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Hořava-Lifshitz theory has been recently put forth as a proposal for a renormalizable theory of quantum

gravity [1]. It explicitly breaks Lorentz invariance, introducing an apparent extra scalar degree of freedom.

I show that the low energy limit of (non-projectible) Hořava-Lifshitz gravity is uniquely given by the

quadratic cuscuton model: a covariant scalar field theory with an infinite speed of sound and a quadratic

potential, minimally coupled to Einstein gravity. This implies that the extra scalar is nondynamical to all

orders in perturbation theory. Cosmological constraints on the quadratic cuscuton model constrain the low

energy Lorentz breaking parameter of Hořava-Lifshitz theory to j�� 1j< 0:014. We also point out that

the spatial hypersurfaces are constant mean curvature or uniform expansion surfaces and introduce

geometrical symmetries that can protect the nondynamical nature of these theories.
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I. INTRODUCTION

A consistent quantization of the theory of gravity has
been among the biggest challenges in theoretical physics
over the past century. An intriguing possibility that might
explain why a satisfactory solution to this problem has
evaded physicists for so long is that Lorentz symmetry,
which is the benchmark of Einstein’s theory of relativity, is
only a low-energy emergent phenomenon, and the funda-
mental theory has a preferred reference frame. An explicit
example of this possibility is a power-counting renorma-
lizable theory of gravity, which includes higher spatial (but
not time) derivatives of the 3-curvature tensor [1] (also see
[2,3]). The theory does not suffer from any ghosts (at least
in its tensor degrees of freedom), but at the expense of
maximal breaking of Lorentz symmetry (or the so-called
z ¼ 3 Lifshitz point) at high energies. The remaining
symmetries of the theory are only arbitrary spatial
diffeomorphisms and (space-independent) time
reparametrizations.

In this paper, we show that the low-energy limit of the
Hořava-Lifshitz theory reduces to Einstein’s gravity, mini-
mally coupled to cuscuton field theory: a scalar field theory
with an infinite speed of sound and a quadratic potential
[4,5]. The scalar field is nondynamical, and the theory has a
large class of geometric symmetries that can protect this
behavior from quantum corrections. This sheds new light
onto Lorentz-violating UV completions of the theory of
gravity, that do not have new dynamical degrees of free-
dom or ghostlike catastrophes.

II. EQUIVALENCE OF CUSCUTON AND
HOŘAVA-LIFSHITZ GRAVITIES

Within the reduced symmetry class of the theory, the
most general low-energy limit of (nonprojectible) Hořava-
Lifshitz gravity action is particularly interesting:

SHL½g��; c � ¼ SEH½g��� þ 1� �

16�GN

Z
d4x

ffiffiffiffiffiffiffi�g
p

K2; (1)

where SEH is the Einstein-Hilbert action of general relativ-
ity, whileK is the mean extrinsic curvature of constant time
hypersurfaces in the Hořava-Lifshitz theory, i.e. in a gen-
eral coordinate system we have

K � r�u
�; u� ¼ @�cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@�c @�c
p ; (2)

where c is the coordinate time in the preferred frame of the
Hořava-Lifshitz theory. Therefore, the correction to
Einstein-Hilbert action at low energies is given by

S�½g��; c � ¼ 1� �

16�GN

Z
d4x

ffiffiffiffiffiffiffi�g
p ðr�u

�Þ2

¼ 1� �

16�GN

Z
d4x

ffiffiffiffiffiffiffi�g
p ð2’r�u

� � ’2Þ

¼ 1� �

16�GN

Z
d4x

ffiffiffiffiffiffiffi�g
p ð�2u�@�’� ’2Þ;

(3)

where we introduce the nondynamical auxiliary field ’,
and used integration by parts to put r� on ’ in the first

term [6].
Now, let us turn to the quadratic cuscuton action [4]:

Sqc½g��; ’� ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�’@�’

p � 1

2
m2’2

�
;

(4)

where � and m are constants of the theory. This can be
easily generalized to general potentials by replacing
m2’2=2 with an arbitrary Vð’Þ. Introducing the auxiliary
fields v� and �, we can rewrite this action as

Sqc ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�2v�@�’� 1

2
m2’2 þ �ðv�v� � 1Þ

�
:

(5)

We thus see that the low-energy Hořava-Lifshitz and
quadratic cuscuton actions are the same, S� ¼ Sqc if
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�2 ¼ �m2 ¼ � 1� �

8�GN

; (6)

v� ¼ u� ¼ @�cffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�c @�c

p : (7)

Also, notice that since SEH½g��� is independent of space-
time foliation in the covariant formulation, the preferred
foliations c ðx�Þ or ’ðx�Þ are set by the additions to the
Einstein-Hilbert action, i.e. S�½g��; c � or Sqc½g��; ’�.

However, there is a subtlety in this equivalence: the
gradient (or irrotational) condition of Eq. (7), which en-
sures that the vector field threads a space-time foliation is
enforced at the action level in the Hořava-Lifshitz theory
[Eq. (3)], but it is only realized at the level of equations of
motion that follow from Eq. (5). As a result, extremizing
Sqc is a sufficient (but not necessary) condition to extrem-

ize S�. Nevertheless, since the vector field v� is nondy-
namical, one expects the solutions to be the same with
appropriate boundary conditions.

To see this explicitly, we can compare the equations of
motion, while varying actions (3) and (5) with respect to
the vector fields. For Sqc, varying with respect v� yields

v� / @�’; (8)

which fixes v� completely, given that it has a unit norm.
On the other hand, varying S� with respect to c yields

@�½ ffiffiffiffiffiffiffi�g
p ð@�c @�c Þ�1=2ðg�� � u�u�Þ@�’� ¼ 0; (9)

where u� / @�c . While u� / @�’ solves this equation, it

is clearly not the only possible solution. However, notice
that if we use the Hořava-Lifshitz preferred reference
frame (or uniform c gauge), Eq. (9) reduces to a linear
2nd order elliptical equation for ’ with only spatial de-
rivatives:

@iðMij@j’Þ ¼ 0; (10)

if we set g0i ¼ 0, where

Mij ¼ ffiffiffiffiffiffiffi�g
p ð@�c @�c Þ�1=2gij: (11)

Similar to the Laplace equation, the solutions to ’ are thus
fixed by boundary conditions at spatial infinity. In particu-
lar, a uniform ’ [or equivalently ’ ¼ fðc Þ] at spatial
infinity leads to completely uniform ’ on constant c
surfaces. Since, this constraint does not involve any time
derivatives, it can be equally enforced at the classical and
quantum level.

To summarize, as long as the constraint u� / @�’ ¼
@�r�u

� [8] is enforced at spatial infinity, the quadratic

cuscuton and low-energy Hořava-Lifshitz theories are
equivalent. We should point out that this is naturally real-
ized for solutions that asymptote to Friedmann-Robertson-
Walker cosmological geometries at spatial infinity. Now,
varying Sqc with respect to ’, we recover the equation of

motion for low-energy Hořava-Lifshitz/cuscuton theories:

K ¼ 1ffiffiffiffiffiffiffi�g
p @�

� ffiffiffiffiffiffiffi�g
p

@�’ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�’@�’

p
�
¼ �m2’

�2
(12)

III. CMC GAUGE AND COSMOLOGY

We should note that the condition u� / @�r�u
� for

normal vectors to constant c surfaces implies that the
mean extrinsic curvature K ¼ r�u

� is uniform on these
surfaces. Therefore, as long as � � 1, the preferred gauge
in the low-energy Hořava-Lifshitz (and cuscuton) theories
are constant mean curvature (CMC) surfaces. Since K ¼
r�u

� is also the local expansion rate of the cuscuton fluid,
this is also known as the uniform expansion gauge.
Using this equivalence, we can further use the cosmo-

logical constraints on the quadratic cuscuton model to
constrain the parameter �. It was shown in [4,5] that the
quadratic cuscuton model causes an effective mismatch
between the infrared (superhorizon) and ultraviolet (sub-
horizon) Planck masses:

M2
p;IR ¼ M2

p;UV � 3�4

2m2
¼

�
1þ 3

2
ð1� �Þ

�
M2

p;UV; (13)

where Mp;UV ¼ ð8�GNÞ�1=2 is the reduced Planck mass

on subhorizon scales. This mismatch causes anomalous
growth/decay of perturbations during the matter era, which
can be tested by comparing large scale structure with the
cosmic microwave background anisotropies, or through the
early integrated Sachs-Wolfe effect in the cosmic micro-
wave background. [9] finds the cosmological constraints
on this phenomenon for the quadratic cuscuton model,
which yields

�� 1 ¼ 0:003� 0:014 ð95%CLÞ: (14)

A weaker version of this constraint, based on big bang
nucleosynthesis predictions for primordial abundances,
was already found in [10].

IV. GEOMETRIC SYMMETRIES AND LACK OF
DYNAMICS

The infinite speed of sound for the cuscuton theory
implies that the linear perturbations of the field around
any uniform background: �ðxi; tÞ ¼ ’ðxi; tÞ � �’ðtÞ,
coupled to external fields Jðxi; tÞ (such as metric), satisfy
a nondynamical equation (e.g. [11]) of the form

gijrirj�þOð�2Þ ¼ Jðxi; tÞ: (15)

Therefore, �ðxi; tÞ can be solved as a (nonlocal but simul-
taneous) function of Jðxi; tÞ (and spatial boundary condi-
tions) perturbatively, to any order, independent of initial
conditions. In particular, no (ghost or tachyonic) dynami-
cal instability can exist for the � field, at least at the
perturbative level.
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The case of cuscuton in 1þ 1 dimensional Minkowski
space is particularly instructive, as Lorentzian CMC sur-
faces are hyperbolae. Therefore, any one-dimensional fam-
ily of nonintersecting hyperbolae can describe the
constant-’ curves in a classical solution to the cuscuton
field equation, where ’ is the extrinsic curvature of the
hyperbola. A cartoon of this is shown in Fig. (1), which
shows that fixing the two ends of a constant ’ surface (say
at spatial infinities) fixes the entire surface.

Is there a well-defined initial value problem for the
cuscuton field theory? As we argued above, any fluctua-
tions around uniform ’ðtÞ backgrounds remain nondynam-
ical in perturbation theory, order by order. Nevertheless, for
a general space-time foliation, the equation of motion (12)
has 2nd order time derivatives, and thus appears to be
dynamical. This is only an illusion, as for any initial
surface [e.g. the dashed line in Fig. (1)], there is a nonlocal
constraint that relates’ and _’ at two different points on the
surface. In other words, fixing initial ’ and _’ at one point

in space fixes the constant-’ hyperbola, which in turn sets
these values where the hyperbola re-intersects the initial
surface.
What we conclude from this discussion is that cuscuton

initial conditions on a general initial surface should satisfy
a (generally) nonlocal constraint, in order to lead to a
consistent future evolution (at least for a finite time).
Therefore, the theory is still globally nondynamical, even
though it may locally appear dynamical in a general gauge.
In other words, a local canonical formulation of field
theory is nonexistent for this theory, which manifests itself
as a degenerate (i.e. zero-volume) canonical phase space of
linear fluctuations around constant field surfaces. We
should point out that neglecting this nonlocal constraint
has led others to infer instabilities/ghosts, or inconsisten-
cies in the Hořava-Lifshitz theory (e.g. [12–14]). However,
neglecting the gravitational backreaction, a classical solu-
tion to the scalar field equation is as simple as finding the
CMC foliation of the space-time, which is a generally well-
defined procedure. We should note that after solving for the
scalar constraint, the remaining metric degrees of freedom
will obey a nonlocal dynamical equation of motion.
Another source of confusion has been linear perturba-

tion theory around (flat foliation of) Minkwoski space (e.g.
[1,15–17]). Flat foliation of Minkowski space is not a
classical background solution to the cuscuton equation of
motion, which invalidates any perturbation theory around
it for � � 0. This is similar to the case of degenerate
perturbation theory in quantum mechanics, as the �� 1
term (as well as the higher derivative terms) breaks the
foliation independence of the Einstein-Hilbert action.
We will next introduce a geometric symmetry principle

that can protect this nondynamical nature in the UV com-
pletion of cuscuton/Hořava-Lifshitz theories. Let us con-
sider the infinitesimal field transformations

�’ ¼ a�@�fð’Þ; (16)

where fð’Þ is an arbitrary function of ’ and a� is a vector
field that satisfies

r�a� ¼ @�’@�’r�a� ¼ 0; (17)

i.e. the divergence of a�, as well as the divergence of its
projection onto constant ’ surfaces vanish. The change in
the quadratic cuscuton action, after some integration by
parts, takes the form

�Sqc ¼
Z

d4x
ffiffiffiffiffiffiffi�g

p �
�2f0ð’Þr�a�ð@�’@�’� g��@

�’@�’Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@�’@�’

p þ hð’Þr�a�

�
; (18)

which vanishes up to surface terms if we use (17), where

hð’Þ ¼ m2
Z

f0ð’Þ’d’: (19)

Therefore, the cuscuton action is invariant under the trans-
formations (16) for any fð’Þ, and a large class of a� ’s (e.g.
any constant a� in a Minkowski space-time). These sym-
metries are unique to the cuscuton (and by extension to

1

2

3

4
5

FIG. 1. A cartoon of constant field hypersurfaces of cuscuton
in a fixed space-time. As we argue in the text, different surfaces
are decoupled in the action, and are thus fixed by boundary
conditions at spatial infinity.
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Hořava-Lifshitz) action(s), and can protect the low-energy
theory from higher derivative terms that could make ’
dynamical.

There is a deeper geometric meaning to the symmetries
(16), which are equivalent to coordinate transformations

�x� ¼ a�f0ð’Þ: (20)

The fact that f0ð’Þ is an arbitrary function of ’ is a
consequence of the fact that both actions are a sum over
the geometric functions of constant ’ surfaces:

Sqc;HL½g��; ’� ¼ SEH½g��� þ
Z

d’�qc;HL½x�ð�i; ’Þ�;
(21)

where x�ð�i; ’Þ characterize the constant ’ surfaces with
a spatial parametrization �i. For example, �qc is a linear

combination of area (or 3-volume) �ð’Þ and 4-volume
V ð’Þ of the constant ’ surface [4]:

�qc½x�ð�i; ’Þ� ¼ �2sgnð _’Þ�ð’Þ þm2’V ð’Þ

¼ �� 1

8�GN

½sgnð _’Þ�ð’Þ þ ’V ð’Þ�; (22)

where m2’ can be replaced by V 0ð’Þ for a more general
potential. Most significantly, there is no coupling between
different ’ surfaces (for fixed background metric), which,
as we discussed above, implies that minimizing action
fixes each surface for a given metric and given boundary
conditions at spatial infinity, independent of other surfaces
or initial conditions of ’.

The only exception to this statement is when different
surfaces intersect (i.e. caustics form), which will signify a
breakdown of the low-energy theory. One may speculate
that gravitational backreaction would prevent these singu-
larities in a UV-complete theory of quantum gravity. At the
classical level, it was shown in [5] that cosmological
perturbations in ’ remain small (or identically the uniform
expansion/CMC gauge remains well-defined), with pos-
sible exception of the vicinity of black hole horizons.

Notice that there is also a close analogy between
Eq. (22) and the energy of soap bubbles/films, with the
area and volume terms characterizing the surface tension
and pressure difference between the two sides of the film,
respectively [4]. This naturally explains the emergence of
CMC surfaces as the extremum of the action.

Let us now consider the nonperturbative stability of the
system. Even though ’ is nondynamical, the space-time
metric has dynamical degrees of freedom, which have a
modified behavior due to coupling to cuscuton. While the
general relativity Hamiltonian is non-negative [18], the
low-energy Hamiltonian for the scalar field in an arbitrary
coordinate system (but setting g0i ¼ 0) has the form

H� ¼ �� 1

8�GN

Z
d3x

ffiffiffiffiffiffiffi�g
p �jgij@i’@j’jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@�’@
�’

p � 1

2
’2

�
: (23)

Although this is not a generic feature of cuscuton theories,
we notice that the Hořava-Lifshitz Hamiltonian (with
�2 ¼ �m2) is not positive definite. Therefore, coupling
to positive energy sectors can potentially lead to nonper-
turbative instabilities. While � > 1 appears to yield a
benign tachyonic negative energy, for � < 1 short wave-
length perturbations can have arbitrarily negative energies,
which may signal a potential instability (also see [17]),
although the nondynamical nature of ’ prevents a ghost-
like degree of freedom. We should also point out that since
this theory does not have an asymptotically flat space-time,
the notion of energy/Hamiltonian may not be very helpful
for analyzing the global stability of the system.
Finally, we should point out that the decoupling of

different ’ surfaces can be broken by the so-called projec-
tibility condition, that forces the proper time to advance
uniformly on constant-’ surfaces, or the Hořava-Lifshitz
preferred frame. This constraint couples different surfaces,
and thus can make the theory dynamical, leading to caus-
tics and possibly ghost/tachynoic instabilities (e.g. [13,19],
but also see [20]).

V. CONCLUSIONS

We have shown that at low energies, Hořava-Lifshitz
theory of gravity is identical to Einstein’s gravity plus
cuscuton, a nondynamical/incompressible scalar field the-
ory. The Lorentz breaking of the low-energy theory is
constrained to less than 1.4%, based on cosmological ob-
servations. The nondynamical nature of the scalar is main-
tained at the nonperturbative level, which stems from
decoupling of constant ’ surfaces in the cuscuton action,
which breaks into sum of areas and volumes of these
surfaces. Including higher order geometrical functionals
of these surfaces (such as integrals of 3-curvature and its
covariant derivatives), as proposed in the UV regime of the
theory, does not change this decoupling, and thus the non-
dynamical nature of the scalar sector. Nevertheless, cou-
pling to a positive energy sector might lead to a
nonperturbative UV instability for � < 1.
Another important result of this geometrical picture is

the natural emergence of CMC surfaces as the preferred
frame of Hořava-Lifshitz gravity at low energies. It is
interesting to notice a possible connection with the emer-
gence of the CMC gauge in the timeless formulation of
spatially conformal gravity in [21].

ACKNOWLEDGMENTS

I am grateful to B. Bassett, R. Brandenberger, X. Liu,
C. Skordis, H. Verlinde, and T. Zlosnik for useful discus-
sions. I am particularly indebted to A. Tolley for many
discussions through the course of this project. N. A. is

NIAYESH AFSHORDI PHYSICAL REVIEW D 80, 081502(R) (2009)

RAPID COMMUNICATIONS

081502-4



supported by the Perimeter Institute for Theoretical
Physics. Research at the Perimeter Institute is supported
by the Government of Canada through Industry Canada

and by the Province of Ontario through the Ministry of
Research & Innovation.

[1] P. Horava, Phys. Rev. D 79, 084008 (2009).
[2] J.W. Moffat, Found. Phys. 23, 411 (1993).
[3] J.W. Moffat, Int. J. Mod. Phys. D 2, 351 (1993).
[4] N. Afshordi, D. J. H. Chung, and G. Geshnizjani, Phys.

Rev. D 75, 083513 (2007).
[5] N. Afshordi, D. J. H. Chung, M. Doran, and G.

Geshnizjani, Phys. Rev. D 75, 123509 (2007).
[6] A more systematic derivation of a covariant version of
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