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Modified gravitational forces in models that seek to explain cosmic acceleration without dark energy

typically predict deviations in the abundance of massive dark matter halos. We conduct the first,

simulation calibrated, cluster abundance constraints on a modified gravity model, specifically the modified

action fðRÞ model. The local cluster abundance, when combined with geometric and high redshift data

from the cosmic microwave background, supernovae, H0, and baryon acoustic oscillations, improves

previous constraints by nearly 4 orders of magnitude in the field amplitude. These limits correspond to a

2 order of magnitude improvement in the bounds on the range of the force modification from the several

Gpc scale to the tens of Mpc scale.
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I. INTRODUCTION

In fðRÞ models, cosmic acceleration arises not from an
exotic form of energy with negative pressure but from a
modification of gravity. Here the Einstein-Hilbert action is
augmented by a general function fðRÞ of the Ricci or
curvature scalar R [1–3]. Such modifications not only can
accelerate the background expansion but also generically
lead to enhancements in gravitational forces on small
scales.

fðRÞ gravity is equivalent to a scalar-tensor theory,
where fR ¼ df=dR is the additional scalar degree of free-
dom. This field has a mass and propagates on scales
smaller than the associated Compton wavelength. Well
within the Compton wavelength, the scalar mediates a
4=3 enhancement of gravitational forces, with correspond-
ing strong effects on the growth of structure in the
Universe. These enhancements are quantified by the mass
of the field or equivalently by the value of the field in the
background, fR0. In order to pass stringent Solar System
constraints, viable fðRÞ models employ the chameleon
effect which allows the field to become very massive in
high-density environments [4]. However, in order for the
chameleon effect to become active, the background field
should be smaller than the typical depth of cosmological
potential wells, jfR0j< j�j � 10�6–10�5 [5].

Independently of this Solar System constraint, however,
it is worth studying the constraints that can be placed on
fðRÞ gravity directly from cosmological observations. In
the linear regime, these provide only weak constraints.
Changes in the low multipole anisotropy of the cosmic
microwave background (CMB) only place order unity
bounds on the value of fR0, while changes to the shape
of the matter power spectrum, though larger, can be mim-
icked by galaxy bias [6].

The effect of enhanced forces can be substantially more
prominent in the nonlinear regime. Cosmological simula-

tions have shown that for field values larger than jfR0j �
10�5 the abundances of rare massive halos are enhanced
substantially [7]. Counts of galaxy clusters therefore pro-
vide the opportunity to improve cosmological constraints
on fðRÞ models ultimately by 4–5 orders of magnitude.
In this paper, we quantify current cluster abundance

constraints on fðRÞ models from a combined sample of
low-redshift x-ray clusters. We begin in Sec. II A with a
description of the model and its impact on cluster predic-
tions. In Sec. III we describe the likelihood analysis of the
local cluster abundance data. We combine these constraints
with geometric and high redshift constraints in Sec. IV to
obtain upper limits on the modification to gravity. We
discuss these results in Sec. V.

II. fðRÞ CLUSTER ABUNDANCE

In this section, we describe the enhancement that fðRÞ
models make to the cluster abundance. We begin in
Sec. II A with a brief review of the fðRÞ model itself. We
describe cosmological simulations with representative pa-
rameter choices in Sec. II B which are used to calibrate
mass function enhancements across a wider range of pa-
rameters in Sec. II C.

A. fðRÞ model

In the fðRÞ model, the Einstein-Hilbert action is aug-
mented with a general function of the scalar curvature R,

SG ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
Rþ fðRÞ
16�G

�
: (1)

Here and throughout c ¼ @ ¼ 1. Gravitational force en-
hancements are associated with an additional scalar degree
of freedom fR � df=dR and have a range given by the

Compton wavelength �C ¼ ð3dfR=dRÞ1=2. This additional
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attractive force leads to the enhancement in the abundance
of rare massive dark matter halos described below.

For definiteness, we choose the functional form for fðRÞ
given in [5] (with n ¼ 1):

fðRÞ ¼ �2�
R

Rþ�2
; (2)

with two free parameters, � and �2. Note that as R ! 0,
fðRÞ ! 0, and hence the model does not contain a cosmo-
logical constant. For R � �2, the function fðRÞ can be
approximated as

fðRÞ ¼ �2�� fR0
�R2
0

R
; (3)

with fR0 ¼ �2��2= �R2
0 replacing� as the second parame-

ter of the model. Here we define �R0 ¼ �Rðz ¼ 0Þ, so that
fR0 ¼ fRð �R0Þ, where overbars denote the quantities of the
background spacetime. Note that if jfR0j � 1 the curva-
ture scales set by � ¼ OðR0Þ and �2 differ widely and
hence the R � �2 approximation is valid today and for all
times in the past.

The background expansion history mimics �CDM with
� as a true cosmological constant to order fR0. Therefore
in the limit jfR0j � 10�2, the fðRÞ model and �CDM are
essentially indistinguishable with geometric tests.
Nonetheless geometric tests do constrain one of the two
parameters (�) leaving the cluster abundance to constrain
the other parameter (fR0) which controls the strength and
range of the force modification. With the functional form
of Eq. (3), the comoving Compton wavelength becomes

�C

1þ z
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6jfR0jR

2
0

R3

s
; (4)

with a value today of

�C0 � 32

ffiffiffiffiffiffiffiffiffiffiffi
jfR0j
10�4

s
Mpc: (5)

The behavior of fðRÞ gravity is described by the modi-
fied Einstein equations. Specifically, the trace of the line-
arized Einstein equations yields the fR field equation

r2�fR ¼ a2

3
½�RðfRÞ � 8�G��m�; (6)

where time derivatives have been neglected compared with
spatial derivatives, coordinates are comoving, �fR ¼
fRðRÞ � fRð �RÞ, �R ¼ R� �R, and ��m ¼ �m � ��m.
Note that the local curvature R is given as a function of
the local field value fR. The time-time component returns
the modified Poisson equation

r2� ¼ 4�Ga2��m � 1
2r2�fR: (7)

Here � is the Newtonian potential or time-time metric
perturbation 2� ¼ �g00=g00 in the longitudinal gauge.
These two equations define a closed system for the

Newtonian potential given the density field. The matter
falls in the Newtonian potential as usual and so the mod-
ifications to gravity are completely contained in the equa-
tion for �.
Because of the conformal equivalence of fðRÞ and

scalar-tensor theories and the conformal invariance of
electromagnetism, the geodesics of photons are unmodi-
fied by the presence of the scalar fR field save for confor-
mal rescaling factors of 1þ fR [8]. This means that given a
fixed density field, e.g. a halo of mass M, the lensing
potential will be identical to the one in general relativity
(GR) in the jfRj � 1 limit that we work in. In other words,
we will measure the ‘‘true’’ mass M through lensing.
On the other hand, the mass inferred from dynamical

measures, Mdyn, such as velocities and virial temperatures

is related to the dynamical potential which will be different
in the presence of the fR field. In the low curvature limit
where �R � 8�G��m, Eq. (7) shows that the dynamical
potential will be enhanced by 4=3. Hence the mismatch
betweenMdyn andM could be as large as 33%. Conversely,

field fluctuations can saturate in deep gravitational poten-
tials as fR ! 0. Here �R � 8�G��m and force modifica-
tions disappear via the chameleon mechanism. Then, if the
whole mass is contained in the saturated region, Mdyn ¼
M. We discuss the mass calibration of the cluster sample in
Sec. III.

B. Simulations

We use a modifiedN-body simulation as described in [9]
and used in [7,10] to quantify the impact of the force
modification on the cluster abundance. Specifically we
employ the system of equations defined by the modified
Poisson equation (7) and the fR field equation (6) in the
context of cosmological structure formation. The field
equation for fR is solved on a fixed cubic grid, using a
nonlinear relaxation algorithm. The potential � is com-
puted from the density and fR fields using the fast Fourier
transform method. The dark matter particles are then
moved according to the gradient of the computed potential,
�r�.
The simulations were performed for a range of back-

ground field values jfR0j ¼ 10�6–10�4. We also simulated
jfR0j ¼ 0 which is equivalent to �CDM, using the same
initial conditions. Note that the background expansion
history for all runs is indistinguishable from �CDM to
OðfR0Þ.
Cosmological parameters were fixed in the simulations

to a flat �� ¼ 0:76, �b ¼ 0:04181, H0 ¼ 73 km=s=Mpc
model and initial power in curvature fluctuations As ¼
ð4:82� 10�5Þ2 at k ¼ 0:02 Mpc�1 with a tilt of ns ¼
0:958. All simulations possess 512 grid cells in each di-
rection and Np ¼ 2563 particles. Halos were identified in

the simulations using a standard spherical overdensity halo
finder [7]. In the next section, we describe our model for
the fðRÞ effects on the halo mass function, which allows us
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to extend predictions to a range of cosmological parameter
values.

C. Mass function enhancement

In order to properly marginalize constraints over cos-
mological parameters, we need a prediction of the mass
function enhancement as a function of cosmological pa-
rameters and the fðRÞ parameter fR0. Because of the large
computing requirements for full fðRÞ simulations [9], run-
ning simulations for a range of parameters are not feasible,
and we use a model of the mass function enhancement
based on spherical collapse and the Sheth-Tormen (ST)
prescription (see [7] for details). Note that we use this
prescription and the cosmological simulations that cali-
brate it to compute enhancements only. For the �CDM
baseline predictions, we use mass function results from
state-of-the-art numerical simulations (see Sec. III A).

The ST description for the comoving number density of
halos per logarithmic interval in the virial massMv is given
by

nlnMv
� dn

d lnMv

¼ ��m

Mv

fð�Þ d�

d lnMv

; (8)

where the peak threshold � ¼ �c=�ðMvÞ and

�fð�Þ ¼ A

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
a�2

s
½1þ ða�2Þ�p� exp½�a�2=2�: (9)

Here �ðMÞ is the variance of the linear density field con-
volved with a top hat of radius r that encloses M ¼
4�r3 ��m=3 at the background density

�2ðrÞ ¼
Z d3k

ð2�Þ3 j
~WðkrÞj2PLðkÞ; (10)

where PLðkÞ is the linear power spectrum and ~W is the
Fourier transform of the top hat window. The normaliza-
tion constant A is chosen such that

R
d�fð�Þ ¼ 1. The

parameter values of p ¼ 0:3, a ¼ 0:75, and �c ¼ 1:673
for the spherical collapse threshold have previously been
shown to match simulations of �CDM at the 10%–20%
level. The virial mass is defined as the mass enclosed at the
virial radius rv, at which the average density is �v times
the critical density �cr. For consistency with cluster analy-
ses, overdensities will refer to critical density throughout
the paper; the corresponding overdensities in terms of the
background matter density are given by ��m

¼ ��cr
=�m.

Schmidt et al. [7] derived a model for the mass function
enhancement measured in the fðRÞ N-body simulations.
The mass function calculation is based on the Sheth-
Tormen prescription using the linear power spectrum for
the fðRÞ model, and two limiting cases for the spherical
collapse parameters. In one case, we simply assume that
the spherical perturbation considered is always larger than
the (local) Compton wavelength of the fR field, so that
gravity is GR throughout, and the spherical collapse pa-

rameters are unchanged (�c ¼ 1:673 and �v ¼ 94 for
�m ¼ 0:24). In the second case, we assume that the per-
turbation is always smaller than the local Compton wave-
length, so that forces are enhanced by 4=3. The
corresponding modified spherical collapse parameters are
�c ¼ 1:692 and �v ¼ 74 for �m ¼ 0:24. Figure 1 shows
the range of predicted mass function enhancement for
these two limiting cases, and the results of the fðRÞ simu-
lations, for jfR0j ¼ 10�4. The mass definition used, M �
M� with � ¼ 500 relative to the critical density, is the
same as used in the x-ray cluster measurements. In order to
obtain conservative upper limits, we choose the modified
force prediction for the mass function, which corresponds
to the lower bound of the shaded band in Fig. 1.
For a given set of cosmological parameters

ðAs;�m; h; fR0Þ, we first calculate the Sheth-Tormen
mass functions dn=d lnMv for �CDM and fðRÞ using the
respective linear power spectra. We then rescale each mass
function from the respective virial mass to the common
mass definitionM ¼ M500, using the procedure outlined in
[11]. We need to assume a halo profile for this mass
rescaling, which we take to be of the Navarro-Frenk-
White form with the concentration relation given by [12].
As shown in [7], the profiles of dark matter halos in fðRÞ
within rv are sufficiently similar to those measured in GR
simulations that fðRÞ effects can be neglected in the mass
rescaling. Finally, �v for �CDM is obtained from the

FIG. 1 (color online). Mass function enhancement at z ¼ 0
with respect to �CDM as a function of M ¼ M500, measured in
fðRÞ simulations with jfR0j ¼ 10�4. Also shown is the range of
spherical collapse predictions from [7]. For the constraints, we
conservatively use the lower limit of the shaded band (dashed
line).
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fitting formula of [13]:

�GR
v ð�mÞ ¼ 178�0:45

m : (11)

For the fðRÞ enhanced forces, we assume the same scaling,

fixing the ratio �fðRÞ
v =�GR

v ¼ 74=94. We neglect the small
�m dependence of the collapse thresholds within the range
of interest, and keep �cð�CDMÞ ¼ 1:673 and �cðfðRÞÞ ¼
1:692 fixed.

III. CLUSTER LIKELIHOOD

In this section we describe the cluster likelihood as a
function of cosmological and fðRÞ parameters. Since we
assume a spatially flat cosmology and the expansion his-
tory of fðRÞmodels are indistinguishable from�CDM, the
main cosmological parameters that we have to consider are
�m, h, and the primordial normalization As at k ¼
0:02 Mpc�1. Other parameters such as the power spectrum
tilt do not affect the constraints appreciably [14]. Since the
CMB determines �mh

2 to good precision, we are mainly
dealing with �m, As, and the fðRÞ parameter fR0 for the
cluster abundance.

In Sec. III A, we review the likelihood approach taken in
Ref. [14]. In Sec. III B, we describe the rescaling of these
results for fðRÞ models.

A. �CDM

The cluster sample used in this work is the low-z sub-
sample of 49 clusters described in [14,15]. This is an x-ray
flux-limited sample of clusters originally detected in the
ROSAT All-Sky Survey at high galactic latitudes and at
z > 0:025. All of the objects were later observed with
Chandra, providing low-scatter proxies for the total mass
which can be constructed from the mean x-ray temperature
and gas mass (see below). The effective redshift depth of
this sample is z < 0:15.

Cluster total masses are estimated using the YX parame-
ter defined as YX ¼ TX �Mgas, where TX is the average

temperature measured from the integral x-ray spectrum,
and Mgas is the estimated gas mass derived from the

analysis of the x-ray surface brightness profile. YX is a
direct x-ray observable, even though it is hard to backtrack
it to raw observables such as the total x-ray luminosity. For
a detailed description of the data analysis procedures, see
[15].

Based on state-of-the-art cosmological numerical simu-
lations, YX is expected to be tightly correlated with the total

cluster mass, M / Y3=5
X HðzÞ�2=5, with <10% scatter [16].

Numerical experiments show that the YX �M relation is
remarkably insensitive to the cluster dynamical state. The
power law slope and evolution factor are also insensitive to
the details of star formation history and nongravitational
heating of the intracluster medium although these pro-
cesses do change the overall normalization of the relation
(e.g., [16,17]). The normalization of the YX �M relation

was determined observationally [15] using two indepen-
dent techniques: (1) by the x-ray hydrostatic method using
a subsample of dynamically relaxed clusters, and (2) by
weak lensing mass measurements. The two methods are in
excellent agreement, and this was used to place an upper
limit on systematic uncertainties in the cluster mass scale,
�M=M< 9%. For our purposes, this agreement also
means that the normalization of the YX �M relation is
tied to the weak lensing measurements, which should
provide the true mass in the fðRÞ theories we consider
(Sec. II A).
The cluster component of the likelihood function is

computed assuming a purely Poissonian nature of statisti-
cal fluctuations1:

lnL ¼ X
i

lnpðMest
i ; ziÞ þ

X
i

lnMest
i

�
Z

dz
Z

dMestpðMest; zÞ; (12)

where Mest
i and zi are the estimated mass and redshift of

cluster i, pðMest
i ; ziÞ is the model probability density to

observe a cluster with mass Mest
i at redshift zi, and the

summation is over the clusters in the sample and integra-
tion is over preselected zmin � zmax and Mmin �Mmax in-
tervals. Note that the lnMest

i term appears because the mass
estimates and hence the mass binning required to convert
probability densities into probabilities depend on
cosmology.
The model probability density, p, is a product of the

Tinker et al. mass function model [18] for a given set of
�CDM parameters, cosmological dV=dz function, and the
survey selection probability as a function of mass and
redshift. The product of these components is convolved
with the intrinsic and measurement scatters in the YX �M
relation. The computation of all these terms is discussed in
detail in [15], and the �CDM parameter constraints de-
rived from this cluster data set are presented in [14]. We
now turn to the computation of the cluster likelihood in the
fðRÞ models.

B. fðRÞ scaling
A full likelihood analysis of the fðRÞ cluster constraints

would entail a recalculation of the x-ray cluster likelihood
grid [14]. Since the modification to the shape of the cluster
mass function in fðRÞ is not dramatic across the dynamic
range of masses probed by the cluster mass function data
(e.g., Figs. 16 and 17 in [15]), we opt for a simpler
approach: for each point in parameter space �m, As, fR0,
we calculate the fðRÞ mass function enhancement at a
pivot mass, Meff ¼ 3:677� 10�14M	=h. Here we take M
to be the true or lensing mass, which is the most conserva-

1We ignore a contribution from cosmic variance; the validity
of this assumption is justified in [15].
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tive assumption. Equating the dynamical mass Mdyn �
4M=3 to the YX based mass can only increase the abun-
dance enhancement in the fðRÞ models. We correspond-
ingly also ignore the additional tension in fðRÞ implied by
the observed agreement between the lensing and YX

masses.
Then, for this set of parameters, the enhancement is

converted to an effective, not actual, linear power spectrum
normalization, �eff

8 , assuming a �CDM model with the

same �m and the mass function prescription of [18]. This
approximation assumes that, in the mass range probed by
the x-ray clusters, the mass dependence of the mass func-
tion enhancement due to fðRÞ has the same shape as that
due to an increased power spectrum normalization. This is
only approximately true (see Fig. 2), since the growth is
scale dependent in fðRÞ.

In order to benchmark the accuracy of this simplified
approach, we recalculated the cluster likelihood for fixed
values of�m, h and a range of As using the full fðRÞ mass
function, for jfR0j ¼ 10�4. We then compared this like-
lihood with the�CDM cluster likelihood calculated for the
rescaled normalization, �eff

8 . The resulting likelihoods are

shown as a function of the primordial normalization in
Fig. 3. First, clusters clearly prefer a lower primordial

normalization in the fðRÞ model, due to the enhanced
growth. The approximate likelihood calculated using the
rescaled normalization agrees quite well with the full like-
lihood. Note that this approach is in any case conservative,
as the constraints are weakened (though not significantly)
by neglecting the additional information.
While all fðRÞ mass function enhancements were calcu-

lated at z ¼ 0, we verified that the evolution of enhance-
ments in the redshift range probed by the cluster sample,
z ¼ 0� 0:15, is negligible.
Figure 3 shows that if �m � 0:26 and the primordial

normalization of the simulations were verified to very high
precision by external constraints, and the mass calibration
of the cluster sample carried no systematic error, the cluster
abundance would be able to rule out the fðRÞ model with
jfR0j ¼ 10�4 at around 95% confidence. We next address
to what extent these expectations apply to the joint cosmo-
logical and cluster data.

IV. COMBINED CONSTRAINTS

The excess cluster abundance predicted in fðRÞ models
can be converted into limits on the field amplitude fR0 once
data external to the clusters have fixed the background
expansion history and primordial normalization of density
fluctuations. In Sec. IVAwe describe the external data that

FIG. 2 (color online). Mass function enhancement for jfR0j ¼
10�4 from the spherical collapse model (black, solid line) as in
Fig. 1, and the corresponding enhancement when increasing the
linear power spectrum normalization in�CDM. The vertical line
indicates the pivot mass Meff used to calculate the likelihood.
The blue long-dashed line shows the enhancement for a rescaled
normalization (�eff

8 ¼ �8 � 1:066) that matches the fðRÞ en-

hancement at Meff .

FIG. 3 (color online). Cluster likelihood as a function of
primordial normalization (quantified by the linear power spec-
trum normalization ��CDM

8 a �CDM model would give), for

fixed values of �m ¼ 0:258, h ¼ 0:716, and jfR0j ¼ 10�4 in
case of the fðRÞ prediction. The red short-dashed line shows the
likelihood calculated using the full fðRÞ mass function enhance-
ment, while the blue long-dashed line shows the �CDM like-
lihood obtained with the rescaled normalization, �eff

8 .
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we use for these purposes and present combined results in
Sec. IVB.

A. External data sets

CMB.—Following Ref. [14], we employ a simplified
approach to incorporating CMB constraints from
WMAP5 into the cluster analysis. We take three CMB
parameters—angular scale of the first acoustic peak, ‘A;
the so-called shift parameter, R; and the recombination
redshift, z
. The likelihood for the geometric side of the
WMAP5 data is computed using the covariance matrix for
‘A, R, and z
 provided in [19]. In the �CDM expansion
history these quantities depend on �m, h, and �bh

2.
Next we add the information contained on the initial

amplitude of fluctuations. The WMAP team provides the
amplitude of the curvature perturbations at the k ¼
0:02 Mpc�1 scale,

Â s ¼ ð2:21� 0:09Þ � 10�9: (13)

To implement this constraint in terms of ��CDM
8 and the

chosen cosmological parameters we use the fitting formula
[20]:

A1=2
s � ��CDM

8

1:79� 104

�
�bh

2

0:024

�
1=3

�
�mh

2

0:14

��0:563

�ð7:808hÞð1�nÞ=2
�

h

0:72

��0:693 0:76

G0

(14)

(we adjusted numerical coefficients to take into account
that the original fit uses the CMB amplitude at k ¼
0:05 Mpc�1 while the WMAP5 results are reported for
k ¼ 0:02 Mpc�1). In this equation, G0 is the growth sup-
pression relative to � / ð1þ zÞ�1 due to � evaluated to-
day. We then include a �2 contribution given by

�2
CMBnorm ¼ ðAs � 109 � 2:21Þ2=0:092: (15)

The �2
CMBnorm component is computed assuming a fixed

n ¼ 0:95; the results are completely insensitive to varia-
tions of n within the WMAP measurement uncertainties
and even to setting n ¼ 1. The sum of the geometric and
growth component of the CMB �2 is marginalized over
�bh

2 and h. The end result is a �2
CMB for the CMB that is a

function of �m and ��CDM
8 .

SN.—We use the distance moduli estimated for the
type Ia supernovae from the HST sample [21], the SNLS
survey [22], and the ESSENCE survey [23], combined with
the nearby supernova sample as compiled in Ref. [24].
Calculation of the SN Ia component of the likelihood
function for the given cosmological model is standard
and can be found in any of the above references. The end
result is a �2

SN that depends on �m only.

H0.—We use the recent determination of H0 [25], H0 ¼
74:2� 4:8 km=s=Mpc, in conjunction with the CMB con-
straint of�mh

2 ¼ 0:133� 0:006 [26] as a measurement of
�m. Marginalizing over the uncertainty in�mh

2 results in

the following Gaussian likelihood:

�2
H0

¼
�
�m � 0:242

0:034

�
2
: (16)

BAO.—In a similar way, we use the distance scale given
by the baryon acoustic oscillation (BAO) measurements of
[27]. We use their Eq. (16), which after marginalizing over
�mh

2 yields

�2
BAO ¼

�
�m � 0:285

0:019

�
2
: (17)

The BAO constraint is in fact the most precise one and
hence dominates our �m likelihood.
Finally, we combine all the contributions of external

data sets

�2
ext ¼ �2

CMB þ �2
H0

þ �2
SN þ �2

BAO; (18)

and add �2
ext to the cluster likelihood contribution of

Eq. (12), �2
cl � �2 lnL.

B. Results

In Fig. 4 (left panel) we show the results of combining
the cluster abundance and CMB constraints. The assump-
tion of spatial flatness in combination with the CMB data
alone constrains�m and limits the extent of the fR0 ��m

degeneracy. Note that the bounds on fR0 tighten as �m

increases. With only these two data sets the statistical
upper limit after marginalizing over �m is jfR0j=10�4 <
8 at 95% statistical confidence level (C.L.).
Data on SN distances,H0, and BAO distances tighten the

bounds on �m reducing the degeneracy with jfR0j.
Figure 4 (right panel) shows that the BAO data, in particu-
lar, make a strong impact on constraints since they favor
high �m. In Fig. 5 we show the ��2 statistic after margin-
alization of �m. With all of the data, jfR0j=10�4 < 1:3 at
95% statistical C.L. Table I summarizes the upper limits on
fR0 for the different data sets and for different confidence
levels.
The main caveat to these statistical constraints is the

possibility of systematic shifts in the mass calibration of
the cluster sample. In Fig. 6 we show the impact of �9%
shifts in the cluster mass scale on the clusterþ CMB
constraints. Note that this effect mainly shifts the contours
by ��m ��0:015. If we assume that cluster masses are
underestimated (‘‘�9% mass shift,’’ i.e.MX;obs ¼ 0:91M),

the abundance at a fixed mass is in fact higher, and hence
allows higher fR0 values. Conversely, in the case that
cluster masses are overestimated (‘‘+9% mass shift,’’ i.e.
MX;obs ¼ 1:09M), the true abundance at a fixed mass is

smaller, hence tightening fR0 constraints.
We show the impact of a�9% mass calibration error on

the final joint results in Fig. 7, and in Table I. The net result
is that the 95% statistical C.L. carries systematic errors
of þ1:7=� 0:6� 10�4, which we shall write as
jfR0j=10�4 < 1:3þ1:7

�0:6.
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Note that given Mdyn � 4M=3 in fðRÞ if there is no

screening due to the chameleon mechanism, the x-ray
measurements possibly overestimate cluster masses by up
to 33%. Hence, we expect that our use of lensing masses in
calibrating the enhancement makes our constraint conser-
vative even given the possibility of a 9% underestimate in
the x-ray mass measurement.

Our model of the mass function enhancements
(Sec. II C) also represents a lower bound which always
underpredicts the enhancement measured in N-body simu-
lations for 10�6 < jfR0j< 10�3 [7]. We have also deter-
mined upper limits on jfR0j using the less conservative
limiting case presented in [7], which corresponds to using
alternate collapse parameters that correspond to the GR
values of �c and �v. This case is shown as the upper
boundary of the shaded band in Fig. 2. While the prediction
is still below the simulations, and a better fit, for jfR0j *
10�4, it overpredicts the enhancements for smaller field
values [7]. The last line in Table I shows the resulting
limits, which are tighter by a factor of 3–4. We cannot
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FIG. 4 (color online). Left panel: Likelihood contours from clustersþ CMB in the fR0 ��m plane, marginalized over the
primordial normalization. Shown are 68.3%, 95.4%, and 99.7% likelihood contours. Right panel: Likelihood contours in the fR0 �
�m plane marginalized over the primordial normalization, for clustersþ CMB only and when including other geometric measure-
ments.

FIG. 5 (color online). Likelihood relative to fR0 ¼ 0 (�CDM)
as a function of fR0 for CMBþ clusters and including other
geometric measures. We have marginalized over �m and the
primordial normalization. The horizontal lines show the 2�
and 3� confidence levels. Using all measures combined,
jfR0j=10�4 < 1:3 at 95% confidence level.
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FIG. 6 (color online). Likelihood contours from clustersþ
CMB in the fR0 ��m plane, marginalized over the primordial
normalization as shown in Fig. 4. The solid contours show the
results for the standard cluster mass scale, while the black solid
(red dashed) lines show the likelihood in case cluster masses are
overestimated (underestimated) by 9%.
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guarantee that this model does not overpredict the en-
hancement in some region of the parameter space involved,
but the corresponding tightening of the constraints again
indicates that our quoted limit should be viewed as
conservative.

V. DISCUSSION

We have provided the first, simulation calibrated, cluster
abundance constraints on a modified gravity model, spe-
cifically fðRÞ gravity. Enhanced forces below the Compton
wavelength of the scalar field lead to corresponding en-
hancements in the cluster abundance, making the latter a
sensitive probe of gravity on cosmological scales.

Combined with constraints on the primordial amplitude
of fluctuations from the CMB, and geometric constraints

from CMB, supernovae, H0, and BAO, the cluster abun-
dance provides the most stringent constraint on these en-
hancements to date. In terms of the field amplitude today,
the constraint is jfR0j=10�4 < 1:3þ1:7

�0:6, where the range

reflects a �9% mass calibration error, an improvement
over previous constraints by 4 orders of magnitude. This
corresponds to an upper limit on the range of the gravita-
tional force modifications of �C < 38þ19

�10 Mpc in this fðRÞ
model.
Our constraint should be viewed as conservative even

given the 9% mass calibration error. We have ignored an
overestimate of dynamically based x-ray masses over true
or lensing masses, which could be up to a 33% shift that
would further enhance the abundance and strengthen the
constraint. In addition, we have not considered the possi-
bility of constraining fðRÞ force modifications from the
comparison of cluster lensing and dynamical masses.
Furthermore, our model of the mass function enhance-

ments represents a conservative lower bound which always
underpredicts the enhancement measured in N-body simu-
lations. We found that the constraints tighten significantly
if we use a less conservative model but a robust implemen-
tation would require more accurate mass function calibra-
tion across the parameter space.
On the observational side, current constraints are limited

mainly by systematics in the mass calibration and second-
arily by the small number of local clusters. Relaxing the
assumption of a flat universe is not expected to degrade the
upper limits appreciably. This is because our constraints
only depend strongly on the allowed range in �m and
marginalizing over curvature changes this range negligibly
once BAO are combined with SN and/or the CMB [27].
In the future, the abundance of massive clusters could

ultimately provide another order of magnitude improve-
ment in the field amplitude to jfR0j � 10�5, rivaling solar
system tests of gravity but in a very different, low curvature
regime [5]. Below field values of �10�5, the chameleon
mechanism suppresses the enhancement at the high mass
end [7]. In this regime, further improvements are poten-
tially available if the abundance of galaxy groups can
provide constraints on the halo abundance at intermediate
masses.
While we have considered a specific functional form of

fðRÞ here [5], different functional forms have been pro-
posed in the literature, see e.g. [28–30]. These models
differ primarily in the evolution with redshift of the
Compton wavelength of the fR field. Hence, we expect
our results to be generic once the field amplitude and range
are rescaled to some effective redshift which matches the
impact on the linear growth today on a scale relevant for
clusters. For example in models where the curvature de-
pendence is steeper, the field amplitude today is allowed to
be larger since its current value has little impact on the
growth of structure. In these models solar system tests
become even more powerful relative to cosmological tests.

FIG. 7 (color online). Likelihood as a function of fR0 as in
Fig. 5 for CMBþ clusters and all geometric measures. The
shaded band shows the weakening/strengthening of the con-
straints when varying the absolute mass scale by �9%, corre-
sponding to the estimated systematic uncertainty. In the
weakened case (masses underestimated), the constraint degrades
to jfR0j=10�4 < 3:0 at 95% confidence level.

TABLE I. Upper limits on fR0 in units of 10�4.

Confidence level (C.L.) 68.3% 95.4% 99.7%

Clustersþ CMB 1.0 7.9 >31
Clustersþ CMBþ SNþH0 1.0 5.4 >31
ClustersþCMBþSNþH0þBAO 0:3 1:3 6:3

with þ9% mass shift 0.2 0.7 3.1

with �9% mass shift 0.7 3.0 14.7

with alternate collapse parameters 0.09 0.4 1.8
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More generally, the abundance of galaxy clusters prom-
ises to be a good probe of other modified gravity scenarios
as well, such as Dvali-Gabadadze-Porrati and other brane-
world models once their mass functions are calibrated by
cosmological simulations [31,32].
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