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Light scalar fields with only gravitational strength couplings are typically present in UV complete

theories of physics beyond the standard model. In the early universe it is natural for these fields to

dominate the energy density, and their subsequent decay—if prior to big bang nucleosynthesis—will

typically yield some dark matter particles in their decay products. In this paper we make the observation

that a Nonthermal ‘‘WIMP Miracle’’ may result: that is, in the simplest solution to the cosmological

moduli problem, nonthermally produced WIMPs can naturally account for the observed dark matter relic

density.
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I. INTRODUCTION

For several decades, a compelling theoretical picture for
dark matter has been developed and widely applied, based
on what is now called the Thermal ‘‘WIMP Miracle’’. In
this picture, the early Universe is very hot and dense and
essentially all particle species are in thermal and chemical
equilibrium. As the Universe expands and cools to a tem-
perature of order the mass of the dark matter particle �, the
annihilations of � cease to be efficient at reducing the
number of particles compared to the cosmic expansion
and a ‘‘freeze-out’’ occurs. The resulting relic number
density of �-particles then depends only on the ratio of
the annihilation cross section of � and the Hubble scale
near the freeze-out temperature. For weakly interacting
massive particles (WIMPs), i.e. particles with electroweak
interactions and masses, the ‘‘miracle’’ is that this ratio is
in good agreement with that deduced from astrophysical
and cosmological experiments (see [1] for reviews).

While this is an extremely compelling idea, it can often
be difficult to implement in practice, with the relic density
predicted by theory disagreeing with the data by a couple
orders of magnitude in both directions. That is, the thermal
‘‘WIMP miracle’’ faces significant challenges when di-
rectly confronted with precision data. It is not clear at
present if this should be viewed as a failure of the theo-

retical models or as a phenomenological guide to select
particular classes of models. For example, in supersym-
metric models, where the thermal relic idea has perhaps
been most extensively explored, most of the parameter
space yields an incorrect dark matter density, prompting
attempts to look at special regions [2].
Furthermore, by considering the high energy behavior

(UV completion) of phenomenologically based models, it
becomes less straightforward to motivate cosmologies in
which the Universe is in thermal equilibrium prior to big
bang nucleosynthesis (BBN). This is partly because many
UV completions lead to the inclusion of moduli—neutral
scalar fields which couple to matter only gravitational—
and for a wide range of masses these moduli will typically
evolve to dominate the cosmic energy density prior to
BBN.
As a result, the decay of the moduli must give rise to

temperatures above that of BBN—a few MeV—or the
predictions of BBN will be ruined. This is the cosmologi-
cal moduli problem (formerly known as the Polonyi prob-
lem) [3–6] and typically requires that the moduli masses
are at least 10 TeV or greater. Of course, exceptions are
possible. A period of low-scale inflation could dilute the
moduli density [7]. Another possibility is if significant
energy is not stored in the fields. This could be accom-
plished by dynamics, or if the moduli are stabilized ini-
tially near points of enhanced symmetry [8,9]. However, in
this case, the need for a perturbative low energy theory
necessarily requires at least one modulus to remain unpro-
tected, and thus a substantial contribution to the energy
density should still be expected [9]. We will not discuss
these interesting possibilities further here.
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Moduli which evade the cosmological moduli problem
have masses which are typically greater than that of WIMP
dark matter candidates, so their decays will necessarily
result in the production of some dark matter. In fact, the
yield of dark matter particles can be quite large, since
moduli tend to couple to the matter sector universally
with gravitational strength couplings (� 1=mp) and the

branching ratios to stable particles are expected to be
substantial. Thus, the density of dark matter at the time
of moduli decay will typically be a sizable fraction of the
energy density of the moduli themselves. Nonthermally
produced dark matter has been considered previously by
many authors [10–13].

In this paper we will attempt to elaborate the connection
between the moduli problem and nonthermally produced
dark matter. In the absence of any strong guidance as to
how one might proceed from fundamental theory, we will
take the viewpoint of a generic supergravity theory con-
taining moduli. That is, we will simply take an effective
field theory approach to the general problem of moduli
coupled to matter in a supersymmetric framework. A priori
though, in order to proceed, one still requires a clue about
the mass spectrum of superpartners, moduli and the dark
matter candidate. In fact, the effective theory itself pro-
vides such a clue.

To see this, note that in a generic supergravity theory the
moduli masses are of order m3=2 (the gravitino mass) and,

furthermore, all scalars receive mass term contributions of
the same order [14]. This includes all squarks and sleptons.
Thus, since m3=2 is required to be at least 10 TeV because

of the moduli problem, squarks and sleptons are at least as
massive. Further, as we will argue below, gauginos need
not be as massive as the squarks and sleptons in such a
generic supergravity theory. On the other hand, in the
absence of special symmetries, Higgsinos also generically
have a mass of order m3=2 by the Giudice-Masiero mecha-

nism. If we thus consider the simplest model within this
framework—the minimal supersymmetric standard model
(MSSM) coupled to moduli, these arguments suggest that
� is a (neutral) gaugino, i.e. a Bino, Wino or a mixture
thereof.

Rather surprisingly, within the class of models with
spectra suggested by the above arguments, there exists a
Nonthermal ‘‘WIMP Miracle’’ under very general condi-
tions. In other words, by solving the cosmological moduli
problem, one automatically obtains a consistent solution to
the basic dark matter problem with WIMPs when the
moduli masses are 10’s of TeV. However, as will be seen,
compared to the thermal case, theWIMP annihilation cross
section is larger, thereby suggesting regions of parameter
space previously avoided based on the thermal dark matter
picture.

Examples of models with the sorts of spectra considered
here have been considered previously in the context of
AMSB [12] and more recently in the context of M theory

[11,15] where the nonthermal production of dark matter
was emphasized (see also [16]). These examples show that
with additional, well motivated assumptions, that the argu-
ments of this paper can be sharpened and detailed models
can be constructed. We emphasize that many of the ideas
given here were inspired by the seminal work of [12].

II. MODULI MASSES AND SUPERSYMMETRY
BREAKING

The moduli fields must enter the supergravity potential.
If not, they would remain massless and not gain the vevs
required to explain, e.g. the value of the fine-structure
constant �em or the Yukawa couplings in the Standard
Model. If V is the potential for all scalar fields, and the
only supersymmetry breaking physics is generated at the

scale of order
ffiffiffiffi
F

p
, then the moduli masses will generically

also be of order the gravitino mass as we now review.
The supergravity potential evaluated in the vacuum is of

the form

V ¼ eK=m2
pFiFi � 3m2

3=2m
2
p (1)

where Fi are the vacuum values of the SUSY-breaking
F-terms which are to be summed over all scalars �i with
nontrivial F-terms, K is the Kahler potential, and m3=2 is

the gravitino mass. Hence, because the observed vacuum
energy today is so small,

m3=2 � F=mp (2)

where F is of order the dominant F-term. This must be
true, regardless of the mechanism of supersymmetry break-
ing. In fact, F=mp sets the typical mass scale for all scalar

fields appearing in V in a generic supergravity theory. For
instance, since

Fi ¼ @W

@�i

þ @K

@�i

W � @iW þ KiW; (3)

whereW is the superpotential, there are terms in V of order

V � KiK
i jWj2
m2

p

: (4)

If we consider the terms inK (or inKiK
i) of order�i�

�
i we

obtain contributions to V like

V ��i�
�
i

jWj2
m2

p

: (5)

In the vacuum jWj2 �m2
3=2m

4
p hence these terms are mass

terms for �i of order m3=2. Hence, all scalars receive

contributions to their masses of order m3=2 in a generic

supergravity theory. This includes moduli as well as matter
scalars such as Higgses, squarks and sleptons.1

1See [17] for examples.
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Exceptions exist to the above general statements. In the
language of low energy supersymmetry, these would cor-
respond to very special vacuum Kahler and superpotentials
for the moduli and matter fields. For instance, if the moduli
dynamics is R-symmetry preserving, then the moduli po-
tential will not break supersymmetry and the moduli could,
in principle, obtain large masses and vevs independent of
the value of the gravitino mass, whose value is set by
additional R-breaking dynamics at another scale. We will
not consider such exceptions further, except in the conclu-
sions, and will adopt the viewpoint of the ‘‘generic super-
gravity Lagrangian’’.

Notice also that, if there were a bare, large mass term in
W for the moduli, the fact that the moduli get vevs will give
W a vev in general and therefore contributes to m3=2

thereby connecting again the moduli and gravitino mass.
Again, to avoid this requires R-symmetric moduli
dynamics.

A. Gauge mediation

In gauge mediation the dominant F-term
ffiffiffiffi
F

p �
1010 GeV, though typically F is taken to be much smaller
than what the upper limit (of high scale gauge mediation)
suggests. Hence, the gravitino mass and moduli masses are
of order

m3=2 �m� � F=mp � 10 GeV: (6)

Since theories of gauge mediated supersymmetry break-

ing have
ffiffiffiffi
F

p
between a TeV and 1010 GeV they lead to

moduli masses in the wide range:

10�3 eV � m� � 10 GeV: (7)

Of course, in gauge mediation, charged scalars get much
larger corrections to their masses from their interactions
with the ‘‘messengers of SUSY-breaking’’, but the moduli
do not.

This range of moduli masses leads to cosmological
problems. First of all, since the moduli have Planck scale
suppressed couplings to matter, this range of masses gives
moduli whose lifetimes are between 100 and 1042 years.
After inflation, when the Hubble scale becomes of order
m� the moduli begin to oscillate and will quickly dominate

the energy density of the universe over radiation. This
range of masses corresponds to temperatures

TeV � Tosc � 1010 GeV (8)

which means that such moduli would begin to dominate
before BBN. Therefore, such models lead to Universes
which are dominated by moduli for very long periods.
Further, after the moduli decay the Universe is not reheated
enough to start BBN with the correct conditions. Hence,
gauge mediation models coupled to moduli require quite
special Kahler and super potentials which would allow for
the moduli to be very massive compared to the gravitino.

B. Moduli masses in gravity mediation

In gravity mediation,
ffiffiffiffi
F

p
is much higher, e.g. 1011 GeV

to 1016 GeV and hence m3=2 is usually taken to be of order

TeV, since supersymmetry is assumed to solve the hier-
archy problem. Then, through the typical supergravity
couplings discussed above, the moduli will also end up
with TeV scale masses. Such moduli will decay during
BBN and will typically ruin its successful predictions for
light element abundances. The gravitino also leads to
similar problems. This is just the usual moduli problem.
In gravity mediation, there is a simple solution to these

problems. One can simply raise the scale of SUSY-

breaking (
ffiffiffiffi
F

p
) by a factor of a few which raises both

m3=2 and m� by 1 order of magnitude. This decreases the

moduli lifetime by 3 orders of magnitude and is consistent
with BBN occurring just after the moduli have decayed. A
detailed model in this case has been described in [11].
Notice that the gravitino mass has also been raised above
the TeV scale, since F is increased.
Since, as we have discussed above, all scalars, including

squarks, sleptons, and Higgses, will have masses of order
m3=2 the fine-tuning problem between m3=2 and mZ is

naively much worse in theories with moduli than in the
usual little Hierarchy problem.
A crucial point, however, is that the gauginos do not

have to be as massive as the squarks and sleptons: they can
easily be lighter if the field whose F-term dominates SUSY
breaking in the hidden sector is not the field whose vev
generates the gauge couplings �. In fact, in the generic
supergravity point of view, there is no reason why the
gauge coupling function should be dominated by the field
with the dominant F-term. This can presumably also be
understood as the consequence of an approximate
R-symmetry in this sector. Here we emphasize that it is
quite generic. However, in general this approximate
R-symmetry only suppresses the gaugino masses but not
that of the Higgsinos. One could also have special
R-symmetries in which both gaugino and Higgsino masses
are suppressed, as in split supersymmetry [18]. Hence, we
expect that the gauginos are significantly lighter than the
squarks and sleptons. In the absence of special
R-symmetries, we expect the Higgsinos to get masses
through the Giudice-Masiero mechanism of order m3=2.

What we learn is—by considering the simplest solution
to the cosmological moduli problem, we obtain a rough
picture of the spectrum of BSM particles. Existing models
which have this kind of spectrum include anomaly medi-
ated supersymmetry breaking models (AMSB) [12] and
the G2-MSSM [15].

C. The nonthermal ‘‘WIMP miracle’’

By taking this effective field theory approach we have
arrived at a picture which suggests that supersymmetry
breaking is gravity mediated with moduli and gravitino
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masses of order 10 TeV. The squark, slepton and Higgsino
masses are also of order 10 TeV, whereas the gauginos are
typically lighter. Cosmologically, these moduli inevitably
dominate the Universe after inflation and up to BBN.

We can now ask: with the spectrum roughly fixed by
these arguments, how much dark matter is produced, both
thermally, and nonthermally by the decays of the moduli
fields? In other words, is there a connection between the
moduli and dark matter problems?

After inflation, when the Hubble expansion becomes
comparable to the mass of the moduli (m�) they will begin

to oscillate in their potential. The resulting energy density
will dilute like normal pressureless matter and they will
quickly come to dominate the energy density. The oscil-
lations will begin at a temperature determined by the
moduli mass

Tosc � ðm�mpÞ1=2: (9)

The resulting condensate will then decay when the expan-
sion rate becomes comparable to the decay rate

H� �� �m3
�

m2
p

: (10)

Given that the moduli dominate before their decays, the
resulting energy density is (assuming instantaneous decay)
�decay � ��

2m2
p ¼ m6

�=m
2
p and so the expected number

density of dark matter particles will be

n� � Br�!�

�
�d

m�

�
� Br�!�

� m6
�

m�m
2
p

�
: (11)

We can compare with the critical number density for
annihilations to occur,

nc � H

�v
� ��

�v
� m3

�

m2
ph�vi

; (12)

where �v is the self annihilation cross section times ve-
locity of the produced dark matter particles.

n�

nc
� Br�!�

�m3
�

m�

�
h�vi: (13)

Taking typical weak scale values for the dark matter mass
(� 100 GeV) and cross-section (� 10�24 cm3 s�1 �
10�7 GeV�2), and moduli masses in the range to address
the cosmological moduli problem (� 10–100 TeV), we
find that the number density of produced particles is easily
large enough for the � particles to annihilate efficiently,
unless the branching ratio into dark matter particles is very
small. This is unlikely if dark matter particles are gauginos,
because the gauge coupling is a modulus vev and this has
an order one coupling to the gauginos. They will thus
continue to annihilate until their number density becomes

of order
��

�v . This is the nonthermal analogue of ‘‘thermal

freeze-out’’. Hence, the nonthermal freeze-out number

density is

n� �HðTrhÞ
�v

; (14)

where the temperature of the Universe after the decay is

Trh � ð��mpÞ1=2 �
m3=2

�

m1=2
p

: (15)

The fact that a nonthermal freeze-out actually occurs is
by itself an important statement, making the relic density
more model independent than if it did not occur. Assuming
no further entropy production in the Universe after this
stage, the resulting relic abundance is

��h
2 � 0:1�

�
m�

100 GeV

��
10:75

g�

�
1=4

�
�0

h�vi
�

�
�
100 TeV

m�

�
3=2

; (16)

where �0 ¼ 3� 10�24 cm3 s�1 and we have assumed2 the
constant of proportionality in (10) is around a factor of 10.
For � particles with order 100 GeV mass, a 100 TeV
moduli mass scale gives excellent agreement with the
data. Note that, (14) expresses the number density at
freeze-out as the ratio of the Hubble parameter to a particle
physics cross section, just as in the thermal case, except
now the Hubble scale is evaluated at the moduli reheating
temperature. This is the nonthermal ‘‘WIMP miracle’’.
With larger moduli masses, smaller cross sections are
also possible. However, this separates the Electroweak
scale from the scale of supersymmetry breaking even
further and, for masses beyond 1000 TeV there are no
good dark matter candidates in the spectrum whose cross
section is small enough, leading to too little nonthermal
dark matter. Therefore, the preferred moduli mass scale is
roughly 10 to 100 TeV.
For Oð100Þ GeV masses, the � particles freeze-out at

temperatures of order a few MeV, so the annihilation cross
section is about two to 3 orders of magnitude larger than
the thermal case, where freeze-out occurs at a few GeV.
Also note that larger moduli masses dilute the final relic
density, so that if the dark matter is to be explained this way
by gauginos, it requires moduli masses just beyond the
weak scale.

III. DISCUSSION

The consistent solution of both the dark matter and
moduli problems suggests that there is another important
scale in nature, of order 10–100 TeV. The picture which
emerges here is, in some sense, as compelling as the

2Larger values for the proportionality constant were found
from explicit calculations in [11], and smaller values are possible
as well (see e.g. [13]).
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thermal case, but has the additional advantage that it is
consistent with string theory and other frameworks with
moduli fields, without having to invoke ‘‘unknown dynam-
ics’’ which decouple the moduli. The nonthermal dark
matter picture requires larger annihilation cross sections
than the thermal case, thereby suggesting a class of models
which would not be considered based upon the thermal
relic density picture. Larger cross sections are also helpful
to explain the cosmic ray positron excess observed by
PAMELA. For instance, the neutral Winos (with annihila-
tion cross-section �v � 2:4� 10�24 cm3 � s�1) which are
the dark matter particles in [12,15] could be a good fit to
the PAMELA data [19,20]. Nonthermally produced dark
matter particles will in general have a different phase space
distribution than the thermal case; in principle this could
lead to observable consequences for structure formation
and the CMB. In fact, recent studies of the PAMELA data,
and constraints coming from the effects of dark matter
annihilations in the early universe on the CMB have been
shown to put tight constraints on the allowable annihilation
cross section of the dark matter particles [19,21]. This can
lead to some tension for models with larger cross sections,
like the Wino model mentioned above, and we expect even
more stringent bounds coming from future experiments
such as FERMI and Planck [19,21]. Finally, although
entropy production by the decay of moduli also dilutes
any preexisting baryon asymmetry, the problem can be

naturally solved if either a sufficiently large initial baryon
asymmetry (such as by the Affleck-Dine mechanism) is
generated [22], or if the decays of the moduli themselves
generate both the baryon asymmetry and dark matter [23].
We also point out that these arguments tend to disfavor

gauge mediated supersymmetry breaking. If gauge medi-
ated supersymmetry breaking were discovered at the LHC,
it would imply that our supergravity vacuum is extremely
nongeneric, in that it allows large moduli masses while
keeping the gravitino very light. An example might be a
theory in which the moduli dynamics is R-symmetric while
supersymmetry breaking is not. This might allow a decou-
pling ofm3=2 andm�. However, as noted in [6], decoupling

these scales is very difficult in general.
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