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The evolution of scalar linear perturbations is studied in gauge-invariant approach for 2-component

models with nonrelativistic matter and minimally coupled scalar fields, the potentials of which were

constructed for either constant dark energy equation of state parameter w or its adiabatic sound speed c2a
equal to zero. The numerical solutions show that such fields are almost smoothed out on subhorizon

scales. However, they cause the scale dependent suppression of the nonrelativistic matter density

perturbations and the decay of gravitational potential, which can be used for choice of the dark energy

model. We discuss two types of the Lagrangian: classical and tachyonic ones. As our results show, the

fields with w ¼ const are almost indistinguishable, while for fields with c2a ¼ 0 the difference of dark

energy effective sound speeds c2s , which is caused by the shape of Lagrangian, affects the evolution of

perturbations significantly. We present also the transfer functions for both components.
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I. INTRODUCTION

Modern cosmological observations surely confirm that
the expansion of the Universe is accelerated. Such phe-
nomenon can be described using the models based on the
Einstein equations with� term [1,2]. Unfortunately, in this
case several unsolved problems exist, e.g., the fine-tuning
and cosmic coincidence ones that are caused by the con-
stant energy density corresponding to this fundamental
quantity [3]. Alternatively, one can assume the existence
of new mysterious essence—dark energy. This repulsive
component is regarded frequently as a scalar field, the
Lagrangian of which can have either canonical kinetic
term (classical field) [4,5] or noncanonical one (e.g.,
tachyon [6], k-essence [7]).

It is often convenient to calculate the characteristics of
the large-scale structure and CMB anisotropy in the phe-
nomenological fluid framework, in which the dark energy
model is defined by its density, equation of state (EoS)
parameter and effective sound speed. The dynamical dark
energy has been widely studied using both scalar field and
fluid approaches on the background level as well as at the
linear [8,9] and nonlinear [10] stages of perturbations
growth for either minimal or nonminimal [11] coupling
to other components. Moreover, the models unifying both
dark matter and dark energy have been proposed [12]. For
quintessential dark energy the EoS parameterw is assumed
to be larger than �1; the models with w<�1 are called
phantom ones [13]. The phantom divide crossing is not
allowed for single fields with the simplest Lagrangians,
therefore in such a case the specific single-field models as
well as multifield ones should be discussed (e.g., [14]).

The purpose of this paper is to perform the comparative
analysis of four possible scalar field models of dark energy.

This allows us to find the most sensitive to dark energy type
features and thus to propose the simple tests for identifica-
tion of the source accelerating the expansion of the
Universe. As the theoretically motivated scalar field poten-
tials [15] frequently lead to the cosmological consequences
contradicting the observations, we perform the reverse
engineering, i.e., construct the potentials leading to the
given dark energy properties (energy density, EoS parame-
ter). We study the scalar fields with two shapes of
Lagrangian: classical (Klein-Gordon) and tachyonic
(Dirac-Born-Infeld) ones. For our research we have chosen
the dark energy EoS parameter to be either constant or
evolving in such a way that the dark energy adiabatic sound
speed c2a equals 0. The reason for such a choice is that in
both cases the analytic solutions of the background field
equations exist. The latter parametrization is especially
interesting since for homogeneous fields it produces natu-
rally the behavior mimicking the dust matter at early time
and cosmological constant at very late epoch, so it can be
regarded as possible candidate for so-called unified dark
matter. All fields were studied assuming the same set of the
best fitting cosmological parameters obtained by WMAP
and other projects. Since the background dynamics in
models with both Lagrangians is the same, the main atten-
tion should be paid to the linear stage of evolution of
perturbations. On this level the degeneracy due to the
Lagrangian type also exists; however, the wide class of
models becomes principally distinguishable. In this work
we study the model of the Universe filled only with non-
relativistic matter and minimally coupled scalar field act-
ing as dark energy. We focus on the influence of perturbed
dark energy on matter perturbations and emphasize the
effect of the inclusion of dust matter on evolution of dark
energy inhomogeneities. The latter effect is commonly
ignored due to the undetectability of dark energy perturba-
tions. Nevertheless, it should be also investigated as it
might be important for better understanding of the gravi-
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tational interaction of both dark components and thus for
discovering of the nature of dark energy. We discuss also
the gravitational instability in the single-component mod-
els with c2a ¼ 0 in context of the unified dark matter.

The paper is organized as follows: In Sec. II, we discuss
briefly the background dynamics of our models. In Sec. III,
the evolution equations for the gauge-invariant perturba-
tion variables are written and adiabatic initial conditions
are set. In Sec. IV, we discuss the numerical solutions of the
perturbations equations for the single fields with c2a ¼ 0, 2-
component model of the Universe and build the transfer
functions for both components. We propose also the char-
acteristics that can be used for determination of the dark
energy type. The conclusions can be found in Sec. V. In the
Appendix we present the evolution equations for the field
variables.

II. COSMOLOGICAL BACKGROUND

We consider the homogeneous and isotropic flat
Universe with metric of 4-space

ds2 ¼ gijdx
idxj ¼ a2ð�Þðd�2 � ���dx

�dx�Þ;
where the factor að�Þ is the scale factor, normalized to 1 at
the current epoch �0, � is conformal time (cdt ¼
að�Þd�). Here and below we put c ¼ 1, so the time
variable t � x0 has the dimension of a length. The Latin
indices i; j; . . . run from 0 to 3 and the Greek ones over the
spatial part of the metric: �;�; . . . ¼ 1, 2, 3.

If the Universe is filled only with nonrelativistic matter
(cold dark matter and baryons) and minimally coupled
dark energy, the dynamics of its expansion is completely
described by the Einstein equations

Rij � 1
2gijR ¼ 8�GðTðmÞ

ij þ TðdeÞ
ij Þ; (1)

where Rij is the Ricci tensor and TðmÞ
ij , TðdeÞ

ij —energy-

momentum tensors of matter ðmÞ and dark energy ðdeÞ. If
these components interact only gravitationally then each of
them satisfies the differential energy-momentum conser-
vation law separately:

Tiðm;deÞ
j;i ¼ 0 (2)

(here and below ‘‘;’’ denotes the covariant derivative with
respect to the coordinate with given index in the space with
metric gij). For the perfect fluid with density �ðm;deÞ and
pressure pðm;deÞ, related by the equation of state pðm;deÞ ¼
wðm;deÞ�ðm;deÞ, it gives

_� ðm;deÞ ¼ �3
_a

a
�ðm;deÞð1þ wðm;deÞÞ (3)

(here and below a dot denotes the derivative with respect to
the conformal time: “ _” � d=d�). The matter is considered

to be nonrelativistic, so wm ¼ 0 and �m ¼ �ð0Þ
m a�3 (here

and below ‘‘0’’ denotes the current values).

We assume the dark energy to be a scalar field with
either Klein-Gordon (classical) Lagrangian

LclasðXclas; �Þ ¼ 1
2�;i�

;i �Uð�Þ (4)

or Dirac-Born-Infeld (tachyonic) one

LtachðXtach; �Þ ¼ � ~Uð�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �;i�

;i
q

; (5)

where Uð�Þ and ~Uð�Þ are the field potentials defining the
model, Xclas ¼ �;i�

;i=2 and Xtach ¼ �;i�
;i=2 are kinetic

terms.
We postulate also that the background scalar fields are

homogeneous (�ðx; �Þ ¼ �ð�Þ, �ðx; �Þ ¼ �ð�Þ), so their
energy density and pressure depend only on time:

�clas ¼ 1

2a2
_�2 þUð�Þ; pclas ¼ 1

2a2
_�2 �Uð�Þ;

(6)

�tach ¼
~Uð�Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� _�2=a2
q ; ptach ¼ � ~Uð�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�

_�2

a2

s
: (7)

The evolution equations for field variables �ð�Þ and �ð�Þ
are presented in the Appendix.
We specify the model of each field using two parame-

ters: the EoS parameter wde � pde=�de and the so-called
adiabatic speed of sound c2a � _pde= _�de

1 [5,9,16,17], which
satisfy the relation

_wde ¼ 3aHð1þ wdeÞðwde � c2aÞ; (8)

where H ¼ _a=a2 is the Hubble parameter (expansion rate)
for any moment of conformal time �. Generally, the equa-
tion of state is defined by the Lagrangian as

wde ¼ L

2X @L
@X � L

; (9)

however, different shapes of L can lead to the same wde—
this is the well-known degeneracy on the background level.
The scalar field evolution equations have the analytical
solutions for two cases:

(i) w ¼ const: c2a ¼ w, �deðaÞ ¼ �ð0Þ
de a

�3ð1þwÞ and
(ii) c2a ¼ 0: wðaÞ ¼ w0a

3=ð1þ w0 � w0a
3Þ, �deðaÞ ¼

�ð0Þ
de ½ð1þ w0Þa�3 � w0�.

Here and below we omit index de denoting both—classical
and tachyonic—scalar fields for wde.
Note that the fields with c2a ¼ 0 at a � 1 behave as the

dust matter and at a ! 1 they mimic the cosmological
constant. This fact suggests that they can also be studied as
the possible candidates for the so-called unified compo-
nent, or unified dark matter, describing the early matter-

1The quantity c2a does not play the role of the true sound speed
of dark energy, it is rather a useful function, the form of which is
similar to that of the adiabatic sound speed for barotropic EoS.
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dominated stage and current � or dark energy dominated
one by introducing a single new fluid, e.g., Chaplygin gas
[12].

In this case the expansion rate and fields evolve as
follows:

H ¼ H0a
�ð3=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w0 � w0a

3
q

; (10)

�ðaÞ ��0 ¼ � 1

2
ffiffiffiffiffiffiffiffiffiffi
6�G

p

� ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w0ð1� a3Þp � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ w0

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w0ð1� a3Þp þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ w0

p

� 1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ w0

p
1� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ w0

p
�
; (11)

�ðaÞ � �0 ¼ � 2

3H0
ffiffiffiffiffiffiffiffiffiffi�w0

p
�
arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� w0a

3

1þ w0

s �

� arctan

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
� w0

1þ w0

s ��
: (12)

For the 2-component model the Hubble parameter HðaÞ
behaves as

H ¼ H0a
�ð3=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��de þ�dea

�3w
q

(13)

for w ¼ const and

H ¼ H0a
�ð3=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�dew0 ��dew0a

3
q

(14)

for c2a ¼ 0.
The temporal dependences of scalar fields and their

potentials are the following:

�ðaÞ ��0 ¼ �
Z a

1

da0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�deða0Þð1þ wða0ÞÞp

a0Hða0Þ ; (15)

UðaÞ ¼ �deðaÞ½1� wðaÞ�
2

(16)

for the classical Lagrangian and

�ðaÞ � �0 ¼ �
Z a

1

da0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ wða0Þp

a0Hða0Þ ; (17)

~UðaÞ ¼ �deðaÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�wðaÞ

p
(18)

for the tachyonic one.
In this paper we study the classical and tachyonic scalar

fields with potentials constructed for w ¼ const and c2a ¼
0 using the same set of the best fitting cosmological
parameters from [2] (�de ¼ 0:722, w ¼ w0 ¼ �0:972,
�m ¼ 0:278, h ¼ 0:697). For all models there are two
independent solutions for the field: the growing one (sign
þ) and the decaying one (sign �). Therefore, two sym-

metrical with respect to either���0 or �� �0 potentials
exist in each case [18,19]. However, the physical conse-
quences of both these solutions are the same, so from now
we restrict ourselves only to the growing one.
The analysis of dynamics of the Universe expansion for

fields withw ¼ const and c2a ¼ 0was presented in [18,19].
It does not depend on the scalar field Lagrangian and does
not allow us to distinguish surely such models of scalar
fields. So in order to propose the test for the choice of the
dark energy type that would be more adequate to observa-
tions we should study at least the linear stage of the
evolution of scalar perturbations.

III. EVOLUTION OF SCALAR LINEAR
PERTURBATIONS

For derivation of the evolution equations for scalar linear
perturbations it is convenient to use the conformal-
Newtonian gauge with space-time metric [20,21]

ds2 ¼ a2ð�Þ½ð1þ 2�ðx; �ÞÞd�2

� ð1þ 2�ðx; �ÞÞ���dx
�dx��; (19)

where �ðx; �Þ and �ðx; �Þ are gauge-invariant metric
perturbations called Bardeen’s potentials [22], which in
the case of zero proper anisotropy of medium (as for the
dust matter and scalar fields) have equal absolute values
and opposite signs:�ðx; �Þ ¼ ��ðx; �Þ [23]. In the linear
perturbation theory it is convenient to perform the Fourier
transform of all spatially dependent variables, so the equa-
tions will be written for the corresponding Fourier ampli-
tudes of the metric (�ðk; �Þ), matter density and velocity

perturbations (�ðmÞðk; �Þ, VðmÞðk; �Þ) as well as the scalar

field perturbations (�ðdeÞðk; �Þ, VðdeÞðk; �Þ, ��ðk; �Þ,
��ðk; �Þ) [here k is wave number]. These variables are
gauge invariant [21,23,24]. The energy density and veloc-

ity perturbations of dark energy, �ðdeÞ and VðdeÞ, are con-
nected with the perturbations of field variables ��, �� in
the following way:

�ðclasÞ ¼ ð1þ wÞ
� _��

_�
��þ a2��

_�2

dU

d�

�
; (20)

VðclasÞ ¼ k��
_�

; (21)

�ðtachÞ ¼ � 1þ w

w

� _��
_�
��

�
þ d ~U

~Ud�
��; (22)

VðtachÞ ¼ k��
_�
: (23)

Other nonvanishing gauge-invariant perturbations of
scalar fields are isotropic pressure perturbations
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�ðclasÞ
L ¼ 1þ w

w

� _��
_�
��� a2��

_�2

dU

d�

�
; (24)

�ðtachÞ
L ¼ 1þ w

w

� _��
_�
��

�
þ d ~U

~Ud�
�� (25)

and intrinsic entropy

�ðdeÞ ¼ �ðdeÞ
L � c2a

w
�ðdeÞ: (26)

The density perturbation of any component in the
conformal-Newtonian gauge Ds � �, which is gauge-
invariant variable, is related to the other gauge-invariant
variables of density perturbations D and Dg as

D ¼ Dg þ 3ð1þ wÞ
�
�þ _a

a

V

k

�
¼ Ds þ 3ð1þ wÞ _a

a

V

k
;

(27)

where Ds, D, Dg, and V correspond to either the m or de

component. Here, Dg is the density perturbation in the

frame of vanishing curvature fluctuations and D corre-
sponds to the rest frame, i.e., the frame in which the 4-
velocity is orthogonal to constant time hypersurface.

For the scalar fields the intrinsic entropy perturbation is
defined as [17,25,26]

w�ðdeÞ ¼ ðc2s � c2aÞDðdeÞ; (28)

where c2s is the dark energy effective (rest frame) sound
speed

c2s ¼ �pðrfÞ

��ðrfÞ ¼
1

2X @2L
@X2 þ @L

@X

@L

@X
: (29)

For Lagrangians with canonical kinetic term it is always 1,
for tachyonic ones c2s ¼ �w.

For further study it is convenient to use the evolution
equations for gauge-invariant density and velocity pertur-
bation variables. The corresponding equations for pertur-
bations of field variables can be found in the Appendix.

It should be noted that the principal degeneracy due to
the Lagrangian shape exists also in the linear theory, i.e.,
different Lagrangians can lead to the same value of c2s [16].
However, the analysis of this stage of evolution of pertur-
bations is still important since it removes partially the
degeneracy existing on the background level.

A. Evolution equations

The linearized Einstein equations for gauge-invariant
perturbations of metric, density, and velocity are

_�þ aH�� 4�Ga2

k
½�mV

ðmÞ þ �deð1þ wÞVðdeÞ� ¼ 0;

(30)

_V ðmÞ þ aHVðmÞ � k� ¼ 0; (31)

_D ðmÞ
g þ kVðmÞ ¼ 0; (32)

_VðdeÞ þ aHð1� 3c2sÞVðdeÞ � kð1þ 3c2sÞ�

� c2sk

1þ w
DðdeÞ

g ¼ 0; (33)

_DðdeÞ
g þ 3ðc2s � wÞaHDðdeÞ

g

þ ð1þ wÞ
�
kþ 9

k
a2H2ðc2s � c2aÞ

�
VðdeÞ

þ 9aHð1þ wÞðc2s � c2aÞ� ¼ 0: (34)

Here and below � corresponds to the background density
of each component.
So, as we see, for each parametrization of EoS the shape

of Lagrangian affects the evolution of perturbations only
through the effective sound speed of dark energy. In the
w ¼ const case c2sðclasÞ ¼ 1, c2sðtachÞ ¼ �w, which in prin-

ciple allows us to distinguish both Lagrangians; however,
the difference is not large (for w close to�1 as it has been
estimated on the basis of the observable data [2]) and
suggests the similarity of solutions for both fields. In the
c2a ¼ 0 case c2sðclasÞ ¼ 1 ¼ const but c2sðtachÞ ¼ �wðaÞ �
const, so the behavior of perturbations in classical field
and tachyon with the same cosmological parameters
should be really different.
Therefore, in each case we have the system of five first-

order ordinary differential equations for five unknown

functions �ðk; aÞ, DðmÞ
g ðk; aÞ, VðmÞðk; aÞ, DðdeÞ

g ðk; aÞ, and
VðdeÞðk; aÞ. The following constraint equation is also sat-
isfied:

� k2� ¼ 4�Ga2ð�mD
ðmÞ þ �deD

ðdeÞÞ: (35)

B. Initial conditions

It is known that the observable large-scale structure has
grown from the small adiabatic perturbations generated in
the early Universe. Since the density of the w ¼ const
fields is negligible at the early epoch (a � 1) and c2a ¼ 0
fields mimic dust matter, all our models are initially matter
dominated. In such case the growing mode of adiabatic
perturbations corresponds to �init ¼ const. So, here we
specify the adiabatic initial conditions for the growing
mode of perturbations [23,24,27]:

VðdeÞ
init ¼

2

3

k

H0

�initffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��de

p ffiffiffiffiffiffiffiffi
ainit

p
; (36)

DðdeÞ
g init ¼ �5ð1þ wÞ�init; (37)
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VðmÞ
init ¼

2

3

k

H0

�initffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1��de

p ffiffiffiffiffiffiffiffi
ainit

p
; (38)

DðmÞ
g init ¼ �5�init (39)

for w ¼ const and

VðdeÞ
init ¼

2

3

k

H0

�initffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�dew0

p ffiffiffiffiffiffiffiffi
ainit

p
; (40)

DðdeÞ
g init ¼ �5�init; (41)

VðmÞ
init ¼

2

3

k

H0

�initffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ�dew0

p ffiffiffiffiffiffiffiffi
ainit

p
; (42)

DðmÞ
g init ¼ �5�init (43)

for c2a ¼ 0.
In all cases we have integrated numerically the systems

of first-order equations for these initial conditions using the
publicly available code DVERK.2 We assumed �init ¼ �1,
ainit ¼ 10�10. Such early initial time is chosen only in
order to separate properly the growing adiabatic mode
while our purpose is to analyze its behavior after recom-
bination epoch, when the Universe can be effectively de-
scribed by the 2-component (dust matter plus dark energy)
model. The evolution of perturbations is scale dependent,
so we performed calculations for the range of k from
0.0001 to 0:1 Mpc�1. The reason for such choice is that
at present epoch larger scales are superhorizon while
smaller ones are affected by the nonlinear effects.

IV. RESULTS AND DISCUSSION

A. Single-component system: Perturbed scalar field

First of all let us discuss the Universe filled only with a
scalar field. Such models with c2a ¼ 0, as the background
dynamics suggests, could probably be considered as simple
candidates for the unified dark matter. Therefore, we are
going to analyze their clustering properties. For such pur-
pose it is useful to obtain from the first-order Eqs. (33) and
(34) using (35) a second-order one for the density pertur-
bation

D00 þ
�
3

2a
� 15

2a

w0a
3

1þ w0 � w0a
3

�
D0

þ
�

c2sk
2

H2
0að1þ w0 � w0a

3Þ þ
9

2a2

�
w0a

3

1þ w0 � w0a
3

�
2

� 12

a2
w0a

3

1þ w0 � w0a
3
� 3

2a2

�
D ¼ 0: (44)

Here and below a prime denotes the derivative with respect

to the scale factor. The above equation could be written in
the form

u00 þ!2u ¼ 0; (45)

where u stands for Da3=4ð1þ w0 � w0a
3Þ5=4. The coeffi-

cient !2 is generally a function of time and scale:

!2 ¼ c2sk
2

H2
0að1þ w0 � w0a

3Þ �
21

16a2
þ 9

8a2

� w0a
3

1þ w0 � w0a
3
þ 27

16a2

�
w0a

3

1þ w0 � w0a
3

�
2
:

However, in the neighborhood of any given point a it can
be regarded as constant with respect to a, thus it depends
only on the wave number k. The condition !2ðkÞ ¼ 0
specifies for each a the Jeans wave number, above which
the perturbations at this a are stable (oscillatory), while
below they are gravitationally unstable, i.e., can grow or
decay:

k2J ¼
H2

0

c2s

�
21

16a
ð1þ w0 � w0a

3Þ � 9w0a
2

8

� 27w0a
2

16

w0a
3

1þ w0 � w0a
3

�
: (46)

The Jeans wave number for the values of a from 0.001 to 1
is shown in Fig. 1. For each field the values of k below the
corresponding curve define the perturbations, which can
cluster for the scale factors close to a. As we see, the
perturbations with k & 0:0001 Mpc�1 are unstable all the
time up to the current epoch; however, they are still super-
horizon, so irrelevant for the choice of model best fitting to
the data. The perturbations with subhorizon scales could be
unstable at early stages, but should oscillate at late times.
In Fig. 2 the evolution of density, velocity, and metric

perturbations is shown. We see that generally the behavior
of subhorizon modes is oscillatory. For classical
Lagrangian the gravitational potential decays very quickly,
so that at a ¼ 0:001 for k ¼ 0:01 Mpc�1 (horizon entry at
a � 0:0004) it is already almost 0, while for k ¼
0:001 Mpc�1 (horizon entry at a � 0:04) it is approxi-
mately �0:8 and starts to oscillate just before the horizon

FIG. 1. The Jeans wave number for the Universe filled only
with either classical (dotted line) or tachyonic (solid) field with
c2a ¼ 0.

2It was created by T. E. Hull, W.H. Enright, K. R. Jackson in
1976 and is available at [28].

PERTURBED DARK ENERGY: CLASSICAL SCALAR FIELD . . . PHYSICAL REVIEW D 80, 083007 (2009)

083007-5



entry. For tachyonic Lagrangian the potential � at early
stages is constant, then it begins to decay. Note that in this
case for larger k it changes the character of the temporal
dependence earlier (for 0:001 Mpc�1 at a � 0:09, for
0:01 Mpc�1 at a � 0:03), but the amplitude of the first
positive peak is almost the same ( � 0:2). The gravitational
potential for the superhorizon mode with k ¼
0:0001 Mpc�1 decays monotonously, as expected.

The rest frame pressure perturbations �pðrfÞ ¼ c2s��
ðrfÞ

for c2s > 0 have the same sign as ��ðrfÞ, therefore the
nature of the scalar field oscillations is similar to that of
the acoustic ones in baryon-photon plasma.

The presented in Fig. 2 evolution of density perturba-
tions (related to � as D ¼ �k2�=ð4�Ga2�Þ) confirms
such a scenario. We see that for the same scale the magni-
tude of perturbation for the tachyon field is higher than for
the classical one and that at late times all subhorizon modes
are smoothed out in an oscillatory manner. The amplitudes
of velocity perturbations oscillations at first grow slightly
but then start to decay.

The difference between the studied models is caused by
the behavior of the effective sound speed. The perturba-
tions of the classical field always propagate with the speed
of light (c2s ¼ 1), so their evolution is never close to that of
dust matter. In contrary, the perturbations of tachyon
propagate with the speed variable in time: c2s ¼
�w0a

3=ð1þ w0 � w0a
3Þ. At early stages it is negligible,

so such field mimics the dust matter not only at the back-
ground but at the linear stage of evolution of the perturba-
tions too. Later, the effective sound speed grows and tends
to the speed of light at infinity (as well as the equation of
state parameter tends to�1). The behavior of the field (and
metric) perturbations begins then to differ from the dust
matter one and soon becomes oscillatory with decreasing
amplitude.
Such features of the studied fields mean that they could

not play the role of unified dark matter.
The model with a single w ¼ const field corresponds to

the quasi-de Sitter Universe. In this case the perturbation
equation takes the form:

D00 þ
�
3

2a
� 9w

2a

�
D0

þ
�
c2sk

2

H2
0

a3w�1 þ 1

a2

�
9w2

2
� 3w� 3

2

��
D ¼ 0 (47)

and has the analytical solution

D ¼ að9w�1Þ=4Z�ð1=2Þð5þ3wÞ=ð1þ3wÞ
�

2

1þ 3w

csk

H0

að1þ3wÞ=2
�
;

(48)

where Z	ðxÞ ¼ C1J	ðxÞ þ C2Y	ðxÞ and J	ðxÞ, Y	ðxÞ are
Bessel functions of the first and second kind, C1, C2—
arbitrary constants. For a � 1 the density perturbations

FIG. 2. The evolution of the density (top) and velocity perturbations (medium) in a single-component model with c2a ¼ 0 is
presented for k ¼ 0:0001 (dotted line), 0.001 (dashed), 0:01 Mpc�1 (solid). Bottom: the corresponding gravitational potentials.
Classical field—left column, tachyon—right one.
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behave as ~C1a
�ð3=2Þð1�wÞ þ ~C2a

ð1þ3wÞ=4—both modes de-
cay for w<�1=3. In the distant future (a ! 1) the

amplitude of D will decay as að3w�1Þ=2. Interestingly, the
current oscillatory behavior of perturbations is clear also
without analytical solution (48). Really, if we put Eq. (47)
in the form of (45), the quantity

!2 ¼ c2sk
2

H2
0

a3w�1 � 9w2

16a2
� 15w

8a2
� 21

16a2

is larger than 0 up to present moment for all scales of
interest.

B. 2-component system: Dust matter and dark energy

Now we return to the minimally coupled 2-component
model. The general conclusion is that in the studied case
matter clusters, while dark energy tends to homogeneity.

For the dark energy with w ¼ const the simple conclu-
sion, that the behavior of scalar linear perturbations in the
model with the tachyonic field should be similar to that in
the model with the corresponding classical field, is valid, as
the numerical analysis has shown [29]. In plots presented
in Fig. 3 it is hard to distinguish the curves for the classical
field and tachyon, so in this case we practically cannot
choose the Lagrangian preferred by observations. For k ¼
0:0001 Mpc�1 the behavior of dark energy density pertur-

bations is different: DðdeÞ
g remains almost constant, while

DðdeÞ andDðdeÞ
s grow, but this depends only on gauge choice

for superhorizon modes.
In the c2a ¼ 0 case both fields are almost smoothed out

on subhorizon scales at present and future epochs, while on
superhorizon ones they do not grow significantly. However,
the difference of the effective sound speed behavior has a
sufficient imprint in the evolution of subhorizon inhomo-
geneities, so, as it can be seen in Fig. 4, the perturbations of
the classical field at early stages grow slowly but decay
after the horizon entry, while the perturbations of tachyon
at first grow significantly and then begin to oscillate. The
oscillation amplitudes decrease all the time for the density
perturbations or they increase at early time and decrease at
the current epoch for the velocity ones. It should be noted
that small oscillations along the averaged solutions for

VðdeÞ and DðdeÞ are also present in classical field; however,
their amplitudes are highly subdominant comparing to the
corresponding mean quantities. Interestingly, for perturbed
tachyonic field at k ¼ 0:001 Mpc�1 Dg remains positive.

This suggests that the small-scale perturbations of tachyon
oscillate along the mean curves too, but in this case the
averaged values are much smaller (almost negligible) com-
paring to the amplitudes of oscillations.

The influence of dust matter component on dark energy
perturbations is described by the equation:

€D ðdeÞ þA _DðdeÞ þBDðdeÞ þ S ¼ 0; (49)

where

A ¼�
�
3w

þk2ð3w�3c2a�1Þþ12�Ga2�mð3w�3c2a�2Þ
k2þ12�Ga2�m

�
aH;

(50)

B ¼ c2sk
2 þ 3wa2H2

� k2ð3w� 3c2a � 1Þ þ 12�Ga2�mð3w� 3c2a � 2Þ
k2 þ 12�Ga2�m

� 3wðaHÞ: � 9a2H2ð1þ wÞðw� c2aÞ
� 4�Ga2�deð1þ wÞ þ 12�Ga2�mc

2
s ; (51)

FIG. 3. The evolution of variables DðdeÞ (k ¼ 0:01, 0.001 and

0:0001 Mpc�1 from top to bottom), DðdeÞ
g , DðdeÞ

s , � (correspond-
ing wave numbers from bottom to top) and VðdeÞ (k ¼ 0:001,
0.0001 and 0:01 Mpc�1 from top to bottom at a � 1). Classical
field with w ¼ const—dotted line, tachyonic one—solid. The
curves for both fields are very close and practically indistin-
guishable.
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S ¼ �
�
DðmÞ þ 3aH

�
3w� 3c2a � 2

� k2ð3w� 3c2a � 1Þ þ 12�Ga2�mð3w� 3c2a � 2Þ
k2 þ 12�Ga2�m

�

� VðmÞ

k

�
4�Ga2�mð1þ wÞ: (52)

For �m ¼ 0 it takes the form of (44). It can be easily seen
that for the same values of cosmological parameters the
nonzero density of nonrelativistic matter changes the co-
efficient B and thus the character of evolution of the dark
energy perturbations more drastically for fields with larger
effective sound speed.

In the bottom panel of Fig. 4 the evolution of �� is
shown for models with c2a ¼ 0 for k ¼ 0:0001, 0.001, and

0:01 Mpc�1. It can be easily seen that in this case the
strong model and scale dependences of � exist.
Generally, at present epoch the growth of matter density

perturbations (described by the growth function g) is sup-
pressed and—unlike the�CDM case—such suppression is
scale dependent. The growth function is defined as follows:

g � DðmÞainit=D
ðmÞ
inita: (53)

It is convenient to compute this quantity using the solutions
of (30)–(34) and taking into account (27). In the top panel
of Fig. 5 the evolution of g is shown for the fields withw ¼
const. We see that all curves practically overlap. It means
that the scale dependences are very weak and confirms the
absence of substantial difference between classical and
tachyonic dark energy. The temporal dependences of g
for the fields with c2a ¼ 0 are shown for different scales

FIG. 4. The evolution of density perturbations DðdeÞ, DðdeÞ
g , DðdeÞ

s , velocity ones VðdeÞ and gravitational potential with k ¼ 0:0001
(dotted line), 0.001 (dashed) and 0:01 Mpc�1 (solid) for classical (left) and tachyonic (right) fields with c2a ¼ 0.
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in the bottom panel of Fig. 5. The suppression caused by
the classical field is stronger than the corresponding sup-
pression caused by tachyon. The behavior of the growth
function can be used for choice of the adequate model of
dark energy because it is connected with the dust matter
transfer function and thus with the observable matter den-
sity fluctuations power spectrum.

The faster decay of � and g, caused by the classical
field, is clear. From the equation

€�þ 3
_a

a
_�þ

�
2
€a

a
�

�
_a

a

�
2
�
�

¼ 4�Ga2�de

�
c2sD

ðdeÞ � 3
_a

a
c2að1þ wÞV

ðdeÞ

k

�
(54)

we see that for models with the same EoS parameter and
adiabatic sound speed of dark energy the influence of its
perturbations on the gravitational potential and thus on dust
matter inhomogeneities growth increases with the values of
the dark energy effective sound speed. As for classical field
c2s always equals 1 and for tachyon initially it is close to 0,
while at the current epoch it equals �w0, which is smaller
than 1, the perturbations of the former field affect the
matter and metric perturbations more. The scale depen-
dences of� and g, caused by the dark energy perturbations
and therefore absent in �CDM cosmology, are also ex-
pected to be stronger for classical Lagrangian.
It should be noted that the oscillatory behavior of per-

turbations of the tachyonic field leads to small oscillations
along the averaged solution for�, but their amplitudes are
subdominant comparing to the decaying mean dependence.
The dependences of the gravitational potential and

growth function on scale of perturbations for the present
epoch are shown in Fig. 6. The presented plot supports the
conclusion that the scale dependence in thew ¼ const case
is very weak and almost the same for both types of the
Lagrangian. At small scales � and g are practically scale
independent—here the behavior is close to that in the
‘‘quasi-�CDM’’ model, i.e., model with w ¼ const �
�1 and without dark energy perturbations [29]. For c2a ¼
0 the scale dependence for classical field is significantly
stronger than for tachyonic one (in agreement with the
result deduced from temporal dependences). The oscilla-
tions seen in the scale dependence of� for model with the

FIG. 5. The evolution of g for linear perturbations with k ¼
0:0001, 0.001, 0.01 and 0:1 Mpc�1 (from top to bottom in each
panel) in the models with nonrelativistic matter and dark energy
with w ¼ const (top) or c2a ¼ 0 (bottom). Classical field—dotted
line, tachyon—solid line. Both axes are logarithmic.

FIG. 6. The scale dependences of gravitational potential (top) and growth function (bottom) at the present epoch for dark energy with
w ¼ const (left) and c2a ¼ 0 (right). Classical Lagrangian—dotted line, tachyonic one—solid.
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tachyonic Lagrangian simply reflect the fact that small
oscillations along the mean temporal dependence of gravi-
tational potential come to a ¼ 1 for different k in different
phases, so they lie above or below the averaged curve.

In far future (a ! 1) all perturbations, which in the past
have entered the particle horizon, will exit the event one.
Both fields with c2a ¼ 0 tend to the cosmological term
mimicry; therefore, their perturbations will be entirely
smoothed out. In the w ¼ const case the situation is
more complicated. When the inhomogeneities in dark
energy are neglected, � and g will decay to 0. However,
taking them into account leads to the freeze of gravitational
potential after the event horizon exit, as it follows from the
numerical analysis and asymptotic solutions. The dark

energy perturbation variables DðdeÞ and VðdeÞ decay but

DðdeÞ
g and DðdeÞ

s tend to the constant values. It should be
mentioned that the latter variables decay in the subhorizon
regime, but after the event horizon exit they start to grow in
order to reach the frozen values. Nevertheless, the de-
scribed features are irrelevant for choice of the best fitting
dark energy model because they correspond to the future
behavior of superhorizon and thus nonobservable
inhomogeneities.

C. Transfer functions

The observations of the large-scale structure of the
Universe provide us with the power spectrum of matter
density perturbations Pðk; aÞ, which is related to primor-
dial (post-inflationary) one via the transfer function Tðk; aÞ
as follows:

Pðk; aÞ ¼ Ask
nsT2ðk; aÞ;

where As is the normalization constant, and ns is the scalar
spectral index.

The transfer function can be built for each component of
the Universe, and for dark energy too [26]. In this paper we
are interested in scale dependences of the transfer func-
tions

Tmðk; aÞ ¼ DðmÞðk; aÞ
DðmÞðkmin; aÞ

DðmÞðkmin; aminÞ
DðmÞðk; aminÞ

(55)

and

Tdeðk; aÞ ¼ DðdeÞðk; aÞ
DðdeÞðkmin; aÞ

DðdeÞðkmin; aminÞ
DðdeÞðk; aminÞ

: (56)

Here, amin is a very small-scale factor, for which all scales
of interest are still superhorizon. In Fig. 7 these depen-
dences are presented for the present epoch (a ¼ 1). It can
be seen that in the w ¼ const case the scale dependence of
T2
m is weak and both curves overlap. It is an illustration of

the fact that the influence of perturbations of such fields on
matter ones is almost negligible. For comparison we show
the cold dark matter (CDM) transfer function computed for
w ¼ const using CAMB [30,31]. Such calculation takes into

account not only the gravitational coupling of the dark
energy to pressureless matter but all physical processes
governing the evolution of perturbations. We see that the
influence of dark energy inhomogeneities on CDM ones is
almost negligible comparing to the effect caused by other
components and their interactions.
In the c2a ¼ 0 case the transfer functions decay more

quickly than in the w ¼ const one. This fact suggests that
the influence of such fields on the computed by CAMB

CDM transfer function (corresponding to the real
Universe) could become comparable to the other processes
determining it. It should be noted that in agreement with
previous conclusions the perturbed classical field affects
the matter transfer function more than the tachyonic one.
In the bottom panel the scale dependence of T2

de is shown

for the present epoch. As we can see, comparing with the
dust matter transfer functions the dark energy ones are
reduced by approximately 9 orders for both w ¼ const
fields, 10 orders for the classical field with c2a ¼ 0 and 5
orders for c2a ¼ 0 tachyon at small scales (k ’ 0:1 Mpc�1).
The scale dependence of T2

de is monotonous for the w ¼
const fields with both Lagrangians and the c2a ¼ 0-classical
field (the latter is smaller approximately by an order than
the former ones). For the tachyonic field the scale depen-
dence of transfer function oscillates with decreasing am-
plitude. These oscillations are simply produced by
different phases, which the density perturbations of differ-
ent scales have at a ¼ 1. It is interesting to see that their
period (especially for large k) is almost constant and equals
approximately 0:000 45 Mpc�1.

V. CONCLUSION

The evolution of the scalar linear perturbations is studied
for the 2-component (dust matter and minimally coupled

FIG. 7. The transfer functions for dust matter (top) and dark
energy (bottom) at a ¼ 1. The computed by CAMB cold dark
matter transfer function for fields with w ¼ const is shown for
comparison.
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dark energy) cosmological models. The dark energy com-
ponent is assumed to be either the classical or tachyonic
scalar field with the potentials constructed for EoS parame-
ters satisfying the condition either w ¼ const or c2a ¼ 0.

The analysis of gravitational instability of the single-
field models shows that the behavior of subhorizon pertur-
bations is oscillatory in all studied cases. Thus, the fields
with c2a ¼ 0, although on the background level they mimic
dust matter at early epoch and the cosmological constant in
the distant future, cannot serve as unified dark matter
because they do not cluster on scales smaller than particle
horizon.

In all 2-component models the dark energy is almost
smoothed out on subhorizon scales. The perturbations of
fields with w ¼ const grow or decay without visible oscil-
lations and their evolution is similar for both types of
Lagrangian (Fig. 3). The behavior of the c2a ¼ 0-tachyon
density perturbations remains oscillatory (unlike that of the
corresponding classical field, see Fig. 4). Such difference is
caused by behavior of the effective sound speed of dark
energy. In the w ¼ const case the quantity c2s is large and
almost the same for both types of Lagrangian at all stages
of evolution of perturbations as soon as the observational
data prefer the values of the EoS parameter close to�1. In
the c2a ¼ 0 case the effective sound speed of classical field
is always equal to 1, while c2s of tachyon varies in time as
�w, so it is relatively small before the beginning of the
dark energy dominated epoch. It was found that the in-
homogeneities of scalar fields with larger effective sound
speed are more affected by �m � 0. This effect, though
undetectable, could be interesting from the purely theoreti-
cal point of view as it might be useful for better under-
standing of the dark energy nature. The same applies to the
dark energy transfer functions.

The caused by perturbed dark energy scale dependence
of the nonrelativistic matter growth and transfer functions
as well as of the gravitational potential (Fig. 5–7) is small
and almost the same for both fields with w ¼ const. In the
c2a ¼ 0 case it is large and different for classical field and
tachyon. Such behavior is due to the effective sound speed
of dark energy. The discussed scale dependence provides
us with simple tests for the choice of model that describes

the observational data in the best way. The tests can be
based on measurements of the matter density perturbations
power spectrum and the late integrated Sachs-Wolfe (ISW)
effect.
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APPENDIX: EVOLUTION OF SCALAR FIELD
VARIABLES AND THEIR PERTURBATIONS

Evolution equations for the background scalar fields
�ð�Þ, �ð�Þ and their linear perturbations ��ðk; �Þ,
��ðk; �Þ can be obtained either from the Lagrange-Euler
equations or from the differential energy-momentum con-

servation law Ti
0;i

ðdeÞ ¼ 0.

In the discussed cases they are following:

€�þ2aH _�þa2
dU

d�
¼0;

€��þ2aH _��þ
�
k2þa2

d2U

d�2

�
��þ2a2

dU

d�
��4 _� _�¼0

for fields with Klein-Gordon (classical) Lagrangian and

€��aH _�

1�ð _�=aÞ2þ3aH _�þa2
d ~U
~Ud�

¼ 0;

€��þ
�
2aH�9aH

� _�

a

�
2�2

d ~U
~Ud�

_�

�
_��

þ
�
k2þa2

�
d2 ~U
~Ud�2

�
�
d ~U
~Ud�

�
2
���

1�
� _�

a

�
2
�
��

� _� _��3 _� _�

�
1�

� _�

a

�
2
�
þ2�a2

d ~U
~Ud�

þ6aH� _�

� _�

a

�
2 ¼ 0

for fields with Dirac-Born-Infeld (tachyonic) one.
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