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We present a general relativistic description of galaxy clustering in a Friedmann-Lemaı̂tre-Robertson-

Walker universe. The observed redshift and position of galaxies are affected by the matter fluctuations and

the gravity waves between the source galaxies and the observer, and the volume element constructed by

using the observables differs from the physical volume occupied by the observed galaxies. Therefore, the

observed galaxy fluctuation field contains additional contributions arising from the distortion in observ-

able quantities and these include tensor contributions as well as numerous scalar contributions. We

generalize the linear bias approximation to relate the observed galaxy fluctuation field to the underlying

matter distribution in a gauge-invariant way. Our full formalism is essential for the consistency of

theoretical predictions. As our first application, we compute the angular auto correlation of large-scale

structure and its cross correlation with CMB temperature anisotropies. We comment on the possibility of

detecting primordial gravity waves using galaxy clustering and discuss further applications of our

formalism.
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I. INTRODUCTION

Galaxies are known to trace the underlying matter dis-
tribution on large scales and galaxy redshift measurements
can therefore provide crucial information about the time
evolution of large-scale structure of the universe. Over the
past decade rapid progress has been made in this field,
following the advent of large galaxy redshift surveys such
as the Sloan Digital Sky Survey (SDSS; [1]) and the Two
Degree Field Galaxy Redshift Survey (2dFGRS; [2]), and
much higher precision measurements with large survey
area have opened a new horizon for the role of galaxy
clustering as a cosmological probe (see, e.g., [3,4]).

However, a critical question naturally arises: is the
Newtonian description of galaxy clustering sufficiently
accurate on large scales, close to the horizon scale at
high redshift? General relativity provides a natural frame-
work for cosmology, and the general relativistic descrip-
tion is essential to understand the formation of CMB
anisotropies, since the horizon size at the recombination
epoch is of order three degrees on the sky (see, e.g., [5]).
Therefore, one would naturally expect that a similar rela-
tivistic treatment of galaxy clustering needs to be consid-
ered when using galaxy clustering as a cosmological probe.

Galaxies are measured by observing photons emitted
from them and the photon path is distorted by the matter
fluctuations and the gravity waves between the source
galaxy and the observer. The volume element constructed
using the observed redshift and observed angle is different
from the real physical volume that the observed galaxies

occupy, and the observed flux and redshift of the source
galaxies are also different from their intrinsic properties.
Therefore, the observed galaxy number density is affected
by the same perturbations given the total number of ob-
served galaxies, and it contains additional contributions
from the distortion in the observable quantities, compared
to the standard description that galaxies simply trace the
underlying matter distribution �g ¼ b�m.

Furthermore, perturbations are gauge-dependent quanti-
ties and hence they are not directly observable. For ex-
ample, the matter fluctuation �m computed in the
synchronous gauge is different from the matter fluctuation
�m computed in the conformal Newtonian gauge, which
diverges on large scales. The observable quantities such as
observed galaxy clustering should be independent of a
choice of the gauge condition, and this implies that the
standard description is incomplete. Related to this problem
is the linear bias approximation. A scale-independent gal-
axy bias factor b assumed in one gauge appears as a scale-
dependent galaxy bias factor bðkÞ in another gauge. Galaxy
formation is a local process and its relation to the under-
lying matter density should be well defined and gauge
invariant.
These issues are naturally resolved when we construct

theoretical predictions in terms of observable quantities.
Here we provide a fully general relativistic description of
galaxy clustering in a general Friedmann-Lemaı̂tre-
Robertson-Walker (FLRW) universe, and as our first ap-
plication we compute the cross correlation of CMB tem-
perature anisotropies with large-scale structure. Tracers of
large-scale structure contain additional contributions from
relativistic effects and these effects on the cross correlation*jyoo@cfa.harvard.edu
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progressively become significant at low angular multipoles
at high redshift, since the relativistic effects are significant
at the horizon scale and the horizon size decreases with
redshift. For a photometric quasar sample from the SDSS,
we find that the predicted signals are larger than the
standard method would predict at low angular multipoles
and its deviation is larger than the estimated cosmic vari-
ance limit.

The organization of this paper is as follows. In Sec. II we
describe our notation for a general FLRWmetric and solve
the geodesic equation for photons. In Sec. III we discuss
the fluctuation in luminosity distance that affects the ob-
served flux of source galaxies, and we present our main
results on the general relativistic description of galaxy
clustering in Sec. IV. In Sec. V we compute the angular
correlation of large-scale structure and its cross correlation
with CMB anisotropies with the main emphasis on the
systematic errors. Finally, we discuss the implication of
our new results and conclude with a discussion of further
applications in Sec. VI.

II. GEODESIC EQUATION

We present our notation for the background metric in an
inhomogeneous universe and solve the geodesic equation
for photons emitted from galaxies to derive the relation
between the source galaxies and the observer.

A. FLRW metric

We assume that the background universe is well de-
scribed by the FLRW metric with a constant spatial curva-
ture,

ds2 ¼ gabdx
adxb ¼ �dt2 þ a2ðtÞ �g��dx�dx�; (1)

where aðtÞ is the scale factor and �g�� is the metric tensor

for a three-space. The conformal time � is defined as
ad� ¼ dt with the speed of light c � 1, and it is related
to the comoving line-of-sight distance,

rð�Þ ¼ að�0Þð�0 � �Þ ¼ að�0Þ
Z t0

t

dt

aðtÞ ¼
Z z

0

dz

HðzÞ ; (2)

whereH ¼ H =a ¼ _a=a2 is the Hubble parameter and the
dot denotes the derivative with respect to the conformal
time. The subscript 0 represents that the quantities are
computed at origin in a homogeneous universe. In a flat
universe, the comoving line-of-sight distance is coincident
with the comoving angular diameter distance. From now
on we set að�0Þ � 1.

The metric tensor can be expanded to represent its
perturbations for the spacetime geometry and to describe
the departure from the homogeneity and isotropy,

ds2 ¼ �a2ð1þ 2AÞd�2 � 2a2B�d�dx
�

þ a2½ð1þ 2DÞ �g�� þ 2E���dx�dx�: (3)

We can further decompose the perturbation variables de-

pending on their spatial transformation properties as B� ¼
BQ� and E�� ¼ EQ�� þ ET

��, where ET
�� is the diver-

genceless tensor. We adopted the convention [6] for the
eigenmode Q� and Q�� of the Helmholtz equations and

assumed there is no vector mode. Throughout the paper we
use Greek indices to represent the 3D spatial components,
running from 1 to 3, while Latin indices are used to
represent the 4D spacetime components with 0 being the
conformal time component.
Here we will work with the general representation of the

metric without fixing gauge conditions (see, e.g., [6–8]),
but it often proves convenient to understand our general
formulas in conjunction with other gauges such as the
conformal Newtonian gauge and the synchronous gauge.
The metric in the conformal Newtonian gauge (see, e.g.,
[9]) is

ds2 ¼ �a2ð1þ 2c Þd�2 þ a2½ð1þ 2�Þ �g��
þ 2ET

���dx�dx�; (4)

and the metric in the synchronous gauge (see, e.g., [10]) is

ds2 ¼ �a2d�2 þ a2½ �g�� þ h���dx�dx�: (5)

Throughout the paper, we adopt as our fiducial model a flat
�CDM universe with the matter density �m ¼ 0:24
(�mh

2 ¼ 0:128), the baryon density�b ¼ 0:042 (�bh
2 ¼

0:0224), the Hubble constant h ¼ 0:73, the spectral index
ns ¼ 0:954, the optical depth to the last scattering surface
s ¼ 0:09, and the primordial curvature perturbation ampli-
tude �2

� ¼ 2:38� 10�9 at k ¼ 0:05 Mpc�1 (�8 ¼ 0:81),

consistent with the recent results (e.g., [4,11]). We use the
Boltzmann code CMBFAST [12] to obtain the transfer func-
tions of perturbation variables.

B. Temporal component: Sachs-Wolfe effect

The photon geodesic xað�Þ can be parametrized by an
affine parameter �, and its propagation direction is then
ka ¼ dxa=d�, subject to the null equation (ds2 ¼ kaka ¼
0). We choose the normalization of the affine parameter,
such that the time component of the null vector represents
the photon frequency ��, measured by an observer in a
homogeneous universe [13]. The null vector is therefore

k0 ¼ ��

a
ð1þ ��Þ; k� ¼ � ��

a
ðe� þ �e�Þ; (6)

where the unit vector e� is the photon propagation direc-
tion seen from the observer. The spatial component of the
null vector is obtained by the null condition and we ex-
panded the null vector to the first order in perturbations to
represent its dimensionless temporal and spatial perturba-
tions �� and �e�.
To the zeroth order in perturbations, the photon fre-

quency is redshifted as �� / 1=a in an expanding universe,
and the geodesic path is described by d=d	 � ða= ��Þ�
ðd=d�Þ ¼ @� � e�@� ¼ �d=dr. Equivalently the affine
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parameter 	 describes the same geodesic path xað	Þ, but in
a conformally transformed metric ~gab ¼ ð ��=aÞgab (see,
e.g., [14] for conformal transformation). We will put tilde
to represent quantities in the conformally transformed
metric.

The temporal component of the null vector can be
integrated to obtain the relation between � and 	 as

�� �o ¼ 	� 	o þ
Z 	

	o

d	0��ð	0Þ; (7)

where the subscript o indicates that the affine parameter is
computed at origin in an inhomogeneous universe. The
perturbations of the null vector are related to the metric
perturbations as

e��e� ¼ ��þ A� B�e
� �D� E��e

�e�; (8)

by the null equation, and as

d

d	
ð��þ 2AÞ ¼ ð _A� _DÞ � ðB�j� þ _E��Þe�e�; (9)

by the temporal component of the geodesic equation
(k0;bk

b ¼ 0). The vertical bar and the semicolon represent

the covariant derivatives with respect to �g�� and gab,

respectively.
Consider a comoving observer of which the rest frame

has vanishing total three momentum. Its four velocity is
ua ¼ ½ð1� AÞ=a; v�=a� and the observer measures the
redshift parameter of a source,

1þ zs ¼ ðkauaÞs
ðkauaÞo

¼
�
ao
as

�
f1þ ½��þ Aþ ðv� � B�Þe��sog; (10)

with the spacetime of the source indicated by the subscript
s and the bracket representing a difference of the quantities
at two spacetime points. Using Eq. (9), this relation can be
further simplified [15] as

1þ zs ¼
�
ao
as

��
1þ ½ðv� � B�Þe� � A�so

�
Z rs

0
dr½ð _A� _DÞ � ðB�j� þ _E��Þe�e��

�
; (11)

where rs ¼ rðzsÞ is the comoving line-of-sight distance to
the source galaxies at zs and v�e

� is the line-of-sight
peculiar velocity. Equation (11) in the conformal
Newtonian gauge is known as the Sachs-Wolfe effect
[16]. The first square bracket represents the redshift-space
distortion by peculiar velocities, frame dragging, and
gravitational redshift, respectively. The first round bracket
in the integral also represents the gravitational redshift,
arising from the net difference in gravitational potential
due to its time evolution for the duration of photon propa-
gation, and this effect is referred to as the integrated Sachs-
Wolfe effect. The last terms in the integral represent the

tidal effect from the frame dragging and the integrated
Sachs-Wolfe effect from the time evolution of the primor-
dial gravity waves.
Since the redshift parameter in a homogeneous universe

is defined as 1=a, we define a quantity �z that relates the
observed redshift zs of the source and the redshift of the
source that would be measured in a homogeneous universe
as 1=as � ð1þ zsÞð1� �zÞ, and note that ao ¼
1þH o��o. The redshift 1=as of the source in a homoge-
neous universe is not directly measurable and hence �z is
gauge-dependent. One can easily verify that for a coordi-
nate transformation � ! �0 ¼ �þ T, the perturbation in
the observed redshift transforms as �z ! �z0 ¼
�zþHT, while the observed redshift zs is gauge
invariant.1

C. Spatial components: Gravitational lensing effect

Metric perturbations, sourced by matter fluctuations and
gravity waves along the line-of-sight, deflect the photon
propagation direction emitted from galaxies and displace
their observed position on the sky. This effect, known as
the gravitational lensing effect, is described by the spatial
components of the geodesic equation (k�;bk

b ¼ 0) as

d

d	
ð�e� þ B� þ 2De� þ 2E�

�e
�Þ

¼ �e�e�j� � �� _e� þ Aj� � B�
j�e� �Dj�

� Ej�
�
e

�e
: (12)

Noting that ðd=d	Þ�x� ¼ ��e�, the spatial components
of the geodesic equation can be integrated and expressed in
spherical coordinates to obtain the angular displacements

�� ¼ �
Z rs

0
dr

�½ðB� � B�
o Þ þ 2ðE�� � E��

o Þe��e��
rs

þ
�
rs � r

rrs

�
@

@�
ðA�D� B�e

� � E��e
�e�Þ

�
;

(13)

and

�� ¼ �
Z rs

0
dr

�½ðB� � B�
o Þ þ 2ðE�� � E��

o Þe��e��
rs sin�

þ
�
rs � r

rrssin
2�

�
@

@�
ðA�D� B�e

� � E��e
�e�Þ

�
:

(14)

Apart from the frame distortion described by I� � ðB� �
B�
o Þ þ 2ðE�� � E��

o Þe�, the gravitational lensing dis-

1Particular attention needs to be paid to the difference between
z and 1=a in conjunction with Eq. (11). Throughout the paper the
redshift parameter z refers to the ‘‘observed’’ redshift, which is
different from the gauge-dependent redshift parameter zh in a
homogeneous and isotropic universe, defined as 1þ zh ¼ 1=a.
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placement depends only on the spatial derivative of the
metric perturbations, i.e., a constant gravitational potential
results in no observable effect.

Since the comoving line-of-sight distance to the source
in an inhomogeneous universe is (�0 � �s) and the source
position �s is related to the observed redshift zs through as
in Eq. (11), it can be expressed in terms of rðzÞ and HðzÞ in
a homogeneous universe as

�r � �0 � �s ¼ r½zs � ð1þ zsÞ�z� ¼ rs

�
1� 1þ zs

Hsrs
�z

�
;

(15)

where Hs ¼ HðzsÞ. Note that we have expanded the argu-
ment of rðxÞ in the square bracket around the observed
redshift zs of the source. Finally, using the null equation,
the radial displacement is then obtained as

�r ¼ 	o � 	s þ e��x
� � �r

¼ ��o þ
Z rs

0
drðA�D� B�e

� þ E��e
�e�Þ: (16)

With the full solution of the geodesic equation, the
angular position ŝ of the source galaxies can be obtained
by tracing backward the photon path and expressed in
terms of observed angle n̂ ¼ ð�;� sin�Þ as ŝ ¼
½�þ ��; ð�þ ��Þ sinð�þ ��Þ�. Because of the lensing
displacement a unit solid angle jd2ŝj in the source plane is
distorted to a unit solid angle jd2n̂j in the image plane. The
amplitude of this distortion is described by the conver-
gence � as��������d2n̂

d2ŝ

��������¼ 1� @

@�
���

�
cot�þ @

@�

�
�� � 1þ 2�;

(17)

and therefore

� ¼
Z rs

0
dr

�
csc�@�ðe��I�Þ þ @�ðe��I�Þ þ cot�e��I�

2rs

þ
�
rs � r

2rrs

�
r̂2ðA�D� B�e

� � E��e
�e�Þ

�
; (18)

where r̂ is the differential operator in two dimensional unit
sphere. In the literature Eq. (17) is often referred to as the
gravitational lensing magnification . However, the angu-
lar position ŝ of the source galaxies is not observable; its
coordinate value depends on the choice of gauge condition,
while the spacetime of the source position is physical.
Consequently, the convergence � in Eq. (18) is gauge-
dependent, whereas magnification should be a gauge-
invariant quantity. In Sec. III we provide a correct gauge-
invariant expression for magnification . Note that the
gravitational lensing displacements �r, ��, and �� are
also gauge-dependent.

The standard Newtonian expression for the convergence
can be obtained with a few approximations: When the

Newtonian potential and curvature are constant in time as
in an Einstein-de Sitter universe, we can replace the total
derivative d=dr by the partial derivative @r. Integrating by
part and ignoring the boundary terms yield the standard
form [17,18] as

� ¼
Z rs

0
dr

ðrs � rÞr
2rs

�
r2 � 1

r2
@

@r

�
r2

@

@r

��
ðc ��Þ

¼ 3H2
0

2
�m

Z rs

0
dr

�m

a

ðrs � rÞr
rs

; (19)

where we have used the Newtonian Poisson equation
k2� ’ �k2c ’ 4�Ga2��. Deep inside the horizon where
the Newtonian approximation is accurate, there is no gauge
ambiguity and the gravitational lensing magnification is
 ’ jd2n̂=d2ŝj ¼ 1þ 2�.

III. OBSERVED LUMINOSITY DISTANCE

The observed position and the redshift of source galaxies
are affected by the matter fluctuations and the gravity
waves between the source galaxies and the observer, and
this relation is described by the geodesic equation in
Sec. II. The observed flux of the source galaxies is also
affected by the same fluctuations and this relation is de-
scribed by the fluctuations in the luminosity distance. Here
we derive the observed luminosity distance in an inhomo-
geneous universe (see [19,20] for earlier derivations).
Consider a source with intrinsic luminosity L and proper

radius �Rs. The flux F o and redshift zs of the source are
measured at origin and the observed luminosity distance is
defined as

D LðzsÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L

4�F o

s
¼

ffiffiffiffiffiffiffi
F s

F o

s
�Rs ¼ As�s

Ao�o

�Rs; (20)

whereA is the scalar amplitude of the four potential of the
photons and we have used F / A2�2. When the wave-
length of the photons is shorter than the curvature scale, the
propagation of light rays can be locally described by
Maxwell’s equations, and the governing equations are
known as the geometric optics in curved spacetime (see,
e.g., [21,22]).
The optical scalar equations are the propagation equa-

tions of the scalar amplitude

d

d	
ðAaÞ þ 1

2
Aa# ¼ 0; (21)

and the expansion of the wave vector # ¼ ~ka;a

d

d	
# þ 1

2
#2 ¼ � ~Rab

~ka~kb; (22)

where ~Rab is the Ricci tensor in the conformally trans-
formed metric ~gab ¼ ð ��=aÞgab. To the zeroth order in
perturbations Eq. (22) has no source term in a flat universe
and it can be integrated to obtain the expansion of the wave
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vector # ¼ 2=ð	� 	s ��	sÞ, where �	s is related to
the size of the source. Since the proper radius of the source
is �Rs ¼ jdtj in a local Lorentz frame, it can be expressed
in terms of the affine parameter 	 by considering the
photon frequency at the source as

� �s ¼ ðkauaÞs ¼ � ��s

as

dt

d	
: (23)

Note that dt in Eq. (23) is defined in the local Lorentz
frame of the source. Solving Eq. (21) for Aa and using
�Rs ¼ as�sj�	sj= ��s yields the observed luminosity dis-
tance as

D LðzsÞ ¼ ð1þ zsÞ�Rs

ao
as

exp

�
�

Z s

o
d	

#

2

�

¼ aoð1þ zsÞð	o � 	sÞ�s

��s

�
1�

Z s

o
d	

�#

2

�
;

(24)

in the limit �	s ! 0, and �# is the first order perturbation
of the expansion of the wave vector that can be obtained by
expanding Eq. (22).

Now to solve for �# we integrate Eq. (22) along the
zeroth order solution #,

Z s

o
d	

�#

2
¼

Z rs

0
dr

ðrs � rÞr
2rs

�ð ~Rab
~ka~kbÞ; (25)

with the source term in the integral

�ð ~Rab
~ka~kbÞ ¼ �k2

�
A�

�
Dþ E

3

�
þ

� _B

k
� €E

k2

��

� 2

�
€Dþ €E

3

�
þ 4

�
_Dþ _E

3

�
j�
e�

�
�
Aþ

�
Dþ E

3

�
þ

� _B

k
� €E

k2

��
j��

e�e�

þ ð €ET
�� þ k2ET

��Þe�e�: (26)

Noting that the luminosity distance in a homogeneous
universe is DLðzÞ ¼ ð1þ zÞrðzÞ and the comoving line-
of-sight distance �r of the source is related to the affine
parameter via Eqs. (7) and (15), the observed luminosity
distance DLðzsÞ can be written as [19]

DLðzsÞ
DLðzsÞ ¼ 1þ ðv� � B�Þse� � As � 1þ zs

Hsrs
�z

þ 2
Z rs

0
dr

A

rs
�

Z rs

0
dr

r

rs
½ð _A� _DÞ

� ðB�j� þ _E��Þe�e�� �
Z rs

0
dr

ðrs � rÞr
2rs

� �ð ~Rab
~ka~kbÞ þ

�
H o þ 1

rs

�
��o: (27)

With the full expression for luminosity distance, the
magnification of a source at observed redshift z is defined

as the ratio of the observed fluxF o to the flux of the source
that would be measured in a homogeneous universe:

 ¼ F o

�
L

4�D2
L

��1 ¼
�
DL

DL

�
2 ¼ 1� 2�DL: (28)

We have defined the perturbations in Eq. (27) as DLðzÞ �
DLðzÞð1þ �DLÞ, and note that written in terms of observ-
able variables �DL is gauge invariant and both DLðzÞ and
DLðzÞ are evaluated at the observed redshift z. In the
Newtonian limit, Eq. (25) becomes the convergence �
and it is the dominant factor for �DL. Therefore, we
recover the Newtonian expressions �DL ’ �� and  ’
1þ 2�.

IV. OBSERVED GALAXY FLUCTUATION FIELD

Drawing on the formalism developed in Secs. II and III
we present the expression for the observed galaxy fluctua-
tion field �obs, accounting for all the relativistic effects to
the linear order. Our formalism is crucial for the theoretical
consistency and the gauge invariance of the predictions
using galaxy clustering as a cosmological probe. To con-
struct the observed galaxy overdensity field we start by
considering a gauge-invariant quantity, the total number
Ntot of observed galaxies. The total number of observed
galaxies in a small volume described by observed redshift z
and observed angle n̂ can be formulated in terms of a
covariant volume integration in a four-dimensional space-
time manifold [23], and it is related to the photon geodesic
xað	Þ via

Ntot ¼
Z ffiffiffiffiffiffiffi�g

p
np"abcdu

d @x
a

@z

@xb

@�

@xc

@�
dzd�d�; (29)

where np is the physical number density of the source

galaxies, the metric determinant is
ffiffiffiffiffiffiffi�g

p ¼ a4ð1þ Aþ
3DÞ, and "abcd ¼ "½abcd� is the Levi-Civita symbol.

To the linear order in perturbations the photon geodesic
is a straight path with small distortion and, with the geo-
desic path xað	Þ in Sec. II we obtain

Ntot ¼
Z

np
r2 sin�

ð1þ zÞ3Hdzd�d�

�
1þ 3Dþ v�e� þ 2

�r

r

þH
@

@z
�rþ

�
cot�þ @

@�

�
��þ @

@�
��þ �r2

r2
H
@�r

@z

�
:

(30)

The observed galaxy number density ng is then defined in

relation to the total number of observed galaxies and the
observed volume element as

Ntot �
Z

ng
r2 sin�

ð1þ zÞ3H dzd�d�; (31)

and therefore the observed galaxy number density is
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ng ¼ np

�
1þ Aþ 2Dþ ðv� � B�Þe� þ E��e

�e�

� ð1þ zÞ @
@z

�z� 2
1þ z

Hr
�z� �z� 2�

þ 1þ z

H

dH

dz
�zþ 2

�r

r

�
: (32)

Given the total number of observed galaxies, the observed
galaxy number density is affected by the matter fluctua-
tions and the gravity waves, since the volume element is
constructed in terms of observed redshift and observed
angle. Equation (29) automatically takes into account the
full effects of the volume distortion described by the
photon geodesic equation in Sec. II.

However, additional distortions arise due to the intrinsic
luminosity function dnp=dL of the source galaxies. As

described in Sec. III the observed flux of the source gal-
axies is affected by the matter fluctuations and the gravity
waves between the source galaxies and the observer, and
magnification of the source galaxy flux changes the ob-
served galaxy number density. Given an observational
threshold F thr in flux at origin, the physical number den-
sity np in the above equations should be modified as

np !
Z 1

F thr

dF o

dL

dF o

dnp
dL

¼ np½Lthrð1þ 2�DLÞ�; (33)

where npðLÞ is the cumulative (physical) number density

of the source galaxies brighter than L and Lthr ¼
4�D2

LðzÞF thr is the inferred luminosity threshold for the
source galaxy sample. For a galaxy sample with dnp=dL /
L�s, the cumulative number density can be expanded as
npðLthrÞð1� 5p�DLÞ, and p ¼ 0:4 (s� 1) is the slope of

the luminosity function in magnitude.
Furthermore, since we observe galaxies rather than the

underlying matter distribution, we need to relate the physi-
cal number density np of the source galaxies to the matter

density �m. In the simplest model of galaxy formation, the
galaxy number density is simply proportional to the under-
lying matter density �m, when �m is above some threshold
�t dictated by complicated but local process involving
atomic physics. The matter density at the source galaxy
position is related to the mean matter density at the ob-
served redshift z as2

�mðxaÞ ¼ ��mð�0Þ
a3

ð1þ �mÞ ¼ ��mðzÞ½1þ �m � 3�z�;
(34)

and the mean matter density at the observed redshift is
��mðzÞ ¼ ð3H2

0=8�GÞ�mð1þ zÞ3. The combination (�m �
3�z) is gauge invariant and is proportional to the matter
density at the source galaxy position. Within the linear bias

approximation, the long wavelength fluctuations of the
matter density �m at a given point effectively lower the
threshold for galaxy formation and the galaxy number
density can be written as

np ¼ �npðzÞ½1þ bð�m � 3�zÞ�; (35)

and b is a scale-independent linear bias factor.3 Equation
(35) can be contrasted with the gauge-dependent relation
�g ¼ b�m.

Finally, putting all the ingredients together the observed
galaxy fluctuation field can be written as

�obs ¼ bð�m � 3�zÞ þ Aþ 2Dþ ðv� � B�Þe�
þ E��e

�e� � ð1þ zÞ @
@z

�z� 2
1þ z

Hr
�z� �z

� 5p�DL � 2�þ 1þ z

H

dH

dz
�zþ 2

�r

r
; (36)

where �z, �r, �, and �DL aregiven in Eqs. (11), (16), (18),
and (27), respectively. This equation is the main result of
our paper. Constructed from the gauge-invariant expres-
sions and expressed in terms of observables, this result is
gauge invariant. Note that in addition to the scalar contri-
butions, Eq. (36) includes tensor contributions from the
primordial gravity waves, mainly from the integrated
Sachs-Wolfe effect in �z.
One remaining ambiguity in computing �obs is the time

lapse ��o at origin, representing the departure from �0 in a
homogeneous universe. However, this quantity is indepen-
dent of the position and angle of the source galaxies; In
practice the mean number density �npðzÞ of the observed

galaxies is obtained by averaging ng over observed angle n̂

at a fixed observed redshift z and ��o is absorbed in the
monopole set equal �npðzÞ. In the Newtonian limit the

dominant contribution in �z is the peculiar velocity V
and Eq. (36) reduces to the standard relation for redshift-
space distortions [26] and magnification bias [27] as

�std ¼ b�m þ ð5p� 2Þ�� 1þ z

H

@V

@r
: (37)

Figure 1 illustrates the theoretical inconsistency in the
standard method by showing the power spectra of pertur-
bation variables computed at z ¼ 0 in the conformal
Newtonian and the synchronous gauges. The power spectra
of matter fluctuations in two gauges (solid line; synchro-
nous, short dot-dashed line; conformal Newtonian) notice-
ably deviate from each other well before they reach the
horizon scale (dark gray), reflecting that theoretical pre-
dictions in the standard method depend on the choice of

2The observed redshift z is related to the expansion parameter
a of the source galaxy as 1þ z ¼ ð1þ �zÞ=a.

3More general ansatz for Eq. (35) can be obtained by general-
izing the earlier approach [24,25] as np ¼ �npðzÞ�
exp½bL

R ffiffiffiffiffiffiffi�g
p

d4yð�m � 3�zÞðyÞW ðx� yÞ�, where W is a
local filter function that cuts off small scale fluctuations, and
the Lagrangian bias bL is related to the bias in Eulerian space as
b ¼ bL þ 1.
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gauge conditions. In particular, as we observe higher red-
shift, larger comoving scales (light gray) are accessible and
the horizon scale is smaller, and therefore the systematic
errors in the standard methods start to become significant
on progressively smaller scales. The infrared divergence
shown as the dot-dashed line on large scales is an artifact in
the conformal Newtonian gauge, while the matter fluctua-
tion �m (solid line) in the synchronous gauge is also gauge-
dependent. Theoretical quantities plotted in Fig. 1 are not
directly observable.

V. CROSS CORRELATION OF CMB
ANISOTROPIES WITH LARGE-SCALE

STRUCTURE

As the first application of our formalism, we compute
the angular correlation of large-scale structure and its cross
correlation with CMB anisotropies. In the standard ap-
proach, the observed galaxy fluctuation field is written in
the Newtonian limit, and neglecting the additional contri-
butions to the observed galaxy fluctuation field results in
systematic errors in the theoretical predictions. We first
introduce the formalism for computing the angular corre-
lations in Sec. VA, and present the angular auto and cross

correlations with the main emphasis on the systematic
errors in Sec. VB.

A. Observed angular fluctuation field

The observed angular fluctuation field can be obtained
by integrating Eq. (36) along the line-of-sight as

�2D
obsðn̂Þ ¼

Z
dzPðzÞ�obsðz; n̂Þ; (38)

with the normalized selection function PðzÞ of the galaxy
sample. The selection function PðzÞ can be obtained by
averaging the observed galaxy number density ng at each

observed redshift slice. Since �obs in Eq. (36) is a linear
combination of perturbation variables Ti with different

weight functionWiðr; n̂; k̂Þ, it proves convenient to further
decompose their functional dependence by

�obsðz; n̂Þ ¼
X
i

Z rs

0
dr

Z d3k

ð2�Þ3 Wiðr; n̂; k̂ÞTiðk; rÞeik�x;

(39)

and x ¼ ðr; n̂Þ in the spherical coordinate. The angular
fluctuation field is often expanded as a function of spheri-
cal harmonics and the observed angular component is then

alm ¼
Z

d2n̂�2D
obsðn̂ÞY�

lmðn̂Þ

¼ X
i

Z d3k

ð2�Þ3
Z

dzPðzÞ

�
Z rs

0
dr

Z
d2n̂Y�

lmðn̂ÞWiðr; n̂ÞTiðk; rÞeik�x: (40)

For most of the perturbation variables such as �m, A, and
D in Eq. (36), the weight function takes the simple form
WðrÞ ¼ �Dðr� rsÞ, because they are independent of the
photon propagation direction and its path. The angular
dependence of the integrand is then carried by the plane
wave and this functional dependence can be further sepa-
rated by using the partial wave expansion

eik�x ¼ 4�
X
lm

iljlðkxÞY�
lmðk̂ÞYlmðn̂Þ: (41)

The line-of-sight velocity V ¼ v�e� is independent of the
photon path, but depends on the photon propagation direc-
tion; the weight function is

WðrÞ ¼ �Dðr� rsÞð�in̂ � k̂Þ ¼ ��Dðr� rsÞ
�
1

k

@

@r

�
;

(42)

and now it is an operator, acting upon the radial part of the
plane wave. Note that we have explicitly removed the
dependence on the photon propagation direction by mak-
ing the weight function an operator. The weight function
for the weak lensing convergence � depends on both the
photon path and its propagation direction, and it is there-

FIG. 1. Power spectra of perturbation variables computed at
z ¼ 0 in the conformal Newtonian and the synchronous gauges.
Vertical lines show the comoving line-of-sight distance (k ¼
1=rðzÞ; light gray) at each redshift indicated in the legend and the
horizon scale (k ¼ H0; dark gray) today. Near the horizon scale,
even power spectra of matter fluctuations in two gauges differ
dramatically, showing that gauge effects are substantial and it is
nontrivial to relate perturbation variables to observable quanti-
ties. Two distinct choices of gauge conditions cannot be used
simultaneously around the horizon scale (e.g., Newtonian gauge
equations with synchronous gauge transfer function outputs from
CMBFast or CAMB).
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fore another operator acting upon the angular part of the
plane wave:

WðrÞ ¼
�
rs � r

2rsr

�
r̂2 ¼ �lðlþ 1Þ

�
rs � r

2rsr

�
; (43)

where we have used the relation r̂2Ylmðn̂Þ ¼ �lðlþ
1ÞYlmðn̂Þ.

Finally, for the initial conditions described by a
Gaussian random distribution with �2

�ðkÞ / kns�1, the

auto correlation of large-scale structure can be written as

Cl ¼ ha�lmalmi ¼ 4�
Z dk

k
�2

�ðkÞT 2
l ðkÞ; (44)

and the cross correlation of CMB anisotropies with large-
scale structure is

C�
l ¼ hacmb�

lm almi ¼ 4�
Z dk

k
�2

�ðkÞ��
l ðkÞT lðkÞ; (45)

where we have defined the angular multipole function of
large-scale structure in Fourier space

T lðkÞ ¼
X
i

Z
dzPðzÞ

Z rs

0
drTiðk; rÞWiðrÞjlðkrÞ; (46)

and �l is the angular multipole function of CMB anisot-
ropies (see, e.g., [12,28]).

B. Angular correlations

Here we consider a quasar sample without spectroscopic
redshift measurements used for the cross correlation analy-
sis, such as the photometric quasar (QSO) sample [29]
obtainable from the SDSS. The redshift distribution of
the sample is assumed to have the standard functional form

PðzÞdz / z� exp

�
�
�
z

z0

�
�
�
dz; (47)

with ð�;�; z0Þ ¼ ð3; 13; 3:4Þ. The mean and the peak red-
shifts of the sample are 2.7 and 3, respectively.
Figure 2 shows the systematic errors in theoretical pre-

dictions of the auto correlation (left) of the QSO sample
and its cross correlation (right) with CMB temperature
anisotropies, when the relativistic effects are ignored.
Compared to our full expression in Eq. (36), the theoretical
predictions in the standard method are computed by using
�std ¼ b�m þ ð5p� 2Þ�, where �m is the matter fluctua-
tion in the synchronous gauge and � is the convergence in
the conformal Newtonian gauge. We have assumed b ¼ 2
and ð5p� 2Þ ¼ 0:1 for the QSO sample [29], and the full
sky coverage of the survey is assumed for comparison.
In the standard approach to modeling the cross correla-

tion of CMB anisotropies with large-scale structure, the
matter fluctuation in large-scale structure correlates with
the integrated Sachs-Wolfe effect in CMB anisotropies.
However, the observed fluctuation field �obs in Eq. (36)

FIG. 2. Systematic errors in theoretical predictions of the auto correlation (left) of the QSO sample and its cross correlation (right)
with CMB temperature anisotropies. Attached bottom panels show the mean�	2 of the measurements, when only the cosmic variance
is considered. As in the standard practice, the theoretical predictions of the angular correlations are computed by using �std ¼
b�m þ ð5p� 2Þ� with �m in the synchronous gauge and � in the conformal Newtonian gauge, and the angular correlations computed
with our full expression for �obs in Eq. (36) are compared to the predictions with �std. Projection along the line-of-sight suppresses the
large-scale modes, where the matter fluctuations in two gauges in Fig. 1 differ substantially. Note that at l ¼ 2 the correct theoretical
prediction is larger by a factor of 1.8 than that one would incorrectly predict in the standard method, and it is 1:2-� away from the
estimated cosmic variance shown as shaded regions. Since the signal-to-noise ratio of the cross correlation measurements is largest at
low angular multipoles (measurements uncertainties are large at l > 10), the systematic errors in the standard method could bias the
inferred cosmology.
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contains numerous new contributions, including the pecu-
liar velocity, the gravitational potential, and the integrated
Sachs-Wolfe effect, when written in the conformal
Newtonian gauge. Therefore, when computing the cross
correlation with the observed galaxy fluctuation field, the
correlations of the new contributions are required to be
considered in addition to the matter correlation. For ex-
ample, the integrated Sachs-Wolfe effect present in both
CMB anisotropies and large-scale structure directly corre-
lates with each other.

In the conformal Newtonian gauge, �z � �m for the
QSO sample, since the peculiar velocity, the gravitational
potential, and the integrated Sachs-Wolfe effect are of the
same order. Therefore, when �obs is computed in the
conformal Newtonian gauge, the correlation of the matter
fluctuation �m contributes most to Cl and C�

l compared to

the other numerous contributions, and the systematic errors
in Fig. 2 arise mainly from the difference in �m of the
conformal Newtonian and the synchronous gauges seen in
Fig. 1. However, in the synchronous gauge, �z simply
results from the integrated Sachs-Wolfe effect due to the
absence of the peculiar velocity and the gravitational po-
tential, and therefore without accounting for �z the theo-
retical predictions in the standard method are
underestimated. For the tensor-to-scalar ratio r ¼ 0:1 at
l ¼ 2, the tensor contribution is �1% of the matter fluc-
tuation. We emphasize again that �obs is gauge invariant
and it can be computed in any gauges.

As opposed to the dramatic contrast seen in Fig. 1 the
systematic errors in the theoretical predictions seem rela-
tively small in Fig. 2. The main reason is the projection
effect in the angular correlation: each Fourier mode is
projected along the line-of-sight and the amplitude of Cl

is largely determined by the mode k ’ l=rs, and slightly
larger scale mode for the cross correlation C�

l due to the

cancellation of two spherical Bessel functions with differ-
ent distance scales. This projection effect highly sup-
presses the largest scale modes k� 1=rs of the sample,
reducing the dramatic difference in the matter fluctuations.
For computing the cross correlation with CMB tempera-
ture anisotropies, one would in practice need to compute
Eq. (37) with �m replaced by the combination (�m � 3�z)
computed in the conformal Newtonian gauge to be con-
sistent with the calculation of the convergence �.

Finally, we comment on the impact of the systematic
errors. At the lowest angular multipole the accurate theo-
retical prediction is about a factor of 1.8 larger than the
standard method predicts at the 1:2-� confidence level with
the estimated cosmic variance limit. Since the cross corre-
lation signals decline rapidly with angular multipole l, the
signal-to-noise ratio of the measurements is determined by
the estimated cosmic variance at l < 10. The lower theo-
retical predictions in the standard method underestimate
the cosmic variance, resulting in additional�	2 of a few of
the measurements. Considering that the current detection

significance is at the 3-� level for each galaxy sample [29],
these systematic errors could bias the inferred cosmology.

VI. DISCUSSION

We have developed a fully general relativistic descrip-
tion of galaxy clustering as a cosmological probe—we
have derived a covariant expression for the observed gal-
axy fluctuation field in a general Friedmann-Lemaı̂tre-
Robertson-Walker metric without fixing a gauge condition
and our formalism includes tensor contributions from pri-
mordial gravity waves. The observed volume element is
constructed by using the observed redshift and observed
angle in a homogeneous universe, while the real physical
volume element given the observables needs to be con-
structed by tracing backward the photon geodesic in an
inhomogeneous universe. This discrepancy in the observ-
able quantities results in a significant modification of the
observed galaxy fluctuation field and provides a key clue
for understanding gauge issues related to the observables.
As our first application, we have computed the angular

auto correlation of the photometric QSO sample from the
SDSS and its cross correlation with CMB anisotropies. The
cross correlation in the standard method arises from the
correlation of the integrated Sachs-Wolfe effect in CMB
anisotropies and the underlying matter fluctuation of the
QSO sample. However, since there are numerous addi-
tional contributions to the observed QSO fluctuation field,
the correlations of the additional terms with CMB anisot-
ropies need to be considered. The dominant contribution to
the cross correlation still arises from the matter fluctuation
and the correct theoretical predictions are larger at low
angular multipoles. The systematic errors in theoretical
predictions are highly suppressed in the angular correla-
tions due to the projection effect, but they can result in�	2

of a few at low angular multipoles.
We comment on the possibility to detect primordial

gravity waves using galaxy samples. Primordial gravity
waves affect the observed redshift and position of galaxies
and therefore its effect is imprinted in observed galaxy
fluctuation fields. We find that the tensor contribution in the
cross correlation is 1% of the scalar contribution from the
matter fluctuation at the lowest angular multipoles, when
the tensor-to-scalar ratio is assumed to be r ¼ 0:1 at l ¼ 2.
In general, it is extremely difficult to isolate tensor con-
tributions in galaxies, because they are completely
swamped by scalar contributions. One possibility is to
cross correlate CMB B-mode polarization anisotropies
with large-scale structure at low angular multipoles as
they should be uncorrelated in the absence of primordial
gravity waves. However, it may not be feasible in practice,
as the parity odd quantities need to be constructed from the
observed galaxy samples.
The next application of our formalism is to investigate

the effect on the three-dimensional power spectrum of
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galaxy samples. Recently, Dalal et al. [30] showed that the
primordial non-Gaussianity feature can be probed by the
scale-dependence of galaxy bias on large scales and this
new development has spurred an extensive theoretical and
observational investigation [31–35]. However, at this large
scale, where the primordial non-Gaussianity feature can be
most sensitively probed, relativistic effects become sub-
stantial and observed quantities are significantly different
from simple theoretical predictions. Therefore, without
proper theoretical modeling of observables, cosmological
interpretation of these measurements would be signifi-
cantly biased with the current data, and even more so
with galaxy samples from future dark energy surveys.
Correct modeling of the observed power spectrum would
not only need to account for the discrepancy in the observ-
able quantities, but also need to account for additional

anisotropies arising from the angle dependence of the
observable quantities [36].
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