only place that the central charge enters (6.11) and
(6.12) is through the constants Q and , both of which
become imaginary when cL becomes negative. Let us
define

Q ¼ iQ: (6.13)

Equations (6.11) and (6.12) become
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LL ¼
ffiffiffî
g

p
8�

fr̂�r̂�þ iQR̂�g ¼
ffiffiffî
g

p
8�

fr̂�r̂�þ 2iQ�g
(6.14)

(where we have used R̂ ¼ 2), and

Lcc ¼
ffiffiffî
g

p
� exp

�2i�

Q
: (6.15)

Let us come now to the role of �. First of all � has
nothing to do with the four-dimensional cosmological
constant, either in the FRW patch or the ancestor vacuum.
Furthermore it is not a constant in the action of the bound-
ary theory. Its proper role is as a Lagrange multiplier that
serves to specify the time T, or more exactly, the global
scale factor. The procedure is motivated by the Wheeler-
DeWitt procedure of identifying the scale factor with time.
In the present case of the thin-wall limit, we identify
exp2U with exp2T. Thus we insert a � function in the
path integral,

�

�Z ffiffiffî
g

p ðe2U � e2TÞ
�
¼

Z
dz expiz

�Z ffiffiffî
g

p ðe2U � e2TÞ
�
:

(6.16)

The path integral (which now includes an integration
over the imaginary 2D cosmological constant z) involves
the action

LL þ Lcc ¼
ffiffiffî
g

p
8�

�
r̂�r̂�þ 2iQ�þ 8�iz exp

�2i�

Q

� 8�ize2T
�
: (6.17)

The action (6.17) has a saddle point12 when the potential

V ¼ 2iQ�þ 8�iz exp
�2i�

Q
� 8�ize2T (6.18)

is stationary; this occurs at

exp
�2i�

Q
¼ e2T z ¼ i

Q2

8�
e�2T (6.19)

or in terms of the original variables

e2U ¼ e2T � ¼ Q2

8�
e�2T: (6.20)

Once � has been determined in terms of T by (6.20), the
Liouville theory with that value of � determines expecta-
tion values of the remaining variables as functions of the
time.

Thus, as we mentioned earlier, the cosmological con-
stant is not a constant of the theory but rather a parameter
that we scan in order to vary the cosmic time.

B. Liouville, renormalization, and correlation functions

1. Preliminaries

There are two preliminary discussions that will help us
understand the application of Liouville theory to cosmic
holography. The first is about the AdS/CFT connection
between the bulk coordinate R, and renormalization-group
running of the boundary field theory. There are three
important length scales in every quantum field theory.
The first is the ‘‘low energy scale’’; in the present case
the low energy scale is the radius of the sphere which we
will call L.
The second is the ‘‘bare’’ cutoff scale—where the under-

lying theory is prescribed. Call the bare scale13 a.
The bare input is a collection of degrees of freedom, and

an action coupling them. In a lattice gauge theory the
degrees of freedom are site and link variables, and the
couplings are nearest neighbor to insure locality14 In a
ferromagnet they are spins situated on the sites of a crystal
lattice.
The previous two scales have obvious physical meaning

but the third scale is arbitrary: a sliding scale called the
renormalization or reference scale. We denote it by �. The
reference scale is assumed to be much smaller than L and
much larger than a, but otherwise it is arbitrary. It helps to
keep a concrete model in mind. Instead of a regular lattice,
introduce a ‘‘dust’’ of points with average spacing a. It is
not essential that a be uniform on the sphere. Thus the
spacing of dust points is a function of position, að�2Þ. The
degrees of freedom on the dust points, and their nearest-
neighbor couplings, will be left implicit.
Next we introduce a second dust at larger spacing, �.

The � dust provides the reference scale. It is well known
that for length scales greater than �, the bare theory on the
a dust can be replaced by a renormalized theory defined on
the � dust. The renormalized theory will typically be more
complicated, containing second, third, and nth neighbor
couplings.
Generally, the dimensionless form of the renormalized

theory will depend on � in just such a way that physics at
longer scales is exactly the same as it was in the original
theory. The dimensionless parameters will flow as the
reference scale is changed.
If there is an infrared fixed point, and if the bare theory is

in the basin of attraction of the fixed point, then as �
becomes much larger than a, the dimensionless parameters
will run to their fixed-point values. In that case the con-
tinuum limit (a ! 0) will be a conformal field theory with
SOð3; 1Þ invariance.
These things hold in the holographic theory of anti-

de Sitter space. The infrared scale is provided by the

12It should be noted that the saddle point only occurs for
negative central charge.

13The lattice spacing a should not be confused with the FRW
scale factor, also called a.
14Nearest neighbor is common but not absolutely essential.
However this subtlety is not important for us.
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geometry of the boundary, namely, a sphere. The compact
nature of the boundary gives the theory an energy gap.

The bare scale is not so important in AdS/CFT. One
might as well take the continuum limit from the start. On
the other hand, the running renormalization scale is all
important. It defines the holographically generated radial
dimension of space. A useful slogan is ‘‘motion along theR
direction is the same as renormalization-group flow.’’ The
reference scale � is related to R0 by � ¼ e�R0 .

More generally, we can allow the renormalization scale
to depend on position along the boundary:

�ð�Þ ¼ e�R0ð�Þ: (6.21)

Now we move to the second preliminary—some obser-
vations about the Liouville theory. Again, a concrete model
is helpful. Liouville theory is closely connected with the
theory of dense, planar, ‘‘fishnet’’ diagrams [26] such as
those which appear in large N gauge theories and matrix
models [27–29].

We assume the fishnet has the topology of a sphere, i.e.,
it can be drawn on a sphere with no crossing of lines, and
that it has a very large number of vertices. Following [26],
we draw the diagram so that it is locally isotropic. If it is
not locally isotropic it may be made so by shifting
the points around. Once the diagram is isotropic, the re-
maining freedom in drawing the fishnet is conformal
transformations.

The fishnet plays the role of the bare lattice in the
previous discussion, but now it is dynamical—we sum
over all fishnet diagrams, assuming only that the spacing
(on the two-sphere) is everywhere much smaller than the
sphere size, L. As before, we call the angular spacing
between neighboring vertices on the sphere, að�Þ.

Each fishnet defines a metric on the sphere. Let d� be a
small angular interval (measured in radians). The fishnet
metric is defined by

ds2 ¼ d�2

að�Þ2 : (6.22)

We again introduce a reference scale �. It can also be a
fishnet, but now it is fixed, its vertices nailed down, not to
be integrated over. We continue to assume that � satisfies
the inequalities, að�Þ � �ð�Þ � L, but otherwise it is
arbitrary. The � metric is defined by

ds2� ¼ d�2

�ð�Þ2 : (6.23)

It should be clear that the metrics in (6.22) and (6.23) are
the same as the real and reference metrics in (6.7). We can
now define the Liouville field U. All it is is the ratio of the
reference and fishnet scales:

eU � �=a: (6.24)

Using (6.24) together with � ¼ e�R and ds ¼ d�
a , we see

that U is also given by the relation

ds ¼ d�eðR0þUÞ: (6.25)

In (6.25) both R0 and U are functions of location on�2,
but only U is dynamical, i.e., to be integrated over.

2. Liouville in the hat

With that in mind, we return to cosmic holography and
consider the metric on the regulated spatial boundary of
FRW, �0. In the absence of fluctuations it is

ds2 ¼ e2R0e2Td2�2:

In general relativity it is natural to allow both R0 and T
to vary over the sphere, so that

ds2 ¼ e2R0ð�2Þe2Tð�2Þd2�2: (6.26)

The parallel between (6.25) and (6.26) is obvious.
Exactly as we might have expected from the Wheeler-
DeWitt interpretation, the Liouville field, U, may be iden-
tified with time T, when both are large,

U � T: (6.27)

The connection between T and U is ambiguous when U
becomes small. In that limit the fishnet diagrams become
very sparse and any detailed identification with the con-
tinuous variable T breaks down.
To summarize, let us list a number of correspondences:

� $ e�R; � $ e�T; a $ e�Tþ ¼ e�ðTþRÞ:
(6.28)

We also recall the correspondences with the real and
reference metric:

ds2 ¼ d�2

að�Þ2 ; ds2� ¼ d�2

�ð�Þ2 : (6.29)

One other point about the Liouville theory: the density
of vertices of a fishnet is normally varied by changing the
weight assigned to vertices. When the fishnet is a Feynman
diagram, the weight is a coupling constant g. It is well
known that the coupling constant and Liouville cosmologi-
cal constant are alternate descriptions of the same thing.
Either can be used to vary the average vertex density—
increasing it either by increasing g or decreasing �. The
very dense fishnets correspond to large U and therefore
large FRW time, whereas very sparse diagrams dominate
the early Planckian era.

3. RG-covariant and RG-invariant objects in quantum
field theory

There are two kinds of objects15 in Wilsonian renormal-
ization [30] that correspond quite closely to the terms G1

and G2 that we have found in Sec. V. We call them ‘‘RG

15In an earlier version of this paper the terms ‘‘proactive’’ and
‘‘reactive’’ were used instead of RG-covariant and RG-invariant.
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covariant’’ and ‘‘RG invariant’’. RG-covariant quantities
depend on the arbitrary reference scale. They are not
directly measurable quantities. The best example is the
exact Wilsonian action, defined at a specific reference
scale. The form of RG-covariant quantities depends on
that reference scale, and so does the value of their matrix
elements; indeed their form varies with � in such a way as
to keep the physics fixed at longer distances.

By contrast, RG-invariant objects are observables whose
value does not depend on the reference scale. They do
depend on the bare cutoff scale a through wave function
renormalization constants, which typically tend to zero as
a ! 0. The wave function renormalization constants are
usually stripped off when defining quantum fields, but we
will find it more illuminating to keep them.

The distinction between these two kinds of objects is
subtle and is perhaps best expressed in Polchinski’s version
of the exact Wilsonian renormalization group [31]. In that
scheme, at every scale there is a renormalized description
in terms of local defining fields�ðxÞ, but the RG-covariant
action grows increasingly complicated as the reference
scale is lowered.

Consider the exact effective action defined at reference
scale �. It is given by an infinite expansion of the form

LWð�Þ ¼
X1
�¼2

g�O�; (6.30)

whereO� are a set of operators of dimension�, and g� are
dimensional coupling constants. The renormalization flow
is expressed in terms of the dimensionless coupling con-
stants,

~g � ¼ g��
ð2��Þ: (6.31)

The ~g satisfy RG equations,

d~g

d log�
¼ ��ð~gÞ: (6.32)

If the theory flows to a fixed point, in that limit the ~g
become constant. Thus the dimensional constants g� in the
Lagrangian will grow with �. Normalizing them at the bare
scale a, in the fixed-point case we get

g�ð�Þ ¼ g�ðaÞ
�
�

a

�ð��2Þ
; (6.33)

LWð�Þ ¼
X1
�¼2

O�

�
�

a

�ð��2Þ
: (6.34)

Now consider the two-point function of the effective
action, hLWð�ÞLWð�Þi, evaluated at distance scale L � �

hLWð�ÞLWð�Þi ¼
X1
�¼2

hO�O�i
�
�

a

�
2ð��2Þ

: (6.35)

Suppose the theory is defined on a sphere of radius L and
we are interested in the correlator hLWð�ÞLWð�Þi between
points separated by angle�. The factor hO�O�i is the two-
point function of a field of dimension �, in a theory on the
sphere of size L with an ultraviolet cutoff at the reference
scale �. Accordingly it has the form

hO�O�i ¼
�
�

L

�
2�ð1� cos�Þ�� (6.36)

where the two factors of ð�LÞ� are the ultraviolet-sensitive

wave function renormalization constants. The final result is

hLWð�ÞLWð�Þi ¼
X1
�¼2

C�

�
�

a

�
2ð��2Þ��

L

�
2�ð1� cos�Þ��:

(6.37)

Note the dependence of (6.37) on the arbitrary reference
scale �. That dependence is typical of RG-covariant
quantities.
Now consider a RG-invariant quantity such as a funda-

mental field, a derivative of such a field, or a local product
of fields and derivatives. Their matrix elements at distance
scale L will be independent of the reference scale
(although it will depend on the bare cutoff a) and be of
order

h��i �
�
a

L

�
2��ð1� cos�Þ��� (6.38)

where�� is the operator dimension of�. Thus we see two

distinct behaviors for the scaling of correlation functions:�
�

a

�
2ð��2Þ��

L

�
2�

RG covariant (6.39)

and �
a

L

�
2��

RG invariant: (6.40)

The formulas are more complicated away from a fixed
point but the principles are the same.
We note that the effective action is not the only RG-

covariant object. The energy-momentum tensor and vari-
ous currents computed from the effective action will also
be RG covariant. As we will see, these two behaviors—RG
covariant and RG invariant—exactly correspond to the
dependence in (5.14) and (5.15).
Now we are finally ready to complete the discussion

about the relation between the correlators of Sec. V and
RG-covariant/invariant operators. Begin by noting that in
AdS/CFT, the minimally coupled massless (bulk) scalar is
the dilaton, and its associated boundary field is the
Lagrangian density. It may seem puzzling that in the
present case, an entire infinite tower of operators seems
to replace what in AdS/CFT is a single operator. In the case
of the metric fluctuations, a similar tower replaces the
energy-momentum tensor. The puzzle may be stated an-
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other way. The FRW geometry consists of an infinite
number of Euclidean AdS time slices. At what time (or
what 2D cosmological constant) should we evaluate the
boundary limits of the metric fluctuations in order to define
the energy-momentum tensor? As we will see, a parallel
ambiguity exists in Liouville theory.

We return now to the three scales of Liouville theory: the
infrared scale L, the reference scale �, and the fishnet scale
a, with L � � � a. It is natural to assume that the basic
theory is defined at the bare fishnet scale a by some
collection of degrees of freedom at each lattice site, and
also specific nearest-neighbor couplings—the latter insur-
ing locality. Now imagine a Wilsonian integration of all
degrees of freedom on scales between the fishnet scale and
the reference scale, including the fishnet structure itself.
The result will be a RG-covariant effective action of the
type we described in Eq. (6.30). Moreover the correlation
function of Leff will have the form (6.37). But now, making
the identifications (6.21) and

�

a
¼ eU ¼ eT; (6.41)

we see that Eq. (6.39) for RG-covariant scaling becomes
(for each operator in the product)

eð��2ÞTe��R: (6.42)

This is in precise agreement with the coefficients in the
expansion (5.13).

Similarly, the RG-invariant scaling (6.40), e��Tþ
, is in

agreement with the properties of G2.
What happens to the RG-covariant objects if we ap-

proach � by sending Tþ ! 1 and T� ! �1? In this
limit only the dimension-2 term survives: exactly what
we would expect if the matter action ran toward a fixed
point. All of the same things hold true for the tensor
fluctuations. Before the limit T� ! �1, the energy-
momentum tensor consists of an infinite number of higher
dimension operators but in the limit, all tend to zero except
for the dimension-2 term.

It should be observed that the higher dimension contri-
butions to G1fikjlg are not transverse in the two-dimensional

sense. This is to be expected: before the limit is taken, the
Liouville field does not decouple from the matter field, and
the matter energy momentum is not separately conserved.
But if the matter theory is at a fixed point, i.e., scale
invariant, the Liouville and matter do decouple and the
matter energy momentum should be conserved. Thus, in
the limit in which the dimension-2 term dominates, it
should be (and is) transverse traceless.

The physical reason why the fluctuations of the
Liouville field decouples at late time deserves some com-
ment. As we have emphasized, the reason that the bound-
ary geometry is dynamical is the asymptotic warmness of
the FRW background as R ! 1 at fixed time. But unlike
de Sitter space, FRW cosmology becomes cold at late time.

Thus it makes sense that the Liouville field decouples as
T ! 1.
RG flow is usually thought of in terms of a single

independent flow parameter. In some versions it is the
logarithm of the bare cutoff scale, and in other formula-
tions it is the log of the renormalization scale. In the
conventional AdS/CFT framework, R can play either
role. One can imagine a bare cutoff at some large R0 or
one can push the bare cutoff to infinity and think of R as a
running renormalization scale.
However, for our purposes, it is better to keep track of

both scales. One can either think of a one-dimensional
(logarithmic) axis—we can call it the ‘‘Wilson line’’—
extending from the infrared scale to the fishnet scale a,
or a two-dimensional R, T plane. In either case the effec-
tive action is a function of two independent variables.
Figure 10 shows a sketch of the Wilson line and the two-
dimensional plane representing the two directions R and T.
The two independent parameters can be chosen to be a

and �, or equivalently R and T. Yet another choice is to
work in momentum space. The reference energy scale is
usually called �,

� ¼ eR: (6.43)

And in the case of negative central charge, the two-
dimensional cosmological constant � can replace T.
In this light, it is extremely interesting that the distinc-

tion between RG-covariant and RG-invariant scaling cor-
responds to motion along the two lightlike directions T�
and Tþ as depicted in Fig. 11.
It may not be obvious why the bulk fields should corre-

spond to RG-covariant and RG-invariant boundary fields in
the way that they do. The solutions to the wave equation in
the bulk are generally sums of two types of modes,

FIG. 10. The Wilson line of scales and the two-dimensional R,
T plane.
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�� ! g�ð�2ÞF�ðT�Þe�2T; �þ ! gþð�2ÞFþðTþÞ:
(6.44)

Some insight can be obtained from Fig. 8. The lower
(red) lightlike line represents the initial condition of the
FRW universe at T ¼ �1. In that limit the RG-covariant
contributions to the correlation functions tend to zero, and
only the RG-invariant terms are present. Thus it makes
sense to think of the RG-invariant quantities as inputs to
the RG flow—in other words as the bare action. Given the
input on the red initial surface, the bulk field equations can
be solved to determine the output on the hat. Note that on
the hat, the RG-invariant quantities tend to zero, leaving
only the RG covariant.

This duality between the renormalization properties of
Liouville theory and the cosmological coordinates R and T
is very remarkable and clearly deserves more attention. It
is important to understand that the duality between FRW
cosmology and Liouville 2D gravity does not only involve
the continuum fixed-point theory. As long as T is finite the
theory has some memory of the bare theory. Cosmology in
the hat consists of an entire RG flow from some bare theory
to a final fixed point that governs late times. It is only in the
limit T ! 1 that the theory flows to the fixed point and
loses memory of the bare details. Wewill come back to this
point in Sec. VIII when we discuss the GGV [24] ‘‘persis-
tence of memory’’ phenomenon.

VII. SCALING AND THE CENSUS TAKER

A. Moments

Now we come to the connection between the scaling
behavior of two-dimensional quantum field theory and the
observations of a census taker as he moves toward the
census bureau. In order to better understand the connection

between the cutoff scale and Tþ, let us return to the similar
connection between cutoff and the coordinate R in anti-
de Sitter space. We normalize the AdS radius of curvature
to be 1; with that normalization, the Planck area is given by
1=c where c is the central charge.
Consider the proper distance between points 1 and 2

given by (5.4). The relation l ¼ R1 þ R2 þ logð1� cos�Þ
is approximate, valid when l and R1;2 are all large. When

l� 1 or equivalently, when

�2 � e�ðR1þR2Þ (7.1)

Eq. (5.4) breaks down. For angles smaller than (7.1) the
distance in anti-de Sitter space behaves like

l� eR�: (7.2)

Thus a typical correlation function will behave as a power
of (1� cos�) down to angular distances of order (7.1) and
then fall quickly to zero.
The angular cutoff in anti-de Sitter space has a simple

meaning. The solid angle corresponding to the cutoff is of
order e�2R while the area of the regulated boundary is
eþ2R. Thus, metrically, the cutoff area is of order unity.
This means that in Planck units, the cutoff area is the
central charge c of the boundary conformal field theory.
Now consider the cutoff angle in the hat. Equa-

tions (5.17) and (5.18) imply the UV cutoff is of order

�2 � e�ðTþ
1 þTþ

2 Þ: (7.3)

Once again this corresponds to a small patch of proper area
(on�0, the regulated boundary) which is time independent,
and in Planck units, of order the central charge. It is also
equal to the area on the horizon in the ancestor vacuum.
The degrees of freedom which describe this patch
will possibly be matrices as in the usual AdS/CFT
correspondence.
Consider the census taker looking back from some late

time TCT. For convenience we place the CT at R ¼ 0. His
backward light cone is the surface

T þ R ¼ TCT: (7.4)

The CT can never quite see�. Instead he sees the regulated
surfaces corresponding to a fixed proper cutoff (Fig. 4).
The later the CTobserves, the smaller the angular structure
that he can resolve on the boundary. This is another ex-
ample of the UV/IR connection, this time in a cosmologi-
cal setting.
Let us consider a specific example of a possible obser-

vation. The massless scalar field � of Sec. V has an
asymptotic limit on � that defines the dimension-zero field
�ð�Þ. Moments of � can be defined by integrating it with
spherical harmonics,16

FIG. 11 (color online). RG-covariant and RG-invariant quan-
tities scale with the two lightlike directions T� and Tþ.

16We are using l for geodesic distance on H 3, and ‘ for the
angular momentum quantum number.
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�‘m ¼
Z

�ð�ÞY‘mð�Þd2�: (7.5)

It is worth recalling that in anti-de Sitter space the corre-
sponding moments would all vanish because the normal-
izable modes of � all vanish exponentially as R ! 1. The
possibility of nonvanishing moments is due entirely to the
asymptotic warmness of open FRW.

We can easily calculate17 the mean square value of �‘m

(it is independent of m).

h�2
‘i ¼ H2

Z
dðcos�Þ logð1� cos�ÞP‘ðcos�Þ

�H2 1

‘ð‘þ 1Þ : (7.6)

It is evident that at a fixed census taker time TCT, the
angular resolution is limited by (7.3). Correspondingly,
the largest moment that the CT can resolve corresponds to

‘max � eTCT : (7.7)

Thus we arrive at the following picture: the census taker
can look back toward � but at any given time his angular
resolution is limited by (7.3) and (7.7). As time goes on
more and more moments come into view. Once they are
measured they are frozen and cannot change. In other
words the moments evolve from being unknown quantum
variables, with a Gaussian probability distribution, to clas-
sical boundary conditions that explicitly break rotation
symmetry (and therefore conformal symmetry). One sees
from (7.6) that the symmetry breaking is dominated by the
low moments.

This phenomenon never occurs in an undiluted form.
Realistically speaking, we do not expect massless scalars
in the nonsupersymmetric ancestor. In Sec. V we discussed
the effect of a small mass term, in the ancestor vacuum, on
the correlation functions of �. The result of such a mass
term is a shift of the leading dimension from 0 to �. This
has an effect on the moments. The correlation function
becomes

H2e��Tþ
1 e��Tþ

2 ð1� cos�Þ��; (7.8)

and the moments take the form

h�2
‘i ¼ H2e�2�TCT

Z
dðcos�Þð1� cos�Þ�P‘ðcos�Þ:

(7.9)

The functional form of the ‘ dependence changes a bit,
favoring higher ‘, but more importantly, the observable
effects decrease like e�2�TCT . Thus as TCT advances, the
asymmetry on the census taker’s sky decreases exponen-
tially with conformal time. Equivalently it decreases as a
power of proper time along the CT’s worldline.

B. Homogeneity breakdown

Homogeneity in an infinite FRW universe is generally
taken for granted, but before questioning homogeneity we
should know exactly what it means. Consider some three-
dimensional scalar quantity such as energy density, tem-
perature, or the scalar field �. Obviously the Universe is
not uniform on small scales, so in order to define homo-
geneity in a useful way we need to average � over some
suitable volume. Thus at each point X of space, we inte-
grate � over a sphere of radius r and then divide by the
volume of the sphere. For a mathematically exact notion of
homogeneity, the size of the sphere must tend to infinity.
The definition of the average of � at the point X is

�ðXÞ ¼ lim
r!1

R
�d3x

Vr

: (7.10)

Now pick a second point Y and construct �ðYÞ. The dif-

ference �ðXÞ � �ðYÞ should go to zero as r ! 1 if space
is homogeneous. But as the spheres grow larger than the
distance between X and Y, they eventually almost com-
pletely overlap. In Fig. 12 we see that the difference

between �ðXÞ and �ðYÞ is due to the two thin crescent-
shaped regions, 1 and 3. It seems evident that the over-

whelming bulk of the contributions to �ðXÞ, �ðYÞ come
from the central region 3, which occupies almost the whole
figure. The conclusion seems to be that the averages, if they
exist at all, must be independent of position. Homogeneity
while true, is trivial.
This is correct in flat space, but surprisingly it can break

down in hyperbolic space.18 The reason is quite simple:
despite appearances the volume of regions 1 and 3 grow
just as rapidly as the volume of 2. The ratio of the volumes
is of order

FIG. 12 (color online). Two large spheres centered at X and Y.

17L. S. is indebted to Ben Freivogel for explaining Eq. (7.6).

18L. S. is grateful to Larry Guth for explaining this phenomenon
and to Alan Guth for emphasizing its importance in cosmology.
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V1

V2

¼ V3

V2

� l

Rcurvature

(7.11)

(where l is the distance between X and Y) and remains
finite as r ! 1.

To be more precise, we observe that

�ðXÞ ¼
R
1 �þ R

2 �

V1 þ V2

�ðYÞ ¼
R
3 �þ R

2 �

V3 þ V2

(7.12)

and that the difference �ðXÞ � �ðYÞ is given by

�ðXÞ � �ðYÞ ¼
R
1 �

V1 þ V2

�
R
3 �

V3 þ V2

(7.13)

which, in the limit r ! 1 is easily seen to be proportional
to the dipole moment of the boundary theory,

�ðXÞ � �ðYÞ ¼ l
Z

�ð�Þ cos�d2� ¼ l�1;0: (7.14)

Since, as we have already seen for the case � ¼ 0, the
mean square fluctuation in the moments does not go to zero
with distance, it is also true that the average value of

j�ðXÞ � �ðYÞj2 will be nonzero. In fact it grows with
separation.

However there is no reason to believe that a dimension-
zero scalar exists. Moduli, for example, are expected to be
massive in the ancestor, and this shifts the dimension of the
corresponding boundary field. In the case in which the field
� has dimension �, the effect (nonzero rms average of
moments) persists in a somewhat diluted form. If a renor-
malized field is defined by stripping off the wave function
normalization constants, expð��TþÞ, the squared mo-
ments still have finite expectation values and break the
symmetry. However, from an observational point of view
there is no reason to remove these factors. Thus it seems
that as the census taker time tends to infinity, the observ-
able asymmetry will decrease like expð�2�TCTÞ.

VIII. BUBBLE COLLISIONS AND OTHER
MATTERS

By looking back toward �, the census taker can see into
bubbles of other vacua—bubbles that in the past collided
with his hatted vacuum.

As Guth and Weinberg recognized long ago [32], a
single isolated bubble is infinitely unlikely. A typical
‘‘pocket universe’’ will consist of a cluster of an un-
bounded number of colliding bubbles, although if the
nucleation rate is small the collisions will in some sense
be rare. To see why such bubble clusters form, it is suffi-
cient to recognize why a single bubble is infinitely improb-
able. In Fig. 13 the main point is illustrated by drawing a
timelike trajectory that approaches � from within the
ancestor vacuum. The trajectory has infinite proper length,
and assuming that there is a uniform nucleation rate, a
second bubble will eventually swallow the trajectory and

collide with the original bubble. Repeating this process
will produce an infinite bubble cluster.
More recently, GGV [24] have argued that the multiple

bubble collisions must spontaneously break the SOð3; 1Þ
symmetry of a single bubble, and in the process render the
(pocket) universe inhomogeneous and anisotropic. The
breaking of symmetry in [24] was described, not as sponta-
neous breaking, but as explicit breaking due to initial
conditions. However, spontaneous symmetry breaking is
the persistent memory of a temporary explicit symmetry
breaking, if the memory does not fade with time. For
example, a small magnetic field in the very remote past
will determine the direction of an infinite ferromagnet for
all future time.
The actual observability of bubble collisions depends on

the amount of slow-roll inflation that took place after
tunneling. Much more than 60 e-foldings [33] would
probably wipe out any signal, but the interest of this paper
is conceptual. We will take the viewpoint that anything
within the past light cone of the census taker is in principle
observable.
In the last section we saw that perturbative infrared

effects are capable of breaking the SOð3; 1Þ symmetry,
and it is an interesting question what the relation between
these two mechanisms is. The production of a new bubble
would seem to be a nonperturbative effect that adds to the
perturbative symmetry breaking effects of the previous
section. Whether it adds distinctly new effects that are

FIG. 13 (color online). The top figure represents a single
nucleated bubble. The red trajectory is a timelike curve of
infinite length approaching �. Because there is a constant
nucleation rate along the curve, it is inevitable that a second
bubble will nucleate as in the lower figure. The two bubbles will
collide.
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absent in perturbation theory is not obvious and may
depend on the specific nature of the collision. Let us
classify some possibilities.

A. Collisions with identical vacua

The simplest situation is if the true-vacuum bubble
collides with another identical bubble, the two bubbles
coalescing to form a single bubble, as in the top of Fig. 14.

The surface � is defined by starting at the tip of the hat
and tracking back along lightlike trajectories until they
end—in this case at a false vacuum labeled F. The collision
is parametrized by the spacelike separation between nu-
cleation points. Particles produced at the collision of the
bubbles just add to the particles that were produced by
ordinary FRW evolution. The main effect of such a colli-
sion is to create a very distorted boundary geometry, if the
nucleation points are far apart. When they are close, the
double nucleation blends in smoothly with the single bub-
ble. These kinds of collisions seem to be no different than
the perturbative disturbances caused by the non-
normalizable mode of the metric fluctuation. GGV com-
pute that the typical observer will see multipole moments
on the sky, but as we have seen, similar multipole moments
can also occur perturbatively.

In the bottom half of Fig. 14 we see another type of
collision in which the colliding bubbles correspond to two
different true vacua: red (r) and blue (b). But in this case

red and blue are on the same moduli space, so that they are
connected by a flat direction.19 Both vacua are included
within the hat. In the bulk space-time they bleed into each
other, so that as one traverses a spacelike surface, blue
gradually blends into purple and then red.
On the other hand, the surface � is sharply divided into

blue and red regions, as if by a one-dimensional domain
wall. This seems to be a new phenomenon that does not
occur in perturbation theory about either vacuum.
As an example, consider a case in which a red vacuum

nucleation occurs first, and then much later a blue vacuum
bubble nucleates. In that case the blue patch on the bound-
ary will be very small and the census taker will see it
occupying a tiny angle on the sky. How does the boundary
field theorist interpret it? The best description is probably
as a small blue ‘‘instanton’’ in a red vacuum.20 In both the
bulk and boundary theory this is an exponentially sup-
pressed, nonperturbative effect.
However, in a conformal field theory the size of an

instanton is a modulus that must be integrated over. As
the instanton grows the blue region engulfs more and more
of the boundary. Eventually the configuration evolves to a
blue 2D vacuum, with a tiny red instanton. One can also
think of the two configurations as the observations of two
different census takers at a large separation from one
another. Which one of them is at the center is obviously
ambiguous.
The same ambiguous separation into dominant vacuum,

and small instanton, can be seen another way. The nuclea-
tion sites of the two bubbles are separated by a spacelike
interval. There is no invariant meaning to say that one
occurs before the other. A element of the de Sitter symme-
try group can interchangewhich bubble nucleates early and
which nucleates later.
Nevertheless, a given census taker will see a definite

pattern on the sky. One can always define the CT to be at
the center of things, and integrate over the relative size of
the blue and red regions. Or one can keep the size of the
regions fixed—equal for example—and integrate over the
location of the CT.
From both the boundary field theory, and the bubble

nucleation viewpoints, the probability for any finite num-
ber of red-blue patches is zero. Small red instantons will be
sprinkled on every blue patch and vice versa, until the
boundary becomes a fractal. The fractal dimensions are
closely connected to operator dimensions in the boundary
theory. Moreover, exactly the same pattern is expected
from multiple bubble collisions.

FIG. 14 (color online). In the top figure two identical bubbles
collide. This would be the only type of collision in a simple
landscape with two discrete minima—one of positive energy and
one of zero energy. In the lower figure a more complicated
situation is depicted. In this case, the false vacuum F can decay
to two different true vacua, ‘‘red’’ and ‘‘blue,’’ each with
vanishing energy. The two true vacua are connected by a flat
direction, but CDL instantons only lead to the red and blue
points.

19We assume that there is no symmetry along the flat direction,
and that there are only two tunneling paths from the false
vacuum: one to red, and one to blue.
20We are using the term instanton very loosely. On the one
hand, the occurrence of such blue patches is nonperturbative and
exponentially suppressed by the decay rate in the bulk. But there
does not seem to be any topological stability to the object.
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But the census taker has a finite angular resolution. He
cannot see angular features smaller than ��� expð�TCTÞ.
Thus he will see a finite sprinkling of red and blue dust on
the sky. As TCT increases, the UV cutoff scale tends to zero
and the CT sees a homogeneous ‘‘purple’’ fixed-point
theory.

The red and blue patches are reminiscent of the Ising
spin system (coupled to a Liouville field). As in that case, it
makes sense to average over small patches and define a
continuous ‘‘color field’’ ranging from intense blue to
intense red. It is interesting to ask whether � would look
isotropic, or whether there will be finite multipole mo-
ments of the renormalized color field (as in the case of
the � field). The calculations of GGV suggest that multi-
pole moments would be seen. But unless for some reason
there is a field of exactly zero dimension, the observational
signal should fade with census taker time.

There are other types of collisions that seem to be
fundamentally different from the previous. Let us consider
a model landscape with three vacua—two false, B and W
(black and white); and one true vacuum T. Let the vacuum
energy of B be bigger than that ofW, and also assume that
the decays B ! W, B ! T, and W ! T are all possible.
Let us also start in the black vacuum and consider a
transition to the true vacuum. The result will be a hat
bounded by �.

However, if a bubble ofW forms, it may collide with the
T bubble as in Fig. 15. TheW bubble does not end in a hat
but rather, on a spacelike surface. By contrast, the true-
vacuum bubble does end in a hat. The surface � is defined
as always, by following the lightlike generators of the hat
backward until they enter the bulk—either Black or
White—as in Fig. 15.

In this case a portion of the boundary � butts up against
B, while another portion abuts W. In some ways this
situation is similar to the previous case where the boundary
was separated into red and blue regions, but there is no
analog of the gradual bleeding of vacua in the bulk. In the

previous case the census taker could smoothly pass from
red to blue. But in the current example, the CTwould have
to crash through a domain wall in order to pass from T to
W. Typically this happens extremely fast, long before the
CT could do any observation. In fact if we define census
takers by the condition that they eventually reach the
census bureau, then they simply never enter W.
From the field theory point of view this example leads to

a paradox. Naively, it seems that once a W patch forms on
�, a B region cannot form inside it. A constraint of this
type on field configurations would obviously violate the
rules of quantum field theory; topologically (on a sphere)
there is no difference between a small W patch in a B
background, and a small B patch in aW background. Thus
field configurations must exist in which a W region has
smaller black spots inside it. There is no way consistent
with locality to forbid bits of B in regions of W.
Fortunately the same conclusion is reached from the

bulk point of view. The rules of tunneling transitions
require that if the transition B ! W is possible, so must
be the transition W ! B, although the probability for the
latter would be smaller (by a large density of states ratio).
Thus one must expect B to invade regions of W.
As the census taker time advances he will see smaller

and smaller spots of each type. If one assumes that there
are no operators of dimension zero, then the pattern should
fade into a homogeneous average grey, although under the
conditions we described it will be almost white.
The natural interpretation is that the boundary field

theory has two phases of different free energy, the B free
energy being larger than that ofW. The dominant configu-
ration would be the ones of lower free energy with occa-
sional fluctuations to higher free energy.

B. The persistence of memory

Returning to Fig. 13, one might ask why no bubble
formed along the red trajectory in the infinitely remote
past. The authors of [24] argue that eternal inflation does
not make sense without an initial condition specifying a
past surface on which no bubbles had yet formed. That
surface invariably breaks the Oð3; 1Þ symmetry and distin-
guishes a ‘‘preferred census taker’’ who is at rest in the
frame of the initial surface. He alone sees an isotropic sky
whereas all the other census takers see nonzero anisotropy.
The effect persists, no matter how late the nucleation takes
place.
The ‘‘persistence of memory’’ reported in [24] had

nothing to do with whether or not the census taker sees a
fading signal: GGV were not speaking about census taker
time at all. They were referring to the fact that no matter
how long after the start of eternal inflation a bubble nucle-
ates, it will remember the symmetry breaking imposed by
the initial conditions; not whether the signal fades with
TCT.

FIG. 15 (color online). A bubble of true vacuum forms in the
black false vacuum and then collides with a bubble of white
vacuum. The true vacuum is bounded by a hat but the white
vacuum terminates in a spacelike surface. Some generators of
the hat intersect the black vacuum and some intersect the white.
Thus �, shown as the red curve, is composed of two regions.
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To be clear about this, consider two (proper) times, tN
and tCT. The first, tN , is the time after the initial condition
at which the census taker’s bubble nucleates. The second,
tCT, is the census taker time measured from the nucleation
event. The persistence of memory refers to tN . No matter
how late the bubble nucleates, the census taker will see
some memory of the initial conditions at finite tCT.

An entirely separate question is whether the symmetry
breaking effects of the initial condition fade away with tCT
and if so how fast. The answer to this is determined by the
spectrum of dimensions in the conformal field theory. If
there are no dimension-zero operators the effects will
dilute with increasing census taker time.

Let us consider how the persistence of memory fits
together with the RG flow discussed earlier.21 Begin by
considering the behavior for finite � in the limit of small a.
It is reasonable to suppose that in integrating out the many
scales between a and �, the theory will run to a fixed point.
Now recall that this is the limit of very large T. If in fact the
theory has run to a fixed point it will be conformally
invariant. Thus we expect that the symmetry Oð3; 1Þ will
be unbroken at a very late time.

On the other hand, consider the situation of �=a of order
1. The reference and bare scales are very close and there
are few degrees of freedom to be integrated out. There is no
reason why the effective action should be near a fixed
point. The implication is that at a very early time (recall,
�=a ¼ eT) the physics on a fixed time slice will not be
conformally invariant. Near the beginning of an RG flow
the effective action is strongly dependent on the bare
theory. The implication of a breakdown of conformal
symmetry is that there is no symmetry between census
takers at different locations in space. In such situations
the center of the (deformed) anti-de Sitter space is indeed
special. The GGV boundary condition at the onset of
eternal inflation is the same thing as the initial condition
on the RG flow. In other words, varying the GGV boundary
condition is no different from varying the bare fishnet
theory.

Is it possible to tune the bare action so that the theory
starts out at the fixed point? If this were so, it would be an
initial condition that allowed exact conformal invariance
for all time. Of course it would involve an infinite amount
of fine tuning and is probably not reasonable. But there
may be reasons to doubt that it is possible altogether, even
though in a conventional lattice theory it is possible.

The difficulty is that the bare and renormalized theories
are fundamentally different. The bare theory is defined on a
variable fishnet whose connectivity is part of the dynamical
degrees of freedom. The renormalized theory is defined on
the fixed reference lattice. The average properties of the
underlying dynamical fishnet are replaced by conventional
fields on the reference lattice. Under these circumstances it

is hard to imagine what it would mean to tune the bare
theory to an exact fixed point.
The example of the previous subsection involving two

false vacua, B and W, raises some interesting questions.
First imagine starting with GGV boundary conditions such
that, on some past spacelike surface, the vacuum is pure
black and that a bubble of true vacuum nucleates in that
environment. Naively the boundary is mostly black. That
means that in the boundary theory the free energy of black
must be lower than that of white.
But we argued earlier that white instantons will even-

tually fill � with an almost white, very light grey color,
exactly as if the initial GGV condition were white. That
means that white must have the lower potential energy.
What then is the meaning of the early dominance of B from
the 2D field theory viewpoint?
The point is that it is possible for two rather different

bare actions to be in the same broad basin of attraction and
flow to the same fixed point. The case of black GGV
conditions corresponds to a bare starting point (in the space
of couplings) where the potential of B is lower than W.
During the course of the flow to the fixed point the potential
changes so that at the fixed point W has the lower energy.
On the other hand, white GGV initial conditions corre-

spond to starting the flow at a different bare point—perhaps
closer to the fixed point—where the potential of W is
lower.
This picture suggests a powerful principle. Start with the

space of two-dimensional actions, which is broad enough
to contain a very large landscape of 2D theories. With
enough fields and couplings the space could probably
contain everything. As Wilson explained [30], the space
divides itself into basins of attraction. Each initial state of
the Universe is described either as a GGV initial condition,
or as a bare starting point for an RG flow. The endpoints of
these flows correspond to the possible final states—the
hats—that the census taker can end up in.
We have not exhausted all the kinds of collisions that can

occur—in particular collisions with singular, negative cos-
mological constant vacua. A particularly thorny situation
results if there is a Bogomol’nyi-Prasad-Sommerfield do-
main wall between the negative and zero cosmological-
constant bubbles, then as shown by Freivogel, Horowitz,
and Shenker [34] the entire hat may disappear in a cata-
strophic crunch. The meaning of this is unclear.

C. Flattened hats

In a broad sense this paper is about phenomenology. The
census taker could be us: if we lived in an ideal thin-wall
hat we would see, spread across the sky, correlation func-
tions of a holographic quantum field theory; we could
measure the dimensions of operators both by the time
dependence of the received signals and their angular de-
pendence; bubble collisions would appear as patches re-
sembling instantons.21These observations are based on the work with Steve Shenker.
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Unfortunately (or perhaps fortunately) we are insulated
from these effects by two forms of inflation—the slow-roll
inflation that took place shortly after bubble nucleation and
the current accelerated expansion of the Universe. The
latter means that we do not live in a true hatted geometry.
Rather we live in a flattened hat, at least if we ignore the
final decay to a terminal vacuum.

The Penrose diagram in Fig. 16 shows an ancestor, with
large vacuum energy, decaying to a vacuum with a very
small cosmological constant. The important new feature is
that the hat is replaced by a spacelike future infinity.
Consider the census taker’s final observations as he arrives
at the flattened hat. It is obvious from Fig. 16 that he cannot
look back to�. His past light cone is at a finite value of Tþ.
Thus for each time slice T, there is a maximum radial
variable R ¼ R0ðTÞ within his ken, no matter how long he
waits [35]. In other words, there is an unavoidable ultra-
violet cutoff. It is evident that a final de Sitter bubble must
be described by a theory with no continuum limit; in other
words not only a nonlocal theory, but one with no ultra-
violet completion.22

Another, perhaps more serious limitation, is that all of
the memory of a past bubble nucleation may, for observa-
tional purposes, be erased by the slow-roll inflation that
took place shortly after the CDL tunneling event—unless it
lasted for the minimum permitted number of e-foldings
[33]. In principle the effects are imprinted on the sky, but in
an exponentially diluted form.

Nevertheless, it may be interesting to explore the phe-
nomenology of a limiting case in which the amount of
slow-roll inflation is very near the observational lower
bound [33] and in which the cosmological constant is
nonzero but arbitrarily small. The point of this exercise
would be to get some idea of the possible effects of eternal
inflation and how they are encoded in the FRW/CFT
correspondence. In this paper, we will only make a few

simple observations. In order to keep track of the ancestor
cosmological constant and the present cosmological con-
stant, we will use the notation H for the ancestor Hubble
constant and h for the current value.
The simplest way to compare the census taker with an

observer in the later stages of a universe with a nonzero
cosmological constant is to simply cut off the RG flow
when the areaH�2 expð2TþÞ is equal to the horizon area in
the late-time de Sitter vacuum, namely h�2. Thus we
simulate the effect of the event horizon by imposing a final
value of Tþ—call it Tþ

f ,

eT
þ
F �H

h
: (8.1)

As an example, consider the situation described in
Sec. VII.
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