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Future or ongoing galaxy redshift surveys can put stringent constraints on neutrinos masses via the

high-precision measurements of galaxy power spectrum, when combined with CMB information. In this

paper we develop a method to model galaxy power spectrum in the weakly nonlinear regime for a mixed

dark matter [cold dark matter (CDM) plus finite-mass neutrinos] model, based on perturbation theory (PT)

whose validity is well tested by simulations for a CDM model. In doing this we carefully study various

aspects of the nonlinear clustering (nonlinear neutrino perturbations and the higher-order growth

functions), and then arrive at a useful approximation allowing for a quick computation of the nonlinear

power spectrum as in the CDM case. The nonlinear galaxy bias is also included in a self-consistent manner

within the PT framework. Thus, the use of our PT model can give a more robust understanding of the

measured galaxy power spectrum as well as allow for higher sensitivity to neutrino masses due to the gain

of Fourier modes beyond the linear regime. Based on the Fisher matrix formalism, we find that the BOSS

or Stage-III type survey, when combined with Planck CMB information, gives a precision of total neutrino

mass constraint, �ðm�;totÞ ’ 0:1 eV, while the Stage-IV type survey may achieve �ðm�;totÞ ’ 0:05 eV, i.e.,

more than a 1-� detection of neutrino masses. We also discuss possible systematic errors on dark energy

parameters caused by the neutrino mass uncertainty. The significant correlation between neutrino mass

and dark energy parameters is found, if the information on power spectrum amplitude is included. More

importantly, for the Stage-IV type survey, a best-fit dark energy model may be biased and falsely away

from the underlying true model by more than the 1-� statistical errors, if neutrino mass is ignored in the

model fitting.
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I. INTRODUCTION

The concordance �-dominated cold dark matter
(�CDM) model for structure formation in the Universe is
remarkably successful in describing various data sets such
as cosmic microwave background (CMB) anisotropies,
Type-Ia supernova distance measurements, observations
of galaxy clustering and cluster counts, and weak gravita-
tional lensing (e.g., [1,2]). However, the concordance
model requires that the present-day energy budget of the
Universe is dominated by two unknown dark components.
One is dark matter that is needed to explain the nonlinear
aspects of gravitational clustering in structure formation,
and the other is the cosmological constant contribution or
perhaps a more generalized form dubbed as dark energy,
which is needed to explain the cosmic accelerating expan-
sion. Understanding the nature of these dark components is
one of the most important, profound problems in cosmol-
ogy as well as particle physics.

We now know that the big-bang relic neutrinos contrib-
ute to dark matter energy density by some small fraction,
because the neutrino oscillation experiments [3–6] have
shown that neutrinos have finite masses (also see [7,8] for a

thorough review). However, the oscillation experiments are
sensitive only to mass square differences between different
flavor neutrinos; therefore, the most fundamental constant
of neutrinos, absolute mass scale, is not yet known,
although the lower bound on total neutrino mass can be
inferred as m�;tot * 0:06 or 0.1 eV for the normal and

inverted mass hierarchies, respectively. On the other
hand, the direct experiment has put only a weak upper
bound on electron neutrino mass such as m�e

& 2 eV [9].

Cosmological probes can give a complementary, albeit
indirect, method for constraining neutrino masses. There
are two kinds of the methods. First is via the effect on
cosmic expansion history. If neutrino species are massive
enough as m� * 0:5 eV, the neutrinos became nonrelativ-
istic before recombination epoch and then imprint charac-
teristic signatures onto structures of the CMB anisotropy
spectra [10,11]. On the other hand, low-redshift geometri-
cal probes such as Type-Ia supernovae (e.g., [12]) and the
baryon acoustic oscillation (BAO) [13] are sensitive to the
present-day energy density of nonrelativistic matter (�m0)
that is given by the sum of CDM, baryon, and neutrino
contributions: �m0 � �cdm0 þ�b0 þ��0. Therefore,
combining these geometrical measurements can constrain
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neutrino mass: for example, [1] already succeeded in ob-
taining the presumably best-available constraint from this
method, m�;tot & 0:6 eV (95% C.L.).

Alternative cosmological method is using clustering
information of large-scale structure. Because of the large
velocities of the frozen Fermi-Dirac distribution, neutrinos
cannot cluster on scales below the neutrino free-streaming
scale that has a characteristic dependence on neutrino mass
and redshift as given by kfs;i ’ 0:023h Mpc�1ðm�;i=

0:1 eVÞð�m0=0:23Þ½2=ð1þ zÞ�1=2, comparable with the
BAO scales for the neutrino mass scales of interest. As a
result, the presence of finite-mass neutrinos suppresses the
amplitude of low-redshift power spectrum on the small
scales by at least the amount of a few percent, compared
to the model without finite-mass neutrinos, for a fixed�m0

[14]. Thus, given the CMB normalization of primordial
power spectrum, total neutrino mass can be explored by
measuring clustering strengths of low-redshift large-scale
structure via galaxy redshift survey [15–17], weak gravi-
tational lensing [18,19], Lyman-� forest power spectrum
[20], and potentially 21 cm observations [21]. The existing
data sets have put more stringent upper bounds on neutrino
mass, m�;tot & 0:2–0:5 eV, than the direct experiment

limit, although some residual systematics are under
discussion.

There are a number of ongoing and planned galaxy
redshift surveys such as WiggleZ [22], FMOS [23],
BOSS [24], the Subaru redshift survey known as the former
project WFMOS [25], HETDEX [26], EUCLID [27], and
JDEM [28]. The primary scientific target of these surveys
is exploring the nature of dark energy via the BAO experi-
ment. At the same time these surveys promise to achieve
the high-precision measurements of galaxy power spec-
trum amplitudes to a percent level precision at each of the
wave number bins, and therefore offer a possibility to
dramatically improve cosmological constraints including
neutrino masses [29–31].

Thus, large-scale structure probes are very promising;
however, the main obstacle is nonlinear effects such as
nonlinear gravitational clustering, galaxy bias, and redshift
distortion. Recent theoretical studies have shown that, even
at scales as large as �150h�1 Mpc relevant for both the
BAO and neutrino free-streaming scale, the standard linear
theory, which gives remarkably successful agreement with
CMB measurements, ceases to be accurate. The nonlinear
effects are found to be significant compared to the preci-
sion of future surveys, using N-body simulations [32–38]
and analytical studies inspired from perturbation theory
[39–49]. However, in most of these studies the contribution
of finite-mass neutrinos were ignored. The nonlinear effect
of finite-mass neutrinos on the power spectrum needs to be
understood in order to attain the full potential of future
surveys, which is also important to minimize the possible
systematic error on BAO experiments caused by the in-
correct assumption that neutrinos are massless.

Therefore, the aim of this paper is in developing a
formulation to model nonlinear galaxy power spectrum
in a mixed dark matter (CDM plus finite-mass neutrinos)
model, based on standard perturbation theory (SPT) (see
[50] for a thorough review of perturbation theory for a
CDM model). Here, by ‘‘standard’’ we mean that the next-
order corrections to the power spectrum, i.e., the one-loop
corrections, are included. In doing this we carefully study
various aspects of the nonlinear clustering: estimate the
nonlinear neutrino perturbations by solving the collision-
less Boltzmann equation hierarchies and study the higher-
order growth functions of CDM plus baryon perturbations
that have complicated scale- and redshift-dependences
similarly to the linear-order growth rate. Then, given the
detailed assessment of various effects, we will arrive at a
useful approximation to compute the nonlinear matter
power spectrum whose results were highlighted in [51].
We then include a modeling of nonlinear galaxy bias self-
consistently within the SPT framework following the
method developed in [52]. Thus, while the nonlinear red-
shift distortion effect is not yet included, our model of the
galaxy power spectrum can be compared to the actual
measurement such as that in [17], where the redshift dis-
tortion effect is removed using the finger-of-God compres-
sion algorithm [53]. For preparation of such a study wewill
demonstrate parameter forecasts for neutrino mass con-
straints expected from some of galaxy surveys listed above,
paying a particular attention on the correlation between
neutrino mass and dark energy parameters in the weakly
nonlinear regime. We also discuss a possible systematic
error in the constraints on the dark energy parameter
caused by the neutrino mass uncertainty.
The structure of this paper is as follows. In Sec. II, we

develop the formulation of SPT method for computing the
nonlinear matter power spectrum. In Sec. III, we then study
the effect of finite-mass neutrinos on the matter power
spectrum by varying the neutrino masses within the range
inferred from the constraints. After including a model of
nonlinear galaxy bias based on perturbation theory in
Sec. IV, we study parameter forecasts of neutrino masses
and dark energy parameters using the Fisher matrix formal-
ism in Sec. V. Section VI is devoted to a summary and
discussion. Unless explicitly stated, throughout this paper
we assume the concordance �CDM-like cosmology with
finite-mass neutrino contribution, which is consistent with
theWMAP results [1]. The fiducial model is as follows: the
density parameters are�m0 ¼ 0:24,�m0h

2 ¼ 0:1277, and
�b0h

2 ¼ 0:0223. The neutrino effect is studied by varying
the neutrino mass scale. For simplicity the number of
neutrino species is assumed to be N� ¼ 3 because the
matter power spectrum is sensitive to the sum of neutrino
masses, m�;tot ¼ N�m�. We assume a flat Universe and

consider w0 ¼ �1 for the dark energy equation of state.
For the primordial fluctuation parameters, the amplitude,
the tilt, and the running, are set to �2

R ¼ 2:35� 10�9,

nS ¼ 1:0, and �S ¼ 0, respectively.
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II. PERTURBATION THEORY FOR NONLINEAR
MATTER POWER SPECTRUM IN A MDM MODEL

A. Preliminaries

First we write down basic equations to describe structure
formation in a MDM model. Throughout this paper, we
focus on the evolution of matter fluctuations consisting of
MDM (CDM plus massive neutrinos) and baryon:

�m � ��c þ ��b þ ���

�m

¼ fcb�cb þ f���; (1)

where the subscripts ‘‘m’’, ‘‘c’’, ‘‘b’’, ‘‘�,’’ and ‘‘cb’’ stand
for total matter, CDM, baryon, massive neutrinos, and
CDM plus baryon, respectively, and �cb and �� denote
their density perturbations. The coefficients, fcb and f�, are
the fractional contributions of each component to the
present-day total matter density:

fcb ¼ �c0 þ�b0

�m0

;

f� ¼ ��0

�m0

¼ 1� fcb ’ m�;tot

94:1�m0h
2
;

(2)

with the density parameter, �i0, being defined as �i;0 �
8�G�iðt0Þ=ð3H2

0Þ (i ¼ m, c, b, �) where the parameter h is

dimensionless Hubble constant defined as H0 ¼
100h kms�1 Mpc�1. In the limit of fcb ! 1, the results
shown below recover a CDM model that does not contain
massive neutrinos. The evolution of a homogeneous and
isotropic Universe is controlled by CDM, baryon, massive
neutrinos, and dark energy whose equation of state is
simply assumed to be constant in time pDE ¼ w0�DE,
where w0 is referred to as the equation of state parameter.
Then, the background Friedman equations become

H2 ¼ 8�G

3
ð�m þ �DEÞ; (3)

_H ¼ � 3

2
H2ð1þ w0Þ; (4)

where the dot _ denotes the derivative with respect to cosmic
time, t: _a ¼ da=dt, and the Hubble parameterH is defined
as H � _a=a.

We are specifically concerned with the nonlinear growth
of matter perturbations, �m. Let us first consider the con-
tribution of CDM plus baryon perturbations, �cb, to the
total matter perturbations. In order to evaluate the non-
linear evolution of �cb, we treat the CDM plus baryon
components as a single pressureless fluid. The continuity
equation and the Euler equation for the CDM plus baryon
fluctuations in Fourier space are given in [50,54] as

H�1 @�cbðk; tÞ
@t

þ �cbðk; tÞ ¼ �
Z d3k0

ð2�Þ3 �ðk
0; k� k0Þ

� �cbðk� k0; tÞ�cbðk0; tÞ; (5)

H�1 @�cbðk; tÞ
@t

þ 1

2
ð1� 3w0�DEÞ�cbðk; tÞ þ 1

2
ð1��DEÞ

� �mðk; tÞ

¼ � 1

2

Z d3k0

ð2�Þ3 �ðk
0;k� k0Þ�cbðk� k0; tÞ�cbðk0; tÞ; (6)

where the velocity divergence �cb is defined as �cb ¼ r �
vcb=ðaHÞ in real space. Note that we assume an irrotational
flow, i.e., the vorticity is neglected [55]. The Fourier ker-
nels to describe the nonlinear mode coupling, � and �, are
defined as

�ðk1; k2Þ � 1þ k1 � k2
jk1j2

;

�ðk1; k2Þ � ðk1 � k2Þjk1 þ k2j2
jk1j2jk2j2

:

(7)

Taking the time derivative of Eq. (5) and also using the
Euler equation (6) yield the second-order differential equa-
tion for �cb

€�cb þ 2H _�cb � 3

2
H2ð1��DEÞ�m

¼ �
Z d3k0

ð2�Þ3
�
�ðk0; k� k0Þf½H�cbðk� k0Þ�cbðk0Þ�:

þ 2H2�cbðk� k0Þ�cbðk0Þg þ 1

2
H2�ðk0; k� k0Þ

� �cbðk� k0Þ�cbðk0Þ
�
: (8)

Thus, Eq. (8) contains �m ¼ fcb�cb þ f��� and cannot be
solved unless the neutrino fluctuation field �� is specified.
So let us move on to the discussion on neutrino pertur-

bations. Unlike CDM and baryon, the finite-mass neutrinos
have a large velocity dispersion following the frozen
Fermi-Dirac distribution, and cannot be treated as fluids.
Therefore, exactly speaking, it is necessary to solve Eq. (8)
coupled with the collisionless Boltzmann equations for
neutrino perturbations that include the nonlinear terms.
This is still computationally expensive, especially for solv-
ing the nonlinear Boltzmann equations. Here, we rather
consider the approximated method for solving the non-
linear perturbations as described in the next subsection,
and will also assess the accuracy of the approximation.
In our method we focus on the linearized collisionless

Boltzmann equations for neutrino perturbations [56]:

�0
0 ¼ � qk

a	
�1 þH


d lnf0
d lnq

; (9)

�0
1 ¼

qk

3a	
ð�0 � 2�2Þ � 	k

3aq


d lnf0
d lnq

; (10)

�0
‘ ¼

qk

ð2‘þ 1Þa	 ½‘�‘�1 � ð‘þ 1Þ�‘þ1�ð‘ � 2Þ; (11)
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where the variables, q and 	, are comoving 3-momentum

and proper energy defined as 	 � ðq2 þ a2m2
�;iÞ1=2, respec-

tively, and the function 
 is the gravitational potential
perturbation under the conformal Newtonian gauge (see
below). The superscript ’ denotes the derivative with re-
spect to conformal time. The function f0 is the zeroth-

order (isotropic) Fermi-Dirac distribution, given as f0 ¼
2=ðe	=aT þ 1Þ, and the function � is the linear-order per-
turbed distribution. The full phase-space distribution func-
tion of neutrinos is given in the linear regime as

fðxi; qj=a; tÞ ¼ f0ðqÞ½1þ�ðxi; q; n̂j; tÞ�; (12)

where the momentum vector is rewritten as qj ¼ qn̂j with

n̂jn̂
j ¼ 1. The variables �‘, appearing in the Boltzmann

equations above are the ‘-th moments in the Legendre
expansion of �:

�ðk; n̂; q; tÞ ¼ X1
‘¼0

ð�iÞ‘ð2‘þ 1Þ�‘ðk; q; tÞP‘ðk̂ � n̂Þ;

(13)

where P‘ is the l-th order Legendre polynomial. The
neutrino density perturbation is given by integrating the
monopole contribution of neutrino perturbations over mo-
mentum

��ðk; tÞ ¼ 4�

a4f��m

Z
q2dq	f0ðqÞ�0ðk; q; tÞ: (14)

The system of momentum hierarchies, Eqs. (9)–(11),
can be solved once the gravitational potential 
 is given.
One of the Einstein equations, the Poisson equation, relates
the potential 
 to the total matter density perturbation �m

on subhorizon scales

� k2
ðk; tÞ ¼ 4�Ga2�m�m: (15)

On scales smaller than the neutrinos’ free-streaming scale
k * kfs, the neutrino perturbation would be absent, and
the Poisson equation roughly becomes �k2
ðk; tÞ �
4�Ga2�mfcb�cb. Thus, on these small scales the dynamics
of neutrino perturbations are governed by the CDM plus
baryon perturbations. We have so far written down all the
basic equations that govern the dynamics of density per-
turbations for each of the components, �cb and ��. A
quantity that is more relevant for actual large-scale struc-
ture probes, such as galaxy clustering, is the power spec-
trum of total matter including nonlinear corrections

h�mðk; tÞ�mðk0; tÞi ¼ ð2�Þ3�Dðkþ k0ÞPmðk; tÞ: (16)

The power spectrum Pm is defined in terms of the density
perturbations of CDM, baryon, and neutrino perturbations
as

Pmðk; tÞ ¼ f2cbPcbðk; tÞ þ 2fcbf�Pcb�ðk; tÞ þ f2�P�ðk; tÞ;
(17)

where Pcb�ðkÞ is the cross spectrum between �cb and ��.

B. On the treatment of neutrino perturbation

Strictly speaking, in order to compute the total matter
perturbation �m in the nonlinear regime, we need to solve
Eq. (8) coupled with nonlinear collisionless Boltzmann
equations for massive neutrinos, which seems computa-
tionally expensive. In order to avoid this obstacle, in this
paper we employ a simple approximation that allows to
analytically compute the nonlinear power spectrum in a
MDM model based on the SPT (see [51] for the similar
discussion).
Let us begin with recalling characteristic properties of

neutrino clustering on scales up to k� 0:1h Mpc�1. First,
the neutrino perturbations contribute to nonlinear gravita-
tional clustering via its contribution to the gravitational
potential, where, implied in Eq. (15), the perturbation of
physical neutrino density ��� ¼ ����� affects the gravita-
tional potential. Thus, the contribution is suppressed by a
small factor f�, currently limited as f� & 0:05 [1], even if
the density perturbations of CDM and neutrinos are in
similar amplitudes as predicted by the adiabatic structure
formation scenario. Second, the neutrino perturbations
would tend to stay in the linear regime due to the large
velocity dispersion, at least on scales relevant for the BAO
scales. These facts suggest that the nonlinear power spec-
trum arises mainly from the nonlinear perturbations of
CDM plus baryon. Thus, we model the nonlinear matter
spectrum based on SPT (see below), but including only the
linear-order perturbations of neutrinos

PNL
m ðk; tÞ ¼ f2cbP

NL
cb ðk; tÞ þ 2fcbf�P

L
cb�ðk; tÞ þ f2�P

L
�ðk; tÞ;

(18)

where the spectra with superscript ‘‘NL’’ denote the non-
linear spectra described below, and the spectra with ‘‘L’’
are the linear-order spectra. With this assumption, the
neutrino perturbations can be precisely computed for given
initial conditions by using the publicly available codes
such as CMBFAST [57] and CAMB [58]. The validity of
our assumption is studied in detail in Appendix A. Here,
we briefly summarize the result. As explained around
Eqs. (11) and (15), nonlinear clustering of neutrino pertur-
bations is driven by nonlinear gravitational potential sup-
ported by CDM plus baryon perturbations, in a CDM
dominated structure formation model. Therefore, the non-
linear correction to neutrino perturbations can be qualita-
tively estimated by solving the linearized Boltzmann
equations (9)–(11), where the nonlinear gravitational po-
tential due to the total matter density perturbations given
by Eq. (18) is inserted into the gravitational force term
(ignoring the nonlinear neutrino perturbations). The results
are shown in Fig. 10. Nonlinear clustering indeed causes a
nonlinear evolution of neutrino perturbations, deviating
from the linear theory prediction. The nonlinear effect
causes greater amplitudes of the neutrino perturbations
on larger k and at lower redshifts; e.g., the fractional
difference between the linear and nonlinear density pertur-
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bations �NL
� =�L

� reaches to�10% on k & 1h Mpc�1 at z ¼
0 for f� ¼ 0:05. However, the nonlinear effect on the total
matter power spectrum is suppressed by additional small
factor f� as implied in Eq. (18). In conclusion, the non-
linear correction to the total matter power spectrum is
smaller than a 1% level in the amplitude for a range of
neutrino masses, f� & 0:05. For these reasons, throughout
this paper, we employ the approximation (18), where the
neutrinos affect nonlinear power spectrum of total matter
via the effect on the growth rates of CDM plus baryon
perturbations as described in the next section.

C. Perturbation theory approach

In this subsection we develop a method to compute the
nonlinear power spectrum of CDM plus baryon perturba-
tions, Pcbðk; tÞ in a MDM model based on perturbation
theory. First, in order to solve Eq. (8), we expand the
density and velocity perturbations in a perturbative man-
ner:

�cb ¼ �ð1Þ
cb þ �ð2Þ

cb þ �ð3Þ
cb þ � � � ;

�cb ¼ �ð1Þcb þ �ð2Þcb þ �ð3Þcb þ � � � ;
(19)

where the superscript ‘‘(i)’’ denotes the i-th order pertur-
bation. Here, we include the next-to-leading order correc-
tions for Pcbðk; tÞ, which are expressed as

Pcbðk; tÞ ¼ PL
cbðk; tÞ þ Pð13Þ

cb ðk; tÞ þ Pð22Þ
cb ðk; tÞ: (20)

The first term PL
cb denotes the linear power spectrum of

CDM plus baryon. The last two terms describe the non-
linear corrections, the so-called one-loop corrections, and
the superscript ‘‘(13)’’ and ‘‘(22)’’ denote the multiplied

order of perturbations, h�ð1Þ
cb �

ð3Þ
cb i and h�ð2Þ

cb �
ð2Þ
cb i. We thus

include contributions up to the third-order perturbations.
Inserting the formal solutions (19) into Eq. (8) gives, at

the lowest order of perturbations, the differential equation

for �ð1Þ
cb :

€� ð1Þ
cb þ 2H _�ð1Þ

cb � 3
2H

2ð1��DEÞ�ð1Þ
m ¼ 0: (21)

This equation can be straightforwardly solved, together
with the linearized Boltzmann equation for neutrino per-
turbations (e.g., [59]). In this paper we use CAMB [58] to

obtain the accurate solution of �ð1Þ
cb . Before moving on to

the higher-order perturbations of �cb, for the convenience
of our discussion, we formally write down the linear-order
solutions of density and velocity perturbations expressed as
[60,61]

�ð1Þ
cb ðk; tÞ ¼ Dcbðk; tÞ�̂ðkÞ;

�ð1Þcb ðk; tÞ ¼ �dDcbðk; tÞ
d lna

�̂ðkÞ;
(22)

where the quantity �̂ðkÞ represents the initial perturbation
variables at an early epoch tini, sufficiently in the linear

regime, e.g., the Compton-drag epoch. The ensemble av-
erage gives the initial power spectrum

h�̂ðkÞ�̂ðk0Þi ¼ ð2�Þ3�Dðkþ k0ÞPL
cbðk; tiniÞ: (23)

The effect of massive neutrinos can thus be described as
the scale-dependent growth function Dcbðk; tÞ. At wave
numbers smaller than the neutrino free-streaming scale
kfs, the neutrinos can cluster together with CDM and
baryon. On the other hand, at k > kfs, the growth of
CDM plus baryon perturbations is suppressed due to the
weaker gravitational force caused by the lack of neutrino
perturbations. Thus, the growth function has asymptotic
behaviors given in [59] as

Dcbðk; tÞ /
�
D1ðtÞ ðk 	 kfsÞ
D1ðtÞ1�p ðk 
 kfsÞ ; (24)

where D1ðzÞ is the growth rate for a CDM model without
massive neutrinos, but with the same matter density�m0 to
that of the MDMmodel (in this case the growth rate has no
scale dependence), and the parameter p is defined as p �
ð5� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25� 24f�
p Þ=4.

We now consider the second- and third-order perturba-
tions. Substituting the linear solutions into the right-hand
side of Eq. (8) yields the differential equation for the

second-order perturbation �ð2Þ
cb :

€�ð2Þ
cb þ 2H _�ð2Þ

cb � 3

2
H2ð1��DEÞfcb�ð2Þ

cb

¼
Z d3k1d

3k2
ð2�Þ3 �Dðk� k1 � k2Þ�̂ðk1Þ�̂ðk2Þ

�
�
�ðk1;k2Þ

��
H
dDcbðk1Þ
d lna

Dcbðk2Þ
�
:

þ 2H2 dDcbðk1Þ
d lna

Dcbðk2Þ
�
þ �ðk1;k2Þ 12H

2 dDcbðk1Þ
d lna

� dDcbðk2Þ
d lna

�
; (25)

where, as described in the preceding section, we have
ignored the second-order contribution of neutrino pertur-

bations, i.e., set �ð2Þ
� ¼ 0, and therefore used �ð2Þ

m ¼ fcb�
ð2Þ
cb

in deriving the equation above. The formal solutions of
Eq. (25) can be written as

�ð2Þ
cb ðk; tÞ ¼

Z d3k1d
3k2

ð2�Þ3 �Dðk� k1 � k2Þ�̂ðk1Þ�̂ðk2Þ

� ½�ðk1;k2ÞAð2Þ
� ðk1; k2; tÞ þ �ðk1; k2Þ

� Bð2Þ
� ðk1; k2; tÞ�; (26)

where Að2Þ
� and Bð2Þ

� are the second-order growth functions

given in detail in Appendix B
There are notable differences between the second-order

perturbations in models with and without massive neutri-

nos. First, the second-order growth functions Að2Þ
� and Bð2Þ

�
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are scale dependent originating from the scale dependence
of the linear growth rate. Thus, additional nonlinear mode
coupling arises via the scale-dependent growth rate, in
addition to via the shape of the input linear power spec-
trum. Second, the gravitational force is weaker in a MDM
model because we ignored the second-order neutrino per-

turbations in our method, i.e., �ð2Þ
m ¼ fcb�

ð2Þ
cb with fcb < 1.

These imply that the second-order density perturbations
are suppressed compare to those of the CDM model with
the same �m0. We will in detail show the results below.

Similarly, a formal solution of the third-order perturba-
tion can be expressed as

�ð3Þ
cb ðk; tÞ ¼

Z d3k1d
3k2d

3k3
ð2�Þ6 �Dðk� k1 � k2 � k3Þ

� �̂ðk1Þ�̂ðk2Þ�̂ðk3Þ½�1;23f�2;3A
ð3Þ
�1;2;3ðtÞ

þ �2;3B
ð3Þ
�1;2;3ðtÞg � �23;1f�2;3C

ð3Þ
�1;2;3ðtÞ

þ �2;3D
ð3Þ
�1;2;3ðtÞg � �1;23f�2;3E

ð3Þ
�1;2;3ðtÞ

þ �2;3F
ð3Þ
�1;2;3ðtÞg; (27)

where the Fourier kernels �ðk1; k2Þ, �ðk1;k2Þ, and
�ðk1;k2 þ k3Þ are abbreviated as �1;2, �1;2, and �1;23,

respectively, and the third-order growth functions I ð3Þ
�

(I ¼ A, B, C, D, E, F), abbreviated as I ð3Þ
� ðk1; k2; k3Þ ¼

I ð3Þ
�1;2;3 and so on, are given in Appendix B.

D. One-loop corrections to Pcb

We now study the higher-order density perturbations for
a given MDM model. Using the formal solutions, we can

derive the explicit expressions for the one-loop corrections

to Pcb. First let us consider Pð22Þ
cb . Using Eq. (26), the

ensemble average h�ð2Þ
cb ðk; tÞ�ð2Þ

cb ðk0; tÞi yields the power

spectrum Pð22Þ
cb :

Pð22Þ
cb ðk; tÞ ¼ 2

Z d3k1

ð2�Þ3 ½�1;2A
ð2Þ
�1;2ðtÞ þ �1;2B

ð2Þ
�1;2ðtÞ�2

� PL
cbðk1; tiniÞPL

cbðk2; tiniÞjk¼k1þk2 ; (28)

where we have used the abbreviated expressions such as

Að2Þ
� ðk1; k2; tÞ ¼ Að2Þ

�;1;2ðtÞ, and the k1 integration has to be

done under the condition k ¼ k1 þ k2. The prefactor 2
arises from the Wick’s theorem in evaluating the ensemble
average h�ðk1Þ�ðk2Þ�ðk3Þ�ðk4Þi. Changing the integra-
tion variables to r � k1=k and � � k � k1=ðkk1Þ, the ex-

pression of Pð22Þ
cb is rewritten as

Pð22Þ
cb;MDMðk; tÞ ¼

k3

2�2

Z 1

0
r2drPL

cbðkr; tÞ

�
Z 1

�1
d�PL

cbðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2r�

q
; tÞ

�Kð2Þ
� ðk; r;�; tÞ; (29)

where PLðk; tÞ is the linear spectrum at time t, given in
terms of the initial spectrum as PLðk; tÞ � D1ðtÞ2PLðk; tiÞ,
and K is the function containing the growth functions,
which is defined as

K ð2Þ
� ðk; r;�; tÞ ¼

�
1

2

�
�

r

Að2Þ
�1;2ðtÞ

Dcbðkr; tÞDcbðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2r�

p
; tÞ

þ 1� r�

1þ r2 � 2r�

Að2Þ
�2;1ðtÞ

Dcbðkr; tÞDcbðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2r�

p
; tÞ

�

þ �� r

rð1þ r2 � 2r�Þ
Bð2Þ
�1;2ðtÞ

Dcbðkr; tÞDcbðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2r�

p
; tÞ

�
2
: (30)

For the CDM model case (the case without massive neutrinos), i.e., the limit fcb ! 1, the higher-order growth functions
become scale independent as a result of the scale independence of the linear growth rate. In this case, the growth functions
are well approximated as

Að2Þ
�1;2ðtÞ

Dcbðkr; tÞDcbðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2r�

p
; tÞ

! 5

7
;

Bð2Þ
�1;2ðtÞ

Dcbðkr; tÞDcbðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2r�

p
; tÞ

! 1

7
: (31)

Note that the asymptotic behaviors above are exact only in an Einstein-de Sitter model (�m0 ¼ 1), but hold an excellent
approximation for a CDMmodel at relevant redshifts [62,63]. Hence, for the case fcb ¼ 1, Eq. (29) recovers a well-known
expression of the one-loop power spectrum Pð22Þ

CDMðk; tÞ for the CDM model case [64,65]:

Pð22Þ
cb ! Pð22Þ

cb ðk; tÞ ¼ k3

98ð2�Þ2
Z 1

0
drPL

cbðkr; tÞ
Z 1

�1
d�PL

cbðk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2 � 2r�

q
; tÞ ð3rþ 7�� 10r�2Þ2

ð1þ r2 � 2r�Þ2 : (32)

Thus, for a MDM model, the scale-dependent growth function (Eq. [(30)]) has to be solved before obtaining the power
spectrum Pð22Þ

cb . Because of this, the exact computation of Pð22Þ
cb is computationally expensive.
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Similarly, another one-loop power spectrum Pð13Þ
cb is formally expressed as

Pð13Þ
cb;MDMðk; tÞ ¼

2k3PL
cbðk; tÞ

ð2�Þ2
Z 1

0
drr2PL

cbðkr; tÞKð3Þ
� ðk; r; tÞ; (33)

where the growth function Kð3Þ
� is defined as

Kð3Þ
� ðk; r; tÞ ¼ 1

Dcbðk; tÞDcbðkr; tÞ2
�
� 2

3

�
Að3Þ
� ðkr; k; kr; tÞ þ 1

r2
Að3Þ
� ðkr; kr; k; tÞ

�

� 2ð1þ r2Þ
3r2

fBð3Þ
� ðkr; k; kr; tÞ þ Bð3Þ

� ðkr; kr; k; tÞg þ
��3þ r2

2
� ð1� r2Þ2

4r
ln

��������1þ r

1� r

��������
�
Cð3Þ
� ðkr; k; kr; tÞ

þ
��1� r2

2r2
þ ð1� r2Þ2

4r3
ln

��������1þ r

1� r

��������
�
Cð3Þ
� ðkr; kr; k; tÞ � 2

3
fDð3Þ

� ðkr; k; kr; tÞ þDð3Þ
� ðkr; kr; k; tÞg

þ
�
1þ r2

2r2
� ð1� r2Þ2

4r3
ln

��������1þ r

1� r

��������
�
Eð3Þ
� ðkr; k; kr; tÞ þ

��1þ 3r2

2r4
þ ð1� r2Þ2

4r5
ln

��������1þ r

1� r

��������
�
Eð3Þ
� ðkr; kr; k; tÞ

þ 2

3r2
fFð3Þ

� ðkr; k; kr; tÞ þ Fð3Þ
� ðkr; kr; k; tÞg

�
: (34)

Note that Pð13Þ
cb is evaluated by one-dimensional integration once the linear power spectrum and the growth function are

given. For a model without massive neutrinos, the growth functions are approximated as

1

Dcbðk; tÞDcbðkr; tÞ2 fA
ð3Þ
� ; Bð3Þ

� ; Cð3Þ
� ; Dð3Þ

� ; Eð3Þ
� ; Fð3Þ

� g !
�
5

18
;
1

18
;� 1

6
;� 1

9
;� 1

21
;� 2

63

�
: (35)

Therefore, Eq. (33) recovers the expression of Pð13Þ for the CDM model case:

Pð13Þ
cb ! Pð13Þ

cb ðk; tÞ ¼ k3

252ð2�Þ2 P
L
cbðk; tÞ

Z 1

0
drPL

cbðk; tÞ
�
12

r2
� 158þ 100r2 � 42r4 þ 3

r3
ðr2 � 1Þ3ð7r2 þ 2Þ ln

��������1þ r

1� r

��������
�
:

(36)

Again, an exact computation of Pð13Þ
cb is computationally

expensive.
Thus, evaluations of the one-loop correction spectra,

Pð12Þ
cb and Pð13Þ

cb , at each k and each time t require high-

dimension integrations, which are numerically time-
consuming. Rather, we find that Eqs. (32) and (36) serve
as good approximations to obtain the spectra for a MDM
model, if the scale-dependent linear growth rate entering
into the linear power spectrum PL

cb is properly taken into

account. We give the justification below.
First, we study validity of the approximations (31) and

(35) for the nonlinear growth functions in a MDM model.
Figure 1 compares the approximations (31) and (35) with
the results obtained by numerically solving the differential
Eqs. (B1), (B2), and (B4) that govern the time evolution of
the nonlinear growth functions [66]. Here, we consider the

growth functions Að2Þ
� ðk1; k2Þ and Að3Þ

� ðk1; k2; k3Þ as repre-

sentative examples. Also note that we considered f� ¼
0:05, corresponding to the current upper bound, and red-
shift z ¼ 0, where nonlinear clustering is strongly evolved.
This figure clearly shows that the fractional errors of the
approximations are less than �5% over a wide range of
wave numbers we have considered. This agreement im-
plies that the scale dependence of higher-order growth

functions are well captured by the k dependence of the
linear growth rate Dcbðk; tÞ. This level of agreement was

also found for other growth functions, Bð3Þ
� , Cð3Þ

� , Dð3Þ
� , Eð3Þ

� ,

and Fð3Þ
� .

Figure 2 compares the approximation with the full

evaluation of one-loop power spectra, Pð22Þ
cb ðkÞ and

Pð13Þ
cb ðkÞ. In the left panel, the dashed curves show the result

obtained by performing the numerical integrations in
Eqs. (29) and (33) where the higher-order growth functions
are inserted into the calculations of the Fourier kernels

Kð2Þ
� and Kð3Þ

� , while the solid curves are the results

obtained by the approximations (32) and (36). Note that
we assumed f� ¼ 0:05 as in Fig. 1. It is apparent that the

absolute values of Pð22Þ
cb ðkÞ and Pð13Þ

cb ðkÞ are slightly over-

estimated by the approximations, because the higher-order
growth functions are overestimated by the approximations
as implied in Fig. 1. The right panel shows the resulting
total power spectra of baryon plus CDM perturbations that

include up to the one-loop corrections: Pcb ¼ PL
cb þ

Pð22Þ
cb þ Pð13Þ

cb . It is found that the fractional error of the

approximation is smaller than �1% on scales up to k ¼
1h Mpc�1, for the case of f� ¼ 0:05. Thus, we can con-
clude that the approximations to compute the one-loop
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power spectra are sufficiently accurate for our purpose,
over the ranges of wave numbers, redshifts, and neutrino
mass scales we are interested in.

Given the results shown in Figs. 1 and 2, we will here-
after employ the approximations (32) and (36) for comput-
ing the nonlinear power spectrum of total matter at an
arbitrary time t. A brief summary is as follows: we first

compute the linear power spectra of each components at
time t, PL

cbðk; tÞ, PL
�ðk; tÞ, and PL

cb�ðk; tÞ, for a desired MDM

model, by using the publicly available code CAMB [58]. We

then compute one-loop power spectra, Pð22Þ
cb ðk; tÞ and

Pð13Þ
cb ðk; tÞ, using Eqs. (32) and (36). Then, all the spectra

are summed up to obtain the nonlinear spectrum of total
matter

FIG. 1 (color online). The second- and third-order growth functions at redshift z ¼ 0 are plotted as a function of two wave numbers
k1 and k2, for a MDMmodel with f� ¼ 0:05 (m�;tot ’ 0:6 eV). As representative examples, shown here is the growth functions divided

by some powers of the linear growth rate: Að2Þ
� ðk1; k2Þ=½Dcbðk1ÞDcbðk2Þð5=7Þ� (left panel), Að3Þ

� ðk1; k2; k1Þ=½Dcbðk1Þ2Dcbðk2Þð5=18Þ�
(middle) and Að3Þ

� ðk1; k1; k2Þ=½Dcbðk1Þ2Dcbðk2Þð5=18Þ� (right), respectively. Note that specific combinations of ki arguments in Að3Þ
� are

chosen because the one-loop power spectrum Pð13Þ
cb (see Eq. [(33)]) depends on the growth functions of specific configurations. The

quantities shown become unity for the limit f� ¼ 0, i.e., a model without massive neutrinos (see Eqs. [(31) and (35)]), which is shown
by the plane in each plot. Therefore, the deviations from unity reflect additional scale dependences arising from the mode coupling. It
is clear that scale dependences of the higher-order growth functions are well captured by combinations of the linear growth rate, and
the approximations (31) and (35) hold valid with accuracy better than �5% over the range of wave numbers we have considered.

FIG. 2 (color online). Left panel: The dashed curves show the one-loop power spectra of CDM plus baryon perturbations, Pð22Þ
cb and

Pð13Þ
cb , which are obtained by numerical integrations of Eqs. (29) and (33), respectively, while the solid curves show the spectra

computed using the approximations (32) and (36). Note that the y axis is plotted in the linear scale, and we consider f� ¼ 0:05 and
z ¼ 0. For comparison, the right-most solid curve labeled as ‘‘PL

cb’’ shows the linear power spectrum. Right panel: The fractional

difference of the total matter power spectrum including up to the one-loop corrections is shown in the left panel: PNL
cb ðkÞ ¼

PL
cbðkÞ þ Pð13Þ

cb ðkÞ þ Pð22Þ
cb ðkÞ. The approximation is found to be accurate to better than 1% on scales k & 1h Mpc�1.
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PNL
m ðk; zÞ ¼ f2cb½PL

cbðk; zÞ þ Pð22Þ
cb ðk; zÞ þ Pð13Þ

cb ðk; zÞ�
þ 2fcbf�P

L
cb�ðk; zÞ þ f2�P

L
�ðk; zÞ: (37)

Before closing this subsection, we comment on the work
of [67], where a similar method for computing the one-
loop corrected power spectra for a MDM model was
developed based on perturbation theory ignoring the non-
linear neutrino perturbations. Although our method is
qualitatively equivalent to their method, there are several
technical differences that may be worth stressing [67].
First, we employed the analytical fitting formula for
scale-dependent linear growth function (also for the trans-
fer function) developed in [60], which is given as a func-
tion of neutrino masses and cosmological parameters.
Then, analytical expressions for the higher-order growth
functions and the one-loop power spectra were derived.
There are several inaccuracies involved in the fitting for-
mula. The formula becomes less accurate for small neu-
trino masses as explicitly pointed out in [68]. More
precisely for a case that neutrino(s) is massive enough
such that the neutrinos become nonrelativistic in the radia-
tion dominated era, corresponding to m� * 0:6 eV (f� *
0:05) for a �CDM model, the fitting formula becomes
inaccurate because it assumes a continuous suppression
in the matter growth since neutrinos became nonrelativis-
tic, although the suppression occurs only in the matter
dominated regime. In addition, the fitting formula does
not include BAO features in the transfer function.
Therefore, the use of the fitting formula may underestimate
the ability of future galaxy surveys for constraining cos-
mological parameters, especially dark energy parameters
to which the observed scales of BAO peaks are sensitive. In
contrast, in our method, the nonlinear power spectrum is
obtained by inserting the linear power spectrum outputs of
the numerical Boltzmann solver such as CAMB, which takes
into account the scale-dependent growth rate as well as
BAO features at high precision. Albeit these small differ-
ences, [67] also verified that Eqs. (32) and (36) are a good
approximation.

III. NONLINEAR POWER SPECTRUM IN A MDM
MODEL

In this section, based on the treatment developed in the
previous section, we study effects of finite-mass neutrinos
on the nonlinear power spectrum of total matter.

In Fig. 3, we show the SPT predictions for nonlinear
power spectra divided by the linear power spectra at three
different redshifts z ¼ 0, 1 and 3, respectively, for a MDM
model with f� ¼ 0:01 (m�;tot ’ 0:12 eV). Nonlinear gravi-
tational clustering causes amplitudes of the nonlinear total
matter power spectrum to be enhanced, resulting in more
significant deviations from the linear theory predictions on
smaller scales and at lower redshifts. In other words, our
PT model tells the range of wave numbers and redshifts

where the linear theory is valid or equivalently the linear
theory starts to break down on wave numbers beyond the
applicable range. Our model predictions are also compared
with the result of an empirical method, which is the halo-
model approach (hereafter we call ‘‘halofit’’). In this model
the nonlinear power spectrum is obtained by mapping the
input linear power spectrum based on the fitting formula
that is calibrated by numerical simulations for CDM mod-
els [69]. Recent studies [18] employed the halofit method
to compare the model predictions to the weak lensing
measurements for a MDM model, and then derived an
upper limit on total neutrino mass as m�;tot & 0:54 eV
(95% C.L.). The halofit power spectra are smaller in am-
plitudes than SPT by up to �10% over the range of scales
we consider. Furthermore, SPT washes out more oscilla-
tory BAO features than halofit, as pointed out in the
previous study [32], where the SPT results were shown to
reproduce the simulations results better than the halofit
results.
It should also be noted that SPT eventually ceases to be

accurate at smaller scales, and the validity needs to be
carefully studied by using numerical simulations (e.g.,
[38] for such a study for a CDM model). Our method
may be further improved by including the higher-order
perturbation contributions or using a refined method such
as the renormalized perturbation theory (e.g., [43]) or the
closure theory method [45]. These are in progress and will
be presented elsewhere.
In the left panel of Fig. 4 we compare the two power

spectra with and without massive neutrinos, Pf��0=Pf�¼0,

for a fixed �m0. Note that we show the results for f� ¼
0:01 (m�;tot ¼ 0:12 eV) and f� ¼ 0:02 (m�;tot ¼ 0:24 eV)
to study dependences of the neutrino effect on total neu-
trino mass, and consider redshift z ¼ 1, the central target

FIG. 3 (color online). The nonlinear power spectra for a MDM
model with f� ¼ 0:01. The solid curves show the SPT predic-
tions divided by the linear spectra for three redshifts z ¼ 0, 1,
and 3, while the dashed curves denote the halofit results.
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redshift of theWFMOS-like survey. As can be clearly seen,
the massive neutrinos imprint characteristic, scale-
dependent suppression features onto the power spectrum
shape. Comparing the linear theory and SPT results mani-
fests that the nonlinear power spectrum has increasing
suppression on scales k * 0:1h Mpc�1, where the linear
theory predicts a constant suppression roughly given as
Pf��0=Pf�¼0 ��8f� [15]. This enhanced suppression ef-

fect can be understood as follows: As can be found from

Eq. (32) and (36), the one-loop power spectra, Pð22Þ
cb and

Pð13Þ
cb , which give nonlinear corrections to the total matter,

are roughly proportional to squares of the linear power
spectrum, PL

cb, and therefore the suppression effect on the

growth rate is enhanced in the weakly nonlinear regime,
compared to the model without massive neutrinos.

The left panel also shows the halofit results. Note that,
for this case, the numerator and denominator of
Pf��0=Pf�¼0 are both computed by the halofit. Unex-

pectedly, the halofit results fairly well reproduce the sup-
pression features given by SPT, although the power spectra
themselves show a moderate difference in these two mod-
els as implied in Fig. 3. The right panel of Fig. 4 shows the
results for redshifts z ¼ 0, 1, and 3. The apparent agree-
ment between halofit and SPT can be seen only for red-
shifts z ¼ 1 and 3, and the difference appears clear for the
z ¼ 0 results. Recent studies of N-body simulation in a
MDM model also show similar behavior to that of the
enhanced neutrino suppression [70,71]. A quantitative
comparison among SPT, halofit, and N-body results will
be reported elsewhere.

Is the neutrino effect on total matter power spectrum
measurable for a future galaxy survey? To obtain insight

into this question, the shaded boxes around the SPT curve
with f� ¼ 0:01 display expected 1-� uncertainties in mea-
suring band powers of the power spectrum at each of the
wave number bins, assuming survey parameters of the
WFMOS-like low-z survey (see Table I for the details).
To be more explicit, the fractional errors of measuring the
power spectrum, PmðkÞ, averaged over a spherical shell of
each radial bin k with bin width �k are, in an ideal case,
given as

�
�P

PmðkÞ
�
2 ¼ 4�2

Vsk
2�k

�
1þ �ngPmðkÞ

�ngPmðkÞ
�
2
; (38)

where Vs and �ng are the comoving survey volume and

number density of target galaxies. Note that, for the mea-
surement errors above, we assumed the Gaussian errors for
simplicity, and ignored the non-Gaussian contributions
(see [73] for the detailed study). The neutrino suppression
appears to be greater than the errors at k * 0:06h Mpc�1.
Another intriguing consequence of the nonlinear clustering
is that the amplified power of PNL

m ðkÞ reduces the relative
importance of the shot noise contamination. Note that in
reality the matter power spectrum should be replaced with
the galaxy one, and we address this issue when forecasting
constraints on neutrino masses. Thus, extending the avail-
able range of wave number, the constraint on neutrino
masses can be improved.
Finally, it would be worth noting that wiggles in the

curves reflect shifts in the BAO peak locations caused by
the scale-dependent suppression effect of neutrinos. The
amount of the modulations, however, is smaller than the
measurement errors. Hence, the uncertainty in neutrino

FIG. 4 (color online). Left panel: The fractional difference between mass power spectra with and without massive neutrino
contribution. The shaded boxes show the expected 1-� errors on the power spectrum measurement for a Stage-III type survey of
z� 1 slice that is characterized by the mean number density of galaxies and survey volume, �ng ¼ 5� 10�4h3 Mpc�3 and Vsurvey ¼
1:5h�3 Gpc3 (also see Table I). The two models of neutrino mass, f� ¼ 0:01 and 0.03 (m�;tot ’ 0:12 and 0.36 eV, respectively) are

assumed, where other cosmological parameters are kept fixed. Right panel: It is shown how the neutrino suppression feature in the
power spectrum amplitude varies with redshifts, comparing the results for the SPT, linear theory, and halofit.
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mass is unlikely to largely degrade the power of BAO
experiments, at least for an expected small f�.

IV. NONLINEAR GALAXY BIAS

To model galaxy clustering relevant for actual galaxy
surveys we need to further include a galaxy bias effect.
According to [52] (also see Appendix C for the details), we
below describe the modeling of nonlinear galaxy bias in a
MDM model, which is done in a self-consistent manner
with the modeling of nonlinear matter clustering presented
up to the preceding section.

We assume the local bias: the galaxy distribution at a
given spatial position is locally related to the underlying
matter distribution at the same position, which would be a
good approximation at least on large length scales of
interest. In this modeling the galaxy density fluctuation
field, �gðxÞ, is given in terms of the matter field �mðxÞ in a

Taylor expansion as [74]

�gðxÞ ¼ 	þ c1�mðxÞ þ 1

2
c2�

2
mðxÞ þ 1

6
c3�

3
mðxÞ þ . . . ;

(39)

where cn are the n-th order bias parameters, and 	 repre-
sents the stochasticity of galaxy bias, which is a statistical
noise originating from the fact that the relation between �g

and �m is not perfectly deterministic. Here, the stochastic-
ity is assumed to be white noise and be uncorrelated with
the density fluctuations, h	�mi ¼ 0. Note that the galaxy
bias parameters and the stochasticity depend on galaxy
type, and vary with time [75–77].
Equation (39) of galaxy bias relation has an analogous

form to the perturbative expansion. Therefore, we can
include the bias contribution up to the one-loop corrections
in terms of the matter density fluctuations. According to
the methods developed in [37,52], the galaxy power spec-
trum, including the one-loop corrections can be computed
as

PgðkÞ ¼ b21½PNL
m ðkÞ þ b2Pb2;�ðkÞ þ b22Pb22ðkÞ� þ N;

(40)

where the functions Pbs;� and Pb22 are defined as

TABLE I. Survey parameters that we assume in this paper to make parameter forecasts. The survey parameters are chosen such that
the surveys fairly well represent the existing survey (SDSS LRG), the near-future planned survey (BOSS), and the 5–10 yr time-scale
future surveys, which we call Stage-III and -IV surveys, respectively, according to the Dark Energy Task Force Report [72]. We
employ the method described in Appendix D (also see the text) in order to determine the fiducial values of the linear and nonlinear bias
parameters b1 and b2 for each redshift slice of the respective survey. We also include the residual shot noise contamination arising from
nonlinear clustering, which is parametrized by N, and we determine the fiducial value of each redshift slice according to the method in
Appendix D. The values in the column labeled by kSPT3%max denote the maximum wave number up to which the SPT is expected to be
reliable to within a few percent accuracy compared to N-body simulation results at each redshift (we determined the kmax values
following using Eq. (46)). We also show the quantity �ngPgðkmaxÞ at the maximum wave number for each redshift slice: if �ngPgðkmaxÞ �
1, the power spectrum measurement is in the sample variance limited regime.

Survey zc �z
�ng

10�4ðh3Mpc�3Þ
Survey Area

ðdeg2Þ
Vs

ðh�3 Gpc3Þ b1 b2

N
104ðh�3 Mpc3Þ

kSPT3%max

ðh Mpc�1Þ
�ngPg

ðkSPT3%max Þ
SDSS LRG

(0:2< z < 0:4)
0.3 0.2 1.0 10 000 1.17 2.10 0.336 0.0778 0.120 1.67

BOSS

(0:4< z < 0:7)
0.45 0.1 3.0 10 000 1.13 2.13 0.140 0.0062 0.127 3.94

0.55 0.1 3.0 10 000 1.53 2.21 0.211 0.0125 0.133 3.57

0.65 0.1 3.0 1 0000 1.94 2.29 0.263 0.0194 0.138 3.27

Stage-III low-z
(0:7< z < 1:6)

0.8 0.2 4.0 3200 1.61 1.41 0.295 0.0177 0.146 1.31

1.0 0.2 4.0 3200 2.06 1.51 0.443 0.0332 0.158 1.15

1.2 0.2 4.0 3200 2.42 1.63 0.572 0.0524 0.170 1.07

1.45 0.3 4.0 3200 4.15 1.77 0.760 0.0851 0.184 0.97

Stage-III high-z
(2:5< z < 3:3)

2.9 0.8 2.5 300 1.23 3.30 2.215 0.2719 0.275 0.43

Stage-IV

(0:5< z < 2:1)
0.6 0.2 200 20 000 6.94 1.31 �0:409 0.0124 0.134 69.4

0.8 0.2 200 20 000 10.07 1.41 �0:384 0.00933 0.146 57.2

1.0 0.2 200 20 000 12.85 1.51 �0:345 0.00594 0.158 49.3

1.2 0.2 200 20 000 15.14 1.63 �0:299 0.00383 0.170 45.5

1.4 0.2 200 20 000 16.94 1.74 �0:242 0.00217 0.182 40.4

1.6 0.2 200 20 000 18.29 1.86 �0:177 9:96� 10�4 0.195 34.8

1.8 0.2 200 20 000 19.27 1.99 �0:096 2:38� 10�4 0.206 31.2

2.0 0.2 200 20 000 19.94 2.11 �0:016 0:06� 10�4 0.219 28.4
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Pb2;�ðkÞ � 2
Z d3q

ð2�Þ3 P
L
mðqÞPL

mðjk� qjÞF ð2Þ
� ðq; k� qÞ;

Pb22ðkÞ � 1

2

Z d3q

ð2�Þ3 P
L
mðqÞ½PL

mðjk� qjÞ � PL
mðqÞ�:

(41)

The detailed derivation is shown in Appendix C. In
Eq. (40) PNL

m ðkÞ is the nonlinear matter power spectrum
given by Eq. (37), and the kernel F� used in Eq. (41) is

given by Eq. (C3). Note that Pb2;� > 0 and Pb22 < 0 at

scales of interest, 0:01h Mpc�1 & k & 0:2h Mpc�1.
Equation (40) shows that the nonlinear galaxy power spec-
trum is modeled by the three parameters b1, b2, andN once
the matter power spectra are specified for a given cosmo-
logical model, where the parameters b1, b2, and N are
redefined from the original parameters in Eq. (39) and
the linear mass power spectrum as shown in Appendix C
(also see [52] for the detailed derivation).

FIG. 5 (color online). Top left figure: The perturbation theory predictions for nonlinear galaxy power spectrum at redshift z ¼ 1,
which are computed from Eq. (40) assuming the three fiducial values of nonlinear bias parameter, b2 ¼ �0:25, 0.25, and 1.2,
respectively. The results are divided by the nonlinear mass power spectrum multiplied by the same linear bias parameter b21 such that

the deviation from unity represents the nonlinear, scale-dependent bias effect. The positive and negative b2 values, with jb2j< 1, cause
enhanced and suppressed power spectrum amplitudes on smaller scales compared to the linearly biased power spectrum. The model
with b2 > 1 causes a complex scale-dependent bias (also see text for the details). The valid range of linear theory and SPTare indicated
by the two arrows in the upper horizontal axis (see text for the definition). Top-right figure: The neutrino suppression features for the
nonlinear galaxy power spectra for different fiducial values of b2. For comparison the two dashed curves are the results for mass power
spectrum computed from the SPT and linear theory as in Fig. 4. Bottom figure: The effect of residual shot noise contamination that
arises from nonlinear clustering, which is modeled as Pg ! Pg þ N. The three solid curves show the results for N ¼ 0, 1000, and

2000, respectively, where b1 ¼ 1:51 and b2 ¼ 0:25 are kept fixed.
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For the limit of very small k, Eq. (40) recovers the linear
regime result, but with correction term

PgðkÞ ! b21P
L
mðkÞ þ N: (42)

Thus, b1 acts as an effective linear bias parameter for the
power spectrum and N adds a shot noise contamination
arising from stochastic bias and nonlinear clustering (also
see [78–80]). The terms that depend on b2 are proportional
to the one-loop corrected mass power spectrum give an
effect of scale-dependent bias due to the nonlinear cluster-
ing. The parameters b1, b2, and N change with the galaxy
type we are working on, so they need to be treated as free
parameters for each galaxy type. In fact, as carefully
studied in [37], the galaxy power spectrum (40) can fairly
well reproduce the semi-analytic simulation results in the
weakly nonlinear regime, if the parameters are properly
chosen so as to match the simulation results.

The top panel of Fig. 5 explicitly shows how a scale-
dependent bias in the galaxy power spectrum is modeled
by b2. Note that we consider z ¼ 1 and N ¼ 0, and the
spectra plotted are divided by b21PmðkÞ such that deviation
from unity represents the effect of scale-dependent bias.
Here, we consider b2 ¼ �0:25 and 1.2 as a working ex-
ample. First of all, it is worth noting that the nonlinear
galaxy bias of b2 � 0:1–1 causes a modification in the
galaxy power spectrum shape at BAO scales, and the effect
may need to be taken into account for BAO surveys. For the
case of b2 < 1, as can be seen from the results of b2 ¼
�0:25, a positive (negative) b2 enhances (suppresses) the
power spectrum amplitudes increasingly at larger k, rela-
tive to the linear bias case. These features are from the
second term in the bracket on the right-hand side of
Eq. (40) because Pb2;� > 0. On the other hand, when b2 >
1, the nonlinear bias causes a complicated modification in
the spectrum shape, because the third term in Eq. (40)
becomes dominant over the second term at larger k. Note
that the third term is always negative, so it always sup-
presses the power spectrum amplitudes.

The results in the top panel imply that, even if a linear
bias parameter is well determined, the scale-dependent
bias may cause a degeneracy with the effect of finite
neutrino masses, thereby degrading the ability of future
surveys for constraining neutrino masses. In particular, a
negative b2 causes a suppression in the power spectrum
amplitudes, similarl to the neutrino effect, so this case may
cause a stronger degeneracy. To obtain insight into this, the
middle panel of Fig. 5 studies the neutrino suppression
effect on the galaxy power spectrum in the presence of
nonlinear bias. Shown here is the fractional difference of
galaxy spectra with and without neutrinos of f� ¼ 0:01, for
three cases of b2. For comparison, the dashed curves show
the results for ‘‘matter’’ power spectra employing linear
theory and SPT. While the neutrino suppression effect is
preserved, the nonlinear bias alters the features in the

weakly nonlinear regime. This figure shows that a negative
(positive) b2 weakens (strengthens) the suppression effect.
The bottom panel shows the dependence on the residual

shot noise contamination, given by the term including the
parameter N in Eq. (40). The shot noise term has no wave
number dependence for the power spectrum measurement,
but the figure implies that the shot noise residual with N ¼
Oð103Þ ðMpc=hÞ3 may significantly alter the power spec-
trum shape over a wide range of wavelengths where the
neutrino suppression effect appears. This residual shot
noise effect arising from nonlinear clustering can be
studied by using semi-analytic N-body simulations where
galaxies are populated with halos, so may it be not be so
serious a source of systematics in the end (e.g., [80]).
Thus, nonlinear bias effects cause additional modifica-

tion on the galaxy power spectrum shape. Therefore, un-
certainties in the nonlinear bias parameters need to be
properly taken into account in extracting cosmological
parameters from the measured power spectrum. These
will be carefully studied below.

V. PARAMETER FORECASTS

We now estimate the ability of future surveys for con-
straining neutrino masses when using the SPT model pre-
dictions to be compared with the measurements.

A. Fisher matrix formalism

For an actual galaxy redshift survey, there is another
nonlinear effect to be taken into account: redshift distortion
effect due to the peculiar velocities of galaxies. The red-
shift distortion causes the redshift-space power spectrum to
be two-dimensional: the galaxy clustering strength is vary-
ing as a function of two wave numbers perpendicular and
parallel to the line-of-sight direction. The redshift-space
power spectrum would be more prominent than the real-
space one to carry useful cosmological information, in-
cluding dark energy parameters because it contains the
geometrical distortions in directions both along and per-
pendicular to the line-of-sight, the so-called Alcock-
Paczynski test [81] (also see [82,83]). However, the dis-
tortion effect in the nonlinear regime is not yet fully under-
stood, and a more careful study based on high-resolution
N-body simulations is needed to develop the accurate
modelling [49]. Hence, in this paper for simplicity we
focus on the one-dimensional real-space power spectrum.
This roughly corresponds to the monopole power spectrum
obtained by averaging the redshift-space power spectrum
over the spherical shell of a given wave number in radius,
in combination with the proper weighting as well as with
the finger-of-God compression algorithm [53], as devel-
oped in [13,17]. Note that, after the spherical shell average,
the residual Kaiser’s effect of redshift distortion [84] be-
haves like the linear bias parameter. That is, we include
only the nonlinear galaxy bias effect.
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We can not measure directly the length scale in real
space from the observed galaxy distribution; rather we
measure the angular positions of galaxies on the sky, and
the radial position in redshift space. To convert the ob-
served position to the real-space position, one needs to
assume a reference cosmological model, which generally
differs from the underlying true cosmology. An incorrect
mapping causes an apparent distortion in the measured
power spectrum, known as the geometrical distortion
[82,83]. Since in this paper we focus on the one-
dimensional, real-space power spectrum that is given as a
function of wave number, the waven umber estimated from
the reference cosmology, kref , is related to the true wave
number k as

k ¼ DVðzÞref
DVðzÞ kref ; (43)

where DVðzÞ is the effective distance factor accounting for
the spherical shell average in redshift space, and is given in
terms of the angular diameter distance and the Hubble

expansion rate as DVðzÞ / ½D2
AðzÞ=HðzÞ�1=3 [13]. The

quantities with subscript ‘‘ref’’ denote the quantities for
the reference cosmology. Further taking into account the
amplitude shift caused by assuming the reference cosmol-
ogy, the galaxy power spectrum estimated from a galaxy
redshift survey, Pest

g , is related to the true spectrum as

Pest
g ðkrefÞ ¼ D3

VðzÞref
D3

VðzÞ
Pgðk; zÞ: (44)

In order to estimate the accuracies of neutrino mass
determination, we adopt the Fisher matrix formalism
(e.g., see [29]). The Fisher formalism gives minimal attain-
able errors on the parameters by means of a set of observ-
ables considered. However, this method becomes
inaccurate in the case where only an upper bound on
neutrino masses rather than the detection can be obtained
for a given survey. In this case we need to take into account
the non-Gaussian effect of the likelihood, i.e., a sharp
cutoff at f� ¼ 0 in parameter space. A more accurate
parameter estimation can be obtained, e.g., by using a
Markov-chain Monte Carlo based method [85]. The
Fisher matrix formalism is sufficient for our purpose,
which is to estimate the ability of future surveys and to
examine the impact of the refined model predictions on
parameter estimation compared to the linear theory based
method.

The Fisher matrix for the galaxy power spectrum mea-
surement for a given survey is expressed in [86] as

Fgalaxy
�� ¼ X

i

VsðziÞ
4�2

Z kmaxðziÞ

kmin

k2dk
@ lnPest

g ðk; ziÞ
@p�

� @ lnPest
g ðk; ziÞ
@p�

�
�ngðziÞPest

g ðk; ziÞ
�ngðziÞPest

g ðk; ziÞ þ 1

�
2
; (45)

where p� represents a set of free parameters, VsðziÞ and

�ngðziÞ are the comoving survey volume and number density

of galaxies, respectively, at i-th redshift bin defined as
½zi � �z=2:zi þ �z=2�, and the summation runs over red-
shift slices. Note that Pg is given by Eq. (40), and the

argument k in Pest
g is the reference wave number kref in

Eq. (43), but we omitted the subscript for notational sim-
plicity. The partial derivative of the power spectrum with
respect to parameter p� is computed by infinitesimally
varying the parameter p� around the fiducial model as-
sumed, with other parameters p�ð� � �Þ being kept to the
fiducial values, such that the Fisher matrix estimates the
parameter accuracies around the fiducial model.
To compute the Fisher matrix for a given survey we need

to specify lower and upper wave number bounds in the k
integration of Eq. (45). We set kmin ¼ 10�4h Mpc�1, and
have checked that choosing the smaller kmin changes the
results little. On the other hand, one should be careful in
choosing the maximum wave number for each redshift
slice, kmaxðziÞ, which needs to be chosen from the range
of wave numbers where the model predictions, linear
theory or perturbation theory, are reliable and accurate.
One way to determine kmaxðziÞ is usingN-body simulations
in comparison with the model predictions. However, high-
precision simulations for a MDM model are not yet fully
explored (see [70,71] for the recent attempts based on the
initial pioneering work [87]). Here, we simply employ the
following method for a CDM model in [38] to specify
kmaxðziÞ for each redshift slice:

kmaxðziÞ2
6�

Z kmaxðziÞ

0
PL
mðq; ziÞdq ¼ Cmax; (46)

where PL
m is the input linear mass power spectrum at

redshift zi. Since Cmax is a monotonically increasing func-
tion with kmax, we will study how a choice of kmax (or
equivalently a choice of Cmax) affects our results.
Refernce [38] carefully showed that, for a CDM model,
the SPT results fairly well agree with N-body simulations
up to a maximum wave number corresponding to Cmax ¼
0:18ð0:3Þ to within up to �1% (3%) accuracy, while the
corresponding valid ranges for linear theory are given by
the smaller values Cmax ¼ 0:06ð0:13Þ. They also showed
that another criterion derived by [32] seems optimistic,
where it was proposed that SPT predictions agree well
with simulations up to kmax given by �2ðkmaxÞ ¼
k3PðkÞ=2�2jk¼kmax

& 0:4.

We also comment that the Gaussian error covariance for
galaxy power spectrum is assumed in Eq. (45), where the
power spectra of different wave numbers are assumed to be
independent. Nonlinearities of structure formation cause
correlated errors of different band powers, i.e., non-
Gaussian errors for power spectrum measurement, due to
the nonlinear mode-coupling. The non-Gaussian errors are
not negligible even on BAO scales, comparable with neu-
trino free-streaming scales, and are more significant at
higher k due to stronger nonlinearities. However, [88,89]
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show that although the non-Gaussianity indeed increases
the volume of the full error ellipsoid, the impact of non-
Gaussian errors on individual parameters is rather de-
graded much less than the volume of the full ellipsoid
when marginalizing over a high-dimensional parameter
space. Therefore, here we employ the Gaussian error as-
sumption for simplicity.

A galaxy survey alone cannot determine all the cosmo-
logical parameters simultaneously due to severe parameter
degeneracies. A useful way to break the parameter degen-
eracies is combining the galaxy survey constraints with the
constraints obtained from CMB temperature and polariza-
tion anisotropies. In this paper we include information
from the CMB temperature anisotropy, CTT

l , E-mode po-

larization, CEE
l , and their cross correlation, CTE

l , where we

use the range of multipoles 10 � l � 1500 for CTT
l and

CTE
l and use 2 � l � 1500 for CEE

l , respectively. To com-

pute the CMB fisher matrix, FCMB
�� , we adopt the noise per

pixel and the angular resolution for the Planck experiment
that were assumed in [90].

To model the galaxy power spectra and CMB spectra we
include all the key parameters that affect the observables
within the CDM and dark energy cosmological framework.
Our fiducial model is based on the WMAP 5-year results
[1]: the density parameters for total matter and baryon are
�m0ð¼ 0:24Þ, �m0h

2ð¼ 0:1277Þ, and �b0h
2ð¼ 0:0223Þ

(note that we assume a flat Universe); the primordial power
spectrum parameters are the spectral tilt, nsð¼ 1:0Þ, the
running index, �sð¼ 0Þ, and the normalization parameter
of primordial curvature perturbations, �2

Rðk0Þ�
ð¼ 2:35� 10�9Þ (the values in the parentheses denote
the fiducial model). We employ the transfer function com-
puted from the CAMB code, and note that the primordial
spectrum amplitude is normalized at k0 ¼ 0:002 Mpc�1

following the convention in [1]. The redshift evolution of
dark energy density is given by �deð¼ 1��m0Þ and the
equation of state parameter w0ð¼ �1Þ. When computing
the CMB spectra, we further include the Thomson scatter-
ing optical depth to the last scattering surface, �ð¼ 0:089Þ.
For neutrino parameters we assume the standard three
neutrino species and vary the fiducial value of total neu-
trino mass, f�. In summary, for a galaxy surveys with Nz

redshift slices in combination with the hypothetical Planck
constraints, the model parameters we consider are given as

p� ¼ f�m0;�m0h
2;�b0h

2; w0; f�; nS; �S;�
2
R; �; b1ðziÞ;

b2ðziÞ; NðziÞg; (47)

where zi ¼ z1; z2; . . . :; zNz
. In total, we include (9þ 3Nz)

free parameters for our Fisher matrix analysis. Note that,
for the linear theory analysis for the parameter forecasts,
we consider (9þ 2Nz) free parameters [the parameters
above minus the nonlinear bias parameters b2ðziÞ]. The
fiducial values of galaxy bias and shot noise parameters

change with a galaxy survey specification and are de-
scribed in the next subsection.
The full Fisher matrix for the joint experiment of galaxy

survey and CMB can be obtained simply by adding the

Fisher matrices: F�� ¼ Fgalaxy
�� þ FCMB

�� . The unmarginal-

ized error on a given parameter p� is given as �ðp�Þ ¼
ðF��Þ�1=2, which corresponds to the accuracy of determin-
ing p� when other parameters are perfectly known. On the
other hand, the marginalized error including uncertainties

of other parameters is given as �ðp�Þ ¼ ½ðF�1Þ���1=2,
where F�1 denotes the inverse of the Fisher matrix. The
correlation coefficient r between two parameters, p� and
p�, is also useful to study how the parameters are degen-

erate with each other:

rðp�; p�Þ �
ðF�1Þ��ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðF�1Þ��ðF�1Þ��
q : (48)

If r ¼ þ1ð�1Þ, the parameters are totally correlated (anti-
correlated), while r ¼ 0 means no correlation between the
two parameters.

B. Survey parameters

To make meaningful parameter forecasts, we consider
survey parameters that fairly well represent future surveys
being planned or under serious consideration. The hypo-
thetical surveys considered in this paper are intended to
resemble BOSS, the WFMOS-like survey, and the ideal
space-based BAO experiment such as those proposed by
JDEM and Euclid missions, which are roughly categorized
as the Stage-III and -IV surveys, respectively, in the DETF
report [72].
The survey parameters are summarized in Table I. The

survey area, redshift range, and number densities of target
galaxies were taken from the proposed survey design of
each survey. Just briefly, the BOSS-like survey samples
luminous red galaxies (LRGs) over a range of redshifts
0:4< z < 0:7 extending the SDSS-I and -II surveys. A
ground-based Stage-III survey with optical spectroscopy
may be designed to survey galaxies for two different slices:
one is for galaxies over 0:7< z < 1:6 with survey area
3200 deg2, and the other is for high-redshift Lyman-�
emission or Lyman break galaxies over 2:5< z < 3:3.
The survey parameters for the Stage-IV type survey are
taken from [91]. Having multiple redshift slices is useful to
improve the accuracies of parameter estimation by break-
ing the parameter degeneracies because the sensitivity of
each redshift slice to cosmological parameters is slightly
different as will be shown below (also see [92] for the
related discussion). These surveys are complementary to
each other in the redshift ranges covered. It is also worth
commenting that a high-redshift survey with z > 1 has the
potential to explore an early dark energy model where dark
energy may be more rapidly evolving at higher redshifts
than naively expected.
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We further need to specify galaxy bias parameters.
However, because we have limited knowledge of galaxy
formation, it is difficult to predict galaxy bias parameters
with certainty. Here, we rather employ a crude method
used in [29,82] to estimate the linear galaxy bias parameter
b1 for each redshift slice, where b1 is estimated by impos-
ing the rms number density fluctuations of galaxies within
a sphere of 8h�1 Mpc radius to be unity: �2

g8 ¼ 1.

However, the LRG bias is relatively well understood based
on the existing SDSS sample such as b1 � 2:1 in [17]. We
assume b1 ¼ 2:1 for the fiducial value of SDSS LRG bias,
from which we compute a correction factor that needs to be
multiplied by �2

g8 ¼ 1 to obtain b1 ¼ 2:1 for our fiducial

cosmological model. Similarly, for BOSS LRGs, we multi-
ply �2

g8 ¼ 1 by the same correction factor to estimate the

linear bias b1 (see Appendix D for more details). The
nonlinear bias parameter b2 and the residual shot noise
parameter N are more uncertain. We define their fiducial
values based on the prescription described in Appendix D,
but will study how our results change with different fidu-
cial values of b2 and N. Note that the parameter N is
estimated based on the perturbation theory, but we will
employ the same fiducial value for the linear theory based
forecasts. When N � 1= �ng, the residual shot noise con-

tamination is dominant. Our survey parameters imply that,
for BOSS and Stage-III surveys, N < 1= �ng. On the other

hand, the residual shot noise contamination is significant
for some redshift slices having higher number densities of
galaxies for the Stage-IV survey.

C. Parameter forecasts

1. Summary of constraints on neutrino mass

Table II summarizes forecasts for the marginalized er-
rors on total neutrino mass for each of hypothetical galaxy
surveys listed in Table I, combined with the Planck and
SDSS LRG information. To derive these errors we deter-

mined kmax for each redshift slice based on the criteria (46)
and then included the power spectrum information over
10�4 � k � kmaxðziÞh Mpc�1. We compare the expected
constraints obtained when using the linear theory and SPT
models, over a range of wave numbers where the respective
models seem reliable as indicated from the assumed value
of Cmax (the corresponding kmax values when Cmax ¼ 0:3
for each redshift slice are listed in Table I). Note that we
assume f� ¼ 0:01 (m�;tot ’ 0:12 eV) for the fiducial value,
and the number of free parameters is different in between
the linear theory and SPT as described around Eq. (47)
[SPT additionally includes the nonlinear bias parameter b2
for each redshift slice].
It is clear that the use of SPT allows for an improvement

in the neutrino mass constraint compared to the linear
theory results: roughly a factor of 1.3 improvement if
SPT can be used up to the maximum wave numbers where
SPT seems reliable to within a few percent accuracy cor-
responding to Cmax ¼ 0:3. We have checked that the ac-
curacy of neutrino mass determination, �ðm�;totÞ, little

changes for each survey even if the fiducial value of f� is
varied within the current limit f� & 0:05. Hence, Table II
implies the BOSS and Stage-III type survey may allow for
the accuracy of �ðm�;totÞ ’ 0:1 eV, while the Stage-IV

survey �ðm�;totÞ ’ 0:05 eV. In particular the expected ac-

curacy for a Stage-IV type survey is compatible with the
lower limit implied from the normal mass hierarchy. That
is, Stage-IV may allow for a detection of total neutrino
mass at more than 1-� significance; if neutrinos obey the
inverted mass hierarchy, implying the lower limit m�;tot *
0:1 eV, a 2-� level detection may be achieved.
Note that the forecasted constraints here are much

weaker than those obtained in our previous work [51].
The differences are (1) we here consider the one-
dimensional power spectrum as the observable rather
than the full two-dimensional power spectrum in redshift
space and (2) we include the nonlinear bias parameters.

TABLE II. Marginalized 1� error on total neutrino masses, �ðm�;totÞ ½eV�, expected from each hypothetical survey when combined
with the Planck and z� 0:3 SDSS LRG information. The errors are derived including the galaxy power spectrum information over
10�4 � k � kmaxh Mpc�1, where kmax is determined by Eq. (46) from the input linear mass power spectrum. As implied, the linear
theory and perturbation theory are expected to be accurate up to the given kmax to within a given percent accuracy compared to N-body
simulations [38]. For these results we assume m�;tot ¼ 0:12 eVðf� ¼ 0:01Þ for the fiducial value of neutrino mass; therefore, the errors

shown roughly correspond to the expected 1� upper limit on neutrino mass if �ðm�;totÞ * 0:12 eV. The last column labeled by

‘‘þ�ð�m0Þ ¼ 0:01’’ shows an improvement in the neutrino mass constraint for the case Cmax ¼ 0:3 if the prior �ð�m0Þ ¼ 0:01 is
added.

Expected marginalized error on total neutrino mass: �ðm�;totÞ ðeVÞ
Survey Linear 1%

Cmax ¼ 0:06
Linear 3%

Cmax ¼ 0:13
SPT 1%

Cmax ¼ 0:18
SPT 3%

Cmax ¼ 0:3
þ�ð�m0Þ ¼ 0:01

Cmax ¼ 0:3
BOSS 0.161 0.111 0.095 0.088 0.082

Stage-III

(low-z slices alone)

0.173 0.123 0.110 0.096 0.082

Stage-III

(low- + high-z)

0.161 0.122 0.107 0.091 0.081

Stage-IV 0.067 0.059 0.053 0.046 0.046
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The full analysis including the two-dimensional redshift
power spectrum information will be presented elsewhere
(Saito et al. [93]).

2. Degeneracy between neutrino mass and other
parameters

To develop a better understanding of the forecasted
neutrino mass errors, we study how parameters are degen-
erate with each other and how the degeneracies can be
broken when the galaxy power spectrum information rang-
ing from the linear to nonlinear regime are combined with
the CMB information. First, the top panel of Fig. 6 shows
the unmarginalized errors on neutrino mass as a function of
the maximum wave number, for the single z ¼ 1 slice of
the Stage-III low-z survey in Table I, where the linear
theory result is compared with the SPT results obtained
assuming various fiducial values of nonlinear bias parame-
ter b2. For kmax & 0:07h Mpc�1, the neutrino mass con-
straint does not depend on kmax, implying that the
constraint is mostly from the CMB information. For the
larger kmax the galaxy power spectrum is becoming to be
more powerful to constrain the neutrino mass due to the
increased independent Fourier modes. From comparison
between the linear theory and SPT results, one can find that
the unmarginalized error on neutrino mass is improved in
the weakly nonlinear regime due to the improved signal-to-
noise ratio of power spectrum measurement, except for the
case of b2 < 0. The case of b2 < 0 causes a suppression in
the power spectrum amplitudes, as implied in the top panel
of Fig. 5. As a result the information content of the power
spectrum does not increase so much in the weakly non-
linear regime compared to the linear theory, although the
linear theory breaks down in the regime. Thus, the neutrino
mass constraints are sensitive to galaxy bias parameters or
equivalently galaxy types.

The upper-right panel shows the neutrino mass errors
marginalized over other parameter uncertainties. Again,
notice that the results are only for one z ¼ 1 slice of the
Stage-III low-z survey corresponding to the survey volume
2:1h�3 Gpc3 (see below for the full forecast for all the
redshift slices combined). Compared to the unmarginalized
errors, the neutrino mass error is significantly degraded due
to strong parameter degeneracies. The plot also shows a
clear plateau feature in the error for kmax & 0:1h Mpc�1,
and then shows a steplike improvement in the error at some
particular kmax values, which are found to correspond to the
BAO peaks. Namely, when the BAO peaks are included by
increasing kmax, the accuracies of constraining cosmologi-
cal parameters are dramatically improved by breaking the
parameter degeneracies via the Alcock-Paczynski test.
Comparing the linear theory and SPT results manifests
that, in contrast to the results for the unmarginalized errors,
the neutrino mass error does not improve by using SPT, due
to the significant parameter degeneracies and the addition
of nonlinear bias parameter b2. The effect of b2 can be

explicitly studied by the dotted-dashed curve, where b2 is
kept fixed. Fixing b2 does improve the neutrino mass
constraints, implying a strong degeneracy between neu-
trino mass and b2 in the nonlinear power spectrum.
However, the SPT result with b2 being fixed is still appar-
ently worse than the linear theory extrapolated result in the
weakly nonlinear regime (although the linear theory breaks
down in the regime). This may be understood as follows:
As discussed, the neutrino mass constraints are sensitive to
an inclusion of BAO features, which helps break parameter
degeneracies. However, the nonlinear mode coupling
somewhat smooths out BAO features in the weakly non-
linear regime, which degrades the constraining power of
galaxy surveys in the weakly nonlinear regime. Note that
the additional information on b2 from the bispectrum
measurements would be helpful, and this issue will be
discussed later.
The bottom panel of Fig. 6 explicitly studies the Fisher

correlation coefficients of neutrino mass with other pa-
rameters, rðf�; p�Þ, as a function of kmax for the z ¼ 1
slice. The neutrino mass appears to be significantly degen-
erate with some parameters such as �m0h

2, w0, �m0, and
b2 showing almost perfect degeneracy of jrj � 1. The
degeneracies show complex behaviors as a function of
kmax, where the oscillatory features of r correspond to the
BAO features.
We comment on the parameter N, which models the

residual shot noise contamination to the power spectrum
measurement due to nonlinear clustering of galaxies. For
the assumed Stage-III survey, the residual shot noise con-
tamination arising from the nonlinear galaxy clustering is
smaller than the standard shot noise 1= �ng. In addition, the

sample variance gives a dominant contribution to the
power spectrum covariance over all the scales we consider,
k & 0:3h Mpc�1. Therefore, the effect ofN is insignificant
for the results shown here. However, the genuine effect
needs to be studied using N-body simulations, since this
shot noise contamination is not yet fully explored.
Figure 7 shows the results combining all the four redshift

slices for the Stage-III low-z survey (the total survey
volume Vs ¼ 10:24h�3 Gpc3). The left panel demon-
strates the marginalized errors on neutrino mass as in
Fig. 7, but as a function of Cmax, where kmax for each
redshift slice is specified by using Eq. (46). Compared to
Fig. 5, the accuracies of neutrino mass determination con-
tinue to improve with increasing kmax or adding more
galaxy power spectrum information; there is no regime
dominated by CMB information over the scales we have
considered. This is because the galaxy power spectra at
different redshifts depend on cosmological parameters in
different ways, so combining the different redshift infor-
mation helps break the parameter degeneracies. The solid,
short- and long-dashed curves compare the results for
different fiducial values of b2: In the first case we adopt
the fiducial values of b2 given in Table I, while in the
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second case we multiply the minus sign in the fiducial
values of b2 in Table I (all the b2 values are negative for
this case). In the third one, we set b2 ¼ 0 for all redshift

slices. As also discussed in Fig. 5, the neutrino mass
determination accuracies are found to be sensitive to the
fiducial values of b2, or equivalently to galaxy types tar-

FIG. 6 (color online). Top-left panel: The unmarginalized 1� error on f� as a function of the maximum wave number kmax, expected
from a single redshift slice around the centering redshift zc ¼ 1 of the Stage-III low-z survey in Table I. The short-dashed, long-
dashed, and solid curves show how the neutrino mass error changes if the nonlinear bias parameter is changed from the fiducial choice
b2 ¼ 0:443 to the other choices b2 ¼ �0:443 and 0, where other survey parameters are fixed as shown in Table I. The neutrino mass
constraint is sensitive to the underlying b2, i.e., galaxy types. For comparison, the dotted curve shows the linear theory result. Note that
the two vertical dotted lines show the maximum wave numbers up to which the perturbation theory is expected to be accurate to within
the given accuracy for this redshift slice. Top-right panel: The similar plot, but shows the marginalized errors on neutrino mass. The
steplike features are apparent: the plateau shape is due to strong parameter degeneracies and a sudden drop of the error at some
particular wave numbers imply an improvement in the parameter errors because the parameter degeneracies can be to some extent
broken by including the BAO features with increasing kmax. Compared to the top-left panel, the marginalized error is not necessarily
more stringent in the weakly nonlinear regime than the linear theory extrapolated error due to the stronger parameter degeneracies,
although the linear theory ceases to be reliable in the nonlinear regime. Bottom panel: The correlation coefficients of neutrino mass
with other parameters, rðf�; p�Þ, defined by Eq. (48), displaying complex degeneracy behaviors as a function of kmax.
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geted for future surveys. However, the differences due to
different values of b2 become milder by combining differ-
ent slices.

The SPT results can be compared with the linear theory
result (the dotted curve). As in Fig. 5, the nonlinear regime
suffers from severe parameter degeneracies, yielding less
stringent parameter constraints than naively expected by
linear theory. For this reason the parameter forecasts in the
previous studies may be somewhat too optimistic, if the
forecasts are derived based on the linear theory and the
linear bias parameter (e.g., [29,30,51]). However, we again
note that the full information on galaxy clustering is in-
herent in the two-dimensional redshift space, while we
consider the one-dimensional power spectrum in this
paper.

The usefulness of combining different redshift slices is
explicitly shown in the right panel of Fig. 7. The plot
compares between the results of different redshift slicing,
where the survey volume is kept fixed to Vs ’
10:24h�3 Gpc3. However, note that the maximum wave
number kmax is different for different redshift slices; there-
fore, the effective survey volume is different. The solid
curve is the result of our fiducial Stage-III low-z survey,
while the dotted and dashed curves are the results assuming
a single redshift slice, which have different centering red-
shifts zc ¼ 1:0 and 1.2 with width �z ¼ 0:2, respectively.
The single redshift slice cases correspond to survey areas
�s ¼ 15 900 and 13 500 deg2, respectively, compared to

the fiducial area�s ¼ 3200 deg2 over redshift range 0:7 �
z � 1:6. It is clear that the neutrino mass constraint is
improved by combining the different redshift slices.
Also, comparing the dotted and dashed curves clarifies
that a choice of redshift slices affects the constraining
power in the weakly nonlinear regime.

3. Impact of massive neutrinos on dark energy constraints

The primary science goal of future surveys is constrain-
ing the nature of dark energy via the BAO experiment.
However, the dark energy constraints may be biased if the
model fitting ignores neutrino mass contribution. Figure 8
presents the marginalized error ellipses in a subspace of the
neutrino mass f� and the dark energy equation state pa-
rameter w0 for the Stage-III and -IV surveys, respectively.
Note that the dark energy constraints shown here are from
both the BAO peak locations and the power spectrum
amplitude information. There appears to be a significant
correlation between w0 and neutrino mass as expected. For
example, a model with w0 >�1 or greater �de0 yields
smaller amplitudes in the galaxy power spectrum, because
such a model causes dark energy to be more significant
from earlier epochs and therefore the greater cosmic ac-
celeration suppresses the clustering growth rate for the
CMB normalization of the linear power spectrum ampli-
tude. This dark energy effect can be compensated by low-
ering the neutrino mass (i.e., the smaller f�) that leads to

FIG. 7 (color online). Left panel: As in the top-right panel of the previous figure, this plot shows the marginalized error on f�
obtained by combining the four different redshift slices of Stage-III low-z survey in Table I as a function of Cmax, where the maximum
wave number of each redshift slice, kmaxðziÞ, is computed using Eq. (46) for an input Cmax given in the horizontal axis. Note that for
reference Cmax ¼ 0:1ð1:0Þ corresponds to kmax ¼ 0:097ð0:266Þh Mpc�1 at z ¼ 1. The fiducial values of nonlinear bias parameters b2
for each redshift slice, which are all positive, are given in Table I. For comparison, the short- and long-dashed curves show the results
obtained when the sign of b2 is flipped or assuming b2 ¼ 0 for all the slices, respectively. Right panel: The complementarity of
different redshift slices is more explicitly studied. The solid curve is same as the solid curve in the left panel. The dotted and dashed
curves show the results for only one redshift slice with the centering redshifts zc ¼ 1 and 1.2, respectively, keeping the survey
comoving volume fixed.
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less suppression in the power spectrum amplitudes at larger
k. One can also find that having larger kmax (equivalently
larger Cmax) yields more stringent constraints on these
parameters. In particular, it should be noted that a Stage-
IV type survey may allow for a stringent test of neutrino
mass, even from the 1D power spectrum information over a
range of wave numbers where SPT seems reliable.

In Fig. 8 we also study how the parameter constraints are
improved by adding an external prior of b2 or �m0. These
priors may be delivered from the galaxy bispectrum analy-
sis [94], the SN survey, and/or weak lensing surveys [88].
Adding the priors shrinks areas of the error ellipses, be-
cause �m0 and b2 are degenerate with neutrino mass and
dark energy parameters in the galaxy power spectrum as
implied in Fig. 6. In particular, for a Stage-III type survey,

the prior of precision �ð�m0Þ � 0:01 can efficiently break
the m�;tot-w0 degeneracy, thereby yielding the accuracies

of�ðm�;totÞ ’ 0:1 eV and�ðw0Þ ’ 0:05, respectively. For a
Stage-IV type survey, the constraining power is already
sufficient, so such a prior does not much help improve the
parameter constraints.
A more important question is how the uncertainty of

neutrino mass affects dark energy constraints from future
galaxy surveys. Table III addresses this issue. First, com-
paring between the third and fourth columns clarifies that
the accuracy of w0 determination is affected by including
neutrino mass parameter in the model fitting. If neutrino
mass is ignored, the error ofw0 is apparently tightened by a
factor of 1.2–1.4 for the galaxy surveys we consider here. It
should be noted that the tighter constraints correspond to a

FIG. 8 (color online). Forecasted 1� error ellipses in ðw0; f�Þ subspace for Stage-III (top two panels) and Stage-IV (bottom),
respectively. The outermost, intermediate and innermost contours show the results assuming Cmax ¼ 0:13, 0.3, and 0.7, respectively,
that correspond to the higher kmax in each redshift slice. Again note that Cmax ¼ 0:13 and 0.3 roughly correspond to the maximum
wave numbers that the linear theory and SPT are reliable with a few percent accuracy. The case of Cmax ¼ 0:7 may be feasible if the
refined model of nonlinear power spectrum can be used (see text for the details). The dashed contours show the errors when the prior of
�ðb2Þ ¼ 0:01 (left panels) or �ð�m0Þ ¼ 0:01 (right panels) is added.
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case that the neutrino mass is sufficiently well determined
by a laboratory experiment (i.e., in this case f� is no longer
a free parameter in the galaxy power spectrum).

More importantly, ignoring neutrino mass in the model
galaxy power spectra likely results in a biased best-fit value
of w0. According to the method described in Appendix E,
the column labeled as ‘‘�w0 ignoring f�’’ estimates the
amount of the possible bias, that is, the difference between
the input w0 and the best-fit value obtained from the model
fitting without neutrino mass parameter: wbest-fit

0 ¼ �1þ
�w0. To be more explicit, here we estimate the bias caused

when the template of galaxy power spectrum assuming
f� ¼ 0 is fitted to the observed spectrum having the true
neutrino contribution of f� ¼ 0:01 (m�;tot ¼ 0:12 eV). The

table shows a positive bias �w0: w
best-fit
0 >winput

0 ¼ �1,
because a model with w0 >�1 predicts galaxy spectra
with smaller amplitudes due to the suppressed growth
rate, which mimics the neutrino suppression effect inherent
in the (presumably here) measured spectrum. For BOSS
and Stage-III type surveys, the bias is not significant be-
cause j�w0=�ðw0Þj< 1, while a Stage-IV type survey may
suffer from a significant bias as j�w0j � �ðw0Þ. Table III

TABLE III. The impact of massive neutrinos on determination of dark energy equation of state parameter w0. Note that f� ¼ 0:01 is
assumed for the fiducial model. The fourth and fifth columns, labeled as ‘‘ignoring f�,’’ show apparently tighter constraints and biased
best-fit values of w0 caused when galaxy power spectrum models without neutrino mass parameter are fitted to the true spectrum with
f� ¼ 0:01, respectively, for each of the galaxy surveys. The sixth and seventh columns, labeled as ‘‘þ�ð�m0Þ ¼ 0:01,’’ show similar
results when adding the prior �ð�m0Þ ¼ 0:01.

Survey

Range of k
ðCmaxÞ �ðw0Þ

�ðw0Þ
ignoring f�

�w0

ignoring f�

�ðw0Þ
þ�ð�m0Þ ¼ 0:01

�w0

þ�ð�m0Þ ¼ 0:01

BOSS Linear 3% (0.13) 0.1522 0.0978 0.0090 0.0507 0.0262

SPT 3% (0.30) 0.0768 0.0603 0.0141 0.0435 0.0243

Stage-III Linear 3% (0.13) 0.1935 0.1067 0.0060 0.0503 0.0255

SPT 3% (0.30) 0.1103 0.0801 0.0125 0.0476 0.0254

Stage-IV Linear 3% (0.13) 0.0398 0.0375 0.0113 0.0311 0.0176

SPT 3% (0.30) 0.0245 0.0223 0.0206 0.0226 0.0223

FIG. 9 (color online). The projected 1� error ellipses in ðw0;�DEÞ-plane for Stage-III (left panel) and Stage-IV surveys (right panel),
respectively. Note that Cmax ¼ 0:3 is assumed. The solid contours in each panel shows the result for our fiducial method where
neutrino mass contribution to the galaxy power spectrum is properly taken into account and the errors on dark energy parameters are
derived by marginalizing over other parameter uncertainties. The dashed contours and the triangle or square symbols show the worst-
case results: apparently tighter constraints (smaller error ellipses) and biased best-fit values may be caused if neutrino mass
contribution is ignored in the model galaxy power spectra. The triangle and square symbols show the biased values when the
underlying true cosmology has f� ¼ 0:01 (m�;tot ¼ 0:12 eV) and 0.02 (0.24 eV), respectively. For a Stage-IV type survey, ignoring

neutrino mass may cause a false best-fit model that is away from the true model w0 ¼ �1 by more than the 1-� statistical errors.
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also shows that a 1%-level prior of �m0 helps reduce the
statistical error �ðw0Þ, but also make the systematic bias
more significant at the same time.

Figure 9 more nicely illustrates the impact of neutrino
mass uncertainty on dark energy parameter estimation
from future galaxy surveys, showing the projected error
ellipses in ðw0;�de0Þ-plane. It is clear that ignoring f�
leads to model fitting apparently with smaller error ellipses
and biased best-fit values for these parameters. In particu-
lar, for a Stage-IV type survey, the biased best-fit dark
energy model confined by the 1-� statistical error bounds
may happen to be outside from the underlying true model
(the input value w0 ¼ �1 in our case). The amount of bias
would become greater for the greater values of true neu-
trino mass. Thus, Table III and Fig. 9 imply that neutrino
mass contribution is not negligible and needs to be in-
cluded in the model interpretation for future galaxy surveys
in order not to have too optimistic and biased dark energy
constraints.

Note that the parameter biases studied here are mainly
from the power spectrum amplitude information. If the
dark energy parameters are estimated from BAO peak
locations being marginalized over a sufficient number of
nuisance parameters that include power spectrum ampli-
tude parameters [36], the dark energy parameter biases can
be minimized, although the constraining power is signifi-
cantly weakened. This is beyond the scope of this paper,
but would be worth carefully studying.

VI. SUMMARYAND DISCUSSION

Following our earlier work [51], in this paper we have
developed a method for computing nonlinear power spec-
tra of total matter and galaxies in a MDM model (a model
with CDM plus finite-mass neutrinos) based on SPT) ap-
proach. In particular, we have carefully examined the
validity of approximations employed in our approach.

For our fiducial approach, we include only the linear-
order neutrino perturbations to compute the nonlinear
power spectrum, where nonlinear clustering is driven by
the nonlinear growth of CDM plus baryon perturbations.
Our approach is motivated by the fact that the neutrino
free-streaming scale is sufficiently large for small neutrino
mass scales consistent with the current limit (m�;tot &
0:6 eV) and the neutrinos are expected to stay more in
the linear regime than CDM plus baryon. We carefully
studied the validity of this assumption as briefly summa-
rized in the following (see Appendix A): By solving the
hierarchical Boltzmann equations of neutrino perturba-
tions, including the nonlinear gravitational potential con-
tribution (due to the nonlinear CDM and baryon density
perturbations), we indeed found that the amplitudes of
neutrino density perturbations are enhanced by up to
10% at the weakly nonlinear scales up to k� 0:5 Mpc�1.
Thus, although the neutrino perturbation is indeed affected
by nonlinear clustering, the contribution to total matter

power spectrum can be safely ignored to less than a sub-
percent level, for neutrino mass scales of interest, because
the neutrino perturbation contribution to total matter clus-
tering is suppressed by another small factor f� ¼
��0=�m0 whose current limit f� & 0:05.
Further we carefully studied the higher-order growth

functions of CDM plus baryon perturbations. Compared
to the CDM case, the finite-mass neutrinos cause a scale-
dependent suppression in the clustering growth rate, and
therefore the higher-order growth rates generally have
complicated scale dependence. That is, the additional non-
linear mode coupling between perturbations of different
waven umbers arise via the growth rates in a MDM model.
We numerically solved the differential equations of the
higher-order growth rates, and found that the higher-order
growth rates are well approximated by the power of the
linear growth rate (see Fig. 1).
As a result, the nonlinear power spectra can be approxi-

mately given by rather simple forms (see Eqs. [(32), (36),
and (37)]) similarly as in the SPT approach for a CDM
model. The Eq. (37) is very useful in a sense that the
nonlinear power spectrum at a given redshift z can be
computed from the linear transfer functions of CDM,
baryon and neutrino perturbations at the redshift z, which
are standard outputs of the publicly available codes,
CMBFAST or CAMB. As in [51], we found that the neutrino

suppression effect on the total matter power spectrum
amplitude is more enhanced in the weakly nonlinear re-
gime than in the linear regime (see Fig. 4). Note that the
empirical halofit approach shows 10%-level deviations
from the SPT results in the weakly nonlinear regime,
although it qualitatively captures the neutrino effect in
the nonlinear regime (see Fig. 3).
Thus, we believe that our approach gives more reliable,

accurate model predictions for the nonlinear matter power
spectrum in a MDM model over a wider range of scales,
where the perturbation theory is valid, than the linear
theory. Also important is that the SPT approach can ex-
plicitly tell the scales and redshifts where the linear theory
ceases to be accurate or breaks down. However, simulation
based studies are definitely needed to test and/or calibrate
the SPT predictions. An N-body simulations for a MDM
model is still challenging, but encouragingly the initial
attempts are being explored in [70,71]. An alternative
approach to refine the analytical modeling is to extend
the SPT approach by including higher-order loop correc-
tions. Recently, there have been several efforts made in this
direction for a CDM model: the time-renormalization
group formalism [46], the renormalized perturbation the-
ory [43] and the closure theory approach [45] some of
which show remarkable agreement with N-body simula-
tions over a wide range of BAO scales [48,49]. For ex-
ample, an attempt to extend the PT approach for a MDM
model has recently been made in the framework of the
time-renormalization group formalism [95]. Given the
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similarity between our approach and the PTof CDMmodel
as described above, we hope that our method can be
straightforwardly extended to the improved nonlinear
modeling. This is our future project, and will be presented
elsewhere.

Another interesting result of this paper is that we devel-
oped a method to compute the nonlinear galaxy power
spectrum in a MDM model by taking into account the
nonlinear biasing effect in a self-consistent manner within
the SPT framework. As given by Eq. (40), the nonlinear
galaxy power spectrum is modeled, in addition to cosmo-
logical parameters, by introducing the linear and nonlinear
bias parameters, b1 and b2, and one additional parameter to
model the residual shot noise contamination N. Once
again, although the validity of the SPT approach needs to
be tested by simulations, our SPT approach is built on the
physical foundation of large-scale structure formation and
therefore expected to be reasonably accurate in the weakly
nonlinear regime where the SPT approximately works out.

After formulating the nonlinear galaxy power spectrum,
we then estimated the ability of future galaxy surveys for
constraining neutrino masses from the power spectrum
information over scales ranging from the linear regime to
the weakly nonlinear regime. In this paper for simplicity
we focused on the real-space power spectrum, i.e., ignored
the redshift distortion effect, because the nonlinear distor-
tion effect, the finger-of-God effect, is not yet fully under-
stood even in the weakly nonlinear regime. We found that
the accuracy of neutrino mass constraint is indeed im-
proved by including the power spectrum information up
to the weakly nonlinear regime compared to the linear
regime, by a factor 1.3, for all the planned BAO surveys
(see Table II). However, the improvement is not so signifi-
cant because of severe parameter degeneracies in the non-
linear regime (see Figs. 6 and 7). Thus, the neutrino mass
forecasts in the previous studies may be too optimistic if
the forecasts are derived assuming the linear bias and the
linear theory modeling. Nevertheless, it should be noticed
that Stage-III and -IV type surveys may allow for the
neutrino mass constraints to accuracies of �0:1 and
0.05 eV, respectively, even from the 1D power spectrum
information.

We also studied how the finite-mass neutrinos affect the
ability of future surveys for constraining dark energy pa-
rameters. A change of dark energy parameters such as
w0 >�1 from cosmological constant model also causes
a suppression in the galaxy power spectrum amplitudes,
because the growth rate of mass clustering slows down due
to the greater cosmic accelerating expansion. Thus, the
dark energy constraints are likely correlated with neutrino
mass in the galaxy power spectrum (see Fig. 8), if the
power spectrum amplitude information is included in pa-
rameter estimation. In particular, we pointed out that, if
neutrino mass parameter is ignored in the model fitting, the
best-fit dark energy parameters can be biased. For a Stage-

IV type survey, the bias may be greater than the statistical
uncertainty: false evidence of w0 � �1may be implied by
the neutrino mass uncertainty, even if the true model has
w0 ¼ �1. Thus, our results suggest that the neutrino mass
contribution needs to be taken into account for future BAO
surveys and to be marginalized over in order to obtain an
unbiased constraint on dark energy parameters.
We believe that the SPT modeling of galaxy power

spectrum can be a more physically motivated model than
other empirical approaches such as the halo-model ap-
proach or the method where nuisance parameters such as
QNL in [17] were empirically introduced to model the
nonlinear effects including the nonlinear bias effect. The
method developed in this paper allows us to model the
nonlinear galaxy power spectrum self-consistently within
SPT formulation without introducing empirical nuisance
parameters. Hence we hope that the use of SPT model
allows an unbiased extraction of cosmological parameters
from the measured galaxy power spectrum by marginaliz-
ing over the bias parameters, as long as the analysis is
restricted to scales where SPT is valid. We are planning to
apply our method to the SDSS LRG power spectrum. For
the SDSS power spectrum measurement done in [17], the
redshift distortion effect is supposed to be removed by
using the finger-of-God compression algorithm [53].
Note that the residual Kaiser’s effect of redshift distortion
is absorbed in the linear bias parameter after the spherical
shell average of galaxy power spectrum in redshift space.
Therefore, the LRG power spectra are appropriate to com-
pare with the SPT model predictions studied in this paper.
We will address how the use of our SPT model changes the
neutrino mass constraints as well as other cosmological
parameter estimation as a function of the maximum num-
ber kmax, compared to the previous results. This is now in
progress and will be presented elsewhere.
There are several other applications of our method. First,

is gravitational lensing effects on CMB or distant galaxy
images, which are sensitive to total matter distribution and
therefore known as a powerful probe of neutrino mass
being free of galaxy bias uncertainty (e.g., [96,97]).
These lensing signals are affected by nonlinear clustering,
but the effect for a MDM model has not been fully ex-
plored. Second, the formulation developed in this paper
can be straightforwardly extended to studying the higher-
order correlations of total matter and/or galaxy distribu-
tion, based on the SPT approach. The higher-order corre-
lations are expected to be very powerful to improve
cosmological constraints when combined with power spec-
trum information, and especially to break degeneracies
with galaxy bias parameters for a galaxy clustering case.
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APPENDIX A: NONLINEAR EFFECT ON
NEUTRINO PERTURBATIONS

Throughout the paper, we assumed that neutrino pertur-
bations stay at the linear level, and contribute to the higher-
order CDM plus baryon perturbations only via the effect on
the growth rate. We then simply used the result of neutrino
perturbation in linear theory, �L

� . This assumption is essen-
tial for our formalism. In this Appendix, we discuss the
validity of this assumption in some details.

Rigorously speaking, the higher-order Boltzmann equa-
tions for massive neutrinos must be solved for a quantita-
tive estimate of the nonlinear effect on neutrino
perturbations. However, there are at least two important
facts that simplify the analysis. One is that the nonlinear
gravitational instability is mainly driven by the CDM plus
baryon perturbations, which have a dominant contribution
to the total matter density, fcb * 0:95. Another important
fact is the presence of the neutrinos’ large free streaming,
which prevents the neutrinos from clustering together with
CDM plus baryon on scales smaller than the neutrino free-

streaming scale. Hence, to a good approximation, the
impact of nonlinear clustering on the neutrino perturba-
tions can be estimated from the nonlinear gravitational
potential 
 driven by the nonlinear CDM plus baryon
perturbations, just ignoring the higher-order neutrino per-
turbations. Note that similar approach has been examined
in [98–100]. Then, the Poisson equation would be modified
as follows:

�k2
ðkÞ ¼ 4�Ga2�mðfcb�NL
cb ðkÞ þ f���ðkÞÞ;

�NL
cb ðkÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PL
cbðkÞ þ Pð22Þ

cb ðkÞ þ Pð13Þ
cb ðkÞ

PL
cbðkÞ

vuut �L
cbðkÞ;

(A1)

where Pð22Þ
cb and Pð13Þ

cb describe the nonlinear CDM

plus baryon density perturbations and are calculated from
Eqs. (32) and (36). Provided Pcb for a given cosmological
model, we numerically solve the linearized Boltzmann
hierarchies, Eqs. (9)–(11) coupled with Eq. (A1),
and obtain the solutions for �‘ at a given redshift. We
have used the CAMB code to implement this approach,
modifying the corresponding parts in the code. Note
that in the Poisson equation given above, the nonlinear
corrections to the power spectrum Pcb are calculated
assuming the linearity of neutrino perturbations. In this
respect, our approach is not self-consistent, but is sufficient
for our purpose to estimate the impact of the nonlinear
clustering. In fact, the effect is found to be sufficiently
small for the scales of interest as shown below.
Furthermore, if necessary, the correction to the CDM
plus baryon perturbations due to the nonlinear neutrino
perturbations can be computed iteratively in a perturbative
manner.

FIG. 10 (color online). Left panel: The fractional difference between the linear-order neutrino perturbation, �L
� and the linear-order

neutrino perturbation including the nonlinear correction, �NL
� , which is estimated by inserting the gravitational potential correction due

to the second-order perturbation solutions of CDM plus baryon density perturbations into the hierarchical Boltzmann equations of
neutrino perturbations [see Eq. (A1)]. Right panel: The fractional difference between total matter power spectra with and without
considering the nonlinear CDM plus baryon fluctuations. In both figures we assume f� ¼ 0:05, which corresponds roughly to the
upper bound of current observational upper bound.
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Figure 10 shows the fractional difference between the
linear-order neutrino density perturbation �L

� and the non-
linear perturbation �NL

� obtained from the treatment men-
tioned above, where �NL

� is calculated by inserting the
solution for �0 into Eq. (14). We here chose a rather large
neutrino mass, f� ¼ 0:05, close to the current upper
bound. The plot clearly shows that nonlinear gravitational
potential indeed enhances the neutrino perturbation by up
to �10% on scales where the PT is presumed to be valid.
Since the contribution of neutrino perturbation to the total
power spectrum always involves the small additional factor
f� [see Eq. (17)], the result implies that influence of
nonlinearity on the total matter power spectrum is
much more reduced. As a result, we found that the ampli-
tude of PmðkÞ increases only by 0.01% compared to that
obtained using the method of our paper. This effect
gets even smaller as & 0:01% when f� & 0:05. Hence,
the error caused by the assumption that the neutrino per-
turbations stay at linear level is safely negligible, compared
to the measurement errors at a percent level for a future
survey.

Finally, we briefly comment on the recent work in [101].
They discuss the effect of higher-order neutrino perturba-
tions just treating the neutrinos as fluids with pressure.
Strictly speaking, neutrinos cannot be treated as fluid,
and the higher-order effect of moment hierarchy should
be taken into account in a self-consistent way. Moreover,
their formulation heavily relies on the assumption that
neutrino perturbations stay at the same order as in the
case of CDM plus baryon fluctuations, which is manifestly
violated in the presence of the neutrino free streaming.

Even at the linear-order level, �ð1Þ
cb 
 �ð1Þ

� at the scales

smaller than the neutrino free-streaming. Nevertheless,
their results are qualitatively similar, and agree well with
those examined here.

APPENDIX B: HIGHER-ORDER GROWTH
FUNCTIONS IN A MDM MODEL

In this Appendix, we summarize the basic equations for
higher-order growth functions in a MDM model defined in
Sec II C, which were used for the analysis presented in
Sec. II D.

Let us consider the second-order growth functions, Að2Þ
�

and Bð2Þ
� , defined in Eq. (26). From the perturbation equa-

tion for second-order quantity �ð2Þ
cb [see Eq. (25)], the

governing equations for Að2Þ
� and Bð2Þ

� are obtained, and

we have

€Að2Þ
� ðk1; k2; tÞ þ 2H _Að2Þ

� ðk1; k2; tÞ
� 3

2
H2ð1��wÞfcbAð2Þ

� ðk1; k2; tÞ

¼
�
H
dDcbðk1; tÞ

d lna
Dcbðk2; tÞ

�
: þ 2H2 dDcbðk1; tÞ

d lna
Dcbðk2; tÞ;

(B1)

€Bð2Þ
� ðk1; k2; tÞ þ 2H _Bð2Þ

� ðk1; k2; tÞ
� 3

2
H2ð1��wÞfcbBð2Þ

� ðk1; k2; tÞ

¼ 1

2
H2 dDcbðk1; tÞ

d lna

dDcbðk2; tÞ
d lna

: (B2)

Note that in numerically solving the above equations, we
retrieve only the inhomogeneous part of solutions so that
the solution consistently approaches zero when going back
to an initial time t ! 0. This treatment just corresponds to
picking up the growing-mode solution consistently, since
the source terms of the evolution equations involve the
growing-mode solution of linear perturbations.
Next, write down the governing equations for third-order

growth functions defined in Eq. (27), I ð3Þ
� ðk1; k2; k3ÞðI ¼

A; B;C;D; E; FÞ, shortly abbreviated as I ð3Þ
� . To do this, we

first derive the perturbation equation for third-order quan-

tity �ð3Þ
cb . From Eq. (8), substitution of the linear and

second-order solutions �ð1;2Þ
cb and �ð1;2Þcb leads to

€�ð3Þ
cb þ 2H _�ð3Þ

cb � 3

2
H2ð1��wÞfcb�ð3Þ

cb

¼
Z d3k1d

3k2d
3k3

ð2�Þ6 �Dðk� k1 � k2 � k3Þ�̂ðk1Þ

� �̂ðk2Þ�̂ðk3Þ½�1;23f�2;3SA
1;2;3ðtÞ þ �2;3SB

1;2;3ðtÞg
� �23;1f�2;3SC

1;2;3ðtÞ þ �2;3SD
1;2;3ðtÞg

� �1;23f�2;3SE
1;2;3ðtÞ þ �2;3SF

1;2;3ðtÞg�; (B3)

where the quantities, �1;23, �23;1, and �1;23 respectively

indicate �ðk1; k2 þ k3Þ, �ðk2 þ k3;k1Þ and �ðk1; k2 þ
k3Þ. Then, comparing the formal solution (27) with the
above equation, we obtain the evolution equations for the

third-order growth functions I ð3Þ
� :

€I ð3Þ
�1;2;3 þ 2H _I ð3Þ

�1;2;3 �
3

2
H2ð1��wÞfcbI ð3Þ

�1;2;3 ¼ SI
1;2;3:

(B4)

Again, the above equations must be solved just retrieving
the inhomogeneous part of the solution. Here, the source
functions, SI

1;2;3; ðI ¼ A; B; C;D; E; FÞ, are the scale- and

time-dependent functions consisting of the linear and
second-order growth functions. They are given by
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FIG. 11 (color online). The second-order and third-order growth functions. The ratios of second-order growth functions to the square

of linear-order growth functions, Að2Þ
� ðk1; k2Þ=ðDcbðk1ÞDcbðk2Þ (top left) and Bð2Þ

� ðk1; k2Þ=ðDcbðk1ÞDcbðk2Þ (top right) are plotted (blue

curved surfaces). In the case of the third-order growth functions, the ratios to the cubed linear-order growth functions,

I ð3Þ
� =ðDcbðk1Þ2Dcbðk2ÞÞ, ðI ¼ A� FÞ are shown (blue curved surfaces). Although the third-order growth functions, I ð3Þ

� depend on

three specific wave numbers, it is sufficient to specify two wave numbers to calculate Pð13Þ
cb ðkÞ. That is why we show the ratios such as

the combination of k1 and k2, I
ð3Þ
� ðk1; k2; k1Þ and I ð3Þ

� ðk1; k1; k2Þ. Note that I ð3Þ
� ðk1; k2; k1Þ ¼ I ð3Þ

� ðk1; k1; k2Þ for I ¼ B,D and F. For the
reference, the constant values (red plane for second order and green plane for third order) are also shown. These constant values
corresponds to the SPT treatment in a CDM model.

SHUN SAITO, MASAHIRO TAKADA, AND ATSUSHI TARUYA PHYSICAL REVIEW D 80, 083528 (2009)

083528-26



SA
1;2;3ðtÞ ¼

�
H
dDcbðk1; tÞ

d lna
Að2Þ
� ðk2; k3; tÞ

�
:

þ 2H2 dDcbðk1; tÞ
d lna

Að2Þ
� ðk2; k3; tÞ;

SB
1;2;3ðtÞ ¼

�
H
dDcbðk1; tÞ

d lna
Bð2Þ
� ðk2; k3; tÞ

�
:

þ 2H2 dDcbðk1; tÞ
d lna

Bð2Þ
� ðk2; k3; tÞ;

SC
1;2;3ðtÞ ¼ ½HDcbðk1; tÞAð2Þ

� ðk2; k3; tÞ�:
þ 2H2Dcbðk1; tÞAð2Þ

� ðk2; k3; tÞ;
SD
1;2;3ðtÞ ¼ ½HDcbðk1; tÞBð2Þ

� ðk2; k3; tÞ�:
þ 2H2Dcbðk1; tÞBð2Þ

� ðk2; k3; tÞ;

SE
1;2;3ðtÞ ¼ H2 dDcbðk1; tÞ

d lna
Að2Þ
� ðk2; k3; tÞ;

SF
1;2;3ðtÞ ¼ H2 dDcbðk1; tÞ

d lna
Bð2Þ
� ðk2; k3; tÞ;

(B5)

In the above, the functions Að2Þ
� and Bð2Þ

� are the second-

order growth functions that appear in the solution of

second-order velocity divergence �ð2Þcb . These functions

are related to the functions Að2Þ
� and Bð2Þ

� through

Að2Þ
� ðk1; k2; tÞ ¼ dDcbðk1; tÞ

d lna
Dcbðk2; tÞ �H�1 _Að2Þ

� ðk1; k2; tÞ;
Bð2Þ
� ðk1; k2; tÞ ¼ �H�1 _Bð2Þ

� ðk1; k2; tÞ: (B6)

Finally, we note that in the limit of fcb ! 1 (i.e., case of
massless neutrinos), there exist no free-streaming scales,
and the linear growth functionDcb becomes independent of
scales. From Eqs. (B1), (B2), and (B4), this readily implies
that all the second- and third-order growth functions be-
come scale-independent. Then, employing the Einstein-
de Sitter approximation, the analytical expressions for
higher-order growth functions can be systematically ob-
tained. In the Einstein-de Sitter approximation, all the
calculations done in the Einstein-de Sitter universe are
extended to apply to the other cosmological model by
simply replacing the linear growth function in the
Einstein-de Sitter universe with the one in the underlying
cosmology. The detailed discussion on the validity of the
Einstein-de Sitter approximation is given in [62,63,102].

As a result, higher-order growth functions in the fcb ! 1
limit are analytically expressed as

Að2Þ
� ! 5

7
D1ðtÞ2; Bð2Þ

� ! 1

7
D1ðtÞ2: (B7)

for the second-order growth functions, and

fAð3Þ
� ; Bð3Þ

� ; Cð3Þ
� ; Dð3Þ

� ; Eð3Þ
� ; Fð3Þ

� g

!
�
5

18
;
1

18
;� 1

6
;� 1

9
;� 1

21
;� 2

63

�
D1ðtÞ3 (B8)

for the third-order growth functions. For reference, in
Fig. 11 we show nonlinear growth functions as in Fig. 1.

APPENDIX C: REPARAMETRIZATION OF
BIASING PARAMETERS

In this Appendix, we review the reparametrized biasing
parameters proposed by Ref. [52]. In this treatment, the
galaxy power spectrum can be consistently related to the
matter power spectrum calculated from SPT.
The starting point is that the fluctuation of galaxies is

expanded in Taylor series assuming the local biasing pre-
scription. In the local biasing scheme, the galaxy density
field at a given position is described as the local function of
matter fluctuation at the same position. In Fourier space,
the galaxy density field is described as

�gðkÞ ¼ c1�mðkÞ þ c2
2

Z d3q

ð2�Þ3 �mðqÞ�mðk� qÞ

þ c3
6

Z d3q1d
3q2

ð2�Þ6 �mðq1Þ�mðq2Þ�mðk� q1 � q2Þ

þ 	ðkÞ þOð�ð1Þ4
m Þ; (C1)

where the ci’s are the biasing parameters. The quantity 	
represents the residual random field, which cannot be
represented by the matter fluctuations. We assume that
randomness of 	 is described by a white noise, and is
uncorrelated with �m, i.e., h	2i ¼ N0 and h	�mi ¼ 0.
Then, the galaxy density power spectrum Pg up to the

one-loop level is calculated as

Pg ¼ c21P
NL
m ðkÞ þ

�
c1c3�

2 þ 68

21
c1c2�

2

�
PL
mðkÞ

þ 2c1c2
Z d3q

ð2�Þ3 P
L
mðqÞPL

mðjk� qjÞF ð2Þ
� ðq; k� qÞ

þ c22
2

Z d3q

ð2�Þ3 P
L
mðqÞPL

mðjk� qjÞ þ N0; (C2)

where the constant parameter �2 is defined as �2 �R
d3qPL

mðqÞ=ð2�Þ3, and the function F ð2Þ
� ðk; k0Þ is the

Fourier kernel of the second-order density perturbation:

F ð2Þ
� ðk; k0Þ � 5

7
þ 1

2

k � k0
kk0

�
k0

k
þ k

k0

�
þ 2

7

�
k � k0
kk0

�
2
: (C3)

While the calculation in the above is exact up to the
fourth-order in density, due to the truncation at finite order,
the expression (C2) suffers from several unphysical behav-
iors such as an apparent divergence and anomalous low-k
power [78]. To remedy this, Ref. [52] proposed a way to
regularize the expression (C2) by reorganizing several
terms and reparametrizing the biasing parameters. In this
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treatment, the first line of Eq. (C2) is rewritten as

c21P
NL
m ðkÞ þ

�
c1c3�

2 þ 68

21
c1c2�

2

�
PL
mðkÞ ! b21P

NL
m ðkÞ

�
�
c21 þ c1c3�

2 þ 68

21
c1c2�

2

�
PNL
m ðkÞ: (C4)

Further, the apparent divergence arising from the third line
is absorbed by redefining the parameter N0 as

N � N0 þ c22
2

Z d3q

ð2�Þ3 P
L
mðqÞ2: (C5)

Then, the galaxy power spectrum is reexpressed as follows:

PgðkÞ ¼ b21½PNL
m ðkÞ þ b2Pb2;�ðkÞ þ b22Pb22ðkÞ� þ N;

(C6)

Pb2;�ðkÞ � 2
Z d3q

ð2�Þ3 P
L
mðqÞPL

mðjk� qjÞF ð2Þ
� ðq; k� qÞ;

(C7)

Pb22ðkÞ � 1

2

Z d3q

ð2�Þ3 P
L
mðqÞ½PL

mðjk� qjÞ � PL
mðqÞ�:

(C8)

As a result, the galaxy power spectrum in the weakly
nonlinear regime can be described with the only three
parameters, b1, b2, and N. Recently, the validity of the
expression (C8) has been examined in some details in
Ref. [37]. They reported that this reparametrization scheme
can fit well to the power spectrum of halos and galaxies in
millennium simulations, and the cosmological parameters
can be correctly estimated using Eq. (C8) as a template in
an unbiased fashion.

APPENDIX D: NONLINEAR BIAS PARAMETERS
BASED ON THE HALO MODEL

We here summarize how to determine the fiducial values
of the biasing parameters b1, b2 and N listed in Table I,
which are used in the Fisher matrix analysis in Sec. VC.

Following the treatment in Refs. [29,82], we determine
the linear biasing parameter b1 at a given redshift so that
the condition �8;gðzÞ ¼ 1 is satisfied, where we define

�8;gðzÞ ¼ b1ðzÞ�8;mðzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2FmðzÞ

3
þ FmðzÞ2

5

s
; (D1)

with FmðzÞ ¼ �d lnD1ðzÞ=d lnð1þ zÞ. The function D1ðzÞ
is the linear growth rate for �CDM model, which we
compute from the fiducial cosmological parameters just
setting f� ¼ 0. For SDSS LRG and BOSS surveys, their
target samples are LRGs whose clustering properties are
relatively known from the observations, and the linear
biasing parameter is measured as b1 � 2:10 at z ¼ 0:3.
Hence, when considering these surveys, we simply adopt

this value, and the linear biasing parameters at different
redshifts are determined from (D1) just rescaling the con-
dition �8;gðzÞ ¼ 1 to �8;gðzÞ ¼ �8;gð0:3Þ with b1ð0:3Þ ¼
2:10.
The nonlinear biasing parameter b2 in the expression

(C8) is related to the original parameters ci in Eq. (C1) as

b2 ¼ c2
c1

: (D2)

The biasing parameters c1 and c2 can be estimated from the
halo-model approach (e.g., [103]). According to this pre-
scription, we obtain

ci ¼ 1

�ng

Z 1

Mmin

dMnhðM; zÞbhi ðM; zÞhNiM; (D3)

where the function nhðM; zÞ is the halo mass function for
the given mass M and redshift z, and the quantity bhi ðM; zÞ
is the halo biasing parameter. The expectation value hNiM
is the so-called halo-occupation distribution, which de-
scribes the mean number of galaxies per halo with mass
M. Here, we set hNiM ¼ 1 for simplicity. We adopt the
Sheth and Tormen formula for mass function nhðM; zÞ
[104]:

nhðM; zÞ ¼ � ��m0

M2

d ln�

d lnM
fð�Þ;

fð�Þ ¼ A

ffiffiffiffiffiffi
2q

�

s
½1þ ðq�2Þ�p��e�q�2=2;

(D4)

with A ¼ 0:322, p ¼ 0:3, and q ¼ 0:707. The density
threshold � is set to �c=�ðM; zÞ with �c ¼ 1:686. Then,
the halo biasing parameters bhi can be calculated from
Eq. (D4) as

bh1ðM; zÞ ¼ 1þ 	1 þ E1; (D5)

bh2ðM; zÞ ¼ 8

21
ð	1 þ E1Þ þ 	2 þ E2; (D6)

where we define

	1 ¼ q�2 � 1

�c

; 	2 ¼ q�2

�c

q�2 � 3

�c

; (D7)

E1 ¼ 2p

�c

1

1þ ðq�2Þp ;
E2

E1

¼ 1þ 2p

�c

þ 2	1: (D8)

In the expression (D3), there appears the minimum halo
mass Mmin, which can be determined from the condition

�n g ¼
Z
Mmin

dMnhðM; zÞhNiM: (D9)

Finally, it seems rather difficult to determine the fiducial
value of the remaining parameter N, because the physical
meaning of the parameter N is less clear. In this paper, we
just adopt the relation (C5), and compute N assuming
N0 ¼ 0:
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N ¼ ch22
2

Z d3q

ð2�Þ3 P
L
mðqÞ2: (D10)

APPENDIX E: SYSTEMATIC BIAS FOR THE
BEST-FIT PARAMETERS

In this Appendix, we briefly review how to estimate the
biases in best-fit parameters arising from the systematic
effects. We are especially concerned with the impact of
neglecting massive neutrinos on the dark energy con-
straints. In this case, the biased parameter estimation is
obtained by fitting the observational data to the power
spectrum template incorrectly assuming f� ¼ 0. Let us
write down the observed power spectrum as

Pobs
g ðkÞ ¼ Pf��0

g ðkÞ þ Pnoise
g ðkÞ

¼ Pf�¼0
g ðkÞ þ P

sys
g ðkÞ þ Pnoise

g ðkÞ; (E1)

where Pnoise
g ðkÞ denotes the instrumental noise, while the

systematics in power spectrum, P
sys
g ðkÞ is defined as

P
sys
g ðkÞ � Pf��0

g ðkÞ � Pf�¼0
g ðkÞ. Then, the systematic bias

in a certain parameter �p� is computed in (e.g., [105]) as

�p� ¼ X
�

ðF�1Þ��S�; (E2)

where F is the full Fisher matrix (namely, F�� ¼ F
galaxy
�� þ

FCMB
�� ) in which the neutrino parameter f� is excluded from

the matrix element. Note that in computing F, the fiducial
parameter for f� must be set to f� ¼ 0, because we con-
sider the situation that the observed power spectrum is
incorrectly fitted to the template neglecting massive neu-

trinos. Here, the vector quantity S� is represented as S� ¼
SCMB
� þ Sgalaxy� , which are, respectively, given by

SCMB
� ¼ X

‘

X
X;Y

C
X;sys
‘ f�ðĈX

‘ ; Ĉ
Y
‘ Þg�1

@CY
‘

@p�

; (E3)

S
galaxy
� ¼ X

i

VsðziÞ
4�2

Z kmaxðziÞ

kmin

k2dk
Pest;sys
g ðk; ziÞ
Pest
g ðk; ziÞ

� @ lnPest
g ðk; ziÞ
@p�

�
�ngðziÞPest

g ðk; ziÞ
�ngðziÞPest

g ðk; ziÞ þ 1

�
2
; (E4)

where the angular power spectrum for CMB, CX;sys
‘ , is

defined similarly to the case of galaxy power spectrum,

i.e., C
X;sys
‘ � CX;f��0 � CX;f�¼0. Note again that we set

f� ¼ 0 in computing CX
‘ and Pest

g .
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