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Using q-theory, we show that the electroweak crossover can generate a remnant vacuum energy density

�� E8
ew=E

4
Planck, with effective electroweak energy scale Eew � 103 GeV and reduced Planck-energy

scale EPlanck � 1018 GeV. The obtained expression for the effective cosmological constant � may be a

crucial input for the suggested solution by Arkani-Hamed et al. of the triple cosmic coincidence puzzle

(why the orders of magnitude of the energy densities of vacuum, matter, and radiation are approximately

the same in the present Universe).
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I. INTRODUCTION

The q-theory description of the quantum vacuum pro-
vides a natural cancellation mechanism for the vacuum
energy density [1–3]. The basic idea is to consider the
macroscopic equations of a conserved microscopic vari-
able q, whose precise nature need not be known. For a
particular realization of q, it was found [2] that, if the
vacuum energy density has initially a large Planck-scale
value, �V � E4

Planck, it relaxes according to the following

power-law modulation:

�VðtÞjnondissipative / !2

t2
sin2!t; (1.1a)

with @ ¼ c ¼ k ¼ 1 in natural units and a frequency ! of
the order of the reduced Planck-energy scale EPlanck �
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
8�GN

p � 2:44� 1018 GeV. Quantum dissipative ef-
fects have not been taken into account in the above result.
Indeed, matter field radiation (matter quanta emission) by
the oscillations of the vacuum can be expected to lead to
faster relaxation [4,5],

�VðtÞjdissipative / �4 expð��tÞ; (1.1b)

with a decay rate ��!� EPlanck.
In the present article, we consider what happens during

the electroweak crossover [6] of a spatially flat Friedmann-
Robertson-Walker (FRW) universe [7] at cosmic time

tew � EPlanck=E
2
ew; (1.2)

where Eew � 103 GeV is the effective electroweak energy
scale. In the epoch before the crossover, the vacuum energy
density has already relaxed to zero, according to (1.1b).
The classical equations of q-theory demonstrate that dur-
ing the epoch when only ultrarelativistic matter (‘‘radia-

tion’’) is present, i.e., when the matter equation-of-state
(EOS) parameter wM � PM=�M is exactly 1=3, the vac-
uum energy density remains strictly zero. But wMðtÞ de-
viates from 1=3 during the electroweak crossover and the
subsequent period when massive particles annihilate. This
implies, as will be shown in the present article, that the
vacuum energy density moves away from zero and ac-
quires, at t� tew, a positive value of order

�V;0ðtÞ � ðwMðtÞ � 1=3Þ2H4ðtÞ; (1.3)

where the suffix 0 will be explained later and HðtÞ is the
Hubble parameter of the spatially flat FRW universe
considered.
After the electroweak crossover, the value wM ¼ 1=3 is

restored and, if no other effects are operative, the vacuum
energy density smoothly returns to a zero value. If, how-
ever, quantum relaxation effects are taken into account, the
vacuum energy density does not return to zero, but ap-
proaches a constant value, which is of the order of the
vacuum energy density (1.3) at t� tew. This remnant
vacuum energy density corresponds to the measured value
of the cosmological constant (see, e.g., Refs. [7,8] and
other references therein):

� � lim
t!1�VðtÞ � �V;0ðtewÞ �H4ðtewÞ � t�4

ew

� ðE2
ew=EPlanckÞ4 � ð10�3 eVÞ4; (1.4)

for the energy scales EPlanck and Eew defined under (1.1a)
and (1.2), respectively. The several steps in (1.4) will be
detailed in the following, with the most important inter-
mediate steps collected in (3.5) and (4.5).
The scenario outlined above differs from that of a cos-

mological phase transition, for which the vacuum energy
density may only decrease (changing to a negative value if
it was originally zero), and resembles the scenario in which
the vacuum energy density is generated by the conformal
anomaly. In fact, it has been suggested in Refs. [9,10] that
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the conformal anomaly of quantum chromodynamics
(QCD) gives rise to the vacuum energy density �VðtÞ /
jHðtÞjE3

QCD, where EQCD � 102 MeV is the QCD energy

scale (see also Ref. [11] for related remarks). The rigorous
microscopic derivation of this nonanalytic term has not yet
been given, as it requires the detailed behavior of QCD in
the infrared. For the moment, the main motivation of this
particular nonanalytic term is that it naturally provides the
correct order of magnitude for the present vacuum energy
density and appears to give a good description of the late
evolution of the Universe [12]. We remark also that part of
the contribution of the conformal anomaly to the vacuum
energy density has been estimated [13] as �VðtÞ / H4ðtÞ,
which has the sameH dependence as (1.3). But the mecha-
nisms of Ref. [13] and the present article are different, as
will be explained later.

The scenario with the emergence of a positive vacuum
energy density (1.4) triggered by the electroweak crossover
confirms the earlier suggestion by Arkani-Hamed et al.
[14] that electroweak physics is at the origin of a ‘‘triple
cosmic coincidence’’ for the matter, radiation, and vacuum
energy densities in the present Universe (see also the
general discussion in Ref. [15]). While the coincidence
among the matter and radiation energy densities appears
to be justified by the electroweak scenario [14], the coin-
cidence of these two ingredients with the remnant vacuum
energy density (effective cosmological constant) � re-
quires a particular relation in terms of the electroweak
energy scale Eew and the ultraviolet energy scale EPlanck,
namely,�� E8

ew=E
4
Planck. In order to explain this particular

relation, the authors of Ref. [14] suggested a phenomeno-
logical model but had to assume (page 4436, right column
of the cited reference) that ‘‘an unknown mechanism can-
celed the vacuum energy density at the global minimum of
the potential.’’ In our scenario, this mechanism is natural.

II. DYNAMICAL EQUATIONS

The present discussion starts from the theory outlined in
Ref. [2]. We introduce a special conserved quantity, the
vacuum ‘‘charge’’ q, to describe the statics and dynamics
of the quantum vacuum. An example of this vacuum
variable is given by the four-form field strength [16–23],

expressed in terms of q as F����ðxÞ ¼ qðxÞ ffiffiffiffiffiffiffiffiffiffiffiffiffi�gðxÞp
�����.

But the dynamic equations for the vacuum variable q and
the metric g�� are universal, that is, they do not depend on

the particular realization of q. For example, in the four-
form realization, the generalized Maxwell equation for the
F field is reduced to the following generic equation for the
charge q:

@�ðqÞ
@q

þ R
@KðqÞ
@q

¼ �; (2.1)

where �ðqÞ is the vacuum energy density expressed in
terms of q (the possible dependence on other fields is

kept implicit), R the Ricci curvature scalar, KðqÞ the gravi-
tational coupling parameter which depends on the vacuum
state, and � an integration constant. The latter quantity �
plays the role of a Lagrange multiplier related to the
conservation of the charge q and corresponds to the chemi-
cal potential in thermodynamics [1,2].
The metric field g�� obeys the generalized Einstein

equation

2KðR�� � g��R=2Þ ¼ �2ðr�r� � g��hÞKðqÞ
þ �VðqÞg�� � T��; (2.2a)

�VðqÞ � �ðqÞ ��q; (2.2b)

where the metric has signature ð�;þ;þ;þÞ and T�� is the

matter energy-momentum tensor with vanishing covariant
divergence r�T

�� ¼ 0 from general coordinate invari-
ance. The particular combination (2.2b), and not �ðqÞ, is
seen to determine the cosmological term in (2.2a), which is
perhaps the most important characteristic of our approach.
In what follows, we choose a value �0 of the integration

constant � in such a way that, in the absence of matter or
other types of perturbations, the solution of the equations
corresponds to the full-equilibrium Minkowski-spacetime
vacuum. The actual value �0 and corresponding charge q0
of the equilibrium vacuum are determined by two equa-
tions:

½d�ðqÞ=dq����¼�0;q¼q0 ¼ 0; (2.3a)

½�ðqÞ ��q��¼�0;q¼q0 ¼ 0; (2.3b)

which follow from (2.1) and (2.2), respectively, for R�� ¼
T�� ¼ 0 and spacetime-independent q0. The equilibrium

conditions (2.3) are supplemented by the following stabil-
ity condition:

ð	0Þ�1 � q2
d2�ðqÞ
dq2

��������q¼q0

> 0; (2.4)

where 	 corresponds to the vacuum compressibility [1].
The ‘‘cosmological constant problem’’ would be com-

pletely solved if we could explain the origin of this par-
ticular value�0 for the integration constant� appearing in
(2.1) and (2.2). Here, our assumption is that the
Minkowski-spacetime vacuum is a self-sustained system,
i.e., an isolated system that can exist without external
pressure, at P ¼ 0. In general, the vacuum pressure P
and the vacuum energy density � are related by the ther-
modynamic Gibbs-Duhem equation [1], P ¼ ��þ�q.
The vanishing pressure P allowed for a self-sustained
system (from the assumed absence of external pressure)
then gives the additional condition (2.3b), which fixes � to
the value�0. From this viewpoint, cosmology corresponds
to the dynamic process of approach to the equilibrium state
with q ¼ q0, which is natural for any system isolated from
the external environment.
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Close to equilibrium, at jq� q0j � jq0j, the dynamics
of the system is determined by the coefficients in the
Taylor expansion of �ðqÞ and KðqÞ near the equilibrium
point q0:

KðqÞ ¼ Kðq0Þ þ K0ðq0Þðq� q0Þ þOððq� q0Þ2Þ;
(2.5a)

�ðqÞ ��0q ¼ �00ðq0Þðq� q0Þ2=2þ �000ðq0Þðq� q0Þ3=6
þOððq� q0Þ4Þ: (2.5b)

All coefficients in these expansions have Planck-scale
values, for example, Kðq0Þ ¼ 1=ð16�GNÞ ¼ ð1=2ÞE2

Planck

in terms of Newton’s constant GN and the energy scale
EPlanck defined under (1.1a).

We now consider the spatially flat FRW universe [7]
described by the Hubble expansion parameter H �
ðda=dtÞ=a for scale factor aðtÞ and use the dimensionless
variables y / ðq� q0Þ and h / H, which have been re-
scaled with the Planck-scale parameters of the theory.
These two variables yð
Þ and hð
Þ are governed by the
following two coupled ordinary differential equations
(ODEs):

€y� _yhþ 2ð1þ yÞ _h¼�3ð1þwMÞ½ _yhþ ð1þ yÞh2 � rV�;
(2.6a)

_hþ 2h2 ¼ r0V; (2.6b)

with the prime standing for differentiation with respect to y
and the overdot for differentiation with respect to dimen-
sionless cosmic time 
 (cosmic time t in the corresponding
Planckian units). In the derivation of the above ODEs, the
function KðqÞ has been assumed [2] to be linear in q for
simplicity [in terms of the coefficients of (2.5a), one has

q0K
0ðq0Þ ¼ Kðq0Þ and KðnÞðq0Þ ¼ 0 for n � 2].

The dimensionless vacuum energy density rV (vacuum
energy density �V in Planckian units) is taken to be given
by

rVðyÞ ¼ 1
2 y

2 þ 2
3 y

3 þ 1
6 y

4; (2.7)

which vanishes in the equilibrium state y ¼ 0, having
chosen � ¼ �0 in (2.1) and (2.2). Later on, only the
quadratic part of rVðyÞwill be relevant. Equations (2.6) and
(2.7) lead to the rapid relaxation (1.1a), if the Universe
starts out with a nonequilibrium value of the charge,
qinitial � q0 or yinitial � 0. These Eqs. (2.6) and (2.7) are,
in fact, identical to Eqs. (5.2) and (5.3) in Ref. [2], to which
the reader is referred for all details.

For the present analysis, it turns out to be useful to define
the following matter EOS parameter:

�M � 4� 3ð1þ wMÞ; (2.8)

where �M ¼ 0 corresponds to having matter with T�
� ¼

0, for example, electromagnetic radiation (photons) or
ultrarelativistic massive particles (e.g., electrons and posi-
trons). Then, (2.6a) and (2.6b) can be written as

€yþ 3 _yhþ 2ð1þ yÞr0V ¼ 4rV þ �M½ _yhþ ð1þ yÞh2 � rV�;
(2.9a)

_hþ 2h2 � r0V ¼ 0: (2.9b)

The crucial observation, now, is that, for �Mð
Þ ¼ 0, there
is a solution of the ODEs (2.9a) and (2.9b), where the
vacuum energy density is exactly zero. This solution cor-
responds to an FRW universe with ultrarelativistic matter
present but dark energy and cold dark matter (CDM)
absent:

yð
Þ ¼ 0; (2.10a)

hð
Þ ¼ 1=ð2
Þ; (2.10b)

which, as said, holds for �Mð
Þ ¼ 0.
Next, consider what happens when the model universe

described by (2.10) enters a phase at t� tkick for
which �MðtÞ � 0. Then, the vacuum variable y becomes
nonzero and a nonzero value of the vacuum energy density
emerges continuously. Specifically, we consider a time
tkick 	 tPlanck, so that the corresponding dimensionless
time is large, 
kick 	 1. At large 
, the variable yð
Þ is
always small and one can make an expansion in terms of
powers of y. To first order in y and h2, one obtains the
following ODEs from (2.9a) and (2.9b):

€yþ 3h _yþ!2y ¼ �Mh
2; (2.11a)

_hþ 2h2 � y ¼ 0; (2.11b)

with an implicit 
 dependence for all three functions y, h,
and �M. Here, ! is the natural frequency of the micro-

scopic oscillations [2], which is given by ! ¼ ffiffiffi
2

p
in

Planckian units.

III. ELECTROWEAK KICK

There are different regimes for the behavior of the
vacuum energy density obtained from (2.11), depending
on the sharpness of the profile of the transition, i.e., the
width �
� of the function �Mð
Þ. For the case of a smooth
transition (that is, smooth on microscopic time scales,
�
� 	 1=!� 1), one may neglect the time derivatives
of y in (2.11a) to obtain

y ¼ �Mh
2=2; (3.1a)

y ¼ _hþ 2h2; (3.1b)

where the specific value !2 ¼ 2 has been reinstated in the
first equation. Eliminating y from the above equations
gives immediately the following solution for hð
Þ:

hð
Þ ¼
�
2
Z 


0
d
0ð1� �Mð
0Þ=4Þ

��1
; (3.2)

which holds for an arbitrary (smooth) function �Mð
Þ and
has boundary condition 1=hð0Þ ¼ 0, appropriate for the
standard hot big bang universe. Taking the square of
(3.2), the solution for yð
Þ follows from (3.1a).
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Now apply this result to the cosmological epoch of the
electroweak crossover [6]. During the crossover, the stan-
dard model particles acquire masses and, as a result, wMðtÞ
deviates from 1=3. In principle, this deviation may be
enhanced by ‘‘new physics’’ at the TeVenergy scale, which
might be responsible for the observed cold-dark-matter
component of the present Universe by providing a TeV-
scale WIMP (weakly interacting massive particle).
According to the electroweak scenario of Ref. [14], this
new physics may have many particles (n ¼ 1; . . . ; N) with
masses Mn � Eew � 1 TeV, which are created before and
during the electroweak epoch. Perhaps we will know from
future particle-collider experiments (for example, at the
Large Hadron Collider of CERN) whether or not there
exists a TeV-scale WIMP responsible for the observed
CDM.

Anyway, massive standard model particles (and possible
additional massive particles of new TeV-scale physics)
annihilate during the electroweak-crossover period and,
afterwards, the EOS parameter returns to its standard
radiation-dominated value wM ¼ 1=3 (or �M ¼ 0), with
the result that the vacuum energy density is no longer
perturbed. In the epoch after the electroweak period
when all perturbations have ceased, the Hubble parameter
(3.2) is given by

hð
Þ � 1

2ð
� 
0Þ ; (3.3a)


0 � 1

4

Z 1

0
d
0�Mð
0Þ; (3.3b)

for 
 	 
0 � 
ew � E2
Planck=E

2
ew � 1030.

From (2.7) and (3.1a), the dimensionless and dimension-
ful vacuum energy densities during the electroweak cross-
over behave as follows:

rVð
Þ ¼ ð1=8Þ�2
Mð
Þh4ð
Þ; (3.4a)

�VðtÞ / �2
MðtÞH4ðtÞ; (3.4b)

where only the quadratic part of (2.7) has been kept as
jyj � 1 and where the precise numerical constant in (3.4b)
depends on the microphysics but can be expected to be of
order unity [2].

Even though result (3.4b) is similar to the vacuum
energy density estimate [13] from the conformal anomaly,
�VðtÞ � hT�

�i �H4ðtÞ, the mechanism of the emerging
vacuum energy density in (3.4) is different. The underlying
theory [2] of result (3.4) has, in fact, a gravitational cou-
pling parameter K that depends on the vacuum variable,
K ¼ KðqÞ, with Newton’s constant recovered in the q ¼
q0 equilibrium state, GN ¼ 1=ð16�Kðq0ÞÞ. Precisely this
variability KðqÞ allows for a time-dependent vacuum en-
ergy density, _�V / _Kð _H þ 2H2Þ, provided the expansion
differs from that of a radiation-dominated FRW universe
with HðtÞ ¼ 1=ð2tÞ and _Hþ 2H2 ¼ 0.

From (3.4b), the magnitude of the vacuum energy den-
sity at the crossover time (1.2) is given by

�V;0ðtewÞ �H4ðtewÞ � t�4
ew � E8

ew=E
4
Planck; (3.5)

where �MðtewÞ has been assumed to be of order unity and
where, for later use, a suffix 0 has been appended to
distinguish the ‘‘classical’’ result. This completes the first
step toward establishing a nonzero cosmological constant
of the present Universe. The second step is to make sure
that the vacuum energy density generated at t� tew �
10�12 s is not lost during the remaining 1010 yr.

IV. SUBSEQUENT EVOLUTION

The typical value of the vacuum energy density (3.5)
emerging from the electroweak crossover is comparable to
the presently observed value [7,8] of the vacuum energy
density.1 As mentioned in Sec. I, this suggests a possible
explanation of the triple cosmic coincidence according to
the electroweak scenario discussed in Ref. [14]. But, for
this explanation to work, we need a mechanism to stabilize
the vacuum energy density after the electroweak crossover.
At the moment, we do not have a complete theory which

describes the irreversible dynamics of the quantum vac-
uum. The classical equations of q-theory [1] describe only
the reversible classical dynamics of the vacuum. One needs
to extend q-theory to the quantum domain, in order to
incorporate the dissipative relaxation of the vacuum energy
density due to the quantum effect of matter field radiation
(matter quanta emission).
Awaiting the definite theory of the quantum vacuum, the

following model equation can be used for a rough estimate:

_� V ¼ ��ðtÞ½�VðtÞ � �V;0ðtÞ�: (4.1)

Here, �V;0ðtÞ is the ‘‘bare’’ vacuum energy density driven

by the kick, which, according to result (3.4b) of the clas-
sical q-theory, is given by

�V;0ðtÞ / �2
MðtÞH4ðtÞ; (4.2)

and �ðtÞ � 0 in (4.1) is the rate at which the ‘‘surplus’’
vacuum energy density is dissipated into particles.
Particle production occurs when the background space-

time is changing on a time scale comparable with the
particle Compton time [24], which implies different parti-
cle production rates for different cosmological epochs. In
the epoch before the electroweak crossover, matter consists
of ultrarelativistic particles (radiation) with EOS parameter
�M ¼ 0 and, thus, there is no ‘‘external force’’ to drive the
vacuum energy density. Rapid oscillations with frequency
!� EPlanck lead to the decay of the vacuum energy density
with the rate ��!� EPlanck [4,5]. As a result, (4.1) gives

1An excellent description of the currently available data is, in
fact, given by the flat-�CDM model (cf. Refs. [7,8]), with an
inhomogeneous cold-dark-matter component (EOS parameter
wCDM ¼ 0) and a perfectly homogeneous and time-independent
vacuum energy density component (wV ¼ �1), which corre-
sponds to Einstein’s cosmological constant �.

F. R. KLINKHAMER AND G.E. VOLOVIK PHYSICAL REVIEW D 80, 083001 (2009)

083001-4



exponential decay (1.1b) of the vacuum energy density to a
zero value. The model universe rapidly approaches the
stage with pure radiation, evolving as in (2.10).

During the electroweak crossover, the EOS parameter
�MðtÞ in (4.2) deviates from zero, which drives the vacuum
energy density (4.1) away from zero toward a positive
value. The change of the vacuum energy density during
the crossover results in the emission of particles. The
radiation rate �ðtÞ is concentrated in the crossover period,
because after the crossover the model universe returns to
radiation-dominated expansion without particle produc-
tion. The decay rate �ðtÞ is, therefore, peaked at t� tew,

�ðtÞjt�tew _ t	tew � �ðtewÞ � 1=tew; (4.3)

where the maximal value 1=tew will be derived shortly.
Note that the maximal rate �ðtewÞ � E2

ew=ð@EPlanckÞ goes to
infinity for @ ! 0 and fixed energy E2

ew=EPlanck, so that
(4.1) reproduces the classical result, �VðtÞ ! �V;0ðtÞ. In
fact, this particular classical limit corresponds to the hydro-
dynamic limit in fluid dynamics; cf. the section on ‘‘second
viscosity’’ in Ref. [25]. Further remarks on the heuristics of
the vacuum dynamics equation (4.1) will be presented in
the paragraph starting a few lines after (4.5).

The estimate for the maximal value of the decay rate in
(4.3) can be obtained as follows. Start from the observation
[26] that, for an FRW universe with appropriate boundary
conditions [27], the number of particles created per unit of
time and per unit of volume is given by _n / R2, where R is
the Ricci curvature scalar. For an FRW universe with pure
radiation, the Ricci scalar R / ð _H þ 2H2Þ vanishes and
there is no particle production. As mentioned before, this
is the reason why the radiation rate �ðtÞ is peaked in the
crossover period.2 In the period of the electroweak cross-
over, one has R2ðtewÞ � _H2ðtewÞ �H4ðtewÞ � �VðtewÞ.
Particles created [24] during this period have a Compton
time of order tew and, thus, a characteristic energy of order
E / 1=tew. The only known elementary particles whose
energy E can be of order 1=tew � E2

ew=EPlanck �meV are
massless gravitons and massive neutrinos, some of whose
masses [34] may be comparable with 1=tew (all the other
particles of the standard model have larger masses, includ-
ing the photon which gets an effective mass in the cosmic
plasma). During the electroweak-crossover period, the
radiated energy per unit of time and per unit of volume is
then _�V / �E _n / ��V=tew, giving �ðtewÞ � 1=tew for the
decay rate entering (4.1) and delivering the announced
estimate (4.3).

Now, the solution of (4.1) is given by

�VðtÞ ¼
Z t

0
dt0�ðt0Þ�V;0ðt0Þ exp

�
�
Z t

t0
dt00�ðt00Þ

�
; (4.4)

for boundary condition �Vð0Þ ¼ 0, which is reasonable for
times t well after the Planck era. Since �ðtÞ is concentrated
in the crossover period and has peak value (4.3), the
solution (4.4) gives limt!1�VðtÞ � �V;0ðtewÞ. For very

late times, t 	 tew, one thus obtains that the vacuum
energy density approaches the following positive and
time-independent value:

�VðtÞjt	tew � �VðtewÞ � �V;0ðtewÞ � E8
ew=E

4
Planck; (4.5)

where (3.5) has been used in the last step. The final result
(4.5) is comparable to the measured value of the cosmo-
logical constant, as shown in (1.4).
The heuristics of the obtained nonzero remnant vacuum

energy density is as follows. The quantity �ðtÞ in (4.1) can
be interpreted as the inverse of the instantaneous response
time �ðtÞ of the vacuum energy density �VðtÞ to an ‘‘ex-
ternal perturbation.’’ Here, the external perturbation (4.2)
comes from the ‘‘kick’’ in �MðtÞ, which is assumed to
happen at t� tew and to have a full width at half maximum
�t� � tew. Moreover, �ðtÞ � 1=�ðtÞ is taken to have a
width �t�, which is comparable to or larger than the
duration of the kick, �t� * �t�. A priori, there are then
two possibilities. First, the typical response time � is short
(� � �t�), which implies that the vacuum energy density
�VðtÞ can follow the kick in �MðtÞ and that �VðtÞ can
recover a near-zero value, as �MðtÞ drops to zero for t 	
tew. Second, the typical response time � is relatively long
(� * �t�), which implies that the vacuum energy density
�VðtÞ cannot keep up with �MðtÞ, as the latter drops to zero,
and that a nonzero asymptotic value of �V remains.
According to (4.3), this second type of behavior occurs
for the case considered, with �� �t� � tew, and a non-
vanishing asymptotic value of �VðtÞ follows from the
general solution (4.4). In short, the nonzero remnant vac-
uum energy density (4.5) is a time-lag effect, because the
response (relaxation) time of the vacuum energy density is
of the same order of magnitude as the duration of the kick.3

After the electroweak crossover, further perturbations
of the vacuum energy density occur during the QCD
confinement transition at a typical temperature

2Matter radiation must also vanish in a de Sitter spacetime,
where no relaxation of the vacuum energy density is expected.
For a discussion of the controversies concerning the stability of
de Sitter spacetime, see, e.g., Refs. [28–33].

3In principle, the same time-lag (freezing) mechanism may
work for the scenario of Ref. [13], where a vacuum energy
density �V / H4ðtÞ emerges due to the conformal anomaly.
During the electroweak crossover, the number of massless fields
contributing to the anomaly changes, which results in a kick of
the vacuum energy density. In turn, this gives rise to matter
radiation, which leads to the stabilization of the vacuum energy
density at a value of the order of (4.5).
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T � EQCD � 102 MeV and the epoch following the mo-

ment of radiation-matter equality, when the radiation-
dominated effective EOS parameter wM ¼ 1=3 changes
to the matter-dominated parameter wM ¼ 0. (The moment
of radiation-matter energy density equality happens to be
close to the epoch of recombination with T � Trec �
10�1 eV and this energy scale will be used for definite-
ness.) The first-mentioned perturbation of the vacuum
energy density by the QCD confinement transition (see,
e.g., Fig. 19.3 in Ref. [34] for the change in the number of
relativistic degrees of freedom) can be expected to give a
change of the order of H4ðtQCDÞ � ðE2

QCD=EPlanckÞ4, which
is negligible compared to the present value of � according
to (1.4). The second perturbation of the vacuum energy
density acts during the whole matter-dominated era.
However, the resulting change of the vacuum energy den-
sity can be expected not to exceed a value of order
H4ðtrecÞ � ðT2

rec=EPlanckÞ4, which is, again, many orders of
magnitude smaller than the present value of � and can be
neglected.

Turning the argument of the preceding paragraph
around, it would seem that the suggested electroweak
explanation (1.4) of the present value of � would rule
out (leave no room for) similar crossover effects at much
higher temperature T? 	 Eew � TeV, the expected rem-
nant vacuum energy densityH4ðt?Þ being much larger than
H4ðtewÞ. This conclusion, if correct, may be consistent with
the picture [14] of having only two fundamental energy
scales, Eew and EPlanck, without unification of the standard
model gauge group at an intermediate grand-unification
energy scale [35,36].

V. DISCUSSION

The q-theory approach [1] to gravitational effects of the
quantum vacuum suggests at least two types of behavior
for the evolution of the vacuum energy density, each based
on solutions of the q-theory dynamical equations and their
modifications due to dissipative effects from matter radia-
tion. For the first type of solution [2,3], the model universe
is vacuum dominated with, according to (1.1a), the vacuum
energy density �VðtÞ relaxing as 1=t2 from its natural
Planck-scale value at early times when the system is far
from equilibrium to a naturally small value at late times
when the system is close to equilibrium. [Quantum effects
(e.g., the emission of matter quanta caused by the rapid
oscillations of the vacuum state) make the relaxation even
faster, as shown by (1.1b).] This essentially solves the main
cosmological problem (but with the caveat mentioned in
Sec. II): the present vacuum energy density is small com-
pared to Planck-scale values simply because the age of our
Universe happens to be large compared to Planck-scale
values. However, it leaves the following question: why
does the vacuum energy density not relax completely to
zero as t ! 1?

In order to answer this last question, we presented a
second type of solution in which the vacuum energy den-
sity has already relaxed to zero after the initial disturbance
in the very early universe and a nonzero value reemerges
only after a kick generated by nonrelativistic matter during
the epoch of the electroweak crossover. (These nonrelativ-
istic particles consist of standard model particles and pos-
sibly thermal relics from new physics at the TeV scale, as
discussed in Sec. III.) In the process, a nonoscillating
vacuum energy density is generated, which starts to decay
after the kick. Such a behavior emerges during the electro-
weak period, because in this epoch the matter EOS pa-
rameterwMðtÞ deviates from the radiative valuewM ¼ 1=3.
Quantum effects now lead to a stabilization of the vacuum
energy density at the level indicated by (4.5), which repro-
duces the expression suggested previously by Arkani-
Hamed et al. [14].
It was assumed in the reasoning leading up to (4.5) that

there was no real phase transition at cosmic time tew.
Instead, there was taken to be a crossover at a temperature
Tew ¼ Oð102 GeVÞ, which does not give a change of order
T4
ew in the vacuum energy density as a genuine phase

transition would do. The absence of a real electroweak
phase transition is by now well established [6], at least,
in the framework of the standard model of elementary
particle physics (the numerical value of the crossover
temperature is estimated [6] as Tew � 300 GeV for
mHiggs � 150 GeV). The new physics at the TeV scale

mentioned in the previous paragraph and Sec. III is as-
sumed not to affect the nature of the electroweak crossover.
But the massive relic particles of the new physics can make
a significant contribution to the EOS parameter �MðtÞ and
can also increase the numerical value of the effective
energy scale Eew, thereby augmenting the magnitude of
the estimated dark energy (4.2), (4.3), and (4.4) and bring-
ing the theoretical value (1.4) closer to the observed value
[7,8] of approximately ð2 meVÞ4.
The electroweak scenario of Ref. [14] may solve part of

the triple cosmic coincidence puzzle, as the same order of
magnitude follows naturally for the cold-dark-matter den-
sity and the radiation density in the present epoch.
Combined with the argument for the effective cosmologi-
cal constant (1.4) of the present article, this suggests that
TeV-scale physics may be responsible for the triple coin-
cidence of vacuum, matter, and radiation energy densities
in the present Universe (perhaps even a quintuple coinci-
dence if also the baryon and neutrino energy densities are
considered [14]).
For the present epoch, the vacuum energy density would

be essentially time independent according to (4.4) and,
observationally, the corresponding universe would be in-
distinguishable from the one of the �CDM model
(cf. footnote 1). But, theoretically, we would have gained
in understanding the magnitude of the cosmological ‘‘con-
stant’’ � as given by (1.4), in addition to explaining the
triple or quintuple cosmic coincidence mentioned above.
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